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Abstract
Rich geometric models of the environment are needed

for robots to accomplish their missions. However a robot
operating in a large environment would require a compact
representation.

In this article, we present a method that relies on the
idea that a plane appears as a line segment in a 2D scan, and
that by tracking those lines frame after frame, it is possible
to estimate the parameters of that plane. The method is
therefore divided in three steps: fitting line segments on
the points of the 2D scan, tracking those line segments
in consecutive scan and estimating the parameters with
a graph based SLAM (Simultaneous Localisation And
Mapping) algorithm.

1. INTRODUCTION
1.1. Environment Modelling
Accurate and rich environment models are essential for

a robot to accomplish its mission. However those models
are not always available to the robot, and if they are avail-
able (through geographic information database) their infor-
mation might be inaccurate and outdated. This can happen
because of the consequences of a catastrophe, where part of
the environment has been destroyed, but it also happen con-
tinuously, for instance, when new building are constructed
or demolished... This raise the need for a robot to be able
to construct environment model using its own sensor, and
at the same time, this model can be used to improve the
knowledge of the robot position. This is the problem known
as Simultaneous Localisation and Mapping (SLAM) [1,
5].

However most research around SLAM have focused
around providing improvement to the robot localisation,
by tracking features in the environment. For that purpose,
using a sparse model of the environment (such as interest
points) is generally sufficient. On the other hand, many
techniques used for 3D reconstruction assumes that a very
accurate localisation is available (generally through GPS
like systems), which is not necessary practical for a real-
time robotic system and also they work offline. This is
why, in our research, we are interested in using SLAM
techniques to

construct rich and dense model of the environment,
this have the advantage of improving the localisation of the
robot

and therefore the quality of the model, as well as creat-
ing the model in real-time.

To create a model of the environment, a robot can use
different sensors: the most popular ones are camera [12],
LIDAR [18], RADAR [8] or a combination of multiple
sensors [7]. Cameras are very cost effective, they are also

cheap and provide the most information, since it is possible
to recover structure and appearance, however they are less
accurate than LIDAR and RADAR, and they are not very
effective at recovering the structure from a distant view
point, which is especially important when used on board
of an unmanned aircraft.

1.2. Using a 2D LIDAR for 3D modeling
Most approaches that use LIDAR start by generating

a cloud of points, combined with a shape registration
technique [19], to correct uncertainty on the localisation
of the robot, and this is usually result in a very accurate
model.

While a cloud of points is a dense model of the envi-
ronment, the amount of information it contains make it
difficult to use in practice. It needs to be transformed into a
different representation, that will abstract the model, for
instance, points cloud are commonly used to create grid
occupancy [17], used for collision detection.

Also a cloud of points, in itself, contains very little
information on the actual structure of the environment.
One of the solution used to get the structure has been to
combine the information coming from the cloud of points
with images [13]. An other solution is to transform the
cloud of points into higher level of geometric information.
Classification process like the hough transform [9, 16] can
be used to achieve that goal, making it possible to process
the LIDAR data in high level geometric features such as
cube, cylinder or sphere [18].

Not only the use of higher level of geometric informa-
tion allow to create more compact model, which reduce
the amount of memory and computing power necessary to
use them, but they allow other application such as object
recognition, matching information coming from different
sensors and with existing schematics [2].

However the use of a cloud of points to generate a high
level geometric representation requires to wait until the
robot has finished to acquire the data, before the robot can
construct the model. But we are interested in an online and
incremental approach.

As shown in [6] and figure 1, in a 2D scan of a LIDAR
sensor, a plane appears as a

line segment, which makes it possible to extract planes
in the environment directly from those scans, by simply
tracking the line segment, scan after scan, the aggregation
of those scan allows to recover the parameters of the plane.
For such a system to work, it is essential that the plane of
the 2D scans are not parallel to the displacement of the
robot, otherwise, the rays of the LIDAR will always hit
the plane at the same place, which would not provide any
information on the 3D structure.
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Fig. 1: The left picture show the 3D view of a scan of a
two buildings, while the right figure shows how it display
in 2D.

Fig. 2: This figure shows an unlikely example where the
assumption that the tracked segment belongs to the same
plane is wrong. The robot is flying exactly perpendicularly
to the house, meaning that the observation on the two side
of the roof appears parallel. The figure on the top left shows
the model of the house (the red lines are scan ray), on the
top right the robot has scanned only half of the house, and
the resulting plane is still correct, on the bottom right, the
robot has finished flying over the house (the black line
illustrates the constraints). The bottom left image shows
that if the house has a 2◦ angle with the sensor then the
roof is correctly detected as two planes.

In this article, we present a method for extracting line
segment from the 2D scan, tracking them between two
frames, and then the line segment is treated as an observa-
tion of the plane within the graphical SLAM framework,
using a weak constraint network optimiser (WCNO) [3].
Our main contributions are the error and observation model
used for WCNO as well as the overall combination of al-
gorithms to extract planes from 2D scan.

The first section describes the line extraction which is
a classical split-and-merge [10] and the line tracking. The
second section explained the error and observation models
used in WCNO. The last section provides simulation and
real data results.

2. Detecting planes in the LIDAR data
As mentioned in the introduction, when a 2D LIDAR

scan hit a plane, the points from the plane will appear
as a line segment in the 2D scan. Our assumption is that

Fig. 3: This figure shows the angle used for comparing two
segments during tracking. ρx and θx are the parameters of
a line while θx,1 and θx,2 are the angles of the extremities
of the segment.

whenever there is a line segment in the 2D scan, it does
belong to a plane, especially, if it is tracked between two
consecutive frames. However, as shown of figure 2, there
are corner cases where this assumption that two consecutive
segments belong to the same plane does not hold. This
case happen if the robot is precisely on a trajectory that is
perpendicular to the intersection line between two planes
or perpendicular to a cylinder, however, we argue that those
case are unlikely to happen in real life, since it would
require that the robot is precisely on that trajectory, as
a slight movement off that trajectory and the algorithm
will detect a break in the line segment, as shown on the
bottom left image of figure 2. Furthermore, using the graph
optimisation technique it is possible to detect those corner
case, since they will fail to optimise.

The algorithm to detect planes works in two steps,
first the scans of the LIDAR data are converted into line
segments and then those line segments are tracked with
the previous plane. Those line segment are then used as
observation of a plane.

2.1. Extracting line segments
The best method to transform a set a of points from a

LIDAR scan is the split-and-merge algorithm [10]. Then
the parameter of each line segment are optimised with a
weighted line fitting algorithms [11] to provide a better fit
on the points.

2.2. Tracking line segments
Segments are tracked between two consecutive frames.

By comparing the distance to the origin (rho), and the angle
of the line (theta) and checking whether the segments are
overlapping, see figure 3.

Given St = st0...s
t
m the set of segments at time t and

St−1 = st−10 ...st−1n at the previous time t − 1. The goal
of the tracking algorithm is to find (k, l) such as stk ∈ St
is collinear and overlapping with st−1l ∈ St−1.

Given two line segments a and b of parameters (ρa, θa)
and (ρb, θb), they are consider collinear if and only if:

cos(θa − θb) > cos(θmax) (1)
|ρa − ρb| < ρmax (2)

Furthermore, if two collinear line segments a and b
have the extremities (θa,1, θa,2) and (θb,1, θb,2), then the
following condition guarantee that they are overlapping:



θa,1 ≤ θb,1 ≤ θa,2 or θa,1 ≤ θb,2 ≤ θa,2
or θb,1 ≤ θa,1 ≤ θb,2 or θb,1 ≤ θa,2 ≤ θb,2 (3)

Given a segment stk ∈ St, St−1(stk) is the subset of
segments of St−1 that satisfy the collinearity conditions
(equations 1 and 2) and the overlapping conditions (equa-
tion 3). IfSt−1(stk) = ∅, then stk correspond to a new plane,
otherwise, it is necessary to select a segment st−1l ∈ St−1
that will be the tracked segment for stk, and that will be
used as the new observation of a plane. st−1l is defined
such as:

∀st−1i ∈ St−1(stk) |ρtk−ρt−1l |< |ρtk−ρt−1i |< ρmax (4)

Using a prediction of the parameters of the segment,
based on the motion of the robot (using the SLAM al-
gorithm) or using the evolution of the parameters of the
tracked segment, improve the results of the tracker, it also
allow to limit the problem where the assumption that a line
is a plane is wrong (see figure 2).

2.3. Detecting and tracking planes with a 2D LIDAR
sensor

The algorithm for detecting and tracking planes in
consecutive scan from a 2D LIDAR sensor follow the
following steps:
1) At time t, extract the segments St = st0...s

t
m in the scan

2) for each segment stk ∈ St, find the segment st−1l ∈
St−1(stk) that fulfil the equation 4
– if there is no such segment st−1l , then stk is the be-

ginning of a new plane
– if there is a segment st−1l , then st−1l is used as a new

observation of the plane associated with stk
3) for each segment st−1l ∈ St−1, which has not been se-

lected as a tracked segment for any stk ∈ St, check if the
associated plane has enough observations, otherwise,
remove it from the map
The next section is going to explain how the parameters

of a plane are estimated.

3. Optimisation model
The estimation of the parameters of the plane and the

position of the robot is done using a weak constraints
network optimisation (WCNO) as described in [3]. This
algorithm works by optimising a graph of constraints,
where the nodes are objects (robot poses and landmarks)
and the edges are the observations (coming from various
sensors odometry, LIDAR...). The key features of WCNO is
that it allows to use partial observations, which is interesting
for estimating the plane parameters as observed with a 2D
LIDAR, since in such a case, only a few parameters of the
plane are observed at each time. WCNO relies on a steepest
gradient descent and it requires the definition of an object
model and of a constraint model.

Three functions are needed for the object model:
– initialisation this function uses one or several constraints

to compute a first estimation of the parameters of an
object, as well as the associated uncertainty, in case of a

Fig. 4: The left figure show the feature model for a plane,
represented using spherical coordinates (ρ, θ, φ) expressed
in the frame Fp. The right figure represent the observation
and feature model for a plane, the observation in frame Fj

is the dark red segment Pi,1Pi,2, while P⊥i,1 and P⊥i,2 are
respectively the projection of Pi,1 and Pi,2 on the plane
Πj . Fa is the common ancestor in the tree of Fj and Fp.

plane, a plane perpendicular to the first observation is
used

– rotation update this function rotates the object on itself

– translation update this function translate the object
Also for the constraint between the frame and the plane,

three other functions are required:
– rotation error r̂ci,j this function compute the rotation

error between the frame and the plane

– translation error t̂ci,j . this function compute the transla-
tion error between the frame and the plane

– constraint observation model h(Oi,Oj) it is the function
that given the state of a frame and a plane, computes the
segment that should be observed in the frame

[3] includes more details on how to define the functions
for the node and constraint models, it also includes the
node use for robot frames and the constraint model used
for odometry. The remainder of this section will detail the
object model for planes as well as the constraint model
used with the plane detection algorithm provided in the
section 2.

Figure 4 show the convention used for the spherical
coordinates (ρ, θ, φ), where ρ is the distance of the plane
to the origin, θ is the rotation of the normal around the axis
Oy and φ around Oz.

We assume the scanner is in the plane Oxy, if that is
not the case, one can simply add a frame for the sensor ex-
pressed in the robot frame with the transformation between
the robot and the frame in the graph.

3.1. Feature model
The plane is represented using spherical coordinates,

with the parameters ρ, θ and φ (figure 4). Where ρ, θ and
φ is a point of the plane and θ and φ are the angles of
the normal N to the plane. A polygon representing the
boundary of the plane is associated to the model, this
boundary has little use for the purpose of estimating the
parameter of the plane, but can be used for display purposes
or in the matching process [2].

Rotation Update The rotation update is simply given
by applying the rotation on the normal vector:

Nn = Rup ·Nn−1 (5)



ρ remains constant. Nn is the normal of the plane and
Rup is the rotation update.

Translation Update The translation of an infinite
plane only applies a change in the direction parallel to the
normal, with a spherical representation, only the distance
ρn to the origin is affected:

ρn = ρn−1 + 〈Nn, tn−1〉 (6)
3.2. Constraint model
Given a frame Fi and a plane Πj , they are connected

in the graph by a constraint which is the line segment that
was detected and tracked in section 2.

The constraint betweenFi and Πj is represented by the
extremities of the observed segment: Pi,1 and Pi,2, P⊥i,1
and P⊥i,2 are respectively the projection of Pi,1 and Pi,2 on
the plane Πj (see figure 4).

Rotation error The rotation error is the minimal
rotation that ensure the observation becomes parallel to
the plane. This rotation is the rotation between the vector
Pi,1Pi,2 and P⊥i,1P

⊥
i,2:

u1 =
Pi,1Pi,2

‖Pi,1Pi,2‖
(7)

u2 =
P⊥i,1P

⊥
i,2

‖P⊥i,1P⊥i,2‖
(8)

r̂ci,j = Ri ·
(
cos−1 (〈u2,u1〉) ,u2 ∧ u1

)
·R−1i (9)

Where Ri is the rotation of the frame Fi.

Translation update The translation update minimise
the distance between the points of the scan and the plane.
It is therefore defined as:

t̂ci,j =
Pi,1P

⊥
i,1 + Pi,2P

⊥
i,2

2
(10)

Recover plane parameters However the steepest
gradient descent algorithm as described in [3] does not
allow to recover the normal of the plane correctly, since
it would require to define a rotation of the plane, but that
would raise the question of the choice of an axis and of
where to apply this rotation. Instead, a least square opti-
misation is applied, combined with the “rotation update”
and the “the translation update” this should ensure that the
observation points get coplanar.

Observation model The observation model can be
used for predicting the parameters of the line segment that
needs to be tracked in section 2, and it is also used by
WCNO to update the uncertainty of the plane Πj and of
the frame Fi. It is defined as the intersection of the plane
of the 2D LIDAR sensor expressed in the frame Fi with
the plane Πj . The following formula assumes that the 2D
LIDAR sensor is in the plan Oxy of Fi:

hi,j = (ρobsi,j , φ
obs
i,j ) = (

ρij
sin(θij)

, φij) (11)

Fig. 5: This figure shows the algorithm at work on a simu-
lated world. The transparent grey building are the ground
truth, while the cyan represented the estimated planes. On
the bottom left image, one can see that the detection of
plane breaks on face with few hit points, and on the bottom
right images, the roof of the building get a better estimation
that the walls.

Where ρij , θij and φij are the coordinates of the plane
Πj expressed in the frame Fi.

Boundaries of the plane The extremities of the ob-
servation are projected on the plane, and then it is possible
to recover a boundary [4]. Since the boundary is only used
for display, and for simplicity, in our experimentation we
have been using the convex hull of the projection of the
extremities.

4. Experiments
We have used the algorithm in both simulation and

real data experiments. The simulation allow to check that
the algorithms are able to make an accurate estimation of
the parameters while the real data allow to validate the
usefulness of the algorithm on a real system.

4.1. Simulation
Flying over a set of buildings In this experiment, an

aircraft is flying over a set of buildings, while the LIDAR
is pointing down. This is actually a very classical set-up
for generating a model of the environment from an aircraft.
The figure 5 shows screenshots of the results.

For a total of 54 detected planes, the average error
on rho is 0.14m, with a maximum of 0.77m, while the
average error on the angle of the normal is 3.88◦ with a
maximum at 17.73◦.

Effect of correction from plane Since we are us-
ing a 2D LIDAR sensor, the observation of planes in the
environment does not allow to recover the full 3D transfor-
mation between two frames. In fact, as shown on figure 6,
the observation of a plane provide a translation that is per-
pendicular to that plane as well as a rotation whose axis is
parallel to that plane. So for a plane that is perpendicular
to the axis Ox, if the 2D scan is in the plane Oxy, then the
observation of that plane provides a translation correction
in the direction of Ox and a rotation correction around the
axis Oz.

In order to illustrate the correcting effect brought by the
plane, in simulation, we have made an experiment, where



Fig. 6: This figure shows the correction effect from observ-
ing a plane with a 2D LIDAR sensor. The red lines shows
the observed constraints, while the purple lines shows the
ideal position of the constraint. The contribution of the
planes Π1 and Π2 to the correction are the translations T1

and T2 and the rotations (Oz, θ1) and (Oz, θ2).

the robot is observing an horizontal plane and the scan
laser has an angle of 45◦ with both the robot frame and
the plane. For the first three positions, the odometry has
a high accuracy, this allow to get a good estimate of the
parameters of the plane, however, for the fourth step, one
of the value coming from the odometry is defined with a
high uncertainty, with either an error of 50m in z or 22◦ in
roll. The results are shows in figures 7 and 8.

While the experiment in itself is unrealistic, it does
show the benefit of using an iterative approach to estimate
the parameters of the planes in the environment. And this
is especially interesting for an aircraft, since GPS units
have usually a poor estimate of the altitude, the detection
of plane would allow to correct that information.

4.2. Ground robot
We have also run the algorithm using real data, like

the New College data set [15], which was created using a
robot, with a vertical laser on the side of the robot.

As can be seen on figure 9, the algorithm has no prob-
lem with the detection of the ground. However, the detec-
tion of walls is often more split, this is due to the presence
of vegetation in front of the building, and also because the
building facade is not completely flat.

For comparison purposes, using the same sequence,
a points cloud was generated, then a RANSAC technique
was applied using the Points Cloud Library [14] to cluster
the points in function of their coplanarity. The results are
shown on figure 10. The first point to note is that the result
of the classification is unfiltered, meaning that points that
do not really belong to an actual plane are still shown.
Also, it is worth to note that the resulting segmentation is
rather unstructured meaning that points that are classified
as belonging to the same plane might actually be very far
apart, this effect is particularly visible in the bottom figure
of 10, where several plane are juxtaposed.

5. CONCLUSIONS AND FUTURE WORKS
We have presented an algorithm that extract observa-

tions of a plane using 2D scan from a LIDAR sensor, this
algorithm works by fitting line segments on the points of
the scan, and then tracking the segments frame after frame.
Then those observations are used in a graph based frame-
work to estimate the parameters of the plane and improve

(a) before optimisation (error in roll) (b) after optimisation

(c) before optimisation (error in z) (d) after optimisation

Fig. 7: This figure show that the optimisation process is
capable of recovering a large error on the estimation of
the roll and z parameters. The black line represent the
constraints between node. In particular, the black triangles
are the observations coming from the lidar. The red polygon
is the plane, the frame represents the robot and sensor
position, while the cyan polygon is the estimated plane. On
the first three robot pose, the estimation of the odometry
is accurate, while on the fourth pose, the error has been
exaggerated (in roll for the top row of images and in z for
the bottom row.
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Fig. 8: This figure show the evolution of the correction
from the first iteration to iteration 50. The number of
iterations needed to correct the angle is much smaller than
for correcting the error in translation.

the localisation of the robot.
We have shown through simulation results, that the



Fig. 9: Mapping using the New College dataset [15], the
top image shows a view of the environment, the middle
image shows half way through the loop, the bottom image
show the resulting map.

method is capable to accurately estimate the parameters of
the planes, and we have shown that the method works with
real data.

A needed improvement to the algorithm itself, would
be to get a better method to estimate the boundary of a
plane, this would help to get a more representative limit of
the plane, for visualisation, or for use by geometric-based
loop closure algorithms [2].

While the method we have presented allow to detect
planes, with a compact representation, which is useful in
urban-like environment, it does not allow a full representa-
tion of the environment, especially, since not every objects
in the environment is a plane. In future work, it would be
interesting to investigate mixing other type of objects to
get an even richer model environment, such as using cylin-
der and ellipse, or simply by adding local occupancy grid
using the points that are not transformed into planes.

AUTHOR
Cyrille Berger∗ – Department of Computer and
Information Science,University of Linköping, SE-581 83
LINKÖPING, Sweden, e-mail: cyrille.berger@liu.se
∗ Corrresponding author

Fig. 10: This figure shows the segmentation of a points
cloud accumulated on the New College data [15], using
a RANSAC segmentation of the points cloud with the
PCL library [14]. The top two figures use a precision of
1cm while the bottom two use a precision of 10cm. Points
that belongs to the same plane are colored using the same
colors.
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