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Abstract. In the current paper we first show that the fixpoint theory of equality
is decidable. The motivation behind considering this theory is that second-order
quantifier elimination techniques based on a theorem given in [16], when success-
ful, often result in such formulas. This opens many applications, including auto-
mated theorem proving, static verification of integrity constraints in databases as
well as reasoning with weakest sufficient and strongest necessary conditions.

1 Introduction

In this paper we investigate the fixpoint theory of equality, FEQ, i.e., the classical first-
order theory with equality as the only relation symbol, extended by allowing least and
greatest fixpoints. We show that FEQ is decidable.

The motivation behind considering this theory follows from important applications
naturally appearing in artificial intelligence and databases. Namely, we propose a tech-
nique, which basically depends on expressing some interesting properties as second-
order formulas with all relation symbols appearing in the scope of second-order quanti-
fiers, then on eliminating second-order quantifiers, if possible, and obtaining formulas
expressed in the theory FEQ and finally, on reasoning in FEQ.

Second-order formalisms are frequent in knowledge representation. On the other
hand, second-order logic is too complex1 to be directly applied in practical reasoning.
The proposed technique allows one to reduce second-order reasoning to fixpoint calcu-
lus for a large class of formulas and then to apply the decision procedure for FEQ.

To achieve our goal we first introduce a logic with simultaneous least fixpoints (Sec-
tion 2) and then define the theory FEQ, prove its decidability and estimate complexity
of reasoning (see Section 3). Next, in Section 4, we recall the fixpoint theorem of [16].
Then we discuss some applications of the proposed technique in automated theorem
proving (Section 5.1), static verification of integrity constraints in deductive databases

� Supported in part by the grants 3 T11C 023 29 and 4 T11C 042 25 of the Polish Ministry of
Science and Information Society Technologies.

1 It is totally undecidable over arbitrary models and PSPACE-complete over finite models.
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(Section 5.2) and reasoning with weakest sufficient and strongest necessary conditions
as considered in [12,7] (Section 5.3).

To our best knowledge, the method proposed in Section 5.1 is original. The method
discussed in Section 5.2 substantially extends the method of [9] by allowing recursive
rules in addition to relational databases considered in [9]. The method presented in
Section 5.3 shows a uniform approach to various forms of reasoning important in many
artificial intelligence applications.

2 Fixpoint Logic

In this paper we deal with classical first-order logic (FOL) and the simultaneous least
fixpoint logic (SLFP) with equality as a logical symbol, i.e., whenever we refer to the
empty signature, we still allow the equality symbol within formulas.

We assume that the reader is familiar with FOL and define below syntax and seman-
tics of SLFP.

Many of the notions of interest for us are syntax independent, so the choice of a syn-
tactical representation of a particular semantics of fixpoints is immaterial. In this se-
mantical sense the logic we consider has been introduced by Chandra and Harel in
[5,4]. However, here we use a different syntax. A number of different definitions of
SLFP, though of the same expressive power, can be found in the literature. All of them
allow iterating a FOL formula up to a fixpoint. The difference is in the form of iteration.

Definition 2.1. A relation symbol R occurs positively (respectively negatively) in a for-
mula A if it appears under an even (respectively odd) number of negations.2

A formula A is positive w.r.t. relation symbol R iff all occurrences of R in A are
positive. A formula A is negative w.r.t. relation symbol R iff all occurrences of R in A
are negative. �

Definition 2.2. Let ϕi(R1, . . . , R�, x̄i, ȳi), for i = 1, . . . , �, be FOL formulas, where
x̄i and ȳi are all free first-order variables of ϕi, | x̄i| = ki, none of the x’s is among
the y’s and where, for i = 1, . . . , �, Ri are ki-argument relation symbols, all of whose
occurrences in ϕ1, . . . , ϕ� are positive. Then the formula

SLFP [R1(x̄1)≡ϕ1(R1, . . . , R�, x̄1, ȳ1), . . . , R�(x̄�)≡ϕ�(R1, . . . , R�, x̄�, ȳ�)]

is called a simultaneous fixpoint formula (with variables x̄1, . . . , x̄�, ȳ1 . . . , ȳ� free). In
the rest of the paper we often abbreviate the above formula by SLFP [R̄ ≡ ϕ̄].

Let σ be a signature. Then the set of SLFP formulas over σ is inductively defined as
the least set containing formulas of FOL over σ, closed under the usual syntax rules of
first-order logic and applications of simultaneous least fixpoints. �

Note that according to the above rules, the fixpoint operators cannot be nested in SLFP,
however, it is permitted to use boolean combinations of fixpoints, as well as to quantify
variables outside of them.

2 It is assumed here that all implications of the form p → q are substituted by ¬p ∨ q and all
equivalences of the form p ≡ q are substituted by (¬p ∨ q) ∧ (¬q ∨ p).
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FOLk and SLFPk stand for the sets of those formulas in FOL and SLFP, respec-
tively, in which only at most k distinct first-order variable symbols occur.

For a structure A, by A we denote the domain of A. By Ak we denote the cartesian
product A × . . . × A

︸ ︷︷ ︸

k−times

. By ω we denote the set of natural numbers.

We assume the standard semantics of FOL. For SLFP we need a semantical rule
concerning the semantics of the formula SLFP [R̄ ≡ ϕ̄].

Further on x̄ : ā, R1 : Φ1, . . . , R� : Φ� denotes a valuation assigning ā to x̄ and Φi to
Ri, for i = 1, . . . , �. The values of the remaining variables play the rôle of parameters
and are not reflected in the notation.

Given a structure A, we define the sequence (Φ̄α) = (〈Φα
1 , . . . , Φα

� 〉) indexed by
ordinals α, by the following rules,

Φ0
i = ∅ for i = 1, . . . , �

Φα+1
i = {b̄ ∈ Aki | A, x̄i : b̄, R1 : Φα

1 , . . . , R� : Φα
� |= ϕi} for i = 1, . . . , �

Φα
i =

⋃

β<α

Φβ
i for i = 1, . . . , �, when α is a limit ordinal.

Since each ϕi is positive in all the Rj’s, a simple transfinite induction shows that the
sequence (Φ̄α) is ascending in each of the coordinates.

Let Φ̄∞ def= 〈Φ∞
1 , . . . , Φ∞

� 〉 =
〈 ⋃

α

Φα
1 , . . . ,

⋃

α

Φα
�

〉

. Then we define

A, x̄i : āi |= SLFP [R̄ ≡ ϕ̄] iff āi ∈ Φ∞
i for i = 1, . . . , �.

3 Fixpoint Theory of Equality

3.1 The Main Results

Before proceeding, we introduce the main tools.
Below by A(x̄)[t̄] we mean the application of A(x̄) to terms (or, dependently on the

context, to domain values) t̄.

Definition 3.1. Let A, B be two structures over a common signature. We write A ≡k B

iff A and B cannot be distinguished by any FOLk sentence, i.e., when for every sentence
ϕ of first-order logic with k variables, A |= ϕ iff B |= ϕ.

For two tuples ā ∈ Ak and b̄ ∈ Bk we write A, ā ≡k B, b̄ iff those tuples cannot be
distinguished by any FOLk formula in A and B, i.e., when for every formula ϕ(x̄) ∈
FOLk, A |= ϕ[ā] iff B |= ϕ[b̄]. �

Another fact that we will need is a characterization of the expressive power of FOLk

in terms of an infinitary Ehrenfeucht-Fraı̈ssé-style pebble game. This game character-
izes the expressive power of the logic we have introduced in the sense formulated in
Theorem 3.3 of [3,8,17].
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Definition 3.2 (The Game).

Players, board and pebbles. The game is played by two players, Spoiler and Dupli-
cator, on two σ-structures A, A′ with two distinguished tuples ā ∈ Ak and ā′ ∈ A

′.
There are k pairs of pebbles: (1, 1′), . . . , (k, k′). Pebbles without primes are in-
tended to be placed on elements of A, while those with primes on elements of A′.

Initial position. Initially, the pebbles are located as follows: pebble i is located on ai,
and pebble i′ is located on a′

i, for i = 1, . . . , k.
Moves. In each of the moves of the game, Spoiler is allowed to choose one of the

structures and one of the pebbles placed on an element of that structure and move
it onto some other element of the same structure. Duplicator must place the other
pebble from that pair on some element in the other structure so that the partial
function from A to A

′ mapping x ∈ A on which pebble i is placed onto the element
x′ ∈ A

′ on which pebble i′ is placed and constants in A onto the corresponding
constants in A

′, is a partial isomorphism. Spoiler is allowed to alternate between
the structures as often as he likes, when choosing elements.

Who wins? Spoiler wins if Duplicator does not have any move preserving the isomor-
phism. We say that Duplicator has a winning strategy if he can play forever despite
of the moves of Spoiler, preventing him from winning. �

Theorem 3.3. Let A, B be any two structures of a common signature. Then Duplicator
has a winning strategy in the game on A, ā and B, b̄ iff A, ā ≡k B, b̄. �

Henceforth we restrict our attention to the theory and models of pure equality. Let for
a cardinal number m the symbol Em stand for the only (up to isomorphism) model of
pure equality of cardinality m.

The following theorem can easily be proved using Theorem 3.3.

Theorem 3.4. Let k ∈ ω. Then for any cardinal numbers m, n ≥ k and any two tuples
ā, b̄ of length k over Em and En, respectively, Em , ā ≡k En, b̄ if and only if for every
i, j ≤ k the equivalence ai = aj ≡ bi = bj holds. �

Proof. By theorem 3.3 it suffices to prove that the Duplicator has a winning strategy in
the game iff for every i, j ≤ k, ai = aj ≡ bi = bj .

If the equivalence does not hold, then certainly the Duplicator lost already at the
beginning. In turn, if it does, than the initial position has the required isomorphism,
and this can be preserved by the Duplicator, since the structures have at least as many
elements as the number of pebbles, so the Duplicator can mimic any move of the
Spoiler. �

Henceforth if the equivalence ai = aj ≡ bi = bj holds for every i, j ≤ k for two tuples
ā, b̄ of length k, we will write ā ≡k b̄. Note that already in Ek there are tuples which
are representatives of all the equivalence classes of ≡k .

Definition 3.5. The quantifier rank of a formula α, denoted by r(α), is defined induc-

tively by setting r(α) def= 0 when α contains no quantifiers, r(¬α) def= r(α), for any bi-

nary propositional connective ◦, r(α◦β)def= max{r(α), r(β)} and r(∃α) def= r(∀α) def=
r(α) + 1. �
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An important result is the following theorem, provided in [10, Theorem 2.7].

Theorem 3.6. Let 0 < n ∈ ω and let all the first-order formulas ϕi in an SLFP
formula SLFP [R̄ ≡ ϕ̄] have at most k free variables and be of quantifier rank at most
d. Then, over the empty signature,3 each component Φn

i is definable by a first-order
formula with at most k variables and of quantifier rank at most dn, i.e., for any 0<n∈ω
there are formulas ϕn

1 , . . . , ϕn
� of FOLk of quantifier rank ≤ dn such that for any

structure A over the empty signature, Φn
i = {ā ∈ Aki | A, x̄i : ā |= ϕ(x̄i)}. �

Next, an application of Theorem 3.4 and the previous results, yields the following con-
sequence.

Corollary 3.7. Let 0 < k ∈ ω. If A is a model of pure equality of cardinality at least
k, ā ∈ Ak, and ϕ(x̄) ∈ SLFPk, then A |= ϕ[ā] iff Ek |= ϕ[ā′], where ā′ ≡k ā.

Proof. First, we claim that every subformula of ϕ of the form SLFP [R̄ ≡ ϕ̄] can be
substituted by an FOLk formula, equivalent to the former both in A and Ek.

Indeed, in Ek the sequence of stages (Φ̄α) = (〈Φα
1 , . . . , Φα

� 〉) reaches a fixpoint in
a finite number of iterations, say K , i.e., Φ̄∞ = Φ̄K . The reason is that this sequence
is ascending in each of the coordinates, and each coordinate for each α is a subset of
a fixed, finite set. Therefore

Ek |=
�

∧

i=1

∀x̄
(

ϕK
i (x̄) ≡ ϕK+1

i (x̄)
)

,

where ϕK
i (x̄) are the formulas from Theorem 3.6. A is isomorphic to some Em for some

m ≥ k, so by Theorem 3.4,

A |=
�

∧

i=1

∀x̄
(

ϕK
i (x̄) ≡ ϕK+1

i (x̄)
)

,

This sentence asserts that the iteration of SLFP [R̄ ≡ ϕ̄] stops in A after at most K
steps, too. It is now routine to use the FOLk formulas ϕK

i (x̄) to replace SLFP [R̄ ≡ ϕ̄]
in ϕ.

Our claim has been proven. So let ϕ′ ∈ FOLk be equivalent to ϕ in both A and Ek,
and obtained by the substitution of all fixpoints of ϕ by their FOLk-equivalents.

Now by Theorem 3.4 it follows that A |= ϕ′[ā] iff Ek |= ϕ′[ā′], where ā′ ≡k ā, and
this carries over to the formula ϕ, as desired. �

3.2 The Complexity

Now we turn to the problem of satisfiability of SLFP formulas over the empty signature.
This means that still the only predicate allowed in formulas is the equality.

By the results of the previous section, we have the following equivalence:

Theorem 3.8. A formula ϕ of SLFPk is satisfiable if and only if it is satisfiable in one
of the structures E1, . . . , Ek.

3 Recall that equality is still allowed, since it is a logical symbol.
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Proof. Indeed, any structure over the empty signature is isomorphic to one of the form
Em, and since Em ≡k Ek, the equivalence follows. �

This suggests the following algorithm for testing satisfiability of fixpoint formulas over
the empty signature: for a given formula ϕ(x̄) ∈ SLFPk we test if it is satisfied by
〈A, ā〉, where A ranges over all (pure equality) structures of cardinality at most k, and
ā ranges over all equality types of vectors of length |x̄| of elements from A.

Concerning the complexity of this procedure, the number of structures to be tested is
linear in k. The number of iterations of any fixpoint in SLFPk is bounded by O(B(k)�),
where B(n) is the n-th Bell number and � the maximal number of formulas whose
simultaneous fixed point is used. Indeed, B(k) is the number of ≡k-equivalence classes.
Thus computing the fixpoints literally, according to the definition, takes time bounded
by a polynomial of B(k)�, and computing the first-order constructs increases this by
only a polynomial factor.

Therefore the algorithm we obtained is of exponential complexity.

4 The Fixpoint Theorem

Further on we deal with the first- and the second-order classical logic with equality.
Below we recall the theorem for elimination of second-order quantifiers, proved

in [16]. This theorem, combined with the decidability result given in Section 3.2, pro-
vides us with a powerful tool for deciding many interesting properties, as shown in
Section 5. For an overview of the related techniques see [15].

Let B(X) be a second-order formula, where X is a k-argument relational variable
and let C(x̄) be a first-order formula with free variables x̄ = 〈x1, . . . , xk〉. Then by
B[X(t̄) := C(x̄)] we mean the formula obtained from B(X) by substituting each
occurrence of X of the form X(t̄) in B(X) by C(t̄), renaming the bound variables in
C(x̄) with fresh variables.

Example 4.1. Let B(X) ≡ ∀z[X(y, z) ∨ X(f(y), g(x, z))], where X is a relational
variable and let C(x, y) ≡ ∃zR(x, y, z). Then B[X(t1, t2) := C(x, y)] is defined by

∀z[ ∃z′R(y, z, z′)
︸ ︷︷ ︸

C′(y,z)

∨∃z′R(f(y), g(x, z), z′)
︸ ︷︷ ︸

C′(f(y),g(x,z))

],

where C′(x, y) is obtained from C(x, y) by renaming the bound variable z with z′. �

Recall that by A(x̄)[t̄] we mean the application of A(x̄) to terms t̄.
The following theorem, substantial for the applications considered in Section 5, has

been provided in [16]. Below, for simplicity, we use the standard least and greatest
fixpoint operators LFP and GFP rather than simultaneous fixpoints.

Theorem 4.2. Assume that formula A is a first-order formula positive w.r.t. X .

– if B is a first-order formula negative w.r.t. X then

∃X∀ȳ[A(X) → X(ȳ)] ∧ [B(X)] ≡ B[X(t̄) := LFP X(ȳ).A(X)[t̄]] (1)



394 A. Szałas and J. Tyszkiewicz

– if B is a first-order formula positive w.r.t. X then

∃X∀ȳ[X(ȳ) → A(X)] ∧ [B(X)] ≡ B[X(t̄) := GFP X(ȳ).A(X)[t̄]]. (2)
�

Remark 4.3. Observe that, whenever formula A in Theorem 4.2 does not contain X ,
the resulting formula is easily reducible to a first-order formula, as in this case both
LFP X(ȳ).A and GFP X(ȳ).A are equivalent to A. Thus the Ackermann’s lemma (see,
e.g., [2,15,18]) is subsumed by Theorem 4.2). �

An online implementation of the algorithm based on the above theorem is available
online (see [13]). Observe that the techniques applied in that algorithm, initiated in [18]
and further developed in [6], allow one to transform a large class of formulas to the
form required in Theorem 4.2.

Example 4.4. Consider the following second-order formula:

∃X∀x∀y[(S(x, y)∨X(y, x))→X(x, y)] ∧ [¬X(a, b)∨∀z(¬X(a, z))] (3)

According to Theorem 4.2(1), formula (3) is equivalent to:

¬LFP X(x, y).(S(x, y) ∨ X(y, x))[a, b]∨
∀z(¬LFP X(x, y).(S(x, y) ∨ X(y, x))[a, z]). (4)

Observe that the definition of the least fixpoint appearing in (4) is obtained on the ba-
sis of the first conjunct of (3). The successive lines of (4) represent substitutions of
¬X(a, b) and ∀z(¬X(a, z)) of (3) by the obtained definition of the fixpoint. �

5 Applications

It can easily be observed that, whenever the elimination of all predicate variables in
a formula is possible by applications of Theorem 4.2, the resulting formula is a fixpoint
formula over the signature containing equality only. Thus the method applied in the
next sections depends on first eliminating all relations appearing in respective formulas
and then to apply reasoning in the fixpoint theory of equality.

5.1 Automated Theorem Proving

Introduction. Automated theorem proving in the classical first-order logic is consid-
ered fundamental in such applications as formal verification of software4 and properties
of data structures, as well as in the whole spectrum of reasoning techniques appearing
in AI, etc. The majority of techniques in these fields are based on various proof systems
with resolution-based ones and natural deduction supplemented with algebraic meth-
ods, like term rewriting systems etc.

Below we propose another method, which seems to be new in the field. It is not based
on any particular proof system. Instead, we first introduce second-order quantifiers in
an obvious way, then try to eliminate them and, if this is successful, use the decision
procedure for the theory FEQ.

4 In particular, verification of logic programs, where the method we propose is applicable di-
rectly.
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The Method. Let A(R1, . . . , Rn) be a first-order formula. It is assumed that all re-
lation symbols appearing in this formula are R1, . . . , Rn, =. In order to prove that
A(R1, . . . , Rn) is a tautology, |= A(R1, . . . , Rn), we prove instead that the follow-
ing second-order formula

∀R1 . . .∀RnA(R1, . . . , Rn) (5)

is a tautology. Of course, A(R1, . . . , Rn) is a tautology iff (5) is a tautology. In gen-
eral this problem is totally undecidable. However, to prove (5) we negate formula (5),
eliminate second-order quantifiers ∃R1 . . . ∃Rn applying Theorem 4.2 and, if this is
successful, apply the decision procedure of Section 3.2. The result is FALSE iff the
original formula is equivalent to TRUE.

It should be emphasized that whenever A(R1, . . . , Rn) itself is second-order, we can
first try to eliminate second-order quantifiers from A(R1, . . . , Rn) and then apply the
proposed method to the resulting formula. So, in fact, we have a decision procedure for
a fragment of the second-order logic, too. This is important in many AI applications,
e.g., in reasoning based on various forms of circumscription (see, e.g., [14,11,6]).

Example. Assume a is a constant and consider formula

∀x, y[R(x, y) → R(y, x)] → [∃zR(a, z) → ∃uR(u, a)] (6)

The proof of validity of (6) involves the following steps5:

— introduce second-order quantifiers over relations (here only over R):

∀R
{

∀x, y[R(x, y) → R(y, x)] → [∃zR(a, z) → ∃uR(u, a)]
}

— negate: ∃R
{

∀x, y[R(x, y) → R(y, x)] ∧ ∃zR(a, z) ∧ ∀u¬R(u, a)
}

— transform the formula to the form required in Theorem 4.2:

∃R
{

∀x, y[R(x, y) → (R(y, x) ∧ x �= a)] ∧ ∃zR(a, z)
}

— apply Theorem 4.2(2): ∃z
[

GFP R(x, y).(R(y, x) ∧ x �= a)[a, z]
]

.

To see that the last formula is FALSE, meaning that the formula (6) is TRUE, we unfold
the greatest fixpoint and obtain that

GFP R(x, y).(R(y, x) ∧ x �= a) ≡ (y �= a ∧ x �= a).

Thus the resulting formula is equivalent to ∃z
[

(y �= a ∧ x �= a)[a, z]
]

, i.e., to

∃z
[

(z �= a ∧ a �= a)
]

, being equivalent to FALSE. This proves the validity of

formula (6).

5.2 Static Verification of Integrity Constraints in Deductive Databases

Introduction. In [9] a method for static verification of integrity constraints in rela-
tional databases has been presented. According to the relational database paradigm, in-
tegrity constraints express certain conditions that should be preserved by all instances of

5 These steps can fully be automated, as done in [18,6] and implemented in [13].
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a given database, where by an integrity constraint we understand a classical first-order
formula in the signature of the database. In the existing implementations these con-
ditions are checked dynamically during the database updates. In the case of software
systems dealing with rapidly changing environment and reacting in real time, checking
integrity constraints after each update is usually unacceptable from the point of view of
the required reaction time. Such situations are frequent in many artificial intelligence
applications, including autonomous systems.

The Method. In the method of [9] it is assumed that the database can be modified
only by well-defined procedures, called transactions, supplied by database designers.
In such a case the task of verification of integrity constraints reduces to the following
two steps:

1. verify that the initial contents of the database satisfies the defined constraints
2. verify that all transactions preserve the constraints.

If both above conditions hold, a simple induction, where the first point is the base step
and the second point is the induction step, shows that all possible instances of the data-
base preserve the considered integrity constraints. Of course, the first step can be com-
puted in time polynomial w.r.t. the size of the initial database. In what follows we then
concentrate on the second step.

Consider a transaction, which modifies relations R1, . . . , Rn giving as a result re-
lations R′

1, . . . , R
′
n. The second of the steps mentioned earlier reduces to verification

whether the following second-order formula is a tautology:

∀R1, . . . , Rn[I(R1, . . . , Rn) → I(R′
1, . . . , R

′
n)].

The method of [9] depends on the application of the Ackermann’s lemma of [2], which
itself is subsumed by Theorem 4.2 (see Remark 4.3). If the Ackermann’s lemma is
successful, the resulting formula is expressed in the classical theory of equality, but
the requirement is that formulas involved in integrity constraints are, among others,
nonrecursive. Therefore [9] considers relational databases rather that deductive ones,
which usually require recursion (see, e.g., [1]).

Definition 5.1. By an update of a deductive database DB we shall mean an expression
of one of the forms ADD ē TO R or DELETE ē FROM R , where R is an k-ary
relation of DB and ē is a tuple of k elements. �

The meaning of ADD and DELETE updates is rather obvious. Namely, ADD e TO

R denotes adding a new tuple e to the relation R, whereas DELETE e FROM R
denotes deleting e from R. From the logical point of view, the above updates are formula
transformers defined as follows, where A(R) is a formula:

(ADD ē TO R)(A(R(x̄)))
def≡ A(R(x̄) := (R(x̄) ∨ x̄ = ē))

(DELETE ē FROM R(A(R(x̄)))
def≡ A(R(x̄) := (R(x̄) ∧ x̄ �= ē)).

(7)
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Definition 5.2. By a transaction on a deductive database DB we shall mean any finite
sequence of updates on DB. Transaction T is correct with respect to integrity constraint
I(R1, . . . , Rk) iff the following implication:

I(R1, . . . , Rk) → T (I(R1, . . . , Rk)) (8)

is a tautology. �

Formula (8) is a tautology iff the following second-order formula is a tautology, too:

∀R1 . . .∀Rk[I(R1, . . . , Rk) → T (I(R1, . . . , Rk))]. (9)

In order to eliminate quantifiers ∀R1 . . . ∀Rk we first negate (9), as done in Section 5.1:

∃R1 . . .∃Rk[I(R1, . . . , Rk) ∧ ¬T (I(R1, . . . , Rk))], (10)

then try to transform formula (10) into the form suitable for application of Theorem 4.2.
This transformation can be based on those given in [6,18] and considered in Section 5.1.
If the decision procedure of Section 3.2, applied to (10) results in FALSE, then the
formula (9) and, consequently (8), are equivalent to TRUE.

Example. Let R(x) stand for “x is rich”, C(y, x) stand for “y is a child of x”, j stand
for “John” and m for “Mary”. Consider the constraint

∀x, y{[R(x) ∧ C(y, x)] → R(y)} (11)

and the transaction ADD 〈j, m〉 TO C; DELETE 〈m〉 FROM R.
To prove correctness of the transaction we first consider the formula reflecting (9),

∀C∀R
{

∀x, y{[R(x) ∧ C(y, x)] → R(y)} →

∀x, y{[R(x) ∧ (C(y, x) ∨ (y = j ∧ x = m))] → [R(y) ∧ y �= m]}
}

.
(12)

After negating (12) and renaming variables we obtain

∃C∃R
{

∀x, y{[R(x) ∧ C(y, x)] → R(y)}∧

∃u, v{[R(u) ∧ (C(v, u) ∨ (v = j ∧ u = m))] ∧ [¬R(v) ∨ v = m]}
}

.
(13)

Some transformations of (13) made in the spirit of algorithms [18,6,13] result in

∃u, v∃C∃R
{

∀x, y{[R(x) ∧ C(y, x)] → R(y)} ∧ [¬R(v) ∨ v = m]∧

R(u) ∧ ∀x, y[(x = v ∧ y = u ∧ (v �= j ∨ u �= m)) → C(x, y)]
}

.

We first eliminate ∃C which, according to Remark 4.3, results in the following formula
without fixpoints

∃u, v∃R
{

∀x, y{[R(x) ∧ y = v ∧ x = u ∧ (v �= j ∨ u �= m)] → R(y)}∧

[¬R(v) ∨ v = m] ∧ R(u)
}

,
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equivalent to

∃u, v∃R
{

∀y{[∃x[R(x) ∧ y = v ∧ x = u ∧ (v �= j ∨ u �= m)] ∨ y = u] → R(y)}∧
[¬R(v) ∨ v = m]

}

.

Now an application of Theorem 4.2(1) results in

∃u, v
{

v = m ∨

¬LFP R(y).[∃x[R(x) ∧ y = v ∧ x = u ∧ (v �= j ∨ u �= m)] ∨ y = u]
}

.
(14)

Applying the decision procedure of Section 3.2 shows that formula (14) is equivalent
to FALSE, which proves correctness of the considered transaction.

5.3 Reasoning with Weakest Sufficient and Strongest Necessary Conditions

Introduction. Weakest sufficient and strongest necessary conditions have been intro-
duced by Lin in [12] in the context of propositional reasoning and extended to the
first-order case in [7].

Consider a formula A expressed in some logical language. Assume that one is inter-
ested in approximating A in a less expressive language, say L, which allows for more
efficient reasoning. A sufficient condition of A, expressed in L, is a formula implying
A and a necessary condition of A, expressed in L, is a formula implied A. Thus the
weakest sufficient condition provides “the best” approximation of A that guarantees its
satisfiability and the strongest necessary condition provides “the best” approximation
of A that still cannot exclude A, both expressed in the less expressive language.

Let us emphasize that sufficient and necessary conditions are vital for providing so-
lutions to important problems concerning, e.g., approximate reasoning, abduction and
hypotheses generation, building communication interfaces between agents or knowl-
edge compilation.

Below we assume that theories are finite, i.e., can be expressed by finite conjunctions
of axioms.

The Method. The following are definitions for necessary and sufficient conditions of
a formula A relativized to a subset P̄ of relation symbols under a theory T , as introduced
in [12].

Definition 5.3. By a necessary condition of a formula A on the set of relation sym-
bols P̄ under theory T we shall understand any formula B containing only symbols
in P̄ such that T |= A → B. It is the strongest necessary condition, denoted by
SNC

(

A; T ; P̄
)

if, additionally, for any necessary condition C of A on P̄ under T ,
we have T |= B → C.

By a sufficient condition of a formula A on the set of relation symbols P̄ under
theory T we shall understand any formula B containing only symbols in P̄ such that
T |= B → A. It is the weakest sufficient condition, denoted by WSC

(

A; T ; P̄
)

if,
additionally, for any sufficient condition C of A on P̄ under T , we have T |= C → B.�
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The set P̄ in Definition 5.3 is referred to as the target language.
According to [7], we have the following characterization of weakest sufficient and

strongest necessary conditions.

Lemma 5.4. For any formula A, any set of relation symbols P̄ and a closed theory T :

1. SNC
(

A; T ; P̄
)

is defined by ∃X̄ [T ∧ A]
2. WSC

(

A; T ; P̄
)

is defined by ∀X̄ [T → A],

whereX̄ consists of all relation symbols appearing in T or A, but not in P̄. �

Thus, reasoning with weakest sufficient and strongest necessary conditions can again,
in many cases, be reduced to FEQ. Namely, one can first try to eliminate second-
order quantifiers from second-order formulas appearing in characterizations provided
in Lemma 5.4 and then to apply the method of Section 5.1.

The method is best visible in the case when we are interested in formulas of the
target language implied by SNC

(

A; T ; P̄
)

and implying WSC
(

A; T ; P̄
)

. In these cases
we deal with formulas of the form ∀R̄{∃X̄[T ∧ A] → B} and ∀R̄{B → ∀X̄ [T →
A]}, where R̄ consists of all relation symbols appearing free in the respective formulas
and B contains no relation symbols of X̄ . Of course, these forms are equivalent to
∀R̄∀X̄{[T ∧ A] → B} and ∀R̄∀X̄{B → [T → A]}. Thus the proposed method
applies here in an obvious manner.

Example. Consider a theory given by formula (11) of Section 5.2 and

SNC (¬R(m) ∧ R(j); (11); {C}) . (15)

Suppose we are interested in verifying whether (15) implies ∃x, y¬C(y, x).
According to Lemma 5.4, (15) is equivalent to

∃R∀x, y{[R(x) ∧ C(y, x)] → R(y)} ∧ ¬R(m) ∧ R(j).

i.e., we are interested in verifying whether

∀R∀C{∀x, y{[R(x) ∧ C(y, x)] → R(y)} ∧ ¬R(m) ∧ R(j)} →
∃x, y¬C(y, x), (16)

i.e., whether

¬∃R∃C∀x, y{[C(y, x) → [R(x) → R(y)]} ∧ ¬R(m) ∧ R(j)∧
∀x, yC(y, x). (17)

According to Theorem 4.2(2), the elimination of ∃C from (17) results in

¬∃R∀x, y[R(x) → R(y)] ∧ ¬R(m) ∧ R(j),

which is equivalent to

¬∃R∀y[(y = j ∨ ∃xR(x)) → R(y)] ∧ ¬R(m). (18)

According to Theorem 4.2(1), the elimination of ∃R from (18) results in

¬¬LFP R(y).[y = j ∨ ∃xR(x)][m].

Applying the decision procedure of Section 3.2, one can easily verify that the above
formula is TRUE only when m = j.
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6 Conclusions

In the current paper we have investigated the fixpoint theory of equality and have shown
its applications in automatizing various forms of reasoning in theorem proving, deduc-
tive databases and artificial intelligence.

Since many non-classical logics can be translated into the classical logic, the method
is applicable to non-classical logics, too.
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