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Abstract

In this paper we present TAL-C, a logic of action and change for
worlds with concurrency. TAL-C has a first-order semantics and proof
theory. It builds on an existing logic TAL, which includes the use
of dependency laws for dealing with ramification. It is demonstrated
how TAL-C can represent a number of phenomena related to action
concurrency: action duration, how the effects of one action interferes
with or enables another action, synergistic effects of concurrent actions,
conflicting and cumulative effect interactions, and resource conflicts. A
central idea is that actions are not described as having effects that
directly alter the world state. Instead, actions produce influences,
and the way these influences alter the world state are described in
specialized influence laws. Finally, we address how TAL-C scenarios
can be written to support modularity.

1 Introduction

To an agent operating in a complex multi-agent environment, it is impor-
tant to be able to reason about how the environment changes due to the
actions that the agents perform. Most of the work in reasoning about action
and change has been done under the (sometimes implicit) assumption that
there is a single agent that performs sequences of actions. This is a com-
paratively easier problem than reasoning about action and change under a
multi-agent assumption, or under a non-sequentiality assumption for a sin-
gle agent, which by necessity introduces the complication that one or several
agents can perform actions concurrently. Concurrency, in turn, can involve
a wide range of interactions between actions, which makes it unlikely that
there is one single, uniform technique of general applicability.

*To appear in Journal of Logic and Computation, Vol. 9, 1999.



1.1 TAL-C

This paper presents an approach to reasoning about action and change
which supports the description of concurrent actions with nontrivial inter-
actions. The approach is based on TAL (Temporal Action Logic, formerly
called PMON) which in its original form [41, 5] covers worlds with a natural
numbers time domain and sequentially executed actions whose effects can
be context-dependent (different initial states can lead to different effects)
and nondeterministic (the same initial state can lead to several different ef-
fects). From the perspective of concurrency, an important property of TAL
is that actions have durations (that is occur over an interval of time). TAL
has recently been extended to support the description of ramifications, or
indirect effects [16], and to deal with qualified action descriptions [7]. In this
paper we present TAL-C, a development of the TAL/PMON formalism, which
combines ramification and concurrency. Parts of the results in this paper
have also been exploited for dealing with delayed effects [21]. In TAL-C,
the description of concurrent interactions are done on the level of features
(state variables). The central idea is that actions are not modeled to di-
rectly change the world state, but to produce influences on features. For
each feature one can then use influence laws to specify how it is affected by
its various associated influences. Besides providing a flexible and versatile
means for describing concurrent interactions, the use of influences and in-
fluence laws permits describing the properties of actions, dependencies and
features in isolation, thereby supporting modularity. The major merit of
TAL-C is that it combines (a) a standard first-order semantics and proof the-
ory; (b) a notion of explicit time, which makes it possible to reason about the
durations and timing of actions and effects; and (c) modeling of a number
of important phenomena related to concurrency, in addition to ramification
and nondeterminism.

1.2 The two language levels of TAL-C

TAL-C, like its predecessors, is a formalism that consists of two languages.
First, there is the surface language L£(SD) which provides a number of
macros that make it possible to describe TAL-C scenarios in a concise way.
Scenarios in £(SD) are translated to the standard first-order language £(FL)
by expanding these macros, and standard first-order deduction can then be
used for reasoning about the scenarios. £(SD) is used throughout most of
this paper; the translation to £(FL) is presented in appendix A. There-
fore, some definitions are given preliminary presentations in £(SD) but are
actually encoded as macro expansions in the translation to L(FL).



1.3 Organization of the paper

The rest of the paper is organized as follows. In section 2, TAL is introduced
with an example and a definition of the syntax of the surface language
L(SD). In section 3, a number of interesting cases of concurrency are iden-
tified and discussed. Section 4 outlines an approach to concurrency and
introduces the concept of influences, and section 5 introduces the extensions
to TAL that make TAL-C. In section 6, the means for solving the problems
identified in section 3 are developed. Section 7 addresses modularity in
the context of TAL-C. Section 8 provides an overview of previous work on
concurrency, and section 9 contains some conclusions. Finally, appendix A
presents a translation from the surface language £(SD) to the first-order
language L(FL).

2 Preliminaries

In TAL, the world consists of objects, features that have time-variant val-
ues, and actions that can be executed by agents and that affect the values
of features over time. A TAL scenario is a structured collection of state-
ments referring to the dynamics of the world in terms of action laws and
dependency laws, action occurrences and their timing, and observations of
feature values at different time-points. A scenario encodes a specific course
of actions, and therefore TAL is a narrative-based formalism (other exam-
ples are Event Calculus [23, 19] and Allen’s logic [2]; see also Karlsson [20]
on representing TAL narratives as first-order objects). The surface language
L(SD) for sequential scenarios is presented in this section, and extensions
for concurrency are introduced in section 5.

2.1 Scenarios in TAL

The following is a scenario in £(SD). It describes a world with two types of
actions (LightFire and PourWater), and a number of agents (bill and bob) and
other objects (woodl). For notational convenience, all variables appearing
free are implicitly universally quantified.

acsl [s,t]LightFire(a,z) = (1)
([s]dry(z) A wood(z) = R((s,t]fire(z)))

acs2 [s,t|PourWater(a,z) = (R([s, t]-dry(z))A
([s]fire(z) = R((s,t]-fire(z))))

obsl [0]dry(woodl) A —fire(woodl) A wood(wood1)

occl [2,5]LightFire(bill, woodl)

occ2 [6, 7]PourWater(bob, wood1)

Notice that all lines are labeled. The labeling reflects the structure of the
scenario; different types of statements serve different purposes.



Acsl and acs2 are action laws, which describe the effects of specific action
types under different conditions. The first action law states that if an agent
a lights a fire using some wood z, and if the wood is dry, then the result will
be that the wood is on fire. The expression [s, t|LightFire(a, z) denotes the
action in question where [s,¢] is its time interval, and [s]dry(z) A wood(z)
denotes that the features dry(z) and wood(z) hold at time-point s. The
statement R((s,t|fire(z)) denotes that the feature fire(z) is reassigned to
become true somewhere in the interval (s, ], and in particular that it is true
at the last time-point ¢ of the interval.! The terms s and t are time-point
variables, and are assumed to be universally quantified (as are a and z).
The second action law states that if somebody pours water on an object,
then the object will no longer be dry, and will cease being on fire.

Obsl is an observation statement. It states that the wood (denoted
wood1) is dry and not burning at the initial time-point 0. Observations are
assumed to be correct, and can refer to arbitrary time-points or intervals;
in the latter case, the notation [7,7']¢ is used (e.g. [0, 6]dry(wood1)). Occl
and occ2 are occurrence statements. They describe what actions actually
occur in a scenario. A fire is lit by the agent bill during the temporal interval
[2,5], and then the agent bob pours water on the wood during the temporal
interval [6, 7]. No actions besides those explicitly appearing in the occurrence
statements are assumed to occur in the scenario. By using non-numerical
temporal constants, such as [s1, t;|LightFire(bill, woodl), the exact timing of
an action can be left unspecified.

It is possible for features to have domains other than boolean truth
values. In that case, the notation ¢=w is used to state that the feature
¢ has the value w, like in the statement [5]traffic-light=green. The same
notation is applicable (but optional) to booleans, e.g. [s]dry(z)=T.

It is commonly recognized that in domains where there are more complex
dependencies between features, specifying all possible direct and indirect
effects of an action is not feasible. The problem of specifying all effects of
actions in a compact manner is called the ramification problem [15]. In TAL,
dependency laws are used to deal with this problem (for other approaches to
ramification, see e.g. [31, 44, 32]). With dependency laws, one can specify
general relations between features once, rather than having to repeat them
in each relevant action law.? The following are two examples that could
complement the description of the fire lighting action in (1). Depl states that
if an object starts burning, then it also starts smoking, and dep2 states that

!Previously, the notation [s,t]fire(z) := T has been used for reassignment [41]. How-
ever, in order to be coherent with the notation for the additional operations on features
that are introduced in this paper, R((s, t|fire(z)) has been preferred.

2Note that there are restrictions as to how dependency laws can be combined in TAL,
in order to avoid cycles of instantaneous dependencies that can result in “spontaneous
triggering” of dependency laws. Theories that do not contain any dependency cycles are
called stratified (see [16]).



if an object starts smoking and the damper is closed (or the object is smoking
and the damper becomes closed) then the agents’ eyes become sore. The Cr
operator denotes that the expression inside was false at the previous time
point and has just become true: Cr([t]a)=g.¢(Vt'[t =t'+1 = [t'|-a]A[t]a).
Again, free variables are implicitly universally quantified.

depl Cr([tlfire(z)) = R([t]smoking(z)) (2)
dep2 Cr([t]smoking(z) A ~damper-open) = R([t]eyes-sore(a))

Reassignment (R) plays an important role in the solution to the frame
problem [34] in TAL. Reassignment expresses change, and unless a feature
is involved in reassignment, it is assumed not to change. The reassignment
operator is defined as follows,3

R((7,7'Ja)=des (X ((1,7']e) A [1']) (3)
R([r)a)=ge (X ([T]) A [7]a).

X is an operator that represents “occlusion” of the features in «, whereas
the right-most parts of the definitions denote that « holds at the end of
the interval. Occlusion represents an exception from the general principle
of persistence, so features that are occluded are allowed to change from one
time-point to the next. By minimizing occlusion, the time-points where a
specific feature can change value are restricted to those time-points where
the feature in question explicitly appears in a reassignment. The fact that
features normally do not change is encoded in the no-change axiom below.
It states that unless the feature f is occluded at time-point ¢ + 1, it must
have the same value at ¢ 4 1 as at time-point ¢.*

v, £,0[-X (1t + 1f) = ([f20 = [t + 1]f20)] (4)

To illustrate how one can reason in TAL, consider the scenario in (1).
From 0 to 2, there is no reassignment and therefore no occlusion, so one can
with the aid of (4) infer

[0, 2]dry(wood1) A —fire(wood1) A wood(woodl).
From lines acs1 and occl, it follows that
[2]dry(wood1) A wood(woodl) = R((2, 5]fire(wood1))

holds, which yields [5]fire(woodl). As the two other features are not oc-
cluded, due to (4) one has that

[3, 5]dry(wood1) A wood(wood1)

3The following definitions are actually encoded in the translation process from £(SD)
to L(FL) in appendix A. The £(SD) versions in this section are preliminary.
“This version of the axiom is preliminary. See appendix A.



holds, and then that

[6]dry(wood1) A fire(wood1) A wood(wood1)
holds. From acs2 and occ2, it follows that

R((6, 7]~dry(woodl)) A R((6,7]—fire(woodl))
holds, which yields

[7]—dry(wood1) A —fire(woodl) A wood(wood1).
Finally, as nothing happens after 7,

[t]-dry(woodl) A —fire(wood1) A wood(wood1)
holds for all ¢ > 7.

2.2 The language L(SD)

This section defines the surface language L£(SD) for sequential scenarios.
Extensions for concurrency are introduced in section 5, and the translation
to the first-order language L(FL) is presented in appendix A. We use the
overline as abbreviation of a sequence, when the contents of the sequence is
obvious. For example, f(Z,y) means f(x1,...,&Tn, Y1y ---y Ym)-

Definition 1 (vocabulary) A TAL vocabulary v = (C,F,A,T,V,R, S, o)
is a tuple where C is a set of constant symbols, F is a set of feature symbols,
A is a set of action symbols, T is a set of temporal function symbols, V is
a set of value function symbols, R is a set of relation symbols, S is a set of
basic sorts and o is a function that maps each member of these symbol sets
to a sort declaration of the form &; x...x 8, or 8§ X... xS, = 8,41 where
S; €8.

Definition 2 (basic sorts) There are a number of sorts for values V;, in-
cluding the boolean sort B with the constants {T,F}. There are a number of
sorts for features F;, each one associated with a value domain dom(F;) = V;
for some j, a sort for actions A, and a temporal sort 7.

T is assumed to be an interpreted sort, but can be axiomatized in first-
order logic as a subset of Presburger arithmetic [22] (natural numbers with
addition).

Definition 3 (terms) A value term w is a variable v or a constant v of sort
V; for some i, or an expression g(wi,...,w,) where g: Vg, X ... X Vg, = V;
is a value function symbol and each wj is of sort Vi; - A temporal term 7 is
a variable t or a constant 0,1,2,3,... or sq,t1,..., or 74 + 79, all of sort 7.
A fluent term ¢ is a feature variable f or an expression f(ws,...,w,) where
f: Vg, X... X Vg, = F; is a feature symbol and each wj is of sort V.
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Definition 4 (temporal and value formulae) If 7, 7’ are temporal terms,
then 7 = 7/, 7 < 7/ and 7 < 7' are temporal formulae. A value formula is
of the form w = ' where w and ' are value terms, or r(ws,...,w,) where
r: Vg X...X Vg, is a relation symbol and each wj is of sort V.

Definition 5 (fluent formula) An elementary fluent formula has the form
¢=w where ¢ is a fluent term of sort F; and w is a value term of sort dom(F;).
A fluent formula is an elementary fluent formula or a combination of fluent
formulae formed with the standard logical connectives and quantifiers.

The elementary fluent formula ¢=T can be abbreviated ¢.

Definition 6 (timed formulae) Let 7,7’ be temporal terms and « a flu-
ent formula. Then |1, 7']a, (7, 7"]a and [7]a are fized fluent formulae, Cr([T]c)
is a becomes formula, R((t,7']a), R([r,7']a) and R([r]a) are reassignment
formulae, and X ((7,7']a), X([r,7']a) and X ([r]a) are occlude formulae.

Definition 7 (static formula) A logical combination (including quanti-
fiers) of temporal and value formulae, fixed fluent formulae and/or becomes
formulae is called a static formula.

Definition 8 (change formula) A change formula is a formula that has
(or is rewritable to) the form Qu(a; V ...V ay,) where Qv is a sequence of
quantifiers with variables, and each «; is a conjunction of static, occlusion
and reassignment formulae. The change formula is called balanced iff the
following two conditions hold. (a) Whenever a feature f(w) appears inside
a reassignment or occlusion formula in one of the o; disjuncts, then it must
also appear in all other ¢;’s inside a reassignment or occlusion formula with
exactly the same temporal argument. (b) Any existentially quantified vari-
able v in the formula, whenever appearing inside a reassignment or occlusion
formula, only does so in the position ¢=wv.

Definition 9 (application formula) An application formula is any of the
following: (a) a balanced change formula; (b) A = A, where A is a static
formula and A is a balanced change formula; or (c) a combination of elements
of types (a) and (b) formed with A and V.

Definition 10 (occurrence formula) An occurrence formula has the form
[r,7']®(w), where 7 and 7' are elementary time-point expressions, ® is an
action name of sort V; x ... x V, — A and the value terms in @ are of
matching sorts.

Definition 11 (scenario components) An action law (labeled acs) has
the form Vt,t', 7, y[[t,t']®(ZT) = ¥(zZ,y)] where [t,t'|®(T) is an occurrence
formula and ¥(Z,y) is an application formula. A dependency law (labeled
dep) has the form Vt,Z[¥(Z)] where ¥(Z) is an application formula. An
observation (labeled obs) is a static formula. An occurrence (labeled occ) is
an occurrence formula [7, 7']®(w) where 7, 7/, @ all are variable-free terms.



3 Variations on the concurrency theme

In this section, we release the sequentiality assumption from the previous
section and identify a number of issues that a language for scenarios with
concurrency should be able to handle. We observe that TAL is sufficient
for handling some of these issues, namely action duration and concurrent
execution of independent actions. When it comes to interacting actions, we
observe that TAL is not sufficient in a number of cases. This observation
forms the basis for the discussion on how to extend TAL to handle concur-
rency in the subsequent sections. Notice that although we address mainly
actions, the discussion applies also to dependencies.

In many domains, it is a fact that actions take time. As long as actions
occur sequentially, the only way actions can interact is when the effects of
one action affect the context in which a later action is executed. Therefore, it
can make sense to abstract away action durations in the case of sequentiality,
as is done in for instance basic situation calculus [38]. However, in the case of
concurrency, the durations of actions are important for a number of reasons.
First, the way the durations of two or more actions overlap can determine
how they interact. Second, an action can overlap with two or more other
actions without these latter actions overlapping. Third, what happens in
the duration of an action can be important for how it interacts with other
concurrent actions. TAL has explicit time and actions in TAL have duration.

Concurrent actions can be independent, and involve disjoint sets of fea-
tures. In this case, the combined effect of the concurrent actions is simply
the union of the individual effects, as in the example below.

acsl [s,t]LightFire(a,z) = (5)
([s]dry(z) A wood(z) = R((s,t]fire(z)))

acs2 [s,t|PourWater(a,z) =
R((s,t]~dry(z)) A R((s, t]fire(z))

obsl [0]dry(woodl) A —fire(woodl) A wood(wood1)

obs2 [0]dry(wood2) A —fire(wood2) A wood(wood2)

occl [2,7]LightFire(bill, woodl)

occ2 [2,7]LightFire(bob, wood?2)

Here TAL yields the conclusion [7](fire(woodl) A fire(wood2)) as intended.
Concurrency of independent actions does not pose a problem for TAL [45],
nor should it for most other formalisms that do not rely on some kind of
explicit frame axioms. The difficult problems arise when concurrent actions
are not independent.

We address three different problems related to concurrent execution of
interdependent actions. The first problem is due to the fact that the condi-
tions under which an action is executed are not always stable, but may be
altered by the effects of other concurrent actions. Consider a slight modifi-
cation of (5), where bob pours water on the fire wood while bill is lighting



the fire. The intuitive conclusion is that the wood should not be on fire at
7. We formalize this scenario in TAL by modifying some lines in the scenario
(5) above.’

occl [2,6]LightFire(bill, wood1) (6)
occ2 [3,5]PourWater(bob, wood1)

The modified scenario allows us to infer that the wood is actually on fire:
[7]fire(woodl). The reason is that the effect of the LightFire(bill, wood1)
action is determined only by the state at time-point 2 whereas the wood
does not become wet until time-point 5. Thus, just referring to the starting
state in preconditions in action laws is apparently not sufficient. One needs
to take into account that the conditions under which the action is executed
may be altered by the direct and indirect effects of other actions while the
action is going on.

The effects of one action on the conditions of another action need not
always be harmful. Often, the execution of one action can enable the suc-
cessful execution of another simultaneous action. For instance, turning the
latch of a door might enable opening the door. Sometimes, the enabling is
mutual, and two (or more) actions have synergistic effects.

A slight modification of the scenario above illustrates the second prob-
lem, which is due to the way effects of actions are represented with reassign-
ment. Assume that the two last lines in (5) are replaced with the following.

occl [3,7]LightFire(bill, wood1) (7)
occ2 [3, 7]PourWater(bob, wood1)

That is to say, the lighting and the pouring actions have the same duration.
Now, from acsl and occl one can infer the effect [7]fire(woodl) and from
acs2 and occ2 one can infer the effect [7]—fire(woodl). Notice that these two
effects are both asserted to be direct and indefeasible. Thus, the scenario
becomes inconsistent. The conclusion one would like to obtain is again that
the wood is not on fire.

A variation of effect interaction is when several actions affect the same
feature in a cumulative way, that is when the total effect of the actions
is an aggregate of the individual effects. Reassignment represents changes
to absolute values (although these values can be calculated relative to other
values), and obviously, aggregation of absolute values is not very meaningful.
For instance, consider the following scenario with a box of coins.

acsl [s,t]TakeCoin(a,b) = (8)
[s]coins(b)=(n + 1) = R((s, t]coins(b)=n)

obsl [0]coins(box1)=2

occl |2, 3| TakeCoin(bill, box1)

occ2 |2, 3] TakeCoin(bob, box1)

®We only present the modified or added lines in the subsequent scenarios.



Both occl and occ2 produce the effect R((2,3]coins(box1)=1). Notice that
this effect states that coins(box1) has the absolute value 1, and not that
coins(box1) changes by 1. Therefore, TAL yields [3]coins(box1)=1, while the
intuitive conclusion is that there are 0 coins in the box at time-point 3.
The third problem is that the conditions for two concurrent actions might
interfere. In particular, actions might compete for such things as space,
objects and energy. For instance, if lighting a fire requires the use of two
hands, then a two-handed agent is not able to light two fires concurrently.
One way of addressing this type of conflicts is in terms of limited resources.

4 From action laws to laws of interaction

Based on the observations in the previous section, we argue that the way
action laws are formulated in TAL (and many other formalisms) is not ap-
propriate in the case of concurrency. In this section, two potential solutions
are discussed. The first solution is to deal with interactions on the level
of actions by allowing more expressive action laws. The second solution is
to deal with interactions on the level of effects and features, by expressing
effects in a less direct and absolute manner than direct reassignment of a
feature. One can also imagine numerous combined approaches, for instance
where conflicts can be detected on the level of features and then resolved on
the level of actions, but that will not be discussed here.

4.1 Interactions on the level of actions

As the description of the effects of actions is usually centered around actions
in most formalisms, it might seem like an obvious approach to also deal
with concurrent interactions on the level of actions. This approach can be
realized with action laws that refer to combinations of action occurrences,
as in the work of Baral and Gelfond [3], Li and Pereira [27], Bornscheuer
and Thielscher [4], and Reiter [39]. The following action laws, encoded in a
hypothetical extended version of TAL, illustrate how one can overcome the
problems in (6) and (7). Observe how acsl cancels the effect of LightFire in
the presence of PourWater.

acsl [s,t]LightFire(a,z)A (9)
=3d’, s, t'[(s <& <tVs <t <t)A[s,t'|PourWater(a’, z)] =
([s]dry(z) A wood(z) = R((s,t]—fire(x)))
acs2 [s,t|PourWater(a,z) =
R((s,t]=dry(x)) A R((s, t]fire(z))

Unfortunately, this solution has a number of weaknesses. It is no longer pos-
sible to describe actions in isolation, which weakens the case for modularity
in action descriptions. All potentially interacting action combinations have
to be identified and explicitly put into action laws. If actions have duration,
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the number of such combinations is not just determined by the number of
actions, but also by the number of ways two or more actions can overlap in
time.

Other factors also contribute to additional complexity. If an action has
several effects, then one might not want an interference regarding just one
feature to neutralize all the effects of the action. Furthermore, if the action
interfered with starts before the interfering action, then the parts of the
effects of the former action that are defined to occur before the starting time
of the latter action should not be prevented, as this would imply causality
working backwards in time.

An additional problem is that interactions are not confined to occur
exclusively between the direct effects of actions, but might also involve in-
direct effects. Taking into consideration all potential interactions between
combinations of actions and dependency laws would simply not be feasible
for most nontrivial domains. Further, this would multiply all the previously
mentioned complications.

4.2 Interaction on the level of features

As an alternative to an action-centered approach, we propose an approach
based on the assumption that interactions resulting from concurrency are
best modeled on the level of features, and not on the level of actions. The
central ideas are as follows.

1. Actions provide an interface between the agent and the environment.

2. An action law does not explicitly encode the immediate effects that
the action has on the state of the world. Instead, action laws en-
code what influences the action brings upon the environment. For
instance, instead of stating R((s,t|fire(z)) as an effect of the action
[s, t]LightFire(a, z), one states I((s,tlfire*(x,T)) where fire*(z, T) rep-
resents an influence to make the feature fire(z) true (the I operator is
similar to R, but denotes that the expression inside is true throughout
the interval). An influence represents an inclination for a feature to
take on a certain value or to change in a certain direction. Thus, it
is more correct to consider action occurrence statements as represent-
ing action attempts that might fail to have their expected effects due
to external interference rather than representing successfully executed
actions.

3. Similarly, dependencies are modified to result in influences rather than
actual change.

4. The actual effects that these influences (and indirectly the actions
than caused them) have on the environment are then specified in a
special type of dependency laws called influence laws. For instance,
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[tfire*(z, T) = R([t]fire(x)). Generally, each feature is associated with
a number of different influences. The behavior of a feature can be
specified in a number of influence laws that describe how this feature
is affected by different individual influences and combinations of in-
fluences. Thus, descriptions of features and how they change due to
influences play a central role in TAL-C.

This approach implies that the emphasis of the world description has shifted
from actions to features, and from action laws to influence laws. Further, it
can be realized with a minimum of modifications of the TAL language, and
in particular the first-order nature of TAL can be retained (see appendix A).
Influence laws have the same form as dependency laws, which are already
an integral part of the language, and influences can actually be represented
as features. The difference between influences and other features is purely
conceptual; no new syntactic or semantic constructions particular to influ-
ences are required (although some new constructs applicable to features in
general will be introduced). The term “actual features” will be reserved for
features that are not influences.

Notice that the use of influences as intermediaries of change serves two
purposes. First, it makes it possible to avoid logical contradiction when two
or more actions and dependencies affect the same feature. For instance, the
combination [5]fire*(woodl, T) and [5]fire* (woodl, F) is logically consistent,
but the combination [5]fire(woodl) and [5]—fire(woodl) is not. But there
is more to concurrent interactions than preserving consistency. The actual
outcomes of interactions need to be represented somehow, and a rich phe-
nomenon like concurrent interactions requires a flexible representation that
goes beyond the most stereotypical cases. This is supported in TAL-C by
the fact that influences are first-order objects, which can be referred to in
influence laws.

The use of influences in TAL-C has some resemblance to the way physical
systems are often modeled. For instance, in mechanics the position/speed of
a physical body is influenced by forces, and in hydraulics the levels of/flows
between tanks are influenced by pressures. Notice that in physics, influences
often behave cumulatively. For instance, several forces can influence an ob-
ject in a mechanical system at the same time, and these forces can be aggre-
gated using vector addition. The term “influences” is explicitly used in qual-
itative reasoning about physical systems by (among others) Forbus [10]. For
instance, in Forbus’s qualitative process theory, the expressions |+(amount-
of(dest),A[flow-rate]) and I-(amount-of(source),A[flow-rate]) denote that the
flow rate between two interconnected tanks influences the amount of liquid
in the tanks to increase respectively decrease. If a tank t has several pipes
connected, then amount-of(t) will be subject to several influences. The flow
rate is in turn proportional to the difference of pressure in the two tanks
(flow-rate o< Alpressure(src)]—A[pressure(dest)]). Yet, the use of influences
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in TAL-C is not identical to the use in physical modeling. Although influ-
ences surely can be used in TAL-C in ways compatible with quantitative
and qualitative physical modeling, they need not always faithfully represent
actual physical entities or behave cumulatively.

5 Extending TAL to TAL-C

This section presents the differences between TAL and TAL-C. These include
a new class of features, a new effect operator I and two new classes of
scenario statements.

5.1 Persistent and durational features

In reasoning about action and change, features are typically considered to
be persistent. That means that they only change under special conditions,
such as during the execution of an action. In order to facilitate the use
of influences, TAL-C is in addition equipped with a second type of features
called durational features. These normally have a default value, and they can
only have a non-default value under certain circumstances, such as during
the execution of an action.® The predicates Per(f) and Dur(f,v) represent
that a feature is persistent respectively durational with default value v.
These predicates can be augmented with a temporal argument to support
features with variable behavior, such as variable default value. The default
behavior of persistent features is defined as follows.”

v, f,v[Per(f) = (=X ([t + 1]f) = ([LIf=v = [t + 1]f=0))] (10)

The default behavior of durational features is defined as follows,

Vi, f,v [Dur(f,v) = (~X([t]f) = [t]f=v)]. (11)

Notice that the distinction between persistent and durational features is in
principle orthogonal to the distinction between actual features and influ-
ences, although in practice actual features are mostly persistent and influ-
ences are mostly durational. Naturally, one need not be confined to the
two types of features presented here, but they suffice for the purposes of
this paper. We should also mention that the distinction between persistent
and durational features have proven useful for more than concurrency. In
particular, it has proven fruitful for addressing the qualification problem [7].

5The representation of features that are only momentarily true has previously been
addressed by for instance Lifschitz and Rabinov [30] and Thielscher [43].

"Recall that the occlusion operator X denotes that a feature is not subject to its default
assumptions at a given time-point. Furthermore, the following definitions are preliminary;
the final versions are presented in appendix A.
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5.2 Syntactical additions

In addition to the reassignment operator R, we provide a new operator [
which is typically (but not necessarily always) used for durational features.
It is used to state that something holds over an interval.

I((1, T a)=gef X ((7, 7)) AVH(T < t < 7' = [t]a) (12)

This specifies that the features in a are exempt from their default behaviors
and that the formula « is true at all time-points from 7 + 1 to 7’.

The definitions of a change formula and a balanced change formula are
extended to include durational formulae of the forms I((r,7']a), I([r,']a)
and I([7']e), and with the same restrictions as for R and X formulae. Two
new kinds of scenario statements are introduced: domain formulae (dom)
that can contain Per and Dur elements and value formulae, and influence
laws (inf), which have the same syntax as dependency laws.

5.3 An example

In the following scenario, there is a durational feature fire* representing in-
fluences on the actual feature fire. Henceforth, we will follow the convention
of representing the influences on an actual feature f(w) with f*(w, v), where
v is a value in the domain of f.

doml Per(fire(z)) A Dur(fire*(z,v),F) (13)
acsl  [s,t|LightFire(a,z) = I((s,t]fire*(z,T))

infl  [s,s+ 3]fire*(z, T) A —fire*(z, F) = R([t + 3]fire(x))

inf2  [s]fire*(z,F) = R([s]fire(z))

occl  [2,6]LightFire(Bob,woodl)

Notice how acsl does not immediately cause fire to be true. Instead, it
produces an influence to make fire true, using the I operator. How influences
on fire then affect fire is described in infl and inf2. It takes 4 consecutive
time-points to make fire true, while it takes just 1 time-point to make it false.
The influence to make fire false always has precedence over the influence to
make fire true. As a matter of fact, infl and inf2 are general enough to
handle any conflict that can occur between a group of actions/dependencies
that try to make fire both true and false at the same time. Thus, one can
in principle add arbitrary action laws and dependency laws influencing fire
without any worries that they lead to inconsistency. Of course, it might
still be desirable to refine or modify the way conflicts between influences are
treated as a domain is elaborated and more actions and dependencies are
introduced. In the examples to follow, we will continue to use influences in a
manner that permits easy extension of scenarios, although this practice leads
to somewhat larger scenarios. This issue is elaborated further in section 7.
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6 Variations on the concurrency theme revisited

In section 3, a number of concurrent interactions that our original TAL for-
malism could not handle were identified. In this section, we show how these
interactions can be represented in TAL-C. We should emphasize that al-
though we present specific examples, the techniques employed in this section
are applicable to frequently reoccurring classes of interactions.

6.1 Interactions from effects to conditions

Scenario (6) was an example of the effects of one action interfering with
the execution of another concurrent action. While Bill was lighting a fire,
Bob poured water on the wood. This type of interference can be handled
by including a suitable condition in the influence law that makes the fire
feature true.

The following two laws state that the fact that the wood is not dry
produces an influence fire*(z, F) to extinguish the fire (if there is one), and
that the influence fire*(z, T) for starting the fire has to be applied without
interference for an extended period of time to affect the feature fire(z). The
non-interference condition in this case is that fire*(z, F) stays false.

depl [s]-dry(z) = I([s]fire*(z,F)) (14)
infl  [s, s+ 3]fire*(z, T) A —fire*(z, F) A wood(z) =
R([s + 3]fire(z))

Below is the complete modified version of scenario (6). The action laws acsl
and acs2 and dependency law depl produce influences, and the effects that
these influences have, alone and in combination, are specified in infl, inf2,
inf3 and inf4.

doml Per(fire(z)) A Dur(fire*(z,v),F) (15)
dom2 Per(dry(z)) A Dur(dry*(z,v),F)
dom3 Per(wood(z))
acsl  [s,t|LightFire(a,z) = I((s,t]fire*(z,T))
acs2  [s,t|PourWater(a,z) = I((s,tldry*(z,F))
depl [s]-dry(z) = I([s]fire*(z,F))
infl  [s,s+ 3lfire*(z, T) A —fire*(z, F) A wood(z) =
R([s + 3]fire(z))
inf2  [s]fire*(z, F) = R([s|fire(z))
inf3  [s,s4 3]dry*(z, T) A —~dry*(z,F) = R([s + 3]dry(z))
inf4  [s]dry*(z,F) = R([s]~dry(z))
obsl  [0]—fire(woodl) A dry(wood1l) A wood(wood1)
occl  [2,6]LightFire(bill, wood1)
occ2  [3,5]PourWater(bob, wood1)

The fact that the wood is not on fire at 7 can be inferred as follows (we pro-
vide a first-order proof in appendix A). Due to occ2 and acs2, the condition
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(3,5]dry*(wood1, F) holds. This condition and inf4 yield [4,5]~dry(wood1),
and as dry is persistent, [6]-dry(woodl) and [7]-dry(woodl). Depl then
yields [7]fire*(woodl,F). Finally, inf2 gives [7]—fire(woodl). Notice that al-
though [3, 6]fire* (wood1, T) holds, the condition [s, s + 3](fire*(woodl, T) A
—fire*(wood1, F) A wood(wood1)) does not hold for any s < 3, and this the
only condition (in infl) under which fire(woodl) can become true.

The case when an effect of one action enables the effect of another ac-
tion can also be handled with conditional influence laws. For instance, the
following influence law states that opening a door requires initially keeping
the latch open (the example is originally due to Allen [2]).

infl [t]latch-open A [t,t + bJopen*(T) = R([t + 5|open) (16)

A variation of enablement is when the concurrent execution of two or more
actions may mutually enable a common effect that none of them could have
in isolation. This phenomenon is referred to as synergistic effects. It can
also be the case that the concurrent execution of several actions may prevent
effects that each of the actions would have in isolation. In TAL-C, this can
be achieved with the use of dependency laws. One example which contains
both synergistic enablement and prevention is the scenario with a soup bowl
standing on a table (the version presented here is an elaboration of the
original scenario, which is due to Gelfond, Lifschitz and Rabinov [12]). The
table has four sides: | for left, r for right, f for front and b for back. The
variables a, x and r represent the agent, the table and a side of the table,
respectively. The table can be lifted at any side (acsl). The actual feature
lift-s(z, r) represents that the table z is lifted on side r. If the table is lifted
at two opposite sides, then it is lifted from the ground (depl), but if is not
lifted at opposite sides, then it is tilted (dep2). If there is a soup bowl on the
table and the table is tilted, then the soup is spilled (dep3). The relation
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opp, defined in domé6, specifies when two sides are opposite.

doml Dur(lift-s(z,r),F) A Dur(lift-s*(z,r,v),F) (17)
dom2 Dur(tilted(z), F) A Dur(tilted*(z, v), F)
dom3 Dur(lifted(z),F) A Dur(lifted*(z,v),F)
dom4 Per(spilled(z)) A Dur(spilled*(z,v))
domb Per(soup(z)) A Per(table(z)) A Per(on(z,y))
dom6 opp(r,r') =
[(T’ r,> =(L,r) v {r, TI) =(r,l) v {r, TI) =(f,b) v (r, TI) = (b, f)]
acsl  [s,t|Lift(a,z,r) = I((s,t]lift-s*(z,r,T))
depl [t](table(x) A Fry, ra[lift-s(z, 1) A lift-s(z, r2)A
opp(r1,r2)]) = I([t]lifted*(z, T))
dep2  [t](table(z) A lift-s(z,r1) A =3rg, rs[lift-s(z, r2)A
lift-s(z,r3) A opp(re,r3)] ) = I([t]tilted*(z, T))
dep3  [t]tilted(y) A on(z,y) A soup(z) = R([t + 1]spilled*(z,T))
infl  [t]lift-s*(z, 7, T) = I([t]lift-s(z,T))
inf2  [t]tilted*(z, T) = I([t]tilted(z))
inf3  [t]spilled*(z, T) = I([t]spilled(x))
infA  [t]lifted*(z, T) = I([t]lifted(z))
obsl  [0]table(tl) A soup(sl) A on(sl,t1)
occl  [3,6]Lift(bill t1,1)
occ2  [3,6]Lift(bob,t1,r)

In this scenario, one can infer from occl, occ2, infl and inf2 that lift-s(t1,1) A
lift-s(t1, r) holds from 4 to 6. Thus, the condition 3ry, ro[lift-s(z, r1) Alift-s(z, r2)A
opp(ri,r2)] is satisfied in this time interval, enabling the effect lifted(t1) from
depl and inf4, while preventing the effect tilted(tl) according to dep2 and
inf2.

The table lifting scenario encodes several other potential interactions
between lifting actions. If the two lifting actions are not synchronized,
the table is tilted and the soup is spilled. For instance, if occ2 is al-
tered to [4,7|Lift(bob,tl,r), then one can infer [4](table(tl) A lift-s(t1, I) A
—3rg, r3lift-s(t1, r2) Alift-s(t1, 73) Aopp(ra, r3)] ). According to dep2 and inf2,
this produces the effect [4]tilted(t1), and the soup is spilled. Also notice that
if the table is lifted from three sides, (for instance, add occ3 [4, 7|Lift(ben,t1,f)
to the scenario) then the condition 3rq, ro|lift-s(z, 1) Alift-s(z, r2) Aopp (71, 72)]
is still satisfied, which implies that the table is lifted and not tilted. How-
ever, if the only occurrences are occl and occ3, then that condition does not
hold and the table is tilted and the soup is spilled.

Notice that it is possible to write influence laws that determine directly
from the lift-s* influence whether the table is lifted or the soup is spilled.
Anyhow, we have preferred to explicitly represent the causal chain from
lifting to spilling and tilting, as it makes it easier to extend the scenario to
include actions that for instance counter-act the lifting by pressing down a
side of the table or that stabilize the bowl.
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6.2 Interactions between effects

The previous subsection addressed interactions between effects and condi-
tions of actions and dependencies. As observed in section 3, another problem
is when two or more actions or dependencies are affecting the same feature.
Such combinations of effects can be conflicting or cumulative.

6.2.1 Conflicting effects

Returning to the fire lighting scenario (15), it can be observed that the use
of influence laws in that scenario also solves the problem of conflicting effects
that was observed in (7) in section 3. There were two influence laws in (15)
that determined the result of conflicting influences on the fire feature:

infl [s,s + 3]fire*(z, T) A —fire*(z,F) A wood(z) = (18)
R([s + 3]fire(z))
inf2 [s]fire*(z,F) = R([s]-fire(z))

Now assume that the occurrences in (15) are modified as follows.

occl [2,6]LightFire(bill, wood1) (19)
occ2 [4, 6]PourWater(bob, wood1)

In this case, one can infer (2, 6]fire*(woodl, T) which normally has the effect
[6]fire(wood1) (infl). One can also infer [6]—dry(wood1) and [6]fire* (wood1, F),
which normally results in [6]-fire(wood1) (inf2). The conflict between these
two influences is resolved in infl and inf2, to the advantage of the latter.

The fire lighting scenario illustrates a conflict involving just two opposite
influences. However, there might also be conflicts involving arbitrarily large
number of influences. For instance, consider the following scenario where
several agents try to pick up the same object. The feature pos(z) represents
the position of an object x, and its value domain of positions includes both
locations (e.g. floor) and agents (e.g. bill, bob). An object can only have
one position, so when more than one agent is trying to take the object, then
there is a conflict. This conflict is resolved in infl in the scenario.

doml Dur(pos*(z,a),F) A Per(pos(x)) (20)
acsl  [s,t]Pickup(a,z) = I((s,t]pos*(z,a))
infl  [t]pos(z)=floor A Ip[[t + 1]pos*(z,p)]| =
Ip[ [t + 1lpos™(z,p) A R([t + 1]pos(z)=p) ]
obsl  [0]pos(wallet)=floor
occl  [2,3]Pickup(bill,wallet)
occ2 |2, 3]Pickup(bob,wallet)

Infl states that “if the object x is on the floor and at least one agent is
trying to take x then one of the agents who are trying to take z will actually
have z”. The result in this case is nondeterministic, and this is perhaps the
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best way to treat conflicts when one lacks detailed information of what the
actual result would be. Notice that the consequent of infl only changes the
value of pos(z), and not the value of the influence pos*(z, p). The pos*(z, p)
component of the consequent is in effect a filter on what values p that pos(z)
can be reassigned to.

It is equally possible to state that no effect occurs in the case of conflict:

infl ([t]pos(z)=floor A [t + 1]pos*(z,p)A (21)
-3p'[[t + 1]pos*(z,p") Ap # p']) = R([t + 1]pos(z)=p)

Finally, some values might be preferred to other values. For instance, we
can enhance the picking-up scenario by giving preference to stronger agents,
as follows. The relation stronger encodes a partial ordering on agents based
on their relative strength.

infl [t]pos(z)=floor A Jp[ [t + 1]pos*(z,p)]| = (22)
Ip[[t + 1]pos*(z,p) A —Ip'[[t + 1]pos™(z, p') A stronger(p', p) ]A
R([t + 1]pos(z)=p) ]

6.2.2 Cumulative effects

Another common phenomenon besides conflicting influences is when influ-
ences signify some relative change, and therefore multiple influences can be
combined in a cumulative way. We have already mentioned that in mechan-
ics, multiple forces on an object can be combined using vector addition, and
the vectorial sum determines changes in the objects speed and position.

Here, we present another example, which involves a box from which
agents can take coins. In order to specify cumulative effects, we need to
introduce a minimal portion of set theory, including set membership (in),
the empty set (empty) and subtraction of one element from a set (remove).
A set theory that is sufficient for our purpose is obtained using the following
two axioms. The sets contain only features of a specific feature sort, so the
axioms have to be restated for different sorts. The variable o represents
sets.

Vo, f, f'[in(f, remove(f',0)) = (in(f,0) A f # f')] (23)
Volempty(o) = Vf[-in(f,0)]] (24)

Furthermore, we provide the following definition of the sum of feature values
over a set of features.
Vt, o, f,m,n[in(f,o) A sum(t, remove(o, f)) = m A [t]f=n = (25)
sum(t,o) = (m + n)]
Vt, olempty(o) = sum(t,o) = 0]
Now we can introduce an influence coins™(a, ¢) with a value domain of natu-
ral numbers and default value 0 to represent that an agent a is taking a coin
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from a container c. In addition, we define the special function Coins™ (%, c)
which for a given c represents the set of all coins™ (a, ¢) with a nonzero value
at time-point ¢.

in(coins~ (a,c’), Coins™ (¢,c)) = (c = ¢’ A [t]-coins™ (a, c)=0) (26)

This definition establishes the existence of a set which contains all the non-
zero features of the relevant type. The definition of remove above then
establishes the existence of all subsets of this set, which is sufficient for
determining the sum of all features in the set.

The scenario (8) is modified as follows.

doml Dur(coins (a,c),0) A Per(coins(c)) (27)
acsl  [s,t|TakeCoin(a,c) = I([t]coins™ (a,c)=1)
infl  ([t]coins(c)=(m + n) A sum(t+1,Coins™ (t + 1,¢)) =n) =
R([t + 1]coins(c)=m)
obsl  [0]coins(box1)=2
occl  [2,3]TakeCoin(bill, box1)
occ2  [2,3]TakeCoin(bob, box1)

The cumulative behavior of the coins feature is encoded in infl, which adds
together the values of all non-zero coins™ (a,c¢) for a specific ¢ and adds this
sum to coins(c). From this scenario, one can infer that Coins™(3,box1) =
{coins™ (bill, box1), coins~ (bob, box1)}. As [3]coins™ (bill, box1)=1 and
[3]coins ™ (bob, box1)=1 we get sum(Coins™ (3,box1)) = 2 and [3]coins(box1)=0.
Obviously, the scenario can be enhanced. For example, more than one coin
can be taken by the same agent, coins can be added to the box, and so on.

6.3 Interacting conditions

Finally, there is the problem that the conditions of two or more actions
interact. A special case of this is when an agent has a resource that can
only be used for one action at a time. For instance, people generally have
only two hands, and thus cannot simultaneously perform two actions that
each requires the use of both hands, like lighting a fire. A strategy for
representing resources is to introduce a feature representing what action
the resource is actually used for. In the following scenario, the feature
uses-hands(z) fulfills this function. There is a value sort of action tokens
that duplicates the action sort (e.g. the value light-fire(a, ) corresponds to
the action LightFire(a,z)). The feature uses-hands(z) has action tokens as
domain, and the letter e is used for action token variables. The action token
noop stands for “no operation”.

The use of a resource for an action is divided into two steps. First, the
action claims the resource. Acsl in the scenario below states that the action
of lighting a fire needs the ”hands” resource. This need is represented with
the influence uses-hands™(a, €). Second, the resource is actually used and the
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action produces some effect. Depl below states that if the hands are used
for lighting a fire, then this will produce a fire influence.

doml Per(fire(z)) A Dur(fire*(z,v),F) (28)
dom2 Per(wood(z))
dom3 Dwur(uses-hands(a), noop) A Dur(uses-hands*(a,e), F)
acsl  [s,t|LightFire(a,z) =
I((s, tJuses-hands*(a, light-fire(a,z)))
depl [t]uses-hands(a)=light-fire(a,z) = I([t]fire*(z, T))
infl  Je[[t]uses-hands*(a,e)] =
Je[ [t]uses-hands™(a, e) A I([t|uses-hands(a)=e) ]
inf2  [s,s+ 3lfire*(z, T) A —fire*(z, F) A wood(z) =
R([s + 3]fire(z))
inf3  [s]fire*(z,F) = R([s]fire(z))
obsl  [0]dry(wood1) A —fire(woodl) A wood(wood1)
occl  [2,6]LightFire(bill, woodl)
occ2  [2,6]LightFire(bill, wood2)

The distribution of resources is encoded in infl, which states that if at least
one action e needs the ”hands” resource then some action that needs that
resource will have it (compare to infl in (20)). If two or more actions need a
resource, then only one of them will have it, and the resource can randomly
alter between competing actions. In this example, the value of uses-hands(a)
alternates randomly between light-fire(bill, wood1l) and light-fire(bill, wood2)
from 3 to 6, with the result that both actions fail or only one of them
succeeds.

More sophisticated forms of resources than the binary resource above
are also possible. For instance, one can utilize the techniques presented in
connection with cumulative effects to deal with quantitative and sharable
resources, and resources can be renewable or consumable.

6.4 Special vs. general influences

In all examples so far, each feature type? has its own set of influences and
influence laws. While offering a high level of freedom in handling concur-
rent interactions, this approach also requires declaring influences for each
feature type and writing down a large amount of influence laws. Of course,
if one desires a flexible and non-stereotypical treatment of interactions, this
is hard to avoid. But TAL-C is also capable of a more uniform and compact
treatment of interactions. Instead of declaring separate influences of each
actual feature type (e.g. dry* for dry), one can group together features with
the same value domain and the same behavior and let them be of the same
feature sort F;. Next, one introduces a function * : F; x dom(F;) — F;

8We consider all features with the same feature symbol, e.g. fire, to define a type.
Several feature types with the same value domain might be of the same sort.
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that for a given feature and value represents an influence on the feature to
change according to the value (e.g. *(dry(wood1),F)). Thereby, it is possible
to specify influence laws that apply to all feature types that are of the sort
Fi. The following is an example of a general influence law where dom(F;)
is the boolean value sort. The variable f (implicitly universally quantified)
is of sort F;. The influence law handles conflicts by making the outcome
nondeterministic.

dom Dur(x(f,v),F) (29)
inf  ([t]«(f, T) A=*(f,F) = R([t]f))A

([t]=+(f, T) A *(f,F) = R([t]=f))A

([t(f, T) A*(f,F) = X([]f))

This approach yields a number of influence laws that is proportional to the
number of feature sorts, instead of the number of feature types. It can be
particularly useful for scenarios with a large number of feature types that
exhibit relatively uniform behaviors. In addition, the fact that influence
laws are more general and applies to sorts rather than to specific feature
types implies a higher degree of reusability.

7 Working with TAL-C scenarios

When encoding a scenario in TAL-C, a bottom-up approach involving the
four following levels can be used. (1) Identify relevant features of the world
and their value domains. (2) For each feature, determine its normal (non-
influenced) behavior, its potential influences and how these affect the feature
alone and in combination. (3) Identify actions and dependencies in the world
and how these influence features. (4) Determine what holds and occurs in
the world, and what individuals there are.

Often, it is not possible to work strictly sequentially from level 1 to level
4. The elaboration of a complex scenario is an iterative and incremental pro-
cess, where the four levels above are intertwined and decisions made earlier
can be reconsidered. Therefore, to estimate how demanding this elaboration
process would be in TAL-C, it is relevant to analyze what implications addi-
tions or modifications at different levels would have on an existing scenario
as a whole. Although there are some initial studies on the subject [33], there
exist no systematic methods for performing this kind of estimate. There-
fore, the following observations are based mainly on practical experience
and common sense.

To provide a background for the discussion to follow, we need to make
some additional assumptions about the form of a scenario. We should em-
phasize that these assumptions represent good conventions that have been
followed in this paper, but they are not formally part of the TAL-C definition.
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An action law for an action A has the following form, where A4(Z) contains
only actual features and A“4(Z) contains only influences:

acs [t,t]A@) = (AA(Z) = AA(T)) (30)

A dependency law has the following form, with the corresponding restric-
tions on Ax(T) and Ag(ZT).

dep Ax(Z) = Ar(T) (31)
A domain statement for a specific feature has one of the two following forms:

dom Per(f(T)) (32)
dom Dur(f(z),v)

Finally, each feature type f has a number of influence laws of the form
inf; Al(z) = Al(Z) (33)

where the consequent Azf (Z) contains references to no other actual feature
but f(Z) and this feature occurs only inside reassignment, interval and oc-
clude formulae. Azf (Z) may also contain influences that belong to f(Z), but
then only inside static subformulae. The antecedent A{ (Z) contains only in-
fluences that belong to f(Z) (e.g. f*(Z,v)) and actual features. Each group of
influence laws represents a module that describes the behavior of a specific
feature f together with the dom statement for that feature, and any con-
flicts or other interactions are handled locally within that module. Finally,
we assume that each influence only belongs to one actual feature.

Given the assumptions above, we can draw the following conclusions
about the impact an addition/modification will have on a scenario.

Adding a new feature (level 1 according to the enumeration above), does
in itself not affect anything else. It is obviously followed by adding new
influences and influence laws (level 2) and sometimes also adding/modifying
actions and dependencies (level 3). These operations are discussed below.

Adding or altering the default behavior of a feature (level 2) is local to
the domain statement specifying the default behavior in question. Adding
a new type of influence for a feature implies altering the influence laws for
the feature in question, but does not affect the influence laws for other
features. If care is taken in the choice of influences, additions of influences
should seldom occur, and the types of influences for a given feature should
remain more or less constant. As a parallel, the physical property of an
object’s speed can be influenced by a large amount of imaginable actions and
conditions. Yet, one single type of influence (“force”) suffices to determine
changes in speed. Further, altering the interactions between influences for
a particular feature is local to the influence laws (i.e. the module) of that
feature, but does not affect the default behavior or any action or dependency
laws.
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Modifying or adding an action law or dependency law (level 3) does not
affect any other existing action or dependency laws as any interactions are
delegated to the influence laws, nor does it affect existing influence laws.
The exception is of course when the new action or dependency law requires
the introduction of a new type of influence for a particular feature, in which
case the influence laws of that feature have to be extended. Finally, adding
action occurrences and observations (level 4) does not affect anything at the
preceding levels.

In summary, additions or modifications are in general local operations
which preserve modularity in TAL-C. Different features can be described in
isolation, and given a set of features and associated influences, different ac-
tions and dependencies can be described in isolation. This property is mainly
due to two features of the logic, namely that interactions between actions
and dependencies are channeled through influences, and further that the
respective sets of influences of different features are disjoint, and therefore
the behaviors of features can be specified in normal behavior and influence
laws that are independent of those of other features. It is encouraging to
achieve this level of modularity, considering the fact that we are addressing
complicated causal dependencies and concurrent interactions.

8 Other work on concurrency

Hendrix’s work [17] is an early attempt to represent continuous and simulta-
neous processes, using a STRIPS-like [9] language. Unlike sTRIPS, Hendrix’s
formalism involves notions of explicit time, duration, and simultaneous and
extraneous activity. A process has preconditions and continuation condi-
tions that determine when the process can be initiated and for how long it
goes on. Hendrix distinguishes between instantaneous effects at the initia-
tion and termination moments of the process and gradual effects that occur
while the process is going on. However, there are no means for determining
what happens when more than one process affects the same feature (”pa-
rameter” in Hendrix’s terminology). More sophisticated representations of
physical process were later developed in qualitative reasoning, were Forbus
[10] has already been mentioned.

In the work of Georgeff [13] there are world states that are linked to-
gether in histories. In a world state, features can hold and one or more
events (actions) can occur. Specific features can explicitly be declared to
be independent of specific events, and a persistence axiom, similar to the
nochange axiom in TAL, states that if a feature p is independent of all events
in a state, then it will not have changed in the next state. Georgeff then in-
troduces the concept of correctness conditions. If the correctness condition
p of an event e is independent of another event €', then €' will not interfere
with (prevent) e. Thus, Georgefl’s formalism can define when two events
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(actions) can and cannot occur simultaneously, and what the result is when
two independent events are executed simultaneously. A limitation is the lack
of an explicit notion of duration, so events cannot overlap partially. Georgeff
also considers processes, which essentially are related groups of events with
limited interaction with events outside the process.

Structural relations between events is the central theme in work by Lan-
sky [26]. In GEM, there is an explicit representation of event location;
events can belong to elements, which are loci of forced sequential activity,
and which in turn can belong to groups. In essence, groups represent bound-
aries of causal access. Events inside a group can only interact with external
events via specific ports (causal holes). Thereby, the possible concurrent
interactions between events can be restricted.

Pelavin’s work on a logic for planning with simultaneous actions with
duration [35] is based on Allen’s interval temporal logic [2], in which prop-
erties and actions are associated with intervals of time. Pelavin’s formalism
has quite a complex non-standard semantics, where the central entities are
world histories. A closeness function defines how the addition of actions to
a world history results in new world histories. On the syntactic level, there
are modal operators on world histories: IFT RIED(pi, P) denoting that the
condition P would hold if the actions in pi are executed, and INEV (i, P)
stating that the condition P inevitably holds at time ¢ (is independent of
anything happening after 7). These operators can be used for quite so-
phisticated descriptions of actions, including interference where one action
prevents another, and cumulative effects. However, what does not change
due to an action has to be explicitly encoded, and there is no concept of
dependency laws.

Thielscher [43] presents a theory of dynamic systems, where state tran-
sitions can occur naturally in addition to being caused by actions. Fluents
are divided into two sets. There are persistent fluents, which are subject to
inertia and only change when directly influenced, and there are momentary
fluents that become false if nothing affects them. A subset of the momen-
tary fluents are the action fluents. Causal laws are specified in a STRIPS-style
manner, with a precondition, a set of persistent fluents to become true, a
set of persistent fluents to become false and a set of momentary fluents to
become true in the following state. Thielscher addresses some aspects of
concurrency, but a versatile way of handling time is lacking. Durations and
delays cannot be easily modeled, due to the STRIPS-style operational nature
of the language. The paper also discusses one type of concurrent conflicts
the formalism can handle, but no general way to handle other types of con-
current conflicts are mentioned.

Ferber and Miiller [8] presents a theory for dynamic multi-agent environ-
ments with a distinction between influences and state. The world develops
in two-step cycles: there is a set of operators (corresponding to actions
and events) that for given influences and conditions on the state yield new
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influences; and a set of laws that for given conditions on the state and in-
fluences transform the state. The state component develops according to
a persistence assumption, whereas influences are transient (like persistent
respectively durational features in TAL-C). The theory is then augmented
with agent behaviors, which are functions from influence sets (percepts) to
influence sets (responses). A STRIPS-style operational formalism is used in
the paper, but the authors explain that the general principles should apply
to other types of formalisms as well.

Among the work done in situation calculus, Pinto’s [36] modeling of con-
currency is particularly interesting. Pinto addresses the use of resources and
exploits state constraints (of a weaker kind than the dependency laws in this
paper) to deal with effect interaction, although in the context of instanta-
neous actions. In a recent paper [37], Pinto proposes an approach where he
uses natural events (in the style of Reiter [39]) to model causal dependecies,
and then he uses causal dependencies to model concurrent interactions. In
this approach, natural events can play a role similar to the one of influences
in TAL-C, i.e. as intermediaries of change. What is particularily interesting
is that Pinto motivates his approach with arguments for modularity; using
causal dependencies to model concurrent interactions on the level of fluents
allow us to describe actions in isolation.

Finally, we should also mention Baral and Gelfond’s propositional lan-
guage Ac [3] and its relatives by Li and Pereira [27] and Bornscheuer and
Thielscher [4]. A¢, an extension of Gelfond’s and Lifschitz’s language A
[11], relies on action rules (e-propositions) of the form {4,,...,4,} causes
e if pl ..., py, to describe concurrent interactions. Rules for the same fluent
with more specific action parts override less specific ones. This makes A¢
suitable for representing synergistic and conflicting effects. On the other
hand, actual cancellation of effects requires the use of explicit frame ax-
ioms, like in the soup bowl example [3] where the rule {lift_left,lift_right}
causes —spilled if —spilled overrides the rules {lift_left} causes spilled
and {lift_right} causes spilled. None of [3, 27, 4] address ramification or
action duration, and only Bornscheuer’s and Thielscher’s version addresses
nondeterminism. The three languages differ mainly in the treatment of con-
current conflicts that are not resolved by any e-proposition. According to
Baral and Gelfond, the entire resulting state is undefined, according to Li
and Pereira, the result of the conflicting actions is undefined, and according
to Bornscheuer and Thielscher, the resulting value of the conflicting feature
is nondeterministic.

The fact that more specific rules override less specific ones in A¢ makes
it possible to add new rules without having to modify existing ones, thereby
contributing to elaboration tolerance. Compared to TAL-C, is possible to
specify scenarios where certain modifications are easier to do in A¢ (and
vice versa). However, actions cannot be described in isolation, which has to
be considered a major drawback from a modularity perspective. Also recall
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the discussion in section 4.1.

9 Conclusions

In this paper, we have presented TAL-C, which is a logic for describing ac-
tion scenarios that involve action concurrency and causal dependencies be-
tween features. What distinguishes TAL-C from previous work is the com-
bination of the following factors: (a) TAL-C has a standard first-order se-
mantics and proof theory. (b) TAL-C has a notion of explicit time, which
makes it possible to reason about the durations of actions and other in-
teresting temporal properties and relations. (c¢) TAL-C is able to model a
number of important phenomena related to concurrency. We should also
mention that several of the examples in this paper have been tested using
an implementation of TAL and TAL-C, called VTAL (available on Www at
http://anton.ida.liu.se/vital/vital.html as a Java applet).

Technically, TAL-C is closely related to TAL with ramification [16], al-
though the surface language £(SD) has been modified and extended. In
the base language L£(FL), the same predicates are still used, with the ad-
dition of Per and Dur. Most important, the same simple circumscription
policy is still applicable, which implies that we can reason about concurrent
interactions in first-order logic.

The main difference between TAL and TAL-C is conceptual in nature and
based on how action laws are defined and used. We have demonstrated how
traditional action laws suffer from a number of problems, in particular due
to the fact that preconditions in action laws refer to the state before the
action is executed, and that the effects are absolute and indefeasible. The
solution involving action laws with multiple actions was rejected due to lack
of precision and scaling. Instead, we proposed an approach were actions pro-
duce influences instead of actual effects. The way these influences change
the world, both alone and in interaction with other influences can then be
specified in influence laws for individual features. TAL-C has been demon-
strated on a number of nontrivial concurrency-related problems. The use of
influence laws in TAL-C provides a flexible tool for describing what happens
when a feature is subject to influence from several actions or dependencies
simultaneously. Additions and modifications to a TAL-C scenario are local
operations which preserve modularity.

An important topic for future research is to adopt TAL-C for continuous
time and value domains, in order to describe worlds with piece-wise con-
tinuous dynamics (for related work of this problem, see e.g. Sandewall [40]
and Shanahan [42]). Such an adaptation will probably involve a richer rep-
resentation of the default behaviors of features than the distinction between
persistent and durational features used in this paper. Future research also
include systematically exploring common patterns of concurrency and estab-
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lishing semantics for different classes of worlds with concurrent actions, and
studying how locality [26] can be exploited in a formalism such as TAL-C.
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A Translation from £(SD) to L(FL)

This section presents the translation from the surface language L(SD),
which is intended for describing scenarios, to £(F L) which is used for infer-
ences. The translation is based on [6]. L(FL) is a first-order language
with equality consisting of the predicates Holds; : T x F; x Dom(F;),
Occlude; : T x F; (normally, the index ¢ is omitted) and Occurs : T X T x A;
further Per; : F;, Dur; : F; X Dom(F;) and all predicates relating to the
value domains and temporal domain from £(SD). There is an isomorfism
of sorts and symbols between £(SD) and L(FL).

A.1 Translation function

Definition 12 Tran is called the translation function, and is defined as
follows (the obvious parts have been left out). All variables occurring only
on the right-hand side are assumed to be previously unused variables.

Tran([r]f(w)=v) = Holds(t,f(w),v) (34)

Tran([t]ma) = -Tran(r]a) (35)

Tran([t]aCB) = Tran(|r]ea) C Tran([7]B) (36)
where C € {A,V,=,=}.

Tran([t]|Qu[a]) = Qu[Tran([r]a)] where Q € {V,3}. 37

Tran([r,7'|a) = V[r <t <7’ = Tran([t'a)] 38

Tran((r,7']a) = Vi[r <t <1’ = Tran([t'a)] 39

Tran(X([7]f(@))
Tran(X([7]f(@)=v)
)
)

Occlude(t, f(w))
Tran(X ([7]-«
Tran(X([r]aCpB

Tran(X([7]a))

= Tran(X([r]a)) A Tran(X([7]8))
where C € {A,V,=,=}.

Tran(X([7]Qu[a])) = WYv[Tran(X([r]a))] (44)

where Q € {V,3}.

) (37)
) (38)
) (39)
) Occlude(T, f(@)) (40)
) (41)
) (42)
) (43)
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Tran(X((r,7a)) = W[r<t <71 = (45)
Tran(X([t'a))]

Tran(X([r,7e)) = V[ r<t' <7 = (46)
Tran(X([t'|a))]

Tran(R((t,7]a)) = Tran(X((r,7']a)) A Tran([T]a) (47)

Tran(R([t,7)a)) = Tran(X([r,7"a)) A Tran([T]a) (48)

Tran(R([t]a)) = Tran(X([r],a)) ATran(|r]a) (49)

Tran(I((t,7"|a)) = Tran(X((r,7"]a)) A (50)
Tran((,7']c)

Tran(I([r,7"|a)) = Tran(X([r,7"]a)) A (51)
Tran([t,7']c)

Tran(I([t]e)) = Tran(X([r],a)) ATran([t]c) (52)

Tran(Cr([rla)) = VW[r=t+1= Tran([t'-a)] A (53)

Tran([7]a)
Tran([r,7'|®@)) = Occurs(r,,®(w)) (54)

Notice the translation of the X operator, in particular lines (42-44), which
always occludes all features inside a reassignment or interval formula.

A.2 Circumscription

The second-order circumscription of a number of predicates P = Py,..., P,
in the theory T'(P) is denoted Circso(T'(P); P) (see Lifschitz [28]). Intu-
itively, Circso(T'(P); P) represents a (second-order) theory containing I'( P)

and where the extensions of the predicates P are minimal.

Definition 13 Transformation of scenarios from £(SD) to L(FL):

1. Let dom, acs, dep, inf, obs and occ be the sets of statements with la-
bels dom, acs, dep, obs and occ respectively, completed with universal
quantification for variables occurring free.

2. Let Lgom = Tran(dom), L'acs = Tran(acs), L'gep = Tran(dep), Ling =
Tran(inf), T'ops = Tran(obs) and T'yee = Tran(occ).

3. Let I" be Circso((Tacs U T'gep U Ling)(Occlude); Occlude) U T gor,
UCircso(Tocc(Occurs); Occurs) U Lgps ULy UL prq. T' is the theory
that is used for proofs in TAL-C.
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The set I'y; contains the L(FL) equivalents of (10) and (11), plus two
more axioms relating to Per and Dur.

Lp = Uif (55)
Vfi t,vi [ Duri(fi, vi) =
(=Occlude;(t, fi) = (Holds;(t, fi,vi)))],
Vfi, t,vi[ Peri(fi) = (—Occlude;(t + 1, f;) =
(Holds;(t, fi,vi) = Holds;(t + 1, fi,v;)))],
Vfi,t,Uz',’UZ{ D’U/f‘i(f, 'Ui) A D’U/I‘i(f, U:) = v = ’Ué’
Vfi[Per;(fi) ® 3v; Dury(fi,vi)] }

Finally, the set I'f,4 consists of foundational axioms for unique names for
actions, features and values, and constraints that a feature has exactly one
value at each time-point.

An important property of the circumscribed theory I' is that although it
is a second-order theory due to the second-order nature of circumscription, it
can be reduced to an equivalent first-order theory, and in a very convenient
form. The following is a principal account for this reduction based on [6],
where the proofs in [6] are directly applicable. Due to the definition of
action laws and dependency laws, occlusion can only occur on the right-
hand side A of an implication T' = A. Furthermore, due the restrictions on
balanced change formulae and the definition of the T'ran function, occlusion
only occurs positive in A, and if it occurs in a disjunction inside A, then
it occurs identically on both sides. Therefore, the Occlude; parts, using
the law of distributivity, can be separated from the rest of I, resulting in
A = (\; AY)AA and from there to A = APA(A; A = A9). Thus, it can
be shown that each expanded action law or dependency law is equivalent
to a formula A = A" A (A; Vt, fi]A' = Occlude;(t, f;)]). Now, there are
two useful theorems by Lifschitz [29], the first stating that if B does not
contain P, then Circso(I'(P) A B;P) = Circso(I'(P); P) A B, and the
second stating that if F(Z) does not contain any P then Circso(VZF(T) =
P(z); P) = (VZF (%) = P(T)). From these theorems and the equivalent form
above follows that Circso((Cacs U Laep)(Occlude); Occlude) = (Ay Ax =
A A (N Y, Fil (Vg Aly) = Occlude;(t, f;)], which is first-order.

A.3 Example

The following is the £(FL) translation of scenario (15). In this case, there
is only one feature sort, which has a boolean value domain.

Laom = { (56)
doml Vz,v[Per(fire(z)) A Dur(fire*(z,v),F)]
dom?2 Vz,v[Per(dry(z)) A Dur(dry*(z,v),F)] }
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Facs+dep+inf = {
acsl Vs, t,a,z[Occurs(s,t,LightFire(a,z)) =
Vt'[s < t' <t = Holds(t,fire*(z, T), T)]A
Vt'[s < t' <t = Occlude(t',fire*(a,z,T))],
acs2 Vs, t,a,z[Occurs(s,t, PourWater(a, z)) =
Vit'[s < t' <t = Holds(t',dry*(z,F), T)]A
Vi'[s < t' <t = Occlude(t',dry*(z,F))],
depl Vs, z[~Holds(s,dry(z), T) = Holds(s,fire*(z,F),T)]
infl Vs, z(Vt'[s < t' < s+ 3 = (Holds(t',fire*(z,T)), T)A
—Holds(t',fire*(z,F)), T) A Holds(t',wood(z), T))] =
Occlude(s + 3, fire(z)) A Holds(s + 3, fire(z), T)),
inf2 Vs, z[Holds(s, fire*(z,F), T) =
( Occlude(s, fire(z)) A ~Holds(s, fire(z), T))],
inf3 Vs, z(Vt'[s <t' < s+3=
(Holds(t',dry*(z,T)),T) A —=Holds(t',dry*(z,F)), T)] =
(Occlude(s + 3,dry(z)) A Holds(s + 3,dry(z), T)),
infd Vs, z[Holds(s,dry*(z,F), T) =
(Occlude(s,dry(z)) A ~Holds(s,dry(z), T))]}

Toce = { occl Occurs(2, 6, LightFire(bill, wood1)),
occ2 Occurs(3,5, PourWater(bob, wood1))}

Tops = {obsl Holds(0,dry(woodl), T)A
—Holds(0, fire(wood1), T)A
Holds(0,wood(wood1),T)}

Circumscribing Occurs in I'oee and Occlude in Lges U Lgep U iy yield

Vs,t,e [Occurs(s,t,e) =
((s =2 At =6 Ae= LightFire(bill, wood1))V
(s =3 At =5Ae= PourWater(bob,woodl)))]
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the following exact descriptions of the two predicates, which together with
the original theory and the additional components constitute I'. Notice that
the Occlude part specifies exactly the exceptions to the default rules for
persistent and durational features, as expressed in the two first axioms in
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Vt', f (Occlude(t', f) = 3s,t,a, | (61)
(s <t <tAf=fire*(z, T)A
Occurs(s,t,LightFire(a,z)))V
(s <t <tAf=dry*(z,F)A
Occurs(s,t,PourWater(a, z)))V
(f=fire(x) ANt =s+3AV[s <t/ <5+ 3=
(Holds(t', fire*(z, T)), T)A
—Holds(t',fire*(z,F), T) A Holds(t',wood(z), T)])V
(f =fire(z) At' = s A Holds(s,fire*(z,F), T))V
(f=dry(x) At =s+3AN W [s<t'<s5+3=
(Holds(t',dry*(z,T), T) A =Holds(t',dry*(z,F), T))]))V
(f =dry(z) At = s A Holds(s,dry*(z,F),T))])

The proof for ~Holds(7,fire(woodl), T) is as follows.

1.
2.
3.

Occurs(3,5, PourWater(bob, wood1)) is true according to occ2.
From 1 and acs2, one can infer Holds(5,dry*(woodl,F), T).
From 2 and inf4, it follows that ~Holds(5,dry(woodl), T) is true.

From (60) and (61), it follows that —Occlude(t, dry*(wood1,F)),
—Occlude(t,dry*(woodl, T)) and consequently ~Occlude(t, dry(wood1))
are true fort =6 and t = 7.

From 3, 4, Per(dry(woodl)) (dom2) and (55), it follows that
—Holds(t,dry(wood1),T) is true for t = 6 and ¢t = 7.

From 5 and depl, it follows that Holds(7,fire*(woodl,F), T) is true.

From 6 and inf2, it follows that —Holds(7, fire(woodl), T) is true.
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