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Abstract

Any autonomous system embedded in a dynamic and
changing environment must be able to create qualitative
knowledge and object structures representing aspects of
its environment on the fly from raw or preprocessed sen-
sor data in order to reason qualitatively about the envi-
ronment and to supply such state information to other
nodes in the distributed network in which it is embed-
ded. These structures must be managed and made ac-
cessible to deliberative and reactive functionalities whose
successful operation is dependent on being situationally
aware of the changes in both the robotic agent’s embed-
ding and internal environments. DyKnow is a knowledge
processing middleware framework which provides a set
of functionalities for contextually creating, storing, ac-
cessing and processing such structures. The framework is
implemented and has been deployed as part of a deliber-
ative/reactive architecture for an autonomous unmanned
aerial vehicle. The architecture itself is distributed and
uses real-time CORBA as a communications infrastruc-
ture. We describe the system and show how it can be used
to create more abstract entity and state representations of
the world which can then be used for situation awareness
by an unmanned aerial vehicle in achieving mission goals.
We also show that the framework is a working instantia-
tion of many aspects of the JDL data fusion model.
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1 Introduction

In the past several years, attempts have been made to
broaden the traditional definition of data fusion as state
estimation via aggregation of multiple sensor streams.
There is a perceived need to broaden the definition to in-
clude the many additional processes used in all aspects
of data and information fusion identified in large scale
distributed systems. In this case, the nodes in such sys-
tems may not only include sensors in the traditional sense,
but also complex systems where data and information are
fused at many different levels of abstraction to meet the
diverse situation assessment needs associated with differ-
ent applications.

One of the more successful proposals for providing
a model for this broadened notion of data fusion is the
U.S. Joint Directors of Laboratories (JDL) data fusion
model [22] and its revisions [21, 3, 13]. In [21] for exam-
ple, data fusion is defined as “the process of combining
data or information to estimate or predict entity states”
and the data fusion problem “becomes that of achieving
a consistent, comprehensive estimate and prediction of
some relevant portion of the world state”.

The gap between models, such as the JDL data fu-
sion model, which describe a set of functions or processes
which should be components of a deployed system to the
actual instantiation of data fusion in a software architec-
ture in this broader sense is very much an open and un-
solved problem. In fact, it is the belief of the authors that
architectural frameworks which support data and informa-
tion fusion in this broader sense have to be prototyped,



tested, analyzed in terms of performance and iterated on,
in order to eventually support all the complex functional-
ities proposed in the JDL data fusion model.

In this paper, we will describe an instantiation of parts
of such an architectural framework which we have de-
signed, implemented, and tested in a prototype delib-
erative/reactive software architecture for a deployed un-
manned aerial vehicle (UAV) [5, 6]. The name given to
this architectural framework which supports data fusion
at many levels of abstraction is DyKnow1. DyKnow is
a knowledge processing middleware framework used to
support timely generation of state information about en-
tities in the environment in which the UAV is embedded
and entities internal to the UAV itself. The latter is im-
portant for monitoring the execution of the autonomous
system itself.

The DyKnow system is platform independent in the
sense that the framework can be used in many different
complex systems. Consequently, we believe it is of gen-
eral interest to the data fusion community at large. One
aspect of DyKnow which is particularly interesting is the
fact that it was designed and prototyped independently of
any knowledge about the JDL data fusion model. The re-
quirements for specification were those necessary to rea-
son about world state at very high levels of abstraction and
to be able to take advantage of artificial intelligence tech-
niques for qualitative situation assessment and monitoring
of the UAV and dynamic entities in its embedded envi-
ronment. It turns out that the resulting prototype can be
used when implementing the JDL data fusion model and
provides insight into many of the details that are impor-
tant in making such architectures a reality. For example,
such systems are not strictly hierarchical and often involve
complex interactions among the layers. This implies that
it is not feasible to specify and implement each level sep-
arately. This perceived weakness in the JDL model was
in fact pointed out by Christensen in a recent panel debate
concerning the JDL model [16].

1.1 Structure of the Paper

The paper is structured as follows. In section 2, an
overview of the important concepts used in the defini-

1“DyKnow” is pronounced as “Dino” in “Dinosaur” and stands for
Dynamic Knowledge and Object Structure Processing.

tion of the DyKnow framework is given. In section 3,
we consider the DyKnow framework in the context of the
revised JDL data fusion model. In section 4, we describe
a UAV scenario involving vehicle identification and track-
ing, where DyKnow has been used to advantage. In sec-
tion 5, some work related to the DyKnow framework is
presented. In section 6, we conclude and summarize the
work.

2 DyKnow

The main purpose of DyKnow is to provide generic and
well-structured software support for the processes in-
volved in generating object, state and event abstractions
about the external and internal environments of complex
systems, such as our experimental UAV system. Gener-
ation of objects, states and events is done at many levels
of abstraction beginning with low level quantitative sen-
sor data. The result is often qualitative data structures
which are grounded in the world and can be interpreted
as knowledge by the system. The resulting structures
are then used by various functionalities in the delibera-
tive/reactive architecture for control, situation assessment,
monitoring, and planning to achieve mission goals.

Observe that the focus here is not on individual data fu-
sion techniques but the infrastructure which permits the
use of many different data fusion techniques in a unified
framework. The idea is to provide a middleware that en-
capsulates data and information sources, existing data fu-
sion algorithms as well as knowledge representation and
reasoning engines to allow easy integration of them into
complex and realistic data fusion applications.

2.1 Knowledge Processing Middleware

Conceptually, DyKnow processes streams generated from
different sources in a distributed architecture. These
streams may be viewed as representations of time-series
data and may start as continuous signals from sensors
or sequences of queries to databases. Eventually they
will contribute to definitions of more complex composite
knowledge structures. Knowledge producing processes
combine such streams, by abstracting, merging, synchro-
nizing, filtering and approximating as we move to higher
levels of abstraction. In this sense, the system supports
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conventional information fusion processes, but also less
conventional qualitative processing techniques common
in the area of artificial intelligence. The resulting streams
are used by different reactive and deliberative services
which may also produce new streams that can be further
processed. A knowledge producing process has differ-
ent quality of service properties, such as maximum delay,
trade-off between data quality and delay, how to approxi-
mate missing values and so on, which together define the
semantics of the chunk of knowledge created. The same
streams of data may be processed differently by different
parts of the system relative to the needs and constraints
associated with the tasks at hand.

image
processing

camera
platform

helicopter
platform

task procedures

chronicle
recognition

execution
monitoring

streams

Databases

DyKnow

S
e
n

s
o

r
s S

e
r
v

ic
e
s

GIS

Figure 1: An instantiation of the DyKnow knowledge pro-
cessing middleware.

In Figure 1 an example of a concrete instantiation of the
DyKnow framework that we use in our experimental UAV
architecture is shown. There are three virtual sensors, the
image processing subsystem, the camera platform and the
helicopter platform. We have a geographical informa-
tion system (GIS) which is a database that contains in-
formation about the geography, such as road structures
and buildings, of the region we fly in. The services in-
clude the reactive task procedures which are components
coordinating the deliberative services with the camera and
helicopter controllers, a chronicle recognition engine for
reasoning about scenarios, and a temporal logic progres-
sion engine that can be used for execution monitoring and
other tasks based on the evaluation of temporal logic for-
mulas.

2.2 Ontology

Ontologically, we view the external and internal envi-
ronment of the agent as consisting of physical and non-
physicalentities, propertiesassociated with these entities,
andrelationsbetween these entities. The properties and
relations associated with entities will be calledfeatures.
Features may be static or dynamic. Due to the potentially
dynamic nature of a feature, that is, its ability to change
values through time, afluent is associated with each fea-
ture. A fluent is a function of time whose range is the
feature’s type. Some examples of features are theveloc-
ity of an object, theroad segmentof a vehicle, and the
distance betweentwo car objects.

2.3 Object Identifiers and Domains

An object identifierrefers to a specific entity in the world
and provides a handle to it in DyKnow. Example entities
are “the colored blob”, “the car being tracked” or “the en-
tity observed by the camera”. The same entity in the world
may have several different identifiers referring to it and a
composite entity (consisting of a set of entities) can be re-
ferred to with a single identifier. Three examples of this
are shown in Figure 2. In the first example we have two
object identifiers referring to the same entity, in this case
blob1 andblob2 which could be blobs extracted from two
different pictures by the image processing system, that the
system may or may not know refer to the same entity. In
the second example we haveblob3 andcar1 which refers
to two different aspects of the same entity. An example of
object identifiers referring to a composite entity may oc-
cur when several object identifiers refer to the same entity
at different levels of abstraction, such as the car entity re-
ferred to bycar2 and the hood and wheel entities referred
to byhoodandwheel.

An agent will most often not know the exact relations
between object identifiers, whether they refer to the same
entities or not, because they are generated for different
reasons and often locally. In Section 2.8 we present
a mechanism for reasoning about the relations between
them. The basic constraints placed on object identifiers
are that they are unique and only assigned to an entity
once (single assignment).

An object domainis a collection of object identifiers
representing that the entities referred to have some com-
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Figure 2: Examples of relations between object identifiers
and entities.

mon property, such as all red entities, colored blobs found
in images or qualitative structures such as the set of cars
identified in a mission. An object identifier may belong to
more than one domain and will always belong to the do-
main “top”. Object domains permit multiple inheritance
and have a taxonomic flavor. The domains an object iden-
tifier belongs to may change over time, since new infor-
mation provides new knowledge as to the status of the
entity. This makes it possible to create domains such as
“currently tracked entities” or “entities in regions of inter-
est”.

2.4 Approximating Fluents

A feature has exactly one fluent in the world which is its
true value over time. The true fluent will almost never
be known due to uncertain and incomplete information.
Instead we have to create approximations of the fluent.
Therefore, the primitive unit of knowledge is thefluent
approximation. In DyKnow there are two representations
for approximated fluents, thefluent streamand thefluent
generator. The fluent stream is a set of observations of a
fluent or samples of an approximated fluent. The fluent
generator is a procedure which can compute an approxi-
mated value of the fluent for any time-point. Since a fluent
may be approximated in many different ways each fea-
ture may have many approximated fluents associated with
it. The purpose of DyKnow is to describe and represent
these fluent generators and fluent streams in such a way
that they correspond to useful approximations of fluents
in the world.

There are two types of fluent approximations, primitive
and computed fluent approximations. A primitive fluent
approximation acquires its values from an external source,

such as a sensor or human input, while a computed flu-
ent approximation is a function of other fluent approxima-
tions. To do the actual computation a procedural element
called acomputational unitis used. The computational
unit is basically a function taking a number of fluent ap-
proximations as input and generating a new fluent approx-
imation as output. A picture of a computed fluent stream
is shown in Figure 3.

computational
unit

fluent stream

fluent stream

fluent stream

Figure 3: A computed fluent stream in DyKnow.

Since a fluent generator represents a total function from
time to value and a fluent stream only represents a set of
samples a fluent generator created from a fluent stream
must be able to estimate the value at any time-point
whether or not a sample exists at that time-point. Since
this estimation can be made in many different ways, de-
pending on how the fluent is modelled and the samples
are interpreted, it is possible to create many different flu-
ent generators from a single fluent stream. From each
of these fluent generators we can generate many different
fluent streams by sampling the fluent generator at differ-
ent time-points. How these transformations are done are
described by declarative policies. Thefluent generator
policy specifies a transformation from a fluent stream to
a fluent generator, and thefluent stream policyspecifies a
transformation from a fluent generator to a fluent stream.
A fluent generator policy may be viewed as the context in
which the observations in a fluent stream are interpreted.
The resulting fluent approximation is the meaning of the
feature in that context. An overview of how approximated
fluents can be created from an existing fluent stream ap-
proximation is shown in Figure 4.
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Figure 4: An overview of how new approximated fluents
can be created from an existing fluent stream approxima-
tion.

2.5 Locations

We are primarily interested in distributed systems where
the sources of data often determine its properties such as
quality and latency. These and other characteristics such
as access and update constraints must be taken into ac-
count when generating and using fluent approximations
associated with specific data sources.Locationsare in-
troduced as a means of indexing into data sources which
generate fluent approximations associated with specific
features. A feature may be associated with several fluent
approximations located in different places in the architec-
ture, but each fluent approximation must be hosted by ex-
actly one location. By representing these different places
with locations we make it possible to model and reason
about them. Different locations might give the approx-
imated fluents hosted different properties such as delays
in samples, access to history of the fluent approximations
and the possibility to enforce quality of service guaran-
tees. For instance, the position of an autonomous agent
may be accessed directly with low latency from a dense
stream from a virtual sensor or with higher latency from
a discrete stream stored in a database. But, the database
might allow more complex queries to be answered such

as produce a trajectory with all the values from the last
2 minutes which are higher than a threshold value. This
is useful when processing data since various functionali-
ties have different requirements on type, quality, density
of data, etc. Control modes have much different require-
ments on feature data than inferencing mechanisms do.

The locations are also important to support integration
since they are used to encapsulate existing databases, sen-
sors and other subsystems which contain information that
should be available within the DyKnow framework. De-
pending on the underlying component that the location is
wrapping the fluent approximations hosted there will have
different properties. For example, depending on the type
of database the type of queries the location supports will
be different. The location also affects the computational
aspects of queries such as in what order they are computed
and what temporal properties they will have. The tempo-
ral properties will depend on the type of algorithms used
to implement the query as well as the type of scheduler
used to determine the order of computation.

2.6 Samples

The value of a fluent approximation at a particular time-
point is represented by asample. A sample is a tuple
〈v, tv, tc, tq〉, wherev is the value,tv is the valid time,
tc is the create time andtq is the query time. The seman-
tics of a sample〈v, tv, tc, tq〉 is that the value of the fluent
approximation at time-pointtv is v according to the infor-
mation available at time-pointtq, which is the time-point
when the query was computed. The create time represents
the time-point when this sample was created. The valid,
create and query times are similar to valid, transaction and
reference time in temporal databases [15].

As an example, assume we have a fluent streamf at
a locationl which contain a sample〈v, tv, tc, tq〉. Then,
at a time-pointt someone queries the value attv and the
sample〈v, tv, tc, t〉 is returned. Iff in the locationl at t
doesn’t have a sample at the requested time-pointtv then
an approximationv′ has to be computed and the sample
〈v′, tv, t, t〉 is returned.

All the time-points come from the same time-line
which means that they are comparable. As a consequence
the query time is always greater than or equal to the create
time while the valid and create times are orthogonal. We
require that all create times at a location are unique, so
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if the create times of two samples at a location are equal
then the value and valid times should also be equal. The
domain of the time-points can either be discrete or con-
tinuous, and the domain of the values can be anything.
In our implementation we have used discrete time-points
and allow any CORBA type as a value domain.

There are at least three reasons for separating the valid
and create times. First, several estimations of the value
at a specific time-point can be made for the same fluent
approximation. If we make a fast approximation that is
later improved or we make a default assumption that is
later retracted we need to differentiate those values. The
different estimations would have the same valid time but
different create times. This also allows us to query a loca-
tion as to what it believed at a specific time-point was the
value of a fluent approximation, i.e. at time-pointt what
was the value off at time-pointtv. Second, it allows us
to model delays in the availability of the value. The de-
lay could be caused by the processing of the value or by
communication delays in the system. If the value is not
delayed then the valid and create times will be the same.
Third, it allows us to detect when a value is predicted. If
the create time is less than the valid time then we know
that the value must be a prediction, since it can not have
been observed already since the time-points come from
the same time-line.

In order to support default values and the representation
of varying delays in the computations, the fluent approxi-
mations are non-monotonic. Assume we ask for the value
which is valid at time-pointt, if we ask this query at time-
point t1 then we might get one answer, which is the best
answer available at time-pointt1, but if we ask the same
query at a later time-pointt2 we might get another answer
since we now might have more information about time-
point t. Therefore we need the query time to keep track
of when the value was asked for, which would bet1 in the
first case andt2 in the second. The query time can also be
used to measure the validity of the sample by comparing
it to the current time. If the difference is small then the
value is probably still valid.

2.7 States and Events

Two important concepts in many applications are states
and events. In DyKnow astate is a composite feature
which is a coherent representation of a collection of fea-

tures. A state synchronizes a set of fluent approximations,
one for each component feature, into a single fluent ap-
proximation for the state as shown in Figure 5. The value
of the new fluent approximation, which actually is a vec-
tor of values, can be regarded as a single value for addi-
tional processing, i.e. a value vector where all the com-
ponents have values at the same time-points (this might
be relaxed, so that all the values are within a certain time-
window depending on the properties of the state features).
The states are needed since we might have several sensors
or computations each providing a part of the knowledge
about an object or a situation, but whose fluent approxi-
mations have different sample rates (implying samples at
different time-points) or varying delays.

syn
ch

ro
n

ize

fluent stream

fluent stream

fluent stream

Figure 5: A synchronized fluent stream in DyKnow.

A concrete example is when we have streams of po-
sitions given in pixel coordinates and streams of camera
states describing the position and orientation of the cam-
era. In order to find out what coordinate in the world
a pixel position corresponds to we need to synchronize
these two streams. If we have a position at time-pointt
we want to find a camera state which is also valid at time-
pointt. In the simplest case there exists such a sample, but
in a more general (and realistic) case we have to either find
the “best” camera state in the stream or estimate what the
camera state was at time-pointt from the observed sam-
ples. Three simple strategies for estimating the sample at
t are to take the first sample beforet, the closest sample
either before or aftert, or to interpolate the sample based
on the closest sample before and aftert. “Close” is here
defined in the context of the valid time domain.

The problem of creating coherent states from data
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streams is non-trivial and can be realized in many dif-
ferent ways. In DyKnow the synchronization strategy is
described by a policy called thestate policy. If the ex-
isting pre-defined synchronization strategies are not ade-
quate for an application then a computational unit can be
created and used as a general mechanism for extracting
states. In fact, the synchronization component is a special
case of a computational unit.

An eventis intended to represent some form of change
or state transition. Events can either be primitive, e.g. a
sample received from a sensor can be seen as an event,
or generated, e.g. the event of the approximated fluent
f reaching a peak in its value. Generated events can
either be extracted from fluent approximations or com-
puted from other events. In DyKnow it is possible to
define primitive events on approximated fluents, mainly
change eventssuch as the fluent approximationf changed
its value with more than 10% since the last change event,
or the value off was updated (but might not have been
changed). Events are most often used as triggers or inputs
to complex event recognition engines such as the chroni-
cle recognition engine used in our UAV architecture.

DyKnow currently has support for two types of com-
puted events. The first is the evaluation of linear temporal
logic (LTL) formulas becoming true or false. The second
is the recognition of scenarios, called chronicles, com-
posed of temporally related events, expressed by a simple
temporal constraint network. An LTL formula is evalu-
ated on a state stream containing all the features used by
the LTL formula, so the state extraction mechanism men-
tioned above is a prerequisite for the LTL formula eval-
uation. The chronicle recognition engine, on the other
hand, takes events representing changes in fluent approx-
imations as input and produces other events representing
the detection of scenarios as output. These can be used re-
cursively in higher level structures representing complex
external activity such as vehicle behavior.

2.8 Objects, Classes and Identity

Grounding and anchoring internal representations of ex-
ternal entities in the world and reasoning about their iden-
tities is one of the great open problems in robotics. Con-
sequently, middleware systems for knowledge processing
must provide suitable support for the management of rep-
resentations and their relation to the external entities they

represent.
We require a mechanism for reasoning about the re-

lation between object identifiers, including finding those
object identifiers which actually codesignate with the
same entity in the world. When two object identifiers are
hypothesized as referring to the same entity in the world,
a link is created between them. The collection of object
identifiers referring to the same entity in the world and the
links between them is called anobject linkage structure.
This represents the current knowledge about the entity.

We have separated the object identity (i.e. which en-
tity in the world an object identifier refers to) from the
object state (i.e. the attributes and relations of the ob-
jects). Classes provides a mechanism for specifying cer-
tain relationships between the two, by regulating the mini-
mum state required for certain classes of object identifiers.
Links provide the mechanism for describing relations be-
tween object identifiers, i.e. to reason about the identity of
object identifiers.

The object linkage structure makes it possible to model
each aspect of an entity as a class and then provide the
conditions for when an instance of the class should be
linked to an instance of another class. For example, in the
traffic domain we model the blobs extracted by the image
processing system as separate object identifiers belonging
to the class VisionObject and objects in the world as ob-
ject identifiers belonging to the class WorldObject. We
also provide a link type between these classes in order to
describe the conditions for when a vision object should be
hypothesized as being a world object. This simplifies the
modeling since each aspect can be modeled separately, it
also simplifies the classification, tracking and anchoring
of the objects.

To describe a collection of object identifiers represent-
ing an aspect of an object, aclass is used. A class de-
scribes what fluent approximations all instances should
have and includes four constraints, thecreate, add, codes-
ignate, andmaintain constraints, that regulate the mem-
bership of the class. If a create constraint is satisfied then
a new object identifier is created and made an instance of
the class. If the add constraint for an object identifier is
satisfied then it is considered an instance of the class and
it is added to the class domain. A codesignation constraint
encodes when two objects of the class should be consid-
ered identical. The maintain constraint describes the con-
ditions that always should be satisfied for all instances of
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a class. If the maintain constraint is violated the object
identifier is removed from the class. The maintain con-
straint represents the essential and invariant properties of
a class. A constraint is represented by an LTL formula.
Constraints can only use the fluent approximations that
are required by a class in their definitions.

A link type represents the potential that objects from
two classes might represent the same entity. The link
specification contains three constraints, theestablish,
reestablish, andmaintain constraints. A link specifica-
tion might also contain fluent approximations represent-
ing specific properties that result from the entities being
linked together. If an establish constraint, defined on ob-
jects from the linked-from class (a link is directed), is sat-
isfied then a new instance of the linked-to class is created
and a link instance is created between the objects. An ex-
ample of this is given in Figure 6 if read from left to right.
The establish constraint represents the conditions for as-
suming the existence of another, related, aspect of an en-
tity. For example, in our application we assume all vision
objects are related to a world object, therefore a new world
object is created if a vision object is not already linked to
one. A reestablish constraint encodes when two existing
objects, one from each class, should be linked together.
An example of this is given in Figure 7 if read from left
to right. When a link instance is created a maintain con-
straint, which is a relation between the two objects, is set
up in order to monitor the hypothesis that they are actually
referring to the same entity in the world. If it is violated
then the link instance is removed which is the case in Fig-
ure 7 if read from right to left.

new vehicle

establish

new car

establish

known designation linkinferred designation

delete car

e1

obj1

e1

obj1 vehicle obj1 vehicle car

e1

delete vehicle

Figure 6: An example of creating and deleting a linked
object.

For a more detailed account of object linkage structures
in DyKnow, see [11].

reestablish
link

violate  maintain
constraint

inferred designation

obj1

e1

vehicle1 obj1 vehicle

e1

known designation link

Figure 7: An example of reestablishing a link and violat-
ing its maintain constraint.

2.9 Implementation

All of the concepts described above are implemented
in C++ using the TAO/ACE [14] CORBA implementa-
tion. The DyKnow implementation provides two ser-
vices. The Domain and Object Manager (DOM) and the
Dynamic Object Repository (DOR). The DOM is a lo-
cation that manages object identifiers, domains, classes
and objects. The DOR manages fluent approximations,
states and events. The DOM is actually also a location
which uses fluent approximations to implement the do-
mains. This makes it possible to e.g. subscribe to changes
in domains in order to react to these changes (which is
used internally to implement e.g. subscription to a set of
features). There can only be one conceptual DOM in the
system since we need to be sure that the object identi-
fiers generated are unique. This means that the DOM is a
single point of failure, but there are techniques related to
federation and duplication that could be used to make the
system less vulnerable.

To evaluate LTL formulas we use our own implementa-
tion of the progression algorithm presented in [12]. Pro-
gression evaluates a formula in a current state and returns
a new formula which has the same truth value when evalu-
ated on the future states as the original formula has on the
complete time-line being generated. Complex dynamic
scenarios involving single or multiple entities are recog-
nized online using the C.R.S. chronicle recognition sys-
tem from France Telecom which is based on the IxTeT
chronicle recognition system [8].

To integrate a reasoning engine, like the LTL formula
progression engine, it has to specify the appropriate poli-
cies that describe the data required by the engine to do
its reasoning. These policies are then passed to the DOR
or some other location to produce the specified fluent
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streams. The engine can then react to the samples sent to
it and do its reasoning on them. To take the LTL formula
progression engine as an example it takes a formula and
analyzes what features it uses and creates a state policy
that contains fluent approximations for each of the fea-
tures and then subscribes to these states. Every time a
new state is received it progresses over the state.

3 JDL Data Fusion Model

The JDL data fusion model is the most widely adopted
functional model for data fusion. It was developed in
1985 by the U.S. Joint Directors of Laboratories (JDL)
Data Fusion Group [22] with several recent revisions pro-
posed [21, 3, 13].

The data fusion model originally divided the data fu-
sion problem into four different functional levels [22].
Later a level 0 [21] and a level 5 [3] were introduced. The
levels 0-4 as presented in [21] and level 5 as presented
in [3] are shown in Figure 8 and described below.

• Level 0 - Sub-Object Data Assessment: estimation
and prediction of signal- or object-observable states
on the basis of pixel/signal-level data association and
characterization.

• Level 1 - Object Assessment: estimation and predic-
tion of entity states on the basis of inferences from
observations.

• Level 2- Situation Assessment: estimation and pre-
diction of entity states on the basis of inferred rela-
tions among entities.

• Level 3 - Impact Assessment: estimation and pre-
diction of effects on situations of planned or es-
timated/predicted actions by the participants (e.g.,
assessing susceptibilities and vulnerabilities to es-
timated/predicted threat actions, given one’s own
planned actions).

• Level 4 - Process Refinement:adaptive data acquisi-
tion and processing to support mission objectives.

• Level 5 - User Refinement:adaptive determination
of who queries information and who has access to in-
formation and adaptive data retrieved and displayed
to support cognitive decision making and actions.

Sources

Data

Level 0 - Sub-Object Assessment

Refinement
Process

User
Refinement

Human
Computer
Interfaces

DATA FUSION DOMAIN

Level 4 Database Management

System

Level 1 - Object Assessment

Level 2 - Situation Assessment

Level 3 -Impact Assessment

Level 5

Figure 8: Revised JDL data fusion model from [3].

In this section we will go through each of the levels
and describe how the implementation of its functionali-
ties can be supported by DyKnow. By this we claim that
the concepts provided by DyKnow are suitable for im-
plementing most parts of the JDL data fusion model. It
is important to realize that DyKnow does not solve the
different fusion problems involved, but rather provides a
framework where different specialized fusion algorithms
can be integrated and applied in a data fusion application.
DyKnow also provides support for a number of particular
fusion problems, such as the fusion of several objects of
the same type into a single object of that type or the fu-
sion of objects from many different types into a single ob-
ject of another type. The idea is that we need to integrate
many different existing solutions to partial problems into
more complex applications than what is currently possible
due to the lack of a common infrastructure. We believe
that DyKnow provides the necessary concepts and mech-
anisms to describe fusion processes that integrate the dif-
ferent levels in the JDL data fusion model.

3.1 Level 0 Sub-Object Assessment

On this level, fusion on the signal and sub-object level
should be made. Since the object identifiers can refer to
any entity, including sensors and entities which may be
an object on its own or not, we can represent and work on
features such as “signal from sensor S” and “property of
blob found by image processing system”. Fusion on this
level would be implemented by computational units. The
purpose of the computational units is to reduce the noise
and uncertainty in the fluent approximations in order for
the higher layers to get the best possible approximations

9



to work with. The sub-object features are used mostly at
level 1 to create coherent object states.

3.2 Level 1 Object Assessment

On this level, sub-object data should be fused into coher-
ent object states. In DyKnow there are mainly two func-
tionalities used, state aggregation and the creation of ob-
ject linkage structures. A state collects a set of sub-object
features (which could represent properties of an object)
into a state which can be used as a synchronized value
similar to the value of a struct in C. Linkage structures are
then used to reason about the identity of objects and to
classify existing objects.

In the linkage structure two special cases of data fu-
sion are handled. The first is the fusion of codesignated
objects, i.e. when two or more objects from the same
class are hypothesized as actually being the same entity,
where the knowledge related to each of these objects has
to be fused into a single object. There are two modes for
achieving this fusion; it can either be done continuously,
so that all the individual object instances still exist but
their content is continually fused into a new object, or it
can be a one-shot fusion where all knowledge at the mo-
ment of the codesignation is fused into a single new object
and the old objects are deleted.

The second special case is the fusion of several differ-
ent objects from different classes into a single object. This
is the case when an object is linked-to from more than one
object of different classes. For example, assume our robot
has both a sonar and a camera, each sensor provides sub-
object fluent approximations containing the sensor read-
ings related to entities in the world. If the entity sensed by
the sonar and the entity sensed by the camera are hypoth-
esized as being the same entity, the position according to
the camera fluent approximation and the position accord-
ing to the sonar fluent approximation must be merged into
a single position fluent approximation, representing the
combined knowledge about the entity. In DyKnow this
would be done using a computational unit which takes
two fluent streams as input, as shown in Figure 9, one
with camera positions and one with sonar positions and
using an appropriate algorithm to compute a new fluent
approximation, the combined position in the world. The
stream will be generated as long as the hypothesis that the
three objects are the same is maintained.

PositionMerger

camera position

sonar position

combined position

Figure 9: An example of level 1 fusion of two level 0
fluent approximations.

In DyKnow fluent approximations from level 1 mainly
interact with level 2 by providing coherent object states
for computing and detecting situations. Level 3 is also
very important since it is responsible for checking the hy-
pothetical object linkage structures by continually check-
ing the impact of new observations on the current hy-
potheses. Since the computations on this level can be time
consuming, the interactions with level 4 and level 5 are
also important in order to maintain a steady update of the
most important fluent approximations for the moment as
decided by the system and the user.

3.3 Level 2 Situation Assessment

On this level, relations between objects fused together
on the previous levels should be detected as well as
more complex situations being represented and recog-
nized. The detection of events, both primitive and com-
puted, are important tools to model situations. Com-
puted events can e.g. be temporal logic formulas or chron-
icles describing temporal relations between events. In this
fashion different features are fused together over time in
order to extract more abstract situations that are features
in themselves. Collections of objects can also be aggre-
gated into states in order to synchronize them to a coher-
ent situation, just as collections of fluent approximations
can be collected into states.

Properties, relations, states and events are all repre-
sented by fluent approximations in DyKnow. Sets of en-
tities belonging to concepts such as “the set of all cars
that have been observed to make reckless overtakes in the
last 30 minutes” can be described and maintained through
the use of domains described by classes. Classes func-
tion as classification procedures which add all object iden-
tifiers which satisfy the associated add constraint to the
domain and keep them as members as long as the main-
tain constraint is not violated. By belonging to a class,
certain fluent approximations related to the object identi-
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fier are guaranteed to exist and to have certain properties
described by the maintain constraint. The maintain con-
straint represents invariant properties of entities belonging
to the class.

Assuming these constructs, we can easily create a
stream with all updates in the car states of those object
identifiers that have been detected as reckless vehicles.
The stream corresponds to a non-trivial set of dynamic
knowledge computed from sensors and continually being
correlated to the current state of the world model as well
as being monitored by level 3 data fusion.

Apart from the input provided by fluent approximations
at level 1, the interactions of level 2 are mainly with level
3 where fluent approximations representing complex sit-
uations can be used to maintain object linkage structures
as well as create new object identity hypotheses. For in-
stance the example given in [21] about the detection of a
missing SA-6 unit in a battery can be handled by a cre-
ate constraint on the SA-6 class triggered by the detection
of an incomplete SA-6 battery. Given a computed event
that is detected when an incomplete battery is found, this
event could be used to trigger the creation of a new SA-6
instance. In this case a monitor could also be set up to
make sure the complete SA-6 battery is detected since all
units have been found. This monitoring would be handled
by level 3 data fusion.

3.4 Level 3 Impact Assessment

On this level, objects and situations should be used to as-
sess the impact on the current actions and plans of the
agent. To assess the impact, different types of monitoring
are done, among others the execution monitoring of plans
and behaviors and the monitoring of object hypotheses.
To implement these monitors the different event detection
mechanisms can be used. Currently, we use LTL formulas
to model the temporal aspects of execution and hypothesis
validation.

Level 3 interacts with both level 1 and level 2 since
the fluent approximations produced on those levels are the
ones used as input to impact assessment. The detection of
violations of monitored constraints will lead to changes at
the lower levels.

3.5 Level 4 Process Refinement

On the fourth level the system should adapt the data ac-
quisition and processing to support mission objectives. In
DyKnow this usually corresponds to changing what flu-
ent approximations and classes are currently being com-
puted. This is related to focus of attention issues where
the most important fluent approximations should be com-
puted while less important fluent approximations have to
stand back in times of high loads. To support focus of
attention, fluent approximations and class specifications
can be added and deleted at run-time.

Another tool used for refinement are the policies de-
scribing the fluent approximations. By changing the poli-
cies of the fluent approximations the load can be reduced.
For example, if the current policy for a fluent approxima-
tion of the position given by the sonar sensor is to sample
it 10 times a second and the latency on the higher level
approximations computed from this is more than 100ms
then the sample rate could be lowered to e.g. 5 times a
second until the load goes down again. It is also possible
to setup filters to remove certain samples or events. For
example, instead of receiving all samples, only receive a
sample when the value has changed with more than 10%
compared to the last change. Changes in policies can be
made dynamically and can later be changed back to the
original policy.

Level 4 interacts with all the other levels since it con-
trols the context within which those are being computed
as well as controlling what is actually being computed.

3.6 Level 5 User Refinement

On the fifth level, the system should determine who
queries information and who has access to information
and adapt data retrieved and displayed to support cogni-
tive decision making and actions. In DyKnow this level is
very similar to the process refinement level. The main dif-
ference is that a user instead of the system itself is control-
ling the quality and amount of data being produced. Con-
ceptually it makes no difference in DyKnow who controls
the fluent approximations. Users also have the possibil-
ity to input observations to fluent streams and in that way
provide expertise about the current situation.

It is also possible to create special fluent approxima-
tions which are only used to support the cognition of the
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current situation by the user, such as complex event de-
scriptions or temporal logic formulas expressing condi-
tions that the user wants to monitor. For example, instead
of keeping track of a number of indicators the user can
express in a LTL formula the normal conditions for all the
indicators, i.e. that everything is in order. If this formula
becomes false then an alarm can be triggered that forces
the user to look at the individual indicators to find out the
source of the problem. We believe that the complex event
descriptions and temporal logics supported by DyKnow
are useful tools to describe high level views of a system
which are suited for a human operator.

4 Example Scenario

Picture the following scenario. An autonomous un-
manned aerial vehicle (UAV), in our case a helicopter,
is given a mission to identify and track vehicles with a
particular signature in a region of a small city in order to
monitor the driving behavior of the vehicles. If the UAV
finds vehicles with reckless behavior it should gather in-
formation about these, such as what other vehicles they
are overtaking and where they are going in crossings. The
signature is provided in terms of color and size (and pos-
sibly 3D shape). Assume that the UAV has a 3D model of
the region in addition to information about building struc-
tures and the road system. These models can be provided
or may have been generated by the UAV itself. Addition-
ally, assume the UAV is equipped with a global position-
ing system (GPS) and inertial navigation system (INS) for
navigation purposes and that its main sensor is a camera
on a pan/tilt mount.

One way for the UAV to achieve its task would be to
initiate a reactive task procedure (parent procedure) which
calls an image processing module with the vehicle signa-
ture as a parameter. The image processing module will
try to identify colored blobs in the region of the right size,
shape and color as a first step. The fluent approximations
of each new blob, such as RGB values with uncertainty
bounds, length and width in pixels and position in the
image, are associated with a vision object (i.e. an object
identifier which is an instance of the class VisionObject).
The image processing system will then try to track these
blobs. As long as the blob is tracked the same vision ob-
ject is updated. From the perspective of the UAV, these

objects are only cognized to the extent that they are mov-
ing colored blobs of interest and the fluent approximations
should continue to be computed while tracking.

Now the UAV can hypothesize, if the establish con-
straint of the vision to world object link is satisfied, that
the blob actually represents an object in the world by cre-
ating a representation of the blob in the world. New fluent
approximations, such as position in geographical coordi-
nates, are associated with the new world object. The geo-
graphic coordinates provide a common frame of reference
where positions over time and from different objects can
be compared. To represent that the two objects represent
two aspects of the same entity the vision object is linked
to the world object. Since the two objects are related, the
fluent approximations of the world object will be com-
puted from fluent approximations of the linked-from vi-
sion object. The objects, links and fluent approximations
created so far are shown in Figure 10. When the vision
object is linked to a world object the entity is cognized
at a more qualitative level of abstraction, yet its descrip-
tion in terms of its linkage structure contains both cog-
nitive and pre-cognitive information which must be con-
tinuously managed and processed due to the interdepen-
dencies of the fluent approximations at various levels. We
have now moved from level 0 to level 1 in the data fusion
model.

Each time a new vision object is created, it is tested
against each existing world object to see if they could
represent the same entity. If the world object passes the
test, i.e. the reestablish constraint of the link between vi-
sion and world objects is satisfied, then a link is created
between it and the new vision object. In this case, the
world object fluent approximations would be updated us-
ing fluent approximations from the new vision object for
as long as they remain linked. This is an example where
the world object has been reacquired, to use the anchor-
ing terminology. Another possibility to regain the track-
ing is when two world objects are hypothesized as being
the same entity, but where only one is currently linked to
a vision object. This happens if the codesignation con-
straint between the two world objects is satisfied. In this
case, they are merged into a single world object to which
the vision object is linked.

Since links only represent hypotheses they are always
subject to becoming invalid given additional observations.
Therefore the UAV agent continually has to verify the va-
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Figure 10: The objects, link instances and fluent approximations after a vision object has been hypothesized as a world
object.

lidity of the links. This is done by associating mainte-
nance constraints with the links. If the constraint is vi-
olated then the link is removed, but not the objects. A
maintenance constraint could compare the behavior of the
objects with the normative and predicted behavior of these
types of objects. This monitoring of hypotheses at level 3
in the data fusion model uses fluent approximations com-
puted at all the lower levels.

The next qualitative step in creating a linkage structure
in this scenario would be to check if the world object is on
or close to a road, as defined by a geographical informa-
tion system (GIS). In this case, it would be hypothesized
that the world object is an on-road object, i.e. an object
moving along roads with all the associated normative be-
havior. The maintenance constraint is that it is actually
following the road system, otherwise it would be an off-
road object (which we ignore in this scenario). An on-
road object could contain more abstract and qualitative
features such as position in a road segment which would
allow the parent procedure to reason qualitatively about
its position in the world relative to the road, other vehicles
on the road, and building structures in the vicinity of the
road. At this point, streams of data are being generated
and computed for many of the fluent approximations in
the linked object structures at many levels of abstraction
as the helicopter tracks the on-road objects. In Figure 11
the new link and fluent approximations have been added.
We could go on and hypothesize what type of vehicles we
are tracking based on the size and driving behavior but we
leave that out of this example.

In order to detect reckless overtakes and other relations
between objects, we have to find, classify and track sev-
eral objects. Each on road object found will be repre-
sented like the one in Figure 11. For each pair of such
objects we can create fluent approximations representing
relations between them. The reckless overtake chronicle
will need to know the qualitative relative direction be-
tween the objects, such as A is in front of and to the left of
B or B is behind and to the right of A. These relations will
also be computed using computational units and the re-
sult will then be fed into the chronicle recognition engine
which will detect the reckless overtakes based on that and
other fluent approximations. Most of the links and fluent
approximations in the example are shown in Figure 12.
Observe that we need one computational unit to compute
the relations betweenoro1 andoro2 and one to compute
the symmetric relation.

More specifically, the establish constraint for a link
from the class WorldObject to the class OnRoadObject is
represented by an LTL formula,32[0,10]on road(this),
which states that in order for a world object to be hypoth-
esized as being an on-road object the world object must be
observed on the road for at least 10 seconds without any
observations that it is not on the road. If this is true then
a new on-road object is created and linked to from the
world object. The maintain constraint is represented as
the LTL formula,¬32[0,5]¬on road(this), which states
that a world object is not allowed to be observed off the
road for more than 5 seconds. If the maintain constraint
is violated then the link between the world and on-road
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Figure 11: The objects, link instances and fluent approximations after the world object in Figure 10 has been hypoth-
esized as an on road object.

objects is removed. These formulas provide one way of
handling the uncertainty in the observations of the posi-
tion of an object in a qualitative manner since it considers
the position over an interval instead of at a single time-
point.

Using on-road objects, we can define situations de-
scribing different traffic behaviors such as reckless driv-
ing, reckless overtakes, normal overtakes and turning left
and right in crossings. All of these situations are described
using chronicles, which are represented by simple tempo-
ral constraint networks where events are represented with
nodes and temporal constraints are attached to edges be-
tween nodes. The chronicles can then be recognized on-
line by a chronicle recognition engine.

We can now define a class RecklessBehavior which has
3(reckless overtake(this) ∨ reckless driving(this)) as
the add constraint, which is satisfied if an on-
road object is observed doing a reckless overtake or
driving recklessly. A maintain constraint for this
class could be,23[0,1800](reckless overtake(this) ∨
reckless driving(this)), which is violated if the object is
not observed doing any reckless driving within 30 min-
utes (the time-unit is seconds in the formulas). By cre-
ating a fluent stream with all overtake, turn left, and turn
right events related to an object in the RecklessBehavior
domain using a set subscription, which creates a single
fluent stream containing samples from certain fluent ap-
proximations for all objects in a given domain, the system
is able to produce the required information and success-
fully carry out the mission. We are now maintaining flu-
ent approximations at levels 0, 1, and 2 in the data fusion

model, which are continually being monitored by fluent
approximations at level 3.

All fluent approximations, classes, links, events and
chronicles are configured by a parent task procedure at the
beginning of the scenario. Thus if the situation changes,
the task procedure has the option of modifying the specifi-
cations associated with the task at hand. It is also possible
to set up monitors checking the current delays in com-
puting different fluent approximations in order to monitor
the real-time behavior of the system. If the latency goes
above a certain threshold the task procedure has the op-
tion of either removing fluent approximations it deems as
less important or changing policies in such a way that the
amount or quality of the data produced is reduced. These
are all examples of process refinement at level 4 of the
data fusion model. It is equally possible for a user to mon-
itor the development of the situation and manually change
the policies in order to influence the system in a desired
direction. This would be an example of level 5 user re-
finement.

5 Related Work

The DyKnow framework is designed for a distributed,
real-time and embedded environment [17, 18] and is de-
veloped on top of an existing middleware platform, real-
time CORBA [20], using the real-time event channel [10]
and the notification [9] services.

Different aspects of the framework borrow and extend
ideas from a number of diverse research areas primar-
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Figure 12: The link instances and fluent approximations in one instance of the traffic monitoring scenario.

ily related to real-time, active, temporal, and time-series
databases [7, 15, 19], data stream management [1, 2], and
knowledge representation and reasoning [4].

One of the many differences between DyKnow and
mainstream database and data stream approaches is that
we use a data model based on the use of features and flu-
ents which integrates well between quantitative and qual-
itative constructions of knowledge structures. In addition,
there is greater flexibility since the same data streams can
be used in many different ways to generate knowledge
structures with different characteristics. This contextual
generation is represented as policies which can be gen-
erated and used by sources which require knowledge in
different forms.

6 Conclusions

We have presented a knowledge processing middleware
framework which provides support for many of the func-
tionalities specified in the revised versions of the JDL
data fusion model. DyKnow supports on-the-fly gener-
ation of different aspects of an agent’s world model at
different levels of abstraction. Contextual generation of
world model is absolutely essential in distributed con-
texts where contingencies continually arise which often
restrict the amount of time a system has for assessing sit-
uations and making timely decisions. It is our belief that
autonomous systems will have to have the capability to
determine where to access data, how much data should
be accessed and at what levels of abstraction it should be
modeled. We have provided initial evidence that such a
system can be designed and deployed and described a sce-
nario where such functionality is useful.

We believe that DyKnow provides the necessary con-
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cepts to integrate existing software and algorithms related
to data fusion and world modelling in general. The loca-
tion provides an interface to existing data and knowledge
in databases, sensors and other programs. The computa-
tional units encapsulate individual algorithms and com-
putations on data and knowledge while the fluent streams
provide the means of communication and dataflow. To aid
the interaction with high level services DyKnow provides
object, state, and event abstractions. The system has been
tested in a number of complex scenarios involving our ex-
perimental UAV platform and has provided great insight
into what will be required for the realization of advanced
distributed data fusion services in intelligent robotic sys-
tems. Observe that the focus here is not on individual
data fusion techniques but the infrastructure which per-
mits use of many different data fusion techniques in a uni-
fied framework.
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