
Iteratively-Supported Formulas and Strongly Supported
Models for Kleene Answer Set Programs

(Extended Abstract)

Patrick Doherty1, Jonas Kvarnström1, and Andrzej Szałas1,2

1 Dept. of Computer and Information Science
Linköping University, SE-581 83 Linköping, Sweden

patrick.doherty@liu.se, jonas.kvarnstrom@liu.se
2 Institute of Informatics, University of Warsaw, Banacha 2, 02-097 Warsaw, Poland

andrzej.szalas@{liu.se, mimuw.edu.pl}

Abstract. In this extended abstract, we discuss the use of iteratively-supported
formulas (ISFs) as a basis for computing strongly-supported models for Kleene
Answer Set Programs (ASPK). ASPK programs have a syntax identical to clas-
sical ASP programs. The semantics of ASPK programs is based on the use of
Kleene three-valued logic and strongly-supported models. For normal ASPK pro-
grams, their strongly supported models are identical to classical answer sets using
stable model semantics. For disjunctive ASPK programs, the semantics weakens
the minimality assumption resulting in a classical interpretation for disjunction.
We use ISFs to characterize strongly-supported models and show that they are
polynomially bounded.

1 Introduction

Classical answer set programming, ASP, has been intensively studied during the past
three decades [3, 5, 9]. In addition, a great deal of attention has been devoted to ASP
implementations [4, 7, 8, 12, 16]. One of the prominent techniques proposed earlier for
computing answer sets is based on translating ASP programs into classical proposi-
tional formulas and then applying SAT solvers to generate answer sets. In [6, 12] it is
shown that Clark’s completion together with loop formulas characterize answer sets for
ASP programs. One of the obstacles in characterizing answer sets using propositional
formulas is their ΣP

2 complexity. Loop formulas contribute to this because one may
require exponentially many of them [10]. The current extended abstract provides an
alternative to loop formulas, iteratively-supported formulas, that ameliorates this prob-
lem. Polynomial translations of normal ASP programs have also been considered in [11,
13, 14]. However, our translation is extended to disjunctive programs in a natural way.
In [15] a possible model semantics for disjunctive programs is proposed. It is formu-
lated with the use of split programs and there can be exponentially many of them com-
paring to the original program. Similar semantics was independently proposed in [1]
under the name of the possible world semantics. In [2] we have analyzed minimality
and supportedness in the context of ASPs and proposed Kleene Answer Set Programs
(ASPK) using the concept of strongly supported models.The semantics used for Kleene
Answer Set programs is based on Kleene logic, K3, with an extra weak negation. In [2]

2 P. Doherty, J. Kvarnström A. Szałas

it is shown that the problem of showing whether an ASPK program has a strongly sup-
ported model is in NP (i.e., in ΣP

1). This result applies to both normal and disjunctive
ASPK programs. For disjunctive ASPK programs, the minimality assumption is re-
laxed, resulting in a classical interpretation of disjunction.3 The ability to fine-tune the
separation of supportedness and minimality in the disjunctive case results in a lower
complexity for generating strongly supported models. In comparison to [15], ASPK

programs allow for strong negation and a three-valued model-theoretic semantics is
provided. The presence of both default and strong negation in ASPK provides a tool to
close the world locally in a contextual manner, more flexible than possible model nega-
tion proposed in [15]. Though defined independently and using different foundations,
both semantics appear compatible on positive programs, so the results of the current
paper apply to possible model semantics of [15], too.
The main contribution of the current paper is the definition and use of ISFs to character-
ize strongly supported models for both normal and disjunctive ASPK programs. Such
formulas are shown to be polynomially bounded in both cases. As a derivative result,
in the case of normal ASP programs and due to a correspondence between answer sets
and strongly supported models, ISFs provide a more efficient alternative to loop for-
mulas when using SAT solvers. For disjunctive ASPK programs, the use of supported
models and ISFs provide an efficient means for using SAT solvers, but with an alterna-
tive semantics that interprets disjunction classically due to a relaxation of minimality
assumptions.
The paper is structured as follows. In Section 2 we introduce basic definitions related to
both classical ASP programs and ASPK programs in addition to strong supportedness.
Section 3 introduces ISFs used to characterize normal and disjunctive ASPK programs.
Section 4 concludes the paper.

2 Kleene Answer Set Programs

In this paper, the syntax for Kleene ASPK programs is identical for that of classical ASP
programs. The semantics for Kleene ASPK programs is based on the use of a three-
valued Kleene logic K3 and strongly-supported models presented in [2]. The semantics
for classical ASP programs is based on stable model semantics [9]. For the sake of
clarity we consider propositional programs only. Truth values are denoted by T (true),
F (false) and U (unknown). The empty conjunction is T and the empty disjunction is F.

Definition 1. By a positive literal (or an atom) we mean any propositional variable
of P . A negative literal is an expression of the form ¬r, where r ∈ P . A classical
literal is a positive or a negative literal. A set of literals is consistent if it does not
contain a literal ` together with its negation ¬`.4 By an extended literal we understand
a classical literal or an expression of the form not `, where ` is a classical literal. If γ is
an expression (formula, program, etc.) then Lit(γ)

def
= {p,¬p | p∈P occurs in γ} and

P(Π)
def
= P ∩ Lit(Π).

3 Note that minimality is sometimes not required or may even be undesirable [2, 3, 15, 17], e.g.,
in the context of programs that use disjunctive rules.

4 We always remove double strong negations using ¬(¬`) def
= `.

Iteratively-Supported Formulas and Strongly Supported Models 3

An interpretation is a finite consistent set of literals. Interpretation I satisfies a classical
literal ` iff ` ∈ I and I satisfies an extended literal not ` iff ` 6∈ I . The satisfiability
relation is denoted by I |= `. C

Definition 2. By an ASPK rule we understand an expression % of the form:
`1 ∨ . . . ∨ `k ← `k+1, . . . , `m,not `m+1, . . . ,not `n,

(1)

where n ≥ m ≥ k ≥ 0, `1, . . . , `k, `k+1, . . . , `m, `m+1, . . . `n are (positive or negative)
literals. The expression at the lefthand side of ‘←’ in (1), denoted by h(%), is called the
head and the righthand side of ‘←’, denoted byB(%), is called the body of the rule. The
rule is called disjunctive if k > 1.
An ASPK program Π is a finite set of rules. A program is normal if each of its rules
has at most one literal in its head. If a program contains a disjunctive rule, we call it
disjunctive. By Disj (Π) we denote the set of disjunctive rules appearing in Π .
The set of rules with the empty body is denoted by Fct(Π) and the set of rules with the
empty head is denoted by Ctr(Π). Members of Fct(Π) and Ctr(Π) are called facts
and constraints, respectively. The set of rules whose bodies and heads are nonempty is
denoted by Rul(Π).
An interpretation I satisfies a rule % of the form (1), denoted by I |= %, if whenever
`k+1, . . . , `m ∈ I and `m+1, . . . , `n 6∈ I , we have `i ∈ I for some 1 ≤ i ≤ k. An
interpretation I satisfies an ASPK program Π , denoted by I |= Π , if for all rules
% ∈ Π , I |= %. C

The following definition is needed to define strong supportedness (a construction simi-
lar in spirit is considered in [18]).

Definition 3. Given interpretations I and J , the value of a formula A w.r.t. (I, J), de-
noted by (I, J)(A), is defined as follows:

(I, J)(A)
def
=

 T when I |= reductJ(A);
F when I |= reductJ(¬A);
U otherwise.

(2)

where reductJ(A) (respectively, reductJ(¬A)) is a formula obtained from A (¬A) by
substituting subformulas of the form not ` by their truth values evaluated in J . C

Definition 4. An interpretation N is a strongly supported model of an ASPK program
Π provided that N satisfies Π and there exists a sequence of interpretations I0 ⊆ I1 ⊆
. . . ⊆ In where n ≥ 0 such that I0 = Fct(Π), N = In, and:

1. for every 1 ≤ i ≤ n and every rule `1 ∨ . . . ∨ `k ← B of Π ,
if
(
Ii−1, N

)
(B) = T then a nonempty subset of {`1, . . . , `k}

is included in Ii;
2. for i = 1, . . . , n, Ii can only contain literals obtained by applying point 1. C

3 Iteratively-Supported Formulas
Let p be a propositional variable. Then pi (respectively p̄i) denotes the fact that in the
i-th iteration, p (respectively, ¬p) is in the computed candidate for a strongly supported

4 P. Doherty, J. Kvarnström A. Szałas

model. Thus, ¬pi (respectively ¬p̄i) denotes the fact that in the i-th iteration pi (respec-
tively, ¬pi) is not in the computed candidate for a strongly supported model.
The number of different literals in heads of Rul(Π) is denoted by #Π . Since support
can only be generated for up to #Π distinct literals, #Π iterations will be sufficient to
provide support for all literals in any strongly supported model.

Definition 5. The translation function is defined as follows, where 1 ≤ i ≤ #Π and `
is an extended literal:

TrΠ(i, `)
def
=


pi when ` = p;

p̄i when ` = ¬p;
¬p#Π when ` = not p;
¬p̄#Π when ` = not ¬p.

(3)

We extend the translation for bodies and heads of rules by setting:
TrΠ(i, B)

def
=
∧
`∈B TrΠ(i, `) and TrΠ(i,H)

def
=
∨
`∈H

TrΠ(i, `).

Definition 6. By a support of a classical literal ` in a normal ASPK program Π at i
(i > 0) we understand the formula:

SuppiΠ(`)
def
=
[
TrΠ(i, `) ≡

(
TrΠ(i− 1, `) ∨

∨
%∈Π:`=h(%)

TrΠ(i− 1, B(%))
)]
. (4)

Definition 7. By the iteratively-supported formula for a normal ASPK program Π we
understand the following formula of classical propositional calculus:

ISF (Π)
def
=

∧
0≤i≤#Π

∧
p∈P(Π)

¬
(
pi ∧ p̄i

)
∧ (5)

∧
F∈Fct(Π)

TrΠ(0, h(F)) ∧
∧

`∈Lit(Π)−{h(F)|F∈Fct(Π)}

¬TrΠ(0, `) ∧ (6)

∧
1≤i≤#Π

∧
`∈Lit(Π)

SuppiΠ(`) ∧ (7)

∧
%∈Π

(
TrΠ(#Π,B(%))→ TrΠ(#Π,h(%))

)
. (8)

We have the following theorem for normal ASPK programs.

Theorem 1. For any normal ASPK program Π , I is a strongly supported model of Π
iff there is a valuation v satisfying ISF (Π) such that:

I = {p | v(p#Π) = T} ∪ {¬p | v(p̄#Π) = T}. C

Since for normal ASPK programs strongly supported models are also classical answer
sets, Theorem 1 applies to classical ASP, too.
Given a disjunctive ASPK program Π , the support of literals appearing only in non-
disjunctive heads remains unchanged. For literals appearing in disjunctive heads we
have the following definition.

Iteratively-Supported Formulas and Strongly Supported Models 5

Definition 8. By a support of a classical literal ` occurring in a disjunctive head in an
ASPK program Π at i (i > 0) we understand the formula:

SuppiΠ(`)
def
=
[
TrΠ(i, `)→

(
TrΠ(i− 1, `) ∨

∨
%∈Π:`∈h(%)

TrΠ(i− 1, B(%))
)]
∧[

TrΠ(i− 1, `) → TrΠ(i, `)
]
.

(9)

For other literals, the support of ` is still specified by formula (4) in Definition 6. C

Definition 9. By an iteratively-supported formula for a disjunctive ASPK program Π
we understand the formula (7) with SuppiΠ() understood as in Definition 8. C

We now have the following generalization of Theorem 1.

Theorem 2. For any (normal or disjunctive) ASPK program Π , I is a strongly sup-
ported model of Π iff there is a valuation v satisfying ISF (Π) such that:

I = {p | v(p#Π) = T} ∪ {¬p | v(p̄#Π) = T}. C

Note that for any ASPK programΠ , the number of different literals in heads of Rul(Π)
(i.e., #Π) is linear in the size of Π . Therefore we have the following lemma.

Lemma 1. For any (normal or disjunctive) ASPK program Π , the size of ISF (Π) is
polynomial in the size of Π . C

4 Conclusions
In this extended abstract, we have defined iteratively-supported formulas expressed in
classical propositional logic and used them to characterize strongly supported models
for ASPK programs. For normal ASPK programs, I is a classical answer set of the pro-
gram iff I is a strongly supported model of the program. Since iteratively-supported for-
mulas provide polynomially bounded characterizations of supported models for normal
ASPK programs, they also provide polynomially bounded characterizations of classical
answer sets for normal ASP programs. In contrast, use of loop formulas could result in
formulas of exponential size for normal ASP programs..
ISFs also characterize strongly supported models for disjunctive ASPK programs and
guarantee that all conclusions are grounded in facts or default reasoning based on ex-
tended literals (using default negation not). Additionally, due to a weakened mini-
mization assumption, disjunction is interpreted classically which results in a semantics
enjoying among other properties, a ΣP

1 complexity for computing strongly-supported
models. This, together with a polynomial bound on ISFs, is a striking theoretical im-
provement compared to theΣP

2 complexity of computing classical answer sets for ASP
programs.

Acknowledgments This work is partially supported by the Swedish Research Coun-
cil (VR) Linnaeus Center CADICS, the ELLIIT network organization for Informa-
tion and Communication Technology, the Swedish Foundation for Strategic Research
(CUAS Project, SymbiKCloud Project), the EU FP7 project SHERPA (grant agreement
600958), and Vinnova NFFP6 Project 2013-01206.

6 P. Doherty, J. Kvarnström A. Szałas

References

1. Chan, P.: A possible world semantics for disjunctive databases. IEEE Trans. Knowl. Data
Eng. 5(2), 282–292 (1993)

2. Doherty, P., Szałas, A.: Stability, supportedness, minimality and Kleene Answer Set Pro-
grams. In: Eiter, T., Strass, H., Truszczyński, M., Woltran, S. (eds.) Advances in Knowledge
Representation, Logic Programming, and Abstract Argumentation, LNCS, vol. 9060, pp.
125–140. Springer International Publishing (2015)

3. Ferraris, P., Lifschitz, V.: On the minimality of stable models. In: Balduccini, M., Son,
T. (eds.) Logic Programming, Knowledge Representation, and Nonmonotonic Reasoning.
LNCS, vol. 6565, pp. 64–73. Springer (2011)

4. Gebser, M., Kaufmann, B., Neumann, A., Schaub, T.: clasp : A conflict-driven answer set
solver. In: 9th Int. Conf. LPNMR.07. pp. 260–265 (2007)

5. Gelfond, M., Kahl, Y.: Knowledge Representation, Reasoning, and the Design of Intelligent
Agents - The Answer-Set Programming Approach. Cambridge University Press (2014)

6. Lee, J., Lifschitz, V.: Loop formulas for disjunctive logic programs. In: Palamidessi, C. (ed.)
Proc. ICLP’03. LNCS, vol. 2916, pp. 451–465. Springer (2003)

7. Leone, N., Pfeifer, G., Faber, W., Eiter, T., Gottlob, G., Perri, S., Scarcello, F.: The DLV
system for knowledge representation and reasoning. ACM Trans. Comput. Logic 7(3), 499–
562 (2006)

8. Lierler, Y.: cmodels - SAT-based disjunctive answer set solver. In: Logic Programming and
Nonmonotonic Reasoning, 8th International Conference, LPNMR 2005. pp. 447–451 (2005)

9. Lifschitz, V.: Thirteen definitions of a stable model. In: Blass, A., Dershowitz, N., Reisig, W.
(eds.) Fields of Logic and Computation. LNCS, vol. 6300, pp. 488–503. Springer (2010)

10. Lifschitz, V., Razborov, A.: Why are there so many loop formulas? ACM Trans. Comput.
Log. 7(2), 261–268 (2006)

11. Lin, F., Zhao, J.: On tight logic programs and yet another translation from normal logic
programs to propositional logic. In: Gottlob, G., Walsh, T. (eds.) Proc. IJCAI-03. pp. 853–
858. Morgan Kaufmann (2003)

12. Lin, F., Zhao, Y.: ASSAT: computing answer sets of a logic program by SAT solvers. Artif.
Intell. 157(1-2), 115–137 (2004)

13. Liu, G., Janhunen, T., Niemelä, I.: Answer set programming via mixed integer programming.
In: Brewka, G., T., E., McIlraith, S. (eds.) Proc. KR’12. AAAI Press (2012)

14. Pelov, N., Ternovska, E.: Reducing inductive definitions to propositional satisfiability. In:
Gabbrielli, M., Gupta, G. (eds.) Proc. ICLP. LNCS, vol. 3668, pp. 221–234. Springer (2005)

15. Sakama, C., Inoue, K.: An alternative approach to the semantics of disjunctive logic pro-
grams and deductive databases. J. Autom. Reasoning 13(1), 145–172 (1994)

16. Simons, P., Niemelä, I., Soininen, T.: Extending and implementing the stable model seman-
tics. Artificial Intelligence 138(1-2), 181–234 (2002)

17. Soininen, T., Niemelä, I.: Developing a declarative rule language for applications in product
configuration. In: Gupta, G. (ed.) Proc. PADL’99. LNCS, vol. 1551, pp. 305–319. Springer
(1999)

18. Son, T., Pontelli, E.: A constructive semantic characterization of aggregates in answer set
programming. TPLP 7(3), 355–375 (2007)

