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Abstract In critical domains such as urban search and rescue (USAR), and bomb
disposal, the deployment of teleoperated robots is essential to reduce the risk of first
responder personnel. Teleoperation is a difficult task, particularly when controlling
robots from an isolated safety zone. In general, the operator has to solve simulta-
neously the problems of mission planning, target identification, robot navigation,
and robot control. We introduce a system to support teleoperated navigation with
real-time mapping consisting of a two-step scan matching method that re-considers
data associations during the search over transformations. The algorithm processes
data from laser range finder and gyroscope only, thereby it is independent from the
robot platform. Furthermore, we introduce a user-guided procedure for improving
the global consistency of maps generated by the scan matcher. Globally consistent
maps are computed by a graph-based maximum likelihood method that is biased
by localizing crucial parts of the scan matcher trajectory on a prior given geo-tiff
image. The approach has been implemented as an embedded system and exten-
sively tested on robot platforms designed for teleoperation in critical situations,
such as bomb disposal. Furthermore, the system was evaluated in a test maze by
first responders during the Disaster City event in Texas, 2008.
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1 Introduction

In critical domains such as urban search and rescue (USAR), and bomb disposal,
the deployment of teleoperated robots is essential to reduce the risk of first re-
sponder personnel. Teleoperation is a difficult task, particularly when robots are
controlled from an isolated operator station. This is often the case when the tar-
get area is hazardous to human beings, requiring the control of the robots from a
safety zone. In general, operators have to solve simultaneously the problems of mis-
sion planning, target identification, navigation, and robot control. For untrained
operators control and target identification are already challenging on their own.

The goal of the proposed system is to support teleoperated navigation of first
responders with real-time mapping, and thereby leaving more freedom to opera-
tors for performing other tasks. Under certain constraints, such as low visibility
and rough terrain, first responder teleoperation leads to very noisy and unusual
data when compared to data sets generated by developers. For example, due to
environmental make-up and failures in control, laser scans are frequently taken
under a varying roll and pitch angle, making it difficult to reliably find correspon-
dences from successive measurements. Many existing mapping algorithms require
as an initial guess reasonable pose estimates, e.g., from wheel odometry. However,
pose tracking from wheel odometry has proven to be unreliable when there is a
large amount of wheel slip, which is likely the case, for example, when navigat-
ing tracked robots on rough terrain. Another difficulty arises from the fact that
data sets generated during teleoperation are sparsely containing trajectory loops,
which are typically required by mapping approaches for compensating the drift of
the pose tracker.

In this paper we propose a solution consisting of a two step scan matching
method for the real-time mapping of harsh environments, and an offline tool for
post-processing the output of the scan matcher. Existing scan matching meth-
ods are following the principle of minimizing the squared sum of error distances
between successive scans by searching over scan transformations, i.e., rotations
and translations. Scan point correspondences are decided based on the Euclidean
distance only once before the search starts [Cox, 1991; Lu and Milios, 1997b]. In
contrast to these methods the proposed approach re-considers data associations
during the search over transformations, which remarkably increases the robustness
of scan matching on rough terrain. The algorithm processes data from laser range
finder and gyroscope only, making it independent from odometry failures. Note
that the latter has furthermore the advantage that the system is easily applicable
on different robot platforms since no data connection with the robot is needed.

Furthermore, we are introducing a user-guided procedure for improving the
global consistency of maps generated by the scan matcher. Although the presented
scan matcher yields a high degree of local consistency enabling the safe guidance
of an operator through the environment, resulting maps are not guaranteed to be
globally consistent. Global consistency is important when locations of targets have
to be communicated between different platforms, or the target location is given as



a waypoint in a large-scale scenario. Globally consistent maps are computed by a
graph-based maximum likelihood method that is biased by localizing crucial parts
of the scan matcher trajectory on a prior given geo-tiff image. The geo-tiff image
can either be generated from an aerial image or even from a geo-tagged image that
only contains the outer walls of a building. The procedure can also be considered
as a tool for generating close-to-ground-truth maps, which can be used, for ex-
ample, to evaluate mapping results of different teams during a RoboCup Rescue
competition, provided that a rough sketch of the global structure exists [Kleiner
et al., 2009].

The mapping system has been implemented as a fan-less embedded system
which can easily be attached to different robot types, and is currently integrated
into a commercial robot platform designed for bomb disposal missions. The system
has been extensively tested on robot platforms designed for teleoperation in critical
situations, such as bomb disposal. Furthermore, the system was evaluated in a test
maze by first responders during the Disaster City event in Texas 2008. Experiments
conducted within different environments show that the system yields comparably
accurate maps in real-time when compared to more highly sophisticated offline
methods, such as Rao-Blackwellized SLAM.

The remainder of this paper is structured as follows. In Section 2 related work
is discussed, in Section 3 the two-step scan matcher, and in Section 4 the offline
tool for improving global consistency are introduced. Section 5 discusses the imple-
mentation of the mapping system. Results from experiments with different robots
and environments are shown in Section 6. In Section 7 the conclusion is presented.

2 Related Work

Simultaneous localization and mapping (SLAM) is a frequently studied problem
in the robotics literature. In general, mapping techniques for mobile robots can
be classified into three processing stages, which are pose tracking, such as dead
reckoning and scan matching, incremental loop closure, i.e., methods that improve
the current pose estimate on the fly when loop closures are detected, and graph-
based techniques, i.e., methods that optimize the entire pose graph according to
constraints added between the poses.

Methods for pose tracking can generally be separated into scan point-based
and grid-based methods. Among the scan point-based methods, Cox and colleges
proposed a method particularly suited for polygonal environments [Cox, 1991] for
matching range readings with a priori given line mode. Lu and Milios [1997b]
presented the IDC algorithm that can be applied in non-polygonal environments.
Gutmann showed how to combine these two methods in order to improve their
overall performance [Gutmann, 2000]. Grid-based methods have the advantage
that they are able to filter-out erroneous scans by averaging them by an occupancy
grid [Moravec and Elfes, 1985], whereas their disadvantage is a comparably higher
demand on memory and computation time. A robust grid-based method has been
presented by Hihnel [2005] that aligns scans on a grid map successively build
over time. In this paper we introduce a two stage online pose tracking procedure
that combines both scan point-based and grid-based processing. In contrast to
existing algorithms depending on an initial guess from wheel odometry, our method
computes the pose estimate from laser range and IMU measurements only.



In contrast to pose tracking methods, more sophisticated methods incremen-
tally correcting the pose estimate upon detected loop closures have been intro-
duced. Popular approaches are extended Kalman filters (EKFs) [Leonard and
Durrant-Whyte, 1991; Smith et al., 1990], sparse extended information filters [Eu-
stice et al., 2005; Thrun et al., 2004], and particle filters [Montemerlo et al., 2003;
Grisetti et al., 2007b]. The effectiveness of the EKF approaches comes from the
fact that they estimate a fully correlated posterior about landmark maps and
robot poses. Their weakness lies in the strong assumptions that have to be made
on both, the robot motion model and the sensor noise. If these assumptions are
violated the filter is likely to diverge [Julier et al., 1995; Uhlmann, 1995]. Thrun
et al. [2004] proposed a method to correct the poses of a robot based on the
inverse of the covariance matrix. The advantage of sparse extended information
filters (SEIF's) is that they make use of the approximative sparsity of the informa-
tion matrix. Eustice et al. [2005] presented a technique that more accurately com-
putes the error-bounds within the SEIF framework and therefore reduces the risk
of becoming overly confident. Dellaert and colleagues proposed a method called
square root smoothing and mapping (SAM) [Dellaert, 2005; Kaess et al., 2007;
Ranganathan et al., 2007]. It has several advantages compared to EKF-based so-
lutions since it better covers the non-linearities and is faster to compute. In contrast
to SEIFs, it furthermore provides an exactly sparse factorization of the information
matrix.

Methods based on the so called graph formulation of the SLAM problem [Lu
and Milios, 1997a; Olson et al., 2006; Grisetti et al., 2007c] are computing max-
imum likelihood maps by the application of least square error minimization, i.e.,
addressing the SLAM problem by optimizing the whole network at once. From
a sequence of sensor readings a graph of relations is computed, where each node
represents a robot pose and an observation taken at this pose. Edges in the graph
represent relative transformations between these nodes computed from overlapping
observations. Lu and Milios [1997a] first applied this technique in robotics. Olson
et al. [2006] presented an optimization approach that applies stochastic gradient
descent for resolving relations in a network efficiently. Extensions of this work were
presented by Grisetti et al. [2007c; 2007a). Most approaches to graph-based SLAM
assume that the relations are given. Gutmann and Konolige [1999] proposed an
effective way for constructing the network and for detecting loop closures while
running an incremental estimation algorithm. In this paper, we also utilize the
graph formulation, however, discuss a method for the reliable augmentation of the
network with constraints added by the user.

The SLAM methods discussed so far do not take into account any prior knowl-
edge about the environment. The idea of extracting prior information from aerial
images has already been discussed. The pose estimate has been improved, for ex-
ample, by extracting roads from aerial images [Korah and Rasmussen, 2004], and
by finding correspondences between images taken from a ground perspective with a
monocular vision system and the aerial image [Leung et al., 2008]. Canny edge de-
tection on aerial images for localization has been applied by [Chen and Wang, 2007;
Frith and Zakhor, 2004; Kiimmerle et al., 2009]. Chen and Wang [2007] use an en-
ergy minimization technique to merge prior information from aerial images and
mapping. Using a Canny edge detector, they compute a vector field from the im-
age that models force towards the detected edges. The sum of the forces applied
to each point corresponds to the energy measure applied in an error minimization



process. Frith and Zakhor [2004] described the generation of edge images from
aerial photographs for matching 2D laser scans, and Kiimmerle et al. [2009] ex-
tended this approach to 3D laser scans. In contrast to existing approaches the
method described in this paper does not require a dense population of edges in
the Canny image. The only requirement is that there are edges present that reflect
the global structure of the environment, such as the outer walls of a building

3 DCMapping: A Two-Step Scan Matcher

In this section DCMapping, a procedure performing two-step processing of laser
and gyro data for incrementally tracking the robot’s trajectory is described. Given
a sequence of scans {S¢, S¢t—1, St—2, ...}, where each scan is defined by a set of Carte-
sian points, i.e. end points of the scan, S : {si = (:r,»,yi)T |i=0..n— 1} relative to
the robot center, and a sequence of corresponding gyro readings {¢¢, ¥1—1,¢—2, ...},
the according relative transformations 7; = (Axi,Ayi,AOi)T of the robot pose
within each time interval At; are computed. When driving on rough terrain it
is recommendable to deploy a 3-axes IMU for projecting each scan S; from the
sequence to the ground plane. The concatenation of all computed transformations
yields an estimate of the robot trajectory which in turn can be used to build a
grid map by integrating scan observations at their pose estimate.

In the first step an initial guess for each 7; is computed by aligning the two
most recent scans S; and S;_1 biased by gyro reading ;1. In the second step this
initial guess is utilized for finding the final transformation of each scan with respect
to the history of scan observations. Whereas the first step is computed efficiently
in real time for each scan (ca. 40-80 Hz), the second step is executed at a much
slower frame rate (ca. 1 Hz). Local misalignments that can occur during the first
step, e.g. due to a strong drift of the gyro bias, can be corrected by exploiting the
history of scan observations during the second step.

3.1 Incremental scan alignment

The incremental scan alignment serves as a first step to compute the pose estimate
from laser and gyro data. The first step computation has to be particularly robust
towards faulty sensor measurements since the resulting pose estimate biases the
search over the scan history performed by the second step. One limiting factor
on the robustness of scan matching methods is the accuracy of data associations
between scan points from successive scans before computing the transformation.
Within most conventional approaches data association is decided once by a nearest
neighbor approach before computing the transformation between the scans. How-
ever, in situations where faulty laser readings are likely, for example when scans are
taken at a varying roll and pitch angle, alignment robustness can be increased by
re-considering the data association during the search over transformations, which
is an essential part of the algorithm presented in this section.

Scans are firstly preprocessed by a scan reduction filter in order to minimize
both sensor noise and computation time of the algorithm. This is carried out
by clustering scan points that are within a certain Euclidean distance § from a
common cluster center. In our implementation a cluster radius of § = 5¢m has been



selected. Note that in contrast to simply reducing the resolution of the scanner,
cluster-based filtering preserves relevant structure of the environment since all
measurements are taken into account for computing the cluster centers.

Scan alignment is taking place as shown by Algorithm 1. The procedure takes as
inputs the current scan observation and the change of the gyro angle Ay observed
between the current and previous scan (line 1). Note that gyro angle refers to
the orientation of the robot computed by constantly integrating the turning rate
measured by the gyroscope. The current scan is rotated backwards with respect
to the angle change, and then further transformed according to the result of a
voting-based search procedure.

Algorithm 1: Voting-based scan matching

Input: Scan S, gyro change Ay
Output: Transformation 7 = (Az, Ay, A9)T
Data: Reference Scan R + 0

// Rotate S by gyro change At:
1 foreach s; € S do

) [cos =AY —sin—Ay
8 € S (sin — Ay cos —AY )’
3 end

// Generate set of transformations T':
4 T < genTrans (time(S) — time(R))) ;

// Find best transformation Tpess:
5 bestVote + 0 ;
6 Thest < 0 ;
7 foreach 7; € T' do
8 foreach s; € S do
s (S ag ey ) + (An ap)T

9
10 foreach r; € R do
11 if distance (s;,r;) < matchRadius (range (s;)) then
12 vote;j < vote; + 1 ;
13 break ;
14 end
15 end
16 if vote; + remaining (S) < bestVote then
17 break ;
18 end
19 end
20 if vote; > bestVote then
21 bestVote <+ vote; ;
22 Thest < Tj5
23 end
24 R+ S;
25 end

// Return best transformation found
26 return Tpeg¢;

The search procedure considers the set of transformations T generated by the
function genTrans(At) (line 4). This function randomly samples a transformation
from a set of discretized transformations. The transformation space and its dis-



cretization is selected according to the specific motion model of the robot and
the frequency of the laser. For example, the higher the frequency of the laser and
as lower the the maximal velocity of the robot the smaller the space of trans-
formations. Furthermore, it is possible to adjust the discretization, and thus the
accuracy, to computational resources available.

The selection prefers transformations, i.e. selects them with higher probability,
if they are close to those that have been selected in the past. This is carried out by
maintaining a short-term history of transformations, which is updated online after
each estimation step. The idea is motivated from the fact that within a fixed time
frame (depending on the data rate of the laser scanner) only a limited amount
of motion change can be achieved due to inertia forces. For example, in the case
of a continuous fast forward motion of the robot, backward transformations are
unlikely to be selected by this function.

The function matchRadius (.) returns the Euclidean distance within scan points
are considered as being matched. According to the sensor model of the scanner,
the returned distance depends on the spot size of the beam, and by this, on the
beam’s range. For example, longer point distances are returned for further ranges
since they are accompanied with a larger beam diameter when hitting an object.
remaining(S) counts the number of beams that have not voted yet, thus provides
an upper bound of the number of votes that still can be achieved.

Although implementing three nested loops, the procedure turns out to be re-
markably efficient in practice. We determined experimentally that due to the break
conditions on average less than 20% of all beams are considered by the algorithm.
Note that the search over possible data associations increases the robustness of
the matching significantly.

3.2 Grid-based scan matching

The scan alignment described above provides a good initial guess of the robot
transformation. However, more robustness is achieved by matching scans against
a history of observations. This is carried out by grid-based scan matching, as
described in Hiihnel [2005). The technique determines the estimated robot pose &;
relative to the start location from a history of scan observations St, Si—1, ..., St—n
and transformations 7¢, 7¢—1, ..., Tt—n, computed by the first step.

At each sensor observation S, a local grid map m (£¢—p:t—1, St—n:t—1) iS con-
structed from the previous n scans and pose estimates. The map is then convoluted
with a Gaussian kernel in order to accelerate the scan alignment search procedure.

Given current transformation 7; and scan observation S, the new pose estimate
x¢ is then computed by maximizing the scan alignment on the grid map:

Tt = argmax
“ (1)

{p (St|zt, M (Zt—n:t—1, St—n:t—1)) - p (@t|7e, T4 —1)} ,

where p (zt|1¢,x+—1) denotes the probability that the robot is located at z: given
the transformation computed by step 1. Finally, new pose z; and scan S; are added
to the history buffer.



In a last step the generated pose trajectory is utilized for building a map of
the environment. This carried out by integrating each scan in an occupancy grid
as originally described by Moravec [1988].

4 Operator Assisted Loop-Closure

In this section we introduce a method for the operator assisted improvement of
grid maps that have been generated online by a scan matching method, such as
the one described in Section 3. There exist numerous graph-based methods for
the offline processing of data sets that improve the trajectory estimate by actively
closing loops when they are detected [Olson et al., 2006; Grisetti et al., 2005b].
These approaches typically require the automatic detection of re-visited places
from the sensor data, i.e., a robust solution to the data association problem in
SLAM. However, data association has to be almost perfectly certain since each
association is reflected by a hard constraint in the graph and might cause a strong
deformation of the pose network if the underlying association is wrong.

In harsh environments, such as on rough terrain and cluttered outdoor environ-
ments, reliable data association from 2D laser scans is a difficult task. Therefore,
we propose a user-assisted loop-closure method where the user passively monitors
the mapping process from data of a replayed data set until the emerging grid map
significantly differs from an overlaid geo-tiff image. By clicking on the image, the
user can indicate the approximate location that corresponds to the current read-
ings of the laser range finder. This triggers an automatic process for re-localizing
the current pose estimate of the mapping algorithm. More specifically, we apply a
variant of monte carlo localization (MCL) [Thrun et al., 2005] on the Canny edge
map [Canny, 1986] generated from the geo-tiff image.

The localization procedure can be seen as a tool to fine-positioning the users
input, but also as a verification of the users intuition by a scoring function. Con-
straints that are marginally supported by the data are not added to the graph.
By this, data associations are verified twice, on the one hand based on the users
intuition and on the other hand based on their support by the data. Figure 1
depicts the dual process of associating the robot trajectory with the geo-tiff im-
age. Note that in this situation the pose tracking process failed to maintain global
consistency. This is because at the shown location the environment only contains
a single wall on the left, i.e. most of the laser beams are measuring far ranges.
However, it is comparably easy for a human to identify the approximate corre-
spondence between parts of the local consistent trajectory and the aerial image.
As seen by Figure 1 (b) the localizer reliably detects the true correspondence from
where on the entire graph is optimized by the graph mapper.

Notice that the presented approach does not require a full representation of the
environment by the overlaid map image. For example, the outer walls of a building
might be sufficient if they are globally consistent. Here the advantage of the user-
guided approach is that relevant structures on the input image can explicitly be
selected by the user. Structures on the Canny edge image that are not detected by
the laser scanner or structures that do not exist in the real environment can simply
be ignored. Given a geo-tiff image of the mapped environment, e.g. an aerial image
or a CAD model, and a data set recorded during the pose tracking, the approach
can be executed by the following steps:
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Fig. 1 This figure demonstrates the operator assisted loop closure process on a data set where
the sensorhead was carried by a human. (a) shows a situation, where the current trajectory
significantly deviates from the overlaid ground truth. The scan marked in red is the current
scan that is localized on the Canny map (b) to the upper right corner of the building. Green
edges represent soft constraints in the pose graph and purple edges represent hard constraints.
Using the localized scan, a hard constraint is added to the ground truth position. This iterative
process of localizing scans on the Canny map and optimizing the pose graph leads to a globally
consistent map (c).

—_

. Computation of the Canny edge image from the geo-tiff image.

2. Construction of the pose graph by adding each pose estimate as a soft con-
straint.

3. Visualization of the trajectory on the geo-tiff image. Each time the estimate
significantly differs from global structures on the map, the current sensor read-
ing is re-localized on the Canny edge map and a hard constraint is added to
the graph.

4. Optimization of the constraint graph.
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4.1 Map Localization

To localize sensor readings on the Canny edge map a method similar to the one
presented in our our previous work [Kiimmerle et al., 2009] is used. This approach
implies basically the computation of the likelihood p(z | x,m) of a 2D range scan
z on a map m given the robot is located at pose x. This likelihood is computed
by applying the so called endpoint model or likelihood fields approach [Thrun et
al., 2005]. Let z; be the j-th measurement of a scan z with k& measurements. The
endpoint model computes the likelihood of z; based on the distance between the
scan point z: corresponding to zj re-projected onto the map m according to the

J
pose estimate % of the robot and the point in the map d;- which is closest to z; as:

p(z | &,m) = f([I21 = dill,- -, |2k — dil)- (2)

Under the assumption that the beams are independent and the sensor noise is
normally distributed we can rewrite Equation (2) as

1 _q'y2
(z5—4d3)

p(z | X,m) He_ A (3)

4.2 Hypothesis Sampling

In contrast to the method presented in [Kiimmerle et al., 2009] we do not as-
sume the existence of an accurate motion model of the robot for propagating pose
hypotheses on the map. This is because the localization procedure is typically
triggered by the user when there is a large deviation of the estimate from the
true location on the map. Estimation errors, on the other hand, are most likely
due to an overconfident motion model, e.g., they might occur in situations with
heavy wheel-slippage or when there is an insufficient amount of features for the
laser-based tracking.

Hence, our method searches for the current pose on the map based on the
sensor observations only. This is carried out by sampling n poses on the map. The
probability density N(u,Xu), with u = (zu, yu, 0u)T and 3 x 3 covariance matrix

O'%O

Sy = (4)

o
0

<o
Q
O 2

0
0

is provided by the user as an initial guess, e.g., by drawing an arrow according to
the approximately true pose on the map. We used o = 0y = 4 m and oy = 15°. The
parameters were chosen according to our experience with different users performing
manual data association on the map within a reasonably short amount of time.
For each sampled pose s; = (xi,yi,éi)T we estimate its probability as given in
Equation 5. We assume that z is independent from u and s; is independent from
m.

p(si | z,u,m) o< p(z | s, m)p(s | u) (5)
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1 (=h—d})?
p(si | z,u,m) e~ (5w B (si—w) He_7o727. (6)
J

We aim to find the sample s that maximizes the likelihood of the scan with respect
to the user input. Using the monotonicity of the logarithm we can maximize the
log-likelihood as shown in Equation 8.

s; = argmax p(s; | z,u,m) (7)
Sq
(2} — d5)?

= argmaxf%(si —u) Xy (s —u) + Z — J (8)

2
Si ,] g

To improve convergence of the sampling procedure after a sample s; is drawn we
perform hill-climbing search around s;. Therefore we vary z;,y; and 6; individually
and gain variations s, of the original sample s;. We compute the weight w/ for
each variation and if any w} is greater than w; we replace s; by s;. The procedure
terminates if no variation leads to a higher weight. The hypothesis sampling is
outlined by Algorithm 2.

Algorithm 2: Hypothesis sampling with Hill Climbing

Input: Scan z, Map m, User input u, X,
Output: Scan Pose s}

1 s7 = None
2 bestSample + —oo

// converged will be True, if N = 10000 samples have been drawn,

// without finding a better s.
3 while = converged do
4 s; = sample(u)
5 improved < True

// Perform hill climbing until s; cannot be improved any more.
6 while tmproved do
// computeScore calculates the log-likelihood according to Eqn. 8.

7 bestNeighbor = computeScore(s;, z, m, u)
// Compute s;’s neighbors by varying the individual components:

8 S < neighbors(s;)
9 improved <« False

10 foreach s, € S do

11 score = computeScore(s}, z, m, u)

12 if score > bestNeighbor then

13 bestNeighbor < score

14 s; s

15 improved < True

16 end

17 end

18 end

19 if bestNeighbor > bestSample then

20 bestSample < bestNeighbor

21 87 <+ 84

22 end

23 end

24 return s;
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The displacement between the current pose estimate and the pose determined
by the location procedure is added as a constraint to the pose graph. The pose
graph is then immediately optimized by a graph-based maximum likelihood method
as described in [Grisetti et al., 2009]. First, the graph is constructed from soft con-
straints, where each node i in the graph is created from a robot pose in the data
set. An edge between two nodes ¢ and j is represented by the tuple <(5ji, jS>, where
d;; and £2;; are the mean and the information matrix of the measured relative dis-
placement, respectively. Let ej;(x;,x;) be the error introduced by the constraint
(j,1). Assuming the independence of the constraints, the graph can be optimized
by

(X1,...,%p)" = argmin Z eji(xi, %) " Qjieji(xi, %) 9)
(x1;~~7xn) <j,l>

In order to incorporate hard constraints from the user-based data association we
extend Eqn. (9) as follows [Kiimmerle et al., 2009]:

(X1,...,%xn)" = argmin Z eji(xi, %) i€ (%5, %;)
(xl,...,xn) (j,l)
+) (s — %) Ri(si — %), (10)
i€G

where %; denotes the pose estimated by the scan matcher and s; the corresponding
position found by the localization procedure applied on the image, and R; is the
information matrix of this constraint computed from a highly confident covariance
matrix. During our experiments we assigned double weights to the hard constraints
compared to the soft constraints. Eqn. (10) is optimized by non-linear conjugate
gradient resulting in a set of poses that maximize the likelihood of all observations
added to the graph. In our implementation we used the freely available TORO
library [Grisetti et al., 2009].

5 Implementation

The mapping system has been implemented by two versions. First, a simple setup
that can be used by humans to generate maps by carrying a notebook and sensors
through the environment. Second, as an embedded system that can be mounted
on commercial robot platforms.

5.1 Simple Setup

Due to the fact that the proposed mapping system operates independently from
encoder data, such as wheel odometry, environments can be mapped by simply
carrying laser and gyroscope through the environment. Figure 2 (a) depicts the
setup and Figure 2 (b) shows a map generated with it.
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Fig. 2 Simple setup for mapping by a human walking through the environment. (a) The two
utilized sensors. (b) Example of a generated map.

5.2 Embedded System

The goal of the proposed mapping system is to enable online mapping on com-
mercial robot platforms during first responder teleoperation. To achieve this goal,
the mapping system has to be embeddable on these platforms, wherefore three
requirements have to be fulfilled: First, the device has to be small enough to fit
onto the platform. Second, the device has to be waterproof, i.e. based on a fan-less
CPU. Third, the device has to communicate via the existing communication link of
the robot, which is typically an analog video signal linked via a radio transmitter
or tethering.

The mapping system has therefore been implemented as an embedded system
(see Figure 3 (a)). The black box, which we named SensorHead, processes sensor
readings from an internal IMU and an externally attached laser range finder (LRF).
The unit is directly powered from the power supply of the robot (either 24 V or
48 V). Note that no other connections, e.g. from wheel encoders, are required.
The SensorHead contains a 3.5” Wafer-Atom board equipped with a 1.6 GHz
Intel Atom CPU, and 2 GB memory, a 64 GB solid state disk, a Xsens MTi
Inertial Measurement Unit (IMU), and a video converter. Online computed maps
can additionally be communicated via Wireless-LAN.

Robots designed for teleoperation typically forward video signals from cameras
either via a radio link or tethering. Thus, the main output of the box is a video
signal that can be directly fed into the on-board video system of the robot and then
be transmitted to the operator console. Figure 3 (b) depicts the integration of the
SensorHead on a Telemax robot with operator console displaying the generated
map and current position. The SensorHead module is currently integrated by a
company into a commercial robot platform designed for bomb disposal missions.
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(a)

Fig. 3 Implementation of the mapping system as an embedded system: The black-box “Sen-
sorHead”. (b) The box integrated on the Telemax robot

6 Experiments

The mapping system was evaluated on several robot platforms, e.g., Telemax
(Telerob GmbH), Talon Responder (Foster-Miller), Matilda (Mesa Robotics), Pi-
oneer AT (ActiveRobots), a Kyosho Twin Force R/C car, and also by humans
carrying the setup. In this section results from experiments conducted on the
robot platforms will be presented.

6.1 First Responder Evaluation at DisasterCity

The first responder evaluation during DisasterCity 2008 in Texas was organized
by the National Institute of Standards and Technology (NIST). Within time slots
of 15 minutes multiple teams consisting of two first responders had to localize and
report locations of hazmat symbols that were deployed in a maze-like structure
before each run (Figure 4 (a)). On the one hand there were teams exploring the
maze by manual mapping (Figure 4 (c)), and on the other hand, teams that utilized
the output of our mapping system at the operator console, as shown in Figure 4
(d).

Navigating robots through the maze was a challenging task due to an overall
inclination of 15° and additional rolls and ramps (either 10° or 15° inclined) that
covered the maze entirely. Furthermore, the maze was obscured. Thus, hazmat
symbols and the structure of the maze had to be recognized by the responders
via the robot’s on-board cameras and lights illuminating the scene. Due to these
extraordinarily harsh conditions some responders even failed to simultaneously de-
tect targets and to control the robot. Consequently, some responders had major
difficulties to localize within the maze when only supported by the video stream
transmitted from the robot’s on-board cameras. Hence, there were frequently sit-
uations in which regions were explored twice or entirely missed. In contrast, other
responders demonstrated efficient maze navigation when supported by the map-
ping system. They were able to explore the maze systematically and furthermore
to exit the maze at any time by following the shortest path from their current
location.

In summary, our system was able to repeatedly map the maze (see Figure 4
(d)) even under extremely harsh conditions: Inexperienced responders drove the
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Fig. 4 Test setting and results from the first responder evaluation during DisasterCity 2008:
(a) Test maze inclined by 15° and additionally covered with rolls and ramps (obscured dur-
ing experiments), (b) Responders teleoperating the robot. (¢) Map generated manually by
responders. (d) Map generated with the presented mapping system by responders.

robot at maximal velocity over rolls and ramps causing jumps and heavy collisions.
Although robust robot platforms were used for the evaluation (e.g. Talon from
Foster-Miller and Matilda from Mesa Robotics), experiments had to be restarted
at least five times because the teleoperated robot had been turned over or major
malfunctions occurred.

6.2 Scan Matching Evaluation

In this section results are presented from a quantitative evaluation of our approach
(DCMapping) compared to rao-blackwellized particle filtering (RBPF') that detects
loop-closures for improving the map [Grisetti et al., 2005a]. More specifically, we
run the GMapping implementation which is freely available on the Internet [Stach-
niss et al., 2007]. GMapping requires data from wheel odometry in order to com-
pute the map. Since our data sets do not contain wheel odometry, GMapping was
run with the output of the first level of the scan processing described in Section 3.
We will first describe our evaluation methodology and then provide results from
applying the methods on different maps.

6.2.1 Performance Metric

We based our evaluation on the estimated robot trajectory zi.7, where z; is the
robot pose at timestep ¢ from 1 to T. Let z]. be the reference poses of the robot,
ideally the true locations. We use a measure based on the relative displacement
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d;,; between poses to perform comparisons. We define §; ; = x; ©x;, where @ is the
standard motion composition operator and & its inverse. Instead of comparing x
to z* (in the global reference frame), we do the operation based on § and ¢* as

e(d) =Y (6,005 (11)
4,J

As shown by Equation 11 the computation of the metric requires the true dis-

Earer [m]
w

+

%—

Fig. 5 Comparison of results on the Imtek dataset. The left side shows the map generated
by scan matching (a) and the translational error plotted by relation (c). On the right side the
map by RBPF (b) is shown with the corresponding error plot (d). The maps are overlaid with
the graph formed by the given relations. Both error plots show a remarkable cluster towards
the end. Rectangles mark the corresponding relations in the plot and the map. All marked
relations are also drawn in red in the map.

placements §* between the poses of the robot. We use a two step approach to
derive those in an assisted manner: First, a SLAM algorithm is executed under
manual supervision on the raw data to estimate a trajectory that is globally con-
sistent. From this trajectory initial displacement candidates 62 ; are derived. Next,
every candidate 5% =z, 0 x; is manually verified. In this step a human expert is
presented pairs of laserscans at timestep ¢ and j displaced by &¢. The expert can
accept or reject the displacement for the final displacements 5;‘) ; and if accepted
it is possible to manually adjust ©° to reflect ©*. Although work intensive, we
believe, that without manual intervention or other external sources it is impossi-
ble to generate reliable results. A more detailed description can be found in our
previous work [Burgard et al., 2009)].
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One advantage of this metric is that it allows to compare algorithms in individ-
ual situations. An example of a difficult environment with long hallways and glass
walls is shown in Figure 5. Figures 5 (c, d) depict the translational error plotted
for each relation. Large clusters are visible for both the RBPF and DCMapping.
We identified the relations in those clusters and marked the corresponding rela-
tions in the resulting maps. The clusters clearly identify the weak point in the map
that originates from the robot returning after driving down a long hallway without
features. DCMapping is here unable to close the loop fully resulting in the shown
shearing effect. The RBPF can close the loop. Therefore, only less relations with
a lower magnitude are found in its cluster, which correspond to the slight bend of
the corridor.

6.2.2 DCMapping Fvaluation

Experiments were carried out on two types of data sets and were executed on an In-
tel Core2Duo 2.6GHz. On the one hand we evaluated data sets that were recorded
during teleoperated exploration of building structures. These are the 082er data
set, recorded in a cellar, the tu-darmstadt data set, recorded in a long hallway
of the Darmstadt university, the tu-graz data set, recorded in a cluttered office
environment of the Graz university, the imtek data set, recorded in three intercon-
nected buildings of the Freiburg university, the telemax-hard data set, recorded
in a cellar while driving over ramps and rolls, the hangar data set, recorded in a
hangar like structure, and the dc-maze data set, recorded at DisasterCity in Texas.
On the other hand we evaluated data sets that are typically used by the SLAM
community and available online. These are aces, intel-lab, and mit-killian. Note
that the latter data sets contain a comparably high number of situations where
the robot re-entered previously explored regions, i.e., enabling loop-closures by the
algorithm. Figure 6 depicts the result of DCMapping for some of the maps.

The evaluation presented in Table 1 and Table 2 shows that DCMapping and
RBPF yield on average comparably equal good results. This is surprising since
RBPF needs much more time to compute the corrected map than DCMapping,
which provides results in real-time. For example, we measured a run time of 330
minutes for RBPF on the embedded system described in Section 5 when processing
the 82er data set. In contrast, DCMapping took 6 minutes (real-time), which
is about 55 times faster. Note, that particularly when closing larger loops, the
computation time of RBPF increases drastically. Differences can be found, on the
one hand, on maps containing larger loops, such as aces, intel-lab, and imtek, where
RBPF shows its strength in closing loops, and on the other hand, telemax-hard
and maze where DCMapping clearly shows robustness against extremely faulty
laser range readings from rolls and ramps.

6.3 Assisted Loop-Closure Evaluation

The assisted loop-closure approach has been evaluated on three large scale data
sets which will be explained in more detail in the following. The process of user-
guided map alignement took in the worst case (the largest data set) no more than
10 minutes. The first data set shown in Figure 7 has been recorded on a Matilda
robot from Mesa robotics equipped with a Hokuyo UTM 30 laser range finder and
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Fig. 6 Maps generated with DCMapping: (a) aces, (b) hangar, (c) tu-graz, (d) maze, and (e)
tu-darmstadt. The red line indicates the path taken by the robot.

the MTi IMU from Xsens. The robot has been steered through the hangar-like
testing facility from the Southwest Research Institute (SWRI) in San Antonio,
Texas. The input to the assisted loop-closure has been computed by DCMapping,
the result is shown by Figure 7 (c). As ground truth input a manually sketched
drawing containing a single rectangle representing the outer walls of the building
has been used (Figure 7 (b)). The exact dimension of the rectangle has been taken
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Table 1 Quantitative results of different approaches/datasets on the translational error.

Translational error DCMapping RBPF (50 part.)
m (abs) / m? (sqr)
082er
abs. errors 0.072 + 0.066 0.115 + 0.122
squared errors 0.01 + 0.024 0.028 + 0.074
Maximum abs. error 0.73 1.06
aces
abs. errors 0.121 + 0.335 0.068 + 0.078
squared errors 0.127 £ 0.719 0.011 + 0.035
Maximum abs. error 2.803 0.646
tu-darmstadt
abs. errors 0.228 + 0.643 0.122 + 0.146
squared errors 0.465 + 2.513 0.036 + 0.188
Maximum abs. error 5.942 1.921
tu-graz
abs. errors 0.054 + 0.044 0.112 + 0.186
squared errors 0.005 + 0.009 0.047 + 0.312
Maximum abs. error 0.318 2.515
imtek
abs. errors 0.42 + 0.942 0.25 + 0.416
squared errors 1.063 £ 4.152 0.235 + 2.073
Maximum abs. error 8.463 6.998
intel-lab
abs. errors 0.136 £+ 0.132 0.07 £+ 0.082
squared errors 0.036 £+ 0.068 0.012 + 0.033
Maximum abs. error 0.8 0.687

mit-killian

abs. errors
squared errors

3.71 £ 12.046
158.832 + 639.92

7.505 + 26.137
739.314 £+ 3112.13

Maximum abs. error 60.17 153.087
telemax_hard

abs. errors 0.108 + 0.136 0.274 + 0.276

squared errors 0.03 + 0.109 0.152 + 0.314

Maximum abs. error 1.334 1.694
hangar

abs. errors 0.207 + 0.443 0.291 + 0.527

squared errors 0.239 + 1.215 0.362 + 1.648

Maximum abs. error 3.044 3.646
dc-maze

abs. errors 0.173 + 0.199 1.490 £ 2.230

squared errors 0.070 + 0.164 7.179 + 13.600

Maximum abs. error 0.967 7.180

from a CAD drawing provided by SWRI (Figure 7 (a)). Figure 7 (d) depicts the
result after the global alignment of the map.

The second data set shown in Figure 8 has been recorded by a person carry-
ing the simple setup through the depicted outdoor campus of the University of
Freiburg. The simple setup consisted of a Hokuyo UTM30 laser range finder and
the MTiIMU from Xsens. Here also the input to the assisted loop-closure has been
computed by DCMapping, the result is shown by Figure 8 (¢). As can be seen the
map has a strong deformation particularly in the upper-right corner nearby the
parking lot. This is because the laser range finder was not able to capture any
features expect the building wall on the left hand side. As ground truth input
the geo-tagged aerial image taken from GoogleEarth (Figure 8 (a)) and the com-
puted Canny edge image (Figure 8 (b)) were used. The result from the alignment
procedure is shown in Figure 8 (d).
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Table 2 Quantitative results of different approaches/datasets on the rotational error.

Rotational error
deg (abs) / deg? (sqr)

DCMapping

RBPF (50 part.)

082er

abs. errors
squared errors
Maximum abs. error

1.334 £ 1.571
4.245 + 9.923
10.558

1.563 £ 1.877
5.964 + 13.904
12.501

aces

abs. errors
squared errors

2.518 + 3.368
17.678 + 72.465

1.675 £+ 2.133
7.351 + 19.952

Maximum abs. error 45.015 14.842
tu-darmstadt

abs. errors 0.667 + 0.886 0.558 + 0.674

squared errors 1.231 £ 3.875 0.765 + 2.477

Maximum abs. error 7.628 6.794
tu-graz

abs. errors 1.13 + 1.205 1.354 + 1.44

squared errors 2.727 £+ 6.551 3.906 + 10.847

Maximum abs. error 9.09 15.092
imtek

abs. errors 0.899 + 1.28 1.041 + 1.476

squared errors 2.445 + 7.737 3.26 £+ 10.363

Maximum abs. error 9.352 10.457
intel-lab

abs. errors 3.661 + 6.048 2.494 + 3.63

squared errors 49.968 + 182.194 19.395 + 95.383

Maximum abs. error 47.267 50.908
mit-killian

abs. errors 2.043 + 3.781 4.592 + 14.08

squared errors 18.463 + 79.961 219.299 + 875.622

Maximum abs. error 38.678 71.114
telemax_hard

abs. errors 1.38 £+ 1.395 2.339 + 2.791

squared errors 3.849 + 8.708 13.251 + 30.709

Maximum abs. error 9.129 14.778
hangar

abs. errors 3.67 £ 4.096 2.434 + 2.696

squared errors 30.222 4+ 93.017 13.183 + 42.161

Maximum abs. error 40.089 21.584

dc-maze

abs. errors
squared errors
Maximum abs. error

4.568 + 3.649
34.148 + 55.194
20.300

17.306 + 20.294
710.284 4+ 1051.333
59.889

The last data set shown in Figure 9 has been recorded on a ActiveMedia
PowerBot equipped with a Sick LMS200 laser range finder, wheel odometry, and
the MTi IMU from Xsens. For this data set the robot has been steered through
the outer area of the Freiburg hospital. In contrast to the other two logs the
input to the assisted loop-closure has not been computed by DCMapping but by a
standard scan matcher biased with wheel odometry and gyro readings. The result
shown by Figure 9 (c) shows a strong global deformation of the map. As ground
truth input the geo-tagged aerial image taken from GoogleEarth (Figure 9 (a))
and the computed Canny edge image (Figure 9 (b)) were used. The result from
the alignment procedure is shown in Figure 9 (d). Notice that the data has been
recorded during the winter, whereas the aerial image found on Google Earth has
been captured during the summer time. Nevertheless, the data association has
been successfully performed as shown by the result.
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Fig. 7 Map computed in a 66 m X 80 m hangar of the Southwest Research Institute (SWRI):
(a) ground truth from CAD data, (b) manually sketched canny image from the outer walls
according to the ground truth, (c) map generated by DCMapping, (d) output from DCMapping
improved by assisted loop-closure. Note that several structures within the hangar are not found
on the ground truth map. Gaining global consistency was nevertheless possible by utilizing the
outer building walls only.

7 Conclusion

We introduced an online mapping system for assisting navigation tasks of first
responders teleoperating a robot in critical domains. The initial goal of the system
was the robust computation of locally consistent maps that are then presented in
real-time on a operator console. The system has been intensively evaluated against
this goal on both diverse environments and robot platforms. As the presented
results show, the quality of the produced maps comes close to the one generated
by computational costive algorithms. For example, although requiring remarkably
less computational resources the map accuracy achieved by DCMapping turned
out to be comparable with the one achieved by RBPF.

During the first responder evaluation in Disaster City as well as during several
conversations with bomb squads we learned that the system is in deed applicable in
realistic scenarios. It finally has been marked as advantageous by first responders



22

\é:.}\__ / @m'{’ o

Fig. 8 Map generated on a 266 m X 180 m campus area of the Freiburg University: (a) ground
truth aerial image, (b) extracted canny image, (c) map generated by DCMapping, (d) output
from DCMapping improved by assisted loop-closure.

for teleoperation in their specific scenarios. The fact that the system is now being
implemented on a commercial robot platform was mainly motivated from their
demand.

We furthermore presented a method for improving locally consistent maps to-
wards global consistence. The method combines the strength of human contextual
understanding when working with geo-tagged aerial images with the accuracy of
a MCL variant applied on their Canny edge counterparts. We demonstrated on
three large-scale data sets the advantage of this method.
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Fig. 9 Map generated on a 300 m X 350 m area of the Freiburg Hospital: (a) ground truth
aerial image, (b) extracted canny image, (¢) map generated by scan matching, (d) output from
scan matching improved by assisted loop-closure.

Finally, we described the complete setup and algorithms that can be adopted
by the reader to implement a fully functional mapping system on any specific
hardware platform.
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