Journal of Automated Reasoning, 18, 297-334 (1997)
® 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.

Computing Circumscription Revisited:
A Reduction Algorithm

* S
PATRICK DOHERTY patdo@ida.liu.se

Department of Computer and Information Science,
Linképing University, S-581 83 Linkoping, Sweden

*k . .
WITOLD LUKASZEWICZ AND ANDRZEJ SZALAS witlu/szalas@mimuw.edu.pl

Institute of Informatics,
Warsaw University, 02-097 Warsaw, Banacha 2, Poland

Abstract. In recent years, a great deal of attention has been devoted to logics of common-sense
reasoning. Among the candidates proposed, circumscription has been perceived as an elegant
mathematical technique for modeling non-monotonic reasoning, but difficult to apply in practice.
The major reason for this is the second-order nature of circumscription axioms and the difficulty in
finding proper substitutions of predicate expressions for predicate variables. One solution to this
problem is to compile, where possible, second-order formulas into equivalent first-order formulas.
Although some progress has been made using this approach, the results are not as strong as one
might desire and they are isolated in nature. In this article, we provide a general method which can
be used in an algorithmic manner to reduce certain circumscription axioms to first-order formulas.
The algorithm takes as input an arbitrary second-order formula and either returns as output an
equivalent first-order formula, or terminates with failure. The class of second-order formulas, and
analogously the class of circumscriptive theories which can be reduced, provably subsumes those
covered by existing results. We demonstrate the generality of the algorithm using circumscriptive
theories with mixed quantifiers (some involving Skolemization), variable constants, non-separated
formulas, and formulas with n-ary predicate variables. In addition, we analyze the strength of the
algorithm, compare it with existing approaches, and provide formal subsumption results.

Keywords: Circumscription, Non-monotonic Reasoning, Quantifier Elimination, Common-sense
Reasoning

1. Introduction and Preliminaries

In recent years, a great deal of attention has been devoted to logics for common-
sense reasoning. Among the candidates proposed, circumscription ([18], [15]), has
been perceived as an elegant mathematical technique for modeling non-monotonic
reasoning, but difficult to apply in practice. Practical application of circumscription
is made difficult due to two problems. The first concerns the difficulty in finding
the proper circumscriptive policy for particular domains of interest. The second
concerns the second-order nature of circumscription axioms and the difficulty in
finding proper substitutions of predicate expressions for predicate variables so the
axioms can be used for making inferences. There have been a number of proposals

* supported in part by Swedish Research Council for Engineering Sciences (TFR) grant 93-270.
* supported in part by KBN grant 3 P406 019 06.

298 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

for dealing with the second problem ranging from compiling circumscriptive theories
into logic programs [9], to developing specialized inference methods for such theories

([10],[19)).

A third alternative is to focus on the more general problem of finding methods for
reducing second-order formulas to logically equivalent first-order formulas, where
possible. Although some progress has been made using this approach, the class of
second-order circumscription formulas shown to be reducible is not as large as one
might desire, the reduction methods proposed are somewhat isolated relative to
each other and, most importantly, the existing reduction theorems generally lack
algorithmic procedures for doing the reductions.

In this article, we provide a general method which can be used in an algorithmic
manner to reduce certain classes of second-order circumscription axioms to logically
equivalent first-order formulas. The algorithm takes as input an arbitrary second-
order formula and either returns as output an equivalent first-order formula, or
terminates with failure. Of course, failure does not imply that there is no first-
order equivalent for the input, only that the algorithm can not find one. The
class of second-order formulas, and analogously the class of circumscriptive theories
which can be reduced, provably subsumes those covered by existing results. The
algorithm can be applied successfully to circumscriptive theories which may include
mixed quantifiers (some involving Skolemization), variable constants, n-ary tuples
of minimized and varied predicates, separable, separated and in some cases, non-
separated formulas, and formulas with n-ary predicate variables, among others. In
addition to demonstrating the algorithm by applying it to some of these theories, we
analyze its strength and provide formal subsumption results based on comparison
with existing approaches.

1.1. Outline of the Paper

In Sections 1.2, 1.3 and 1.4 the notation used throughout the paper is introduced in
addition to a number of preliminary definitions and useful tautologies. In Section 2,
existing results on reducing second-order circumscription are reviewed. In Section 3,
the major components of the elimination algorithm are described. An in-depth
presentation of the algorithm may be found in Appendix A. In Section 4, the
strengths and weaknesses of the algorithm are discussed and subsumption results
over existing reduction techniques are proven. In Section 5, complexity issues are
considered. In Section 6, the algorithm is applied in an informal manner to a
number of examples each characterized by a specific feature that illuminates certain
aspects of the algorithm and its generality. In Section 7, we discuss related work.
In Section 8, we conclude with a discussion and future work.

COMPUTING CIRCUMSCRIPTION REVISITED 299

1.2. Notation

An n-ary predicate ezpression is any expression of the form Az. A(Z), where T is
a tuple of n individual variables and A(Z) is any formula of first- or second-order
classical logic. If U is an n-ary predicate expression of the form AZ. A(Z) and @ is
a tuple of n terms, then U (@) stands for A(@). As usual, a predicate constant P is
identified with the predicate expression A\Z. P(Z). Similarly, a predicate variable &
is identified with the predicate expression A\Z. ®(Z).

Truth values true and false are denoted by T and L, respectively.

If U and V are predicate expressions of the same arity, then U < V stands for
vz.U(Z) D V(). ¥U = (Uy,...,U,) and V = (V4,...,V,,) are similar tuples of
predicate expressions, i.e. U; and V; are of the same arity, 1 < i <n, then U <V
is an abbreviation for A\, [U; < Vi]. We write U =V for (U < V) A(V < U), and
U <V for (U< V)A(V <T).

If A is a formula, & = (01,...,0,) and § = (d1,...,68,) are tuples of any expres-
sions, then A(G < &) stands for the formula obtained from A by simultaneously
replacing each occurrence of o; by é; (1 <i < n). For any tuple Z = (z1,...z,) of
individual variables and any tuple £ = (t1,...t,) of terms, we write T = £ to denote
the formula z; = 1 A--- Az, = t,. We write Z # t as an abbreviation for —(z =).

1.3. Definitions

Definition. [Second-Order Circumscription] Let P be a tuple of distinct predicate
constants, S be a tuple of distinct function and/or predicate constants disjoint from
P, and let T(P, S) be a sentence. The second-order circumscription of P in T'(P, S)
with variable S, written Circ(T; P; S), is the sentence

T(P,5) AVE T [T(,T) AT < P (1)
where ® and ¥ are tuples of variables similar to P and S, respectively.
Observe that (1) can be rewritten as
T(P,5) AVE TT(3, %) A [T < P|] > [P < 3.

From the point of view of the elimination of second-order quantification, it is
generally sufficient to consider only the second-order part of the above formula, i.e.

V& G[T(3,) A [3 < P|] 5 [P < .

Definition. A predicate variable ® occurs positively (resp. negatively) in a formula
A if the conjunctive normal form of A contains a subformula of the form (%) (resp.
—®(%)). A formula A is said to be positive (resp. negative) w.r.t. ® iff all occurrences
of ® in A are positive (resp. negative).

300 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

Definition. A first-order sentence 7 is said to be ezistential (universal) iff it is of
the form 3z Ty (VZ T4), where T} is quantifier free.

Definition. A formula T is said to be monadic iff it contains one-place predicate
constants only, and no function constants except 0-place function constants.

Definition. [Separated and Separable Formulas] Let ¢ be either a predicate con-
stant or a predicate variable and ¢ be a tuple of predicate constants or a tuple of
predicate variables. Then

e a formula T'(¢) is said to be separated w.r.t. ¢ iff it is of the form T1(4) A T2 (9)
where T (¢) is positive w.r.t. ¢ and T is negative w.r.t. ¢, and

e a sentence T is said to be separable w.r.t. ¢ iff T is equivalent to a formula of
the form

\/ [B:(@) A (T < 9)] (2)

i=1

where B;(¢) is a formula containing no positive occurrences of predicate con-
stants (variables) from ¢ and each U; is an n-tuple of predicate expressions not
containing predicate constants (variables) of ¢.

1.4. Useful Tautologies

Let us now list some useful tautologies that are used throughout the paper.

PROPOSITION 1 The following pairs of formulas are equivalent. (Here @ stands
for any quantifier and A, B, C are formulas such that C does not contain free
occurrences of the variable . In clauses (15), (16) and (18), t,t1,...,t, are n-
tuples of terms and it is assumed that meither C mor any term from t,ty,...,t,
contains variables from T. In clause (17), f is a function variable which does not
occur in A.)

COMPUTING CIRCUMSCRIPTION REVISITED 301

-—A and A

-(A A B) and -AV -B
-(AV B) and -AA-B
—VzA(z) and Jz-A(z)
-3z A(z) and Vz—A(z)

(1)
2)
(3)
(4)
(5)
(6) Jz(A(z) v B(z)) and JzA(x)V IzB(z)
(7) Vz(A(z) AB(z)) and VzA(z) AVzB(z)
(8) Qz(A(z))AC and Qz(A(z) AC)
(9) CAQz(A(z)) and Qz(C A A(z))
(10) Qz(A(z))VvC and Qz(A(z) Vv C)
(11) CVv Qx(A(x)) and Qz(CV A(z))
(12) QzQyA and QyQzA
(13) AN(BVCO) and (AANB)V(AANC)
(14) (AVvB)AC and (ANC)V (BACQC)
(15) A(%) and VE(A(t < Z) VT #1)
(16) A(t1)V---VA(t,) and IZ((Z=t1V---VI =1t,) NA(t1 < T))
(17) VzdyA(z...) and JfVZA(Z,y < f(),...) .
(18) A(ti)AN---NA(tn) and VE((Z At A -NT #1,) VAt < T))

The equivalence (15) was found particularly useful by Ackermann (see [1],[2]). We
extend the method by adding the equivalence (16). It makes the technique work in
the case of clauses containing more than one positive (or negative) occurrence of the
eliminated predicate. This substantially generalizes Ackermann’s technique. The
equivalence (17) is a second-order formulation of the Skolem reduction (see [3]).
It allows us to perform Skolemization (i.e. elimination of existential quantifiers)
and unskolemization (i.e. elimination of Skolem functions) in such a way that
equivalence is preserved. We call this equivalence second-order Skolemization.

2. Known Results about Reducing Second-Order Circumscription

A collection of current results concerning the reduction of second-order circum-
scription axioms to the first-order case may be found in the handbook article on
circumscription by Lifschitz [15], in addition to references to reduction results of
other authors not covered in the handbook. In this section, we provide the relevant
results from the handbook, in addition to results by other authors pertaining to
reduction results for circumscription and second-order logic. The original notations
are slightly adjusted to agree with the notation used in this paper.

2.1. Lifschitz’ Results

In Lifschitz [13] we are presented with the following result concerning the reduction
of second-order circumscription into first-order logic.

302 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

THEOREM 1 If T(P) is a separable formula of the form in Equation (2), then
Circ(T; P;()) is equivalent to

\ [Cin (U; = P)]

i=1

where C; is

J#i

Theorem 1 is inapplicable in cases where constants, different than those being
circumscribed, are allowed to vary. This limitation can often be avoided by applying
the following result (Lifschitz [13]).

THEOREM 2 Circ(T(P, S); P; S) is equivalent to T(P, S)ACirc(3®. T (P, ®); P;()).

Although Theorem 2 allows us to transform any second-order circumscription
into a circumscription without variable constants, the transformation introduces
new second-order variables. These can often be eliminated as follows (Lifschitz
[13]).

THEOREM 3 If T(®) is equivalent to Equation (2), then 3®. T(®) is equivalent to
ViZi Bi(Us).

A different result concerning the reduction of second-order circumscription into
first-order logic is presented in Lifschitz [14]. The details are these.

THEOREM 4 If all occurrences of P = (Py, ..., P,) are positive, then Circ(T; P;())
is equivalent to
AT (P) AVE- [Pi(2) AT(Mg. (P@H) AT # 7))

i=1
In [15], Lifschitz also formulated the following theorem.

THEOREM 5 If T(P) is a first-order sentence separated w.r.t. P then
Circ(T(P); P;()) is equivalent to a first-order sentence.

2.2. Rabinov’s Result

Rabinov [20] provides the following result which subsumes the earlier results of
Lifschitz (excluding Theorem 5).
If U and V are predicate expressions, then U NV stands for AZ. (U(Z) A V(Z)).
Let D;(P) denote N;(P)A M;(P) such that the predicate constant P is positive in
M; and negative in N;. D;(P) is said to be p-simple if M;(P) has the form U; < P,
where U; is a predicate expression not containing P. D;(P) is said to be n-simple
if N;(P) has the form P < U;, where Uj; is a predicate expression not containing P.

COMPUTING CIRCUMSCRIPTION REVISITED 303

THEOREM 6 If T(P) is of the form

No(P) A \/Dz’(P)

where each D;(P) is either p-simple or n-simple and P is negative in No(P), then
Cire(T; P;()) is equivalent to

T(P) A)\ Ri(P)

where R;(P) stands for =M;(PNQ;)V Circ(M;(P); P;()) if D;(P) is n-simple, and
for =N;(U;) V =~(U; < P) otherwise.

2.3. Kolaitis & Papadimitriou’s result

In [12], Kolaitis & Papadimitriou present the following result.

THEOREM 7 IfT is a first-order existential sentence, then Circ(T; P;()) is equiv-
alent to a first-order sentence.

2.4. Second-Order Monadic Logic

The following result is due to Lowenheim (see [17]).

THEOREM 8 If T is a monadic second-order sentence, then T is equivalent to a
first-order sentence T'.

2.5. The SCAN Algorithm

The SCAN algorithm was introduced by D. Gabbay and H. J. Ohlbach in [8]. It is
formulated as follows:

Definition. Given a second-order formula 3®, ... ®, A, where A is a classical first-
order formula, perform the following steps:

1. Transform A into clause form using the equivalences given in Proposition (1).
Ignore the prefix with existential first- and second-order quantifiers.

2. Generate all C-resolvents and C-factors with the predicate variables ®;,...,®,
according to the following rules:

(A) ®(s1,...,8,)VC, =®(t1,...,t,)VD F CVDVsy #£t1V...V8, #tp
(B) ®(s1,-+-580)V®(t1, .. tn)VC F B(s1,...,8,)VCVs1 #t1V.. .V # tn.

304 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

No self-resolution is allowed. All equivalence preserving simplifications may be
applied freely.

3. If the previous step terminates try to unskolemize the resulting formula. If
this is successful, the obtained formula is a first-order formula equivalent to the
input second-order one.

3. The Elimination Algorithm

In this section we briefly discuss the elimination algorithm. Its complete formulation
can be found in the Appendix. The algorithm was originally formulated in a weaker
form in [22], in the context of modal logics. It is based on Ackermann’s techniques
developed in connection with the elimination problem (see [1]).

The elimination algorithm is based on the following lemma, proved by Ackermann
in 1934 (see [1]). The proof can also be found in [22].

LEMMA 1 (ACKERMANN LEMMA) Let ® be a predicate variable and A(Z,z), B(®)
be formulas without second-order quantification. Let B(®) be positive w.r.t. ® and
let A contain no occurrences of ® at all. Then the following equivalences hold:

JBVE[B(Z) V A(Z,2)] A B(® — -8) = B(® « A(Z, 7)) (3)

1eVzZ[-®(Z) V A(Z,2)] A B(®) = B(® + A(Z,2)) 4)

where in the right-hand formulas the arguments T of A are each time substituted
by the respective actual arguments of ® (renaming the bound variables whenever
necessary).

The following proposition, together with the equivalences given in Proposition
(1), is also used in the algorithm.

PROPOSITION 2 Let A be a formula of the form pref(Ai A --- N A,), where pref
is a prefiz of first-order quantifiers and A.,..., Ay are disjunctions of literals. In
addition, let ® be a predicate variable occurring in A and Conj(A) those conjuncts
in A where ® occurs. Assume that for any conjunct in Conj(A), ® occurs ei-
ther positively, or both positively and negatively (or analogously, negatively, or both
negatively and positively). Then

IPA = pref(Ai, N---NA;) (5)

where i1,...,5, € {1,...,q} and A;,,..., A;, are all the conjuncts that do not
contain occurrences of ® (the empty conjunction is regarded to be equivalent to T).

Proof: See [22]. |

COMPUTING CIRCUMSCRIPTION REVISITED 305

3.1. Outline of the Elimination Algorithm

We are now ready to outline the elimination algorithm. The algorithm takes a
formula of the form 3® A, where A is a first-order formula, as an input and returns
its first-order equivalent or reports failure!. Of course, the algorithm can also
be used for formulas of the form V®A, since the latter formula is equivalent to
—3®—-A. Thus, by repeating the algorithm one can deal with formulas containing
many arbitrary second-order quantifiers.

The elimination algorithm consists of four phases: (1) preprocessing; (2) prepa-
ration for Ackermann’s Lemma; (3) application of the Ackermann Lemma; and (4)
simplification. These phases are described below. It is always assumed that (i)
whenever the goal specific for a current phase is reached, then the remaining steps
of the phase are skipped, (ii) every time the equivalence (5) of Proposition 2 is
applicable, it should be applied.

(1) Preprocessing. The purpose of this phase is to transform the formula 3$ A
into a form that separates positive and negative occurrences of the quantified
predicate variable ®. The form we want to obtain is?

Iz3P[(A1(®) A B1(®)) V-V (An(®) A B,(D))], (6)

where, for each 1 < ¢ < n, 4;(®) is positive w.r.t. & and B;(®) is negative w.r.t.
®.2 The steps of this phase are the following. (i) Eliminate the connectives D
and = using the usual definitions. Remove redundant quantifiers. Rename
individual variables until all quantified variables are different and no variable
occurs both bound and free. Using the usual equivalences, move the negation
connective to the right until all its occurrences immediately precede atomic for-
mulas. (ii) Move universal quantifiers to the right and existential quantifiers to
the left, applying as long as possible the equivalences (8) — (11) from Proposi-
tion 1. (iii) In the matrix of the formula obtained so far, distribute all top-level
conjunctions over the disjunctions that occur among their conjuncts, applying
the equivalences (13) - (14) from Proposition 1. (iv) If the resulting formula is
not in the form (6), then report the failure of the algorithm. Otherwise replace
(6) by its equivalent given by

32(38(A1(8) A B1(®)) V -+ V 38(A, (@) A B, (@))). (7)

Try to find Equation (7)’s first-order equivalent by applying the next phases in
the algorithm to each disjunct in (7) separately. If the first-order equivalents of
each disjunct are successfully obtained then return their disjunction, preceded
by the prefix 3%, as the output of the algorithm.

(2) Preparation for Ackermann’s Lemma. The goal of this phase is to trans-
form a formula of the form 3®(A(®) A B(®)), where A(®) (resp. B(®)) is
positive (resp. negative) w.r.t. @, into one of the forms (3) or (4) given in

306 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

Lemma 1. Both forms can always be obtained and both transformations should
be performed because none, one or both forms may require Skolemization. Un-
skolemization, which occurs in the next phase, could fail in one form, but not
the other. In addition, one form may be substantially smaller than the other.
The steps of this phase are based on equivalences (13) — (17) from Proposition 1.

(3) Application of Ackermann’s Lemma. The goal of this phase is to eliminate
the second-order quantification over ®, by applying Ackermann’s Lemma, and
then try to unskolemize the function variables possibly introduced. This latter
step employs the equivalence (17) from Proposition 1.

(4) Simplification. Generally, application of Ackermann’s Lemma in step (3)
often involves the use of equivalence (15) in Proposition 1 in the left to right
direction. If so, the same equivalence, or its generalization (18), may often be
used after application of the Lemma in the right to left direction, substantially
shortening the resulting formula.

3.2. Discussion of the Algorithm

Assume we have a second-order formula A of the form

3®[(prefB) A (pref'C)], (8)
where,
e pref and pref’ are sequences of first-order quantifiers,
e B and C are quantifier-free formulas in conjunctive normal forms,
e B is positive w.r.t. ®, and
e (is negative w.r.t. ®.

Then, the following proposition holds.

PROPOSITION 3 Let A be an input formula of the form (8). Then, as a result, the
algorithm returns a first-order formula provided that unskolemization (if necessary)
succeeds.

Observe that Skolem functions are introduced in the second step of the algo-
rithm whenever existential quantifiers are to be eliminated. These can appear in
the input formula or may be introduced via application of the equivalence (16) of
Proposition 1.

In the following proposition, we formulate conditions under which no Skolem
functions are introduced and the algorithm terminates successfully.

PROPOSITION 4 If one of the following conditions holds

COMPUTING CIRCUMSCRIPTION REVISITED 307

e B is universal and each conjunct of B contains at most one occurrence of ®, or

o C is universal and each conjunct of C contains at most one occurrence of =,
then the algorithm always returns a first-order formula as output.

Proof: The algorithm can fail for two reasons. (1) The input can not be put
in separated form. (2) If skolemization is necessary, the algorithm may not be
able to unskolemize before termination. Since the input is of the form (8), it is
separated. In the two cases above, skolemization is not necessary. In both cases,
B and C are universal, so no skolemization is necessary relative to pref and pref’,
respectively. The only way for new existential quantifiers to be introduced during
the steps in the algorithm is if any of the conjuncts in B or C contain more than
one occurrence of & or —®, respectively. By assumption, this is not the case.
|

If the input formula cannot be transformed into the form (8) then the algorithm
fails.

4. On the Strength of the Algorithm

Let us first prove that the algorithm subsumes, and is even stronger than the results
given in [12], [13], [14], [20]. Recall that the formulation of those results is quoted
in Section 2.

Let us start with Rabinov’s result (and thus the subsumed results of Lifschitz).
In fact, the following theorem is stronger than the result of Rabinov.

THEOREM 9 If T(P) is of the form
P)yn\/ Di(P
i

where each D;(P) is either p-simple or contains no positive occurrences of P and
No(P) is negative w.r.t. P, then the algorithm eliminates the second-order quanti-
fiers from Circ(T; P;()).

Proof: The negated second-order part of Circ(T'; P; ()) takes the following form,
3B [N (® /\\/D A[® < P]A-[P < @]

The following steps show the respective reduction

IB[No(®) AV, Di(®) A[® < P] A [P < 8]
@[V, (No(®) A Di(®) A [® < P A =[P < @])]

V/, 38[No(®) A Di(®) A [& < P| A ~[P <]

V, 38[No(®) A Di(®) AVz(~2(2) v P(2)) A F2(P(2) A —~8(2))]
V, 3238 No(®) A D;(®) AVa(~2(z) V P(2)) A ~8(2) A P(2)]
V, 323[8D;(®) A No(®) AVE(~®(z) V P(z)) A =3(2) A P(2)].

308 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

Observe that all occurrences of ® in No(®) AVZ(—®(Z) V P(Z)) A—®(Z) A P(Z) are
negative. Moreover, D; either contains no positive occurrences of ® or is p-simple.
In the first case, there are no positive occurrences of ® at all and it suffices to apply
equivalence (5) of Proposition 2. In the second case, where D; is p-simple, it takes
the form U; < @, i.e. VZ(®(z)V —U;(z)) and the Ackermann Lemma can be applied
directly. [|

It is worth noting that Lifschitz should probably be credited with rediscovering the
positive form of Ackermann’s Lemma (Lemma 1, Equation 3). One can observe this
is the case by combining Equation 2 in the definition of separability with Theorem 3.

The following theorem shows that the algorithm eliminates second-order quan-
tification in the case of existential theories considered in [12].

THEOREM 10 If T is a first-order existential sentence, then the algorithm elimi-
nates second-order quantification from Circ(T; P;()).

Proof: The negated second-order part of Circ(T'; P; ()) takes the following form,
AP[T(®) AN [® < P]A [P < @]].

By assumption T'(®) is of the form 3z.7"(z), where T'(Z) is quantifier free.
The following steps show the respective reduction

AR[T(®) A [® < PIA-[P < 9]

3@3Z[T'(®) A [®@ < P]A [P < @)

JzI[T"(®) A VG(—~ () V P(5)) A FZ(P(2) A~ (2))]
3zz3@[T'(®) AVy(—2(g) V P(3)) A P(2) A —®(Z)].

Next we transform the above formula into the disjunctive normal form (treating
Vg(—=®(y) vV P(§)) as an atomic formula) and then distribute the existential quanti-
fiers over disjunctions. Now each disjunct is a conjunction of atomic formulas and
Vi(—®(y) vV P(7)). Thus, by a simple application of equivalence (15) of Proposition
1, each disjunct can be transformed into the form required in Ackermann’s Lemma.
|

THEOREM 11 IfT is a first-order monadic sentence, then the algorithm eliminates
second-order quantification from Circ(T; P; S).

Proof: The reduction that works here is given in Ackermann [[2], pp. 41-46],
which uses Proposition 1 and a weaker form of Lemma 1. It can easily be reformu-
lated in terms of the phases of our elimination algorithm. []

4.1. Comparison of Approaches

In comparing the different approaches and results concerning the reduction of cir-
cumscriptive theories, we will refer to Figure 1 below, which provides a pictorial

COMPUTING CIRCUMSCRIPTION REVISITED 309

view of the subsumption relation between the various theorems and types of theories
reduced. DLS refers to our algorithm, MIXED refers to theories with mixed quan-
tifiers, VC refers to theories which allow variable constants, and MONAD refers
to theories with only monadic sentences. In addition, V and 3 refer to purely uni-
versal and existential theories, respectively, while V3 refers to those theories where
Skolemization is necessary, and 3V refers to mixed theories not requiring Skolemiza-
tion. The solid arrows denote subsumption. In addition there are two broken-line
arrows. The arrow pointing towards Th 5 is open to signify that although the DLS
algorithm in its general form does not fully subsume Theorem 5, when specialized
appropriately, it does. The arrow pointing towards SKOLEM is broken to signify
that the DLS algorithm works for those theories involving Skolemization when the
unskolemization step is successful and the algorithm returns a first-order formula as
output. Since, it may not be possible to unskolemize certain theories successfully,
there is no complete subsumption of this class.

VC {--..

v 3 V| ova v MONAD

Th 9[DLS] Th 10[DLS] [DLS] [DLS] Th9[DLS] Th 11[DLS]

\L | I
|
|
|
oY
Th 6[Rabinov] Th 7[Kol,Pap] | SKOLEM
(P[N]-simple) |
| Th 1-3[Lifschitz]
\/ (Separable)
Th 1[Lifschitz] Th 5[Lifschitz]

(Separable) (Separated)

Figure 1. Subsumption Results.

310 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

4.1.1. Positive Results

In addition to the results described in the previous section, observe that the method
we propose is also stronger in regard to the following features:

e DLS provides us with a more general approach to existential quantification due
to the possibility of allowing Skolemization. Thus it works for combinations of
existential and universal quantifiers. On the other hand, Kolaitis and Papadim-
itriou consider pure existential formulas, while Lifschitz and Rabinov consider
pure universal theories.

e DLS does not distinguish between theories with variable constants and those
without. On the other hand both Rabinov, Kolaitis and Papadimitriou, (and
Lifschitz to some extent), restrict their theories to those without variable con-
stants. In some cases, Lifschitz’s results can reduce theories with variable con-
stants if the theories are separable and no Skolemization is involved. (See the
next section for problems DLS has with separated theories).

e DLS permits as input circumscriptive theories with arbitrary numbers of min-
imized and varied predicates. This is not the case for Rabinov’s result nor for
Lifschitz’s result pertaining to separated formulas.

e DLS describes how to constructively transform formulas into the required form.

4.1.2. Negative Results

Note that in the end of Section 3.2 we characterized the class of formulas for which
the algorithm fails. Let us now discuss an additional source of weaknesses of the
algorithm and a possible way of overcoming those weaknesses.

Observe that the elimination algorithm we deal with is independent of any par-
ticular theory. On the other hand, it is well known that second-order quantifiers
can sometimes be eliminated when additional information is given.

One good illustrative example originates from the area of modal logics. Namely,
McKinsey’s axiom is not equivalent to any first-order formula. Accordingly, our
algorithm fails (see [22]). However, when one assumes that the accessibility relation
is transitive, the elimination is possible, since McKinsey together with transitivity
is first-order definable (see [4]).

The same situation may occur when one computes circumscription. Consider the
theorem of Lifschitz (Theorem 5 above). It permits us to deal with any sequences
of first-order quantifiers provided that the formula is separated. The proof given by
Lifschitz is based on a clever move which applies knowledge about the first-order
theory one works with. Observe that in Theorem 5 the sentence T'(P) is assumed
to be separated, i.e. it is of the form T;(P) A T2 (P), where T} (P) is positive w.r.t.
P and T5(P) is negative w.r.t. P. Thus Circ(Ty A Tz; P;()) is equivalent to

Ty (P) A To(P) A =38[Ty (®) A To(®) A & < P).

COMPUTING CIRCUMSCRIPTION REVISITED 311

Since T»(P) is negative w.r.t. P, T5(P) together with & < P imply T5(®). Thus
when T5(P) is taken into consideration, one substantially simplifies the second order
circumscription into the following second-order formula

T1(P) A T3(P) A -38[T,(®) A & < P).

The last formula is reducible to a first-order sentence (and is, in fact, in the scope
of our algorithm).

The above examples show that the general algorithm we presented can (and should
be) tuned to the particular situation it is applied to. Since circumscription is always
defined over some first-order theory, moves similar to the method used by Lifschitz
above, should be incorporated into the algorithm. If this is done for the case of
separated theories, then the specialized version of our algorithm subsumes all pre-
vious results concerning the reduction of circumscriptive theories. (see Section 4.2
for more details).

4.1.8. Comparison with SCAN

The SCAN algorithm eliminates the second-order quantification for a large class
of formulas and can be applied in computing circumscription. On the other hand,
the SCAN algorithm may not terminate and the sets of C-resolvents and C-factors
may be large. It is difficult to provide a formal comparison between DLS and
SCAN since no syntactic characterization of formulas accepted by SCAN is known.
What we can do is provide several examples where DLS fares better than SCAN
and mention a method to construct an example where SCAN would fare better
than DLS due to its use of optimization techniques associated with the resolution
theorem proving method.

Observe that some examples where SCAN fared better than the algorithm given in
[22] were known. On the other hand, in the present paper the algorithm described in
[22] is strengthened by adding the equivalence (16) of Proposition 1. An additional
advantage of our algorithm is that it always terminates, while SCAN may loop.

In the first example, DLS, when given the formula

Ve[(Vz®(z) D Jy®(y) A Q(z)) D Vz—d(z)],

terminates, while for SCAN it does not.
In the second example, DLS, when given the formula

Jz3y(P(z) v P(y) vV R(z,y)) AVz3y(=P(z) V -P(y) v S(z,y)),

terminates with success and returns a logically equivalent first-order formula, while
SCAN fails due to unskolemization problems.

The obvious question arises whether there is an example where SCAN terminates
with a logically equivalent first-order formula while DLS terminates with failure.
One way to construct such an example would be to provide an input formula where

312 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

one or more subformulas are subsumed by another part of the formula. In this
case, SCAN would delete these clauses using its subsumption deletion heuristic.
If these clauses were set up to provide unskolemization problems, then because
DLS has no subsumption deletion heuristic, it could possibly fail to unskolemize
the example. Of course, it should be possible to extend the DLS algorithm with
additional optimization heuristics, but we save this for future research.

4.2. A General Methodology for Use of the Algorithm

The elimination algorithm we present is very general in that it can be applied to
any second-order formula. However, in specific applications the algorithm can often
be substantially improved. Two such improvements have already been provided. In
the first case, we suggest using Proposition 2 each time it is applicable. The reason
for this is that the proposition allows one to immediately eliminate a second-order
variable in the formula in question. As shall be seen in section 6, the proposition
is not just a theoretical result — it is sometimes applicable when reducing circum-
scription axioms.

Another improvement we provide is the phase of simplification. It was observed
that in many practically occurring situations the formula obtained as the result of
applying the Ackermann Lemma can be substantially simplified by using Proposi-
tion 1 (15). Perhaps this is the case because of the specific form of the circumscrip-
tion axiom. However, it is obviously worth doing while applying the elimination
algorithm to circumscriptive theories.

As already stated, our algorithm subsumes almost all known results concerning
the reduction of circumscriptive theories. The only exception appears to be the
result of Lifschitz, presented in Theorem 5. However, when specifying our algorithm
for the purpose of reducing circumscription, this specialized result can easily be
built into the preprocessing phase. Moreover, even the result of Rabinov, which is
subsumed by the elimination algorithm, could also be built in, simply to make the
algorithm more effective.

In conclusion, the situation may be summarized as follows. Given the general form
of our algorithm and a domain to which it will be applied, analyze the syntactic
character of theories in the domain and integrate any useful reduction heuristic in
the preprocessing or simplification phase of the algorithm.

5. Complexity of Reduction

Observe that the elimination algorithm we consider, terminates and is easily mech-
anizable. Let us now estimate its complexity.

First observe that during phase (3) of the algorithm, the form of the formula to
be transformed is®

IBVZ[®(z) V A(Z,2)] A B(® « —d) 9)

COMPUTING CIRCUMSCRIPTION REVISITED 313

and then its form is
B(® « A(z, %)) (10)

after application of Ackermann’s Lemma.

Thus, if the length of (9) is n, then the length of (10) is less than n2. Observe,
however, that this worst case occurs when ® has O(n) occurrences in (9). In
practical examples, however, the length of (10) is usually O(n) (and often less than
the length of (9)).

The worst case analysis of steps (1) and (2) shows that the size of the transformed
formula can increase exponentially (due to possible transformations between dis-
junctive and conjunctive normal forms). This, however, is again a rare phenomenon
— see examples below, in particular Section 6.6 concerning a Kolaitis and Papadim-
itriou example.

6. Applying the Algorithm to some Examples

The best way to understand how the algorithm works is to apply it to examples. In
this section, we apply the algorithm to a number of different examples, each high-
lighting a particular strength of the algorithm. A number of examples are taken
from the literature concerning the use of circumscription in knowledge representa-
tion. We take a number of liberties in applying the algorithm so as not to get lost
in details. For example, step (2) in the previous Section 3.1 states that both forms
of Ackermann’s Lemma should be considered. In the examples, we choose one form
and apply the algorithm. This saves considerable space. Also, the simplification
phase is omitted unless it can be applied.

6.1. Block Example
Ezample: [Block example]
Let I'(Ab, On) be the theory
[b1 # b2 A B(b1) A B(b2) A =On(b1)] A [Vz(B(z) A —=Ab(z) D On(z))], (11)

where B and On are abbreviations for Block and Ontable, respectively. The cir-
cumscription of I'(4b, On) with Ab minimized and On varied is

Circ(T'(Ab,On); Ab;On) =

[(Ab,On) AVRVI[[T(®,T)A D < Ab] D [Ab < B]], (12)
where
['(®,T) = [bl # b2 A B(bl) A B(b2) A =¥(b1)]
/\Vw(() A =®(z) D ¥(z)) (13)

314 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

In the following, we will reduce

VeVYI[L(®,T) A [P < Ab] D [Ab < @] (16)
in (12). Negating (16), we get

3PIV[T (P,) A [@ < Ab] A —[Ab < B]]. (17)
Since we will try to remove ® first, we replace (17) by the equivalent

ITIR T (P,) A [@ < Ab] A —[Ab < B]]. (18)

Preprocessing. Replacing I'(®, ¥), & < Ab and Ab < & by their equivalent forms
(13)—(15), eliminating D and renaming individual variables, we obtain

JP3IB[b1 # b2 A B(b1) A B(b2) A =¥ (b1)
Nz(-B(z) V ®(z) V ¥(z)) AVy(—2(y) vV Ab(y)) A Fz(Ab(2) A ~®(2))]. (19)
We next move 3z to the left, obtaining
Jz3¥3@[b1 # b2 A B(b1) A B(b2) A =¥ (b1)
AVz(—=B(z) V &(z) vV ¥(z)) AVy(—®(y) V Ab(y)) A (Ab(z) A =®(2))]. (20)

Preparation for Ackermann’s Lemma. (20) is in the form suitable for appli-
cation of Ackermann’s Lemma. To make this more explicit, we rewrite (20) as

323038V [(®(z) V ~B(z) V ¥(z)) AVy(—®(y) V Ab(y)) A ~®(z) A Ab(2)
A=T(b1) A bl # b2 A B(b1) A B(b2)]. (21)

Application of Ackermann’s Lemma. Applying Ackermann’s Lemma to (21),
we obtain

323V [Vy(—B(y) V ¥(y) V Ab(y)) A (—B(z) V ¥(2)) A Ab(2)
A=T(b1) A bl # b2 A B(b1) A B(b2)]. (22)
We next try to remove ¥ in (22).
Preprocessing. The formula (22) is already in the form which is the goal of this
phase. To see this, we rewrite it as
F23U[-¥(b1) A Vy(¥(y) vV ~B(y) V Ab(y))
A(T(z) V—B(z)) A Ab(z) Abl # b2 A B(b1) A B(b2)]. (23)

Preparation for Ackermann’s Lemma. Applying Proposition 1 (15) to =¥ (b1)
in (23), we obtain

Fz3PVs[(—P(s) Vs # bl) AVy(¥(y) V ~B(y) V Ab(y))
A(®(z) V -B(z)) A Ab(z) A bl # b2 A B(b1) A B(b2)]. (24)

COMPUTING CIRCUMSCRIPTION REVISITED 315

Application of Ackermann’s Lemma. We apply Ackermann’s Lemma to (24),
obtaining

F2vyl(y # b1V —B(y) vV Ab(y))
A(z # b1V —=B(z)) A Ab(z) A bl # b2 A B(b1) A B(b2)]. (25)
Simplification. Using Proposition 1 (15), we replace (25) by
3z[(—=B(bl) vV Ab(b1)) A (z # bl V =B(2)) A Ab(z) A bl # b2 A B(b1) A B(b2)]. (26)
Negating (26) results in
Vz[(B(b1) A —=Ab(b1)) V (z = b1 A B(z)) V —Ab(z)
Vbl = b2V —B(b1) V ~B(b2))]. (27)

The first-order formula (27) is logically equivalent to the second-order formula (16).
Consequently,

Circ(I'(Ab, On); Ab; On) = I'(Ab, On) AVz[(B(b1) A —Ab(b1))V
(z=b1AB(2))V—A4b(z) Vbl =b2V —=B(bl) V ~B(b2)]. (28)
At this stage, the algorithm terminates but we can continue simplifying relative to
the original theory. (27) together with (11) implies
Ab(bl) D Vz(—Ab(z) V (2 = bl A B(z2))), (29)
and thus implies
Vz(Ab(z) D (z = bl A B(2))), (30)

which states that for any object z, either it is normal (—Ab(z)) or it is a block and
bl. In other words, the only abnormal object is the block bl. O

6.2. The Birthday Example

Ezample: [Birthday Example] This example contains both existentially quantified
and universal formulas. In addition, it contains both unary and binary predicates.
Let I'(Ab, G) be the theory
[323y(B(y) A F(z,y) A ~G(z,y))]

A[VzVy(B(y) A F(z,y) A —Ab(z,y) D G(z,y))], (31)
where B, F' and G are abbreviations for Birthday, Friend and Gives-Gift, re-
spectively. Here Ab(z,y) has the following intuitive interpretation: “z behaves
abnormally w.r.t. y in the situation when y has a birthday and z is a friend of y”.
The circumscription of I'(Ab, G) with Ab minimized and G varied is

Circ(I'(Ab, G); Ab; G) =
[(Ab,G) AVRVI[L(®, T) A [® < Ab] D [Ab < 9], (32)

316 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

where

I(e,¥) = [B23y(B(y) A F(z,y) A —¥(z,y))]

AVzVy(B(y) A F(z,y) A —~®(z,y) O ¥(z,y))] (33)

d < Ab= VaVy[®(z,y) D Ab(z,y)] (34)

Ab< ® = VaVy[Ab(z,y) D ®(z,y)]. (35)
In the following, we will reduce

VEYE(T(S, T) A [& < Ab] S [Ab < 3]] (36)
in (32). Negating (36), we obtain

JSIT[T (B, T) A [& < Ab] A —[Ab < B]]. (37)

We remove ¥ first.

Preprocessing. Replacing I'(®, ¥), & < Ab and Ab < ® by their equivalents given
by (33)—(35), eliminating D, renaming individual variables and moving existential
quantifiers over individual variables to the left, we obtain

JzIy3qIr3®IY[B(y) A F(z,y) A ¥ (z,y) A VuVz(-~B(z) V ~F(u, z)V
D(u,z) V¥(u,z)) ANVsVE(—®(s,t) V Ab(s,t)) A Ab(q,T) A =B (g,)] (38)

Preparation for Ackermann’s Lemma. (38) is in the form suitable for appli-
cation of Ackermann’s Lemma. To see this, we rewrite it as

JzIy3qIr3®3IVVuVz[(¥(u, z) V ~B(z) V = F(u, z) V ®(u, 2)) A =¥ (z,y)
AB(y) A F(z,y) AVsVt(—~®(s,t) V Ab(s,t)) A Ab(g,7) A ~®(q,7)]. (39)

Application of Ackermann’s Lemma. Applying Ackermann’s Lemma to (39),
we obtain

Jz3y3q3r3I@[(-B(y) V ~F(z,y) V ®(z,y)) A B(y) A F(z,y)
NYsVE(—®(s,t) V Ab(s,t)) A Ab(g,) A =®(q,7)]. (40)
We now remove & in (40).
Preprocessing. (40) is in the form which is the goal of this phase.

Preparation for Ackermann’s Lemma. Using Proposition 1 (15), we replace
(40) by
JzdyIqIrI®VoVw[(®(v,w) Vv Az Vw #yV —~B(y) V - F(z,y))
NYsVE(—®(s,t) V Ab(s,t)) A ~®(q,7) A B(y) A F(z,y) A Ab(g,r)]- (41)

Application of Ackermann’s Lemma. Applying Ackermann’s Lemma to (41),
we obtain

JzIyIqIrVsVit[(s Zxz Vi #yV -B(y) V-F(z,y) V Ab(s,t))
Mg #zVr #yV-B(y) vV —F(z,y)) ABly) A F(z,y) A Ab(g,7)]. (42)

COMPUTING CIRCUMSCRIPTION REVISITED 317

Simplification. We replace (42) by
JzIy3Iq3r[(—B(y) V ~F(z,y) V Ab(z,y))
NMg#zVr#yV-B(y)V-F(z,y)) A B(y) A F(z,y) A Ab(g, r)]. (43)
Negating (43), we obtain
VaVyVeVr[(B(y) A F(z,y) A —Ab(z,y))
Vig=zAr=yAB(y) ANF(z,y)) V-B(y) vV ~F(z,y) V- Ab(g,7)]. (44)
(44) is logically equivalent to
VaVyVevr[~(B(y) A F(z,y)) vV (B(y) A F(z,y))A
(—Ab(z,y) V(g =z AT =1y)))V ~Ab(q,7)], (45)
which is equivalent to
VaVyVaVr[—(B(y) A F(z,y)) V ~Ab(z,y) V (¢ =z Ar =y) V - Ab(g,7)]. (46)

The first-order formula (46) is logically equivalent to the second-order formula (36).
Consequently,

Circ(I'(Ab, G); Ab; G) = T'(A4b, G)A
VzVyVaVr[=(B(y) A F(z,y)) V ~Ab(z,y) V (¢ = = AT = y) V ~Ab(q,r)]. (47)
A more informative sentence, equivalent to (46), is
VzVyVaVr[Ab(z,y) A Ab(q,7) A B(y) A F(z,y) D (g =z Ar =y)]. (48)

(48), together with the theory I'(A4b, G), states that there is exactly one pair of
individuals, z and y, such that y has a birthday, z is a friend of y and = does not
give a gift to y. O

6.3. The Hospital Example

Ezample: [Hospital Example] Let I’ be the theory
[Vz3y(Ab(z,y) D H(z,y))] A [Va3y(—Ab(z,y) D H(z,y))]. (49)

4

Here H(z,y) and Ab(z,y) are to be intuitively interpreted as “z is in a hospital
in a situation y” and “x behaves abnormally in a situation gy”, respectively. The
circumscription of I, with Ab minimized and H varied is

Circ(T'; Ab; H) =T AVRVIT(®, T) A [@ < Ab] D [Ab < @], (50)
where
['(®,9) = Vedy[®(z,y) D ¥(z,y)]A VeIy[-®(z,y) D ¥(z,y)] (51)

® < Ab= VaVy[®(z,y) D Ab(z,y)]
Ab < & = VaVy[Ab(z,y) D ®(z,y)].

—_ o~
[SN, §
w N
~— ~—

318 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

In the following, we will reduce

VEYE[T(S, T) A [& < Ab] S [Ab < B]] (54)
in (50). Negating (54), we obtain
ISIT[T (B, T) A [& < Ab] A —[Ab < B]]. (55)

Since we will try to remove ® first, we replace (55) by its equivalent given by
JTIB[T (B, T) A [& < Ab] A —[Ab < B]]. (56)
Preprocessing. Replacing T'(®, ¥), ® < Aband Ab < ® by their equivalents given
by (51)—(53), eliminating O and renaming individual variables, we obtain
AIS[VzIy(—®(z,y) V ¥(z,y)) A VeIr(®(g,r) vV ¥(q,7))
AVuVo(—®(u,v) V Ab(u, v)) A IsTt(Ab(s,t) A —®(s,t))]. (57)
Moving Js3t to the left and rearranging the resulting formula, we obtain

IsFtFVIS[VgIr(®(q,7) V ¥(g, 7)) AVz3y(—®(z,y) V ¥(z,y))
AYuVv (=@ (u,v) V Ab(u,v)) A Ab(s,t) A =8 (s, t)]. (58)

Preparation for Ackermann’s Lemma. Using Proposition 1 (15), we replace
®(g,7) in (58) by Vz2Vw(®(z,w) V z # gV w # r). This results in
JsFtAVIS[VgIr (V2Vw(@(z,w) Vz #AqVw #71)V¥(q, 7))

AVzIy(=®(z,y) V ¥(z,y)) A VuVo(=®(u,v) V Ab(u,v)) A Ab(s,t) A ~®(s,t)] (59)
which is equivalent to
JsFtIVIR[VgIrVzVw(®(z,w) Vz A qgVw £ 1V ¥(q,71))

AVzIy(=®(z,y) V ¥(z,y)) A VuVo(=®(u,v) V Ab(u,v)) A Ab(s,t) A ~®(s,t)]. (60)

We next eliminate 3r by Skolemization and move Vq to the right and VzVw to the
left. The resulting formula is (below f is the introduced function variable)

JsFHITIfIBV2Vw[(2 (2, w) V V(2 # gV w # fa) V ¥(q, f(9))))
AVzIy(=®(z,y) V ¥(z,y)) A VuVo(=®(u,v) V Ab(u,v)) A Ab(s,t) A ~®(s,t)]. (61)

Application of Ackermann’s Lemma. Applying Ackermann’s Lemma to (61),
we obtain

Js3t3fIVV2Iy(Va(z # qVy # fla) V ¥(q, f(q)) V ¥(z,y))
AVuYv(Vg(u # qV v # f(q) vV ¥(q, f(q))) V Ab(u,v))
NAb(s,t) ANVq(s #qVt# flq) vV ¥(q, f(q)))] (62)

which is equivalent to

Js3tIfIVVrIYVevVuvvl(z £ qVy # fla) vV ¥(q, f(q)) V ¥(z,y))
ANu# gV # fla)V ¥ (g fg) V Ab(u,v))
NAb(s,t) A (s #qVt# fla) vV ¥(q f(q))] (63)

COMPUTING CIRCUMSCRIPTION REVISITED 319

Since all occurrences of ¥ in each conjunct in (63) are positive, all the conjuncts
including ¥, together with 3¥, can be removed by Proposition 2. This yields

JsFtIfIVVrIyVeVuVv. Ab(s,t) (64)
which reduces to
st Ab(s, t). (65)

Since we negated the original formula before applying the algorithm, we now negate
the result, obtaining

VsVit—Ab(s,t). (66)

The first-order formula (66) is logically equivalent to the second-order formula (54).
Consequently,

Circ(T; Ab; H) =T A VsVt.—Ab(s, t). (67)
which implies

VeIyH (z,y). (68)

6.4. The Vancouver Example

This is a variant of an example from Reiter [21]. Rather than using the function
city as Reiter does, we will use a relation C(z,y) with suitable axioms.

Ezample: [Vancouver Example]
We begin by defining the binary relation C with the intention that C(z,y) holds
iff the city of z is y. In our axiomatization, Reiter’s axiom,

Vz(—Ab(z) D city(z) = city(wife(z))) (69)
is replaced with

VzVyVz(—Ab(z) A C(z,y) A C(wife(z),2) Dy = 2). (70)
In addition, we add the following axiom guaranteeing that C represents a function:

VzVyVz(C(z,y) AC(z,2) Dy = 2). (71)
We do not require that all people live in cities, i.e. we reject the axiom®
VzIyC(z,y). (72)

So, the distinction is that our representation of the city function is partial, whereas
Reiter’s is total. Intuitively, our choice seems to make more sense.

320 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

Let I'(Ab, C) be the theory

[VzVyVz(—Ab(z) A C(z,y) A C(wife(z),z) Dy = 2)]A
VzVyVz(C(z,y) A C(z,z) Dy = 2)]. (73)

The circumscription of I'(Ab, City) with Ab minimized and C varied is
Circ(T(Ab,C); Ab; C) = T(Ab,C) AVIVI[T(®, T) A [P < Ab] D [Ab < @], (74)

where
['(®,9) = [VaVyVz(—®(z) A T(z,y) A ¥(wife(z),z) Dy =2)]A
VaVyVz(¥(z,y) A ¥(z,2) Dy = 2)]. (75)
b < Ab= Vz(®(z) D Ab(z)) (76)
Ab< ® = Vz(Ab(z) D ®(z)). (77)
In the following, we will reduce
VeVYI[L(®,T) A [P < Ab] D [Ab < @] (78)
n (74). Negating (78), we obtain
JBIT[T (B, T) A [& < Ab] A —[Ab < B]]. (79)

We start by removing W.

Preprocessing. Replacing T'(®, ¥), ® < Aband Ab < ® by their equivalents given
by (75)—(77), eliminating O and renaming individual variables, we obtain

363V [VaVyVz(®(z) V ~¥(z,y) V - ¥ (wife(z), z) Vy = z) A VuVoVw(—T(u,v)
V=P (u,w) Vo =w)) AVs(—®(s) V Ab(s)) A Ft(Ab(t) A —@(t))]- (80)

Note that ¥ can be removed directly using Proposition 2, since all instances of ¥

occurring in (80) are negative. To prepare the latter formula into the form suitable

for the application of Proposition 2, we move all quantifiers ranging over individual
variables to the left. This results in

IPITVVyVVuVoVwVsIt[(®(z) V ¥ (z,y) V - T (wife(z),z) Vy = 2) A

(=¥ (u,v) VT (u,w) Vo=w)A(—®(s) V Ab(s)) A Ab(t) A =@ (t)]. (81)
Applying Proposition 2 to (81), we obtain

A@VaVyVzVuVoVwVsIt[(—®(s) V Ab(s)) A Ab(t) A =8 (1)] (82)
which reduces to

APVsIt[(—B(s) V Ab(s)) A Ab(t) A —B(t). (83)

We next try to remove ®. Again, this can be done directly using Proposition 2,
since all instances of ® in (83) are negative. This results in

Vst Ab(t) (84)

COMPUTING CIRCUMSCRIPTION REVISITED 321

which is equivalent to

3t Ab(t). (85)
Taking the negation of (85) results in

Vt-Ab(t). (86)

The first-order formula (86) is logically equivalent to the second-order formula
(78). Consequently,

Cire(T; Ab; C) = T A Vi-Ab(t). (87)
O

6.5. A Preprocessing Example

In the previous examples, the preprocessing phase was very simple. In this example,
which appears to be a relatively trivial theory, the preprocessing stage is much more
complex.

Ezample: [Preprocessing Example]
Let ' be the theory

P(a) D P(b). (88)
The circumscription of I', with P minimized is

Circ(T'; P;()) =T AVR[T(®)[A® < P] D [P < @]], (89)
where

L®)= ®(a) D ®(b), (90)

® < Ab= Vz(®(z) D P(z)), (91)

Ab < & = Vz(P(z) D ®(z)). (92)
In the following, we will reduce

V@[['(®) A [P < Ab] D [4b < @] (93)
in (89). Negating (93), we obtain

JB[I(®) A [@ < Ab] A —[Ab < D). (94)

Preprocessing. Replacing I'(®, ¥), ® < Aband Ab < ® by their equivalents given
by (90)—(92), eliminating O and renaming individual variables, we obtain

A[(—®(a) v 2(b)) AVz(~2(z) V P(z)) A Fy(P(y) A —2(y))]. (95)
Moving Jy to the left, we obtain
3y3@[(~@(a) V #(b)) A Va(~2(z) V P(2)) A P(y) A ~@(y)]. (96)

322 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

Since positive and negative occurrences of & are not properly separated, we dis-
tribute the conjunction Vz(—®(z) vV P(z)) A P(y) A =®(y) over =®(a) V ®(b). This
leads to

Fy3R[(~®(a) A V(-2 (2) V P(2)) A P(y) A =2(y))
V(@ (b) A V(=2 (z) V P(z)) A P(y) A =2(y))]- (97)

Applying Proposition 1(6) to (97), we obtain

Fy32[=2(a) A Va(=2(z) V P(z)) A P(y) A ~2(y)]
VIy3®[®(b) AVz(—®(z) V P(z)) A P(y) A =®(y)]. (98)

The preprocessing phase is successfully completed. We now process the disjuncts
from (98) as separate problems. Let us begin with the first disjunct. Note that &
can be removed from it directly, using Proposition 2. To this end, we replace the
disjunct with its equivalent given by

Jy3eVz[-®(a) A (—®(z) V P(z)) A P(y) A =®(y)]. (99)
Applying Proposition 2 to (99), we obtain

JyVzP(y) (100)
which reduces to

JyP(y). (101)

We have succeeded in reducing the first disjunct in (98) to a first-order formula.
We now try to do the same for the second one, i.e.

Jy3B[®(b) AVz(~B(z) V P(z)) A P(y) A 8 (y)]. (102)

Preparation for Ackermann’s Lemma. Using Proposition 1 (15), we replace

(102) by
JyIPVz[(B(2) V z # b) AVz(—®(z) V P(z)) A P(y) A =®(y)]. (103)

Application of Ackermann’s Lemma. Applying Ackermann’s Lemma to (103),
we obtain

JyVz[(z #bV P(z)) Ay #bA P(y)]. (104)

We have now succeeded in reducing the second disjunct of (98). The original second-
order formula (97) has now been reduced to the equivalent first-order formula

[ByP(y)] v [Byvz[(z # bV P(z)) Ay # b A P(y)]]. (105)
Applying the simplification step to (105) using Proposition 1 (15), we obtain
[ByP(y)] v [Fy[P(b) Ay #bA P(y)]]. (106)

COMPUTING CIRCUMSCRIPTION REVISITED 323

Finally, we negate (106), obtaining
[Vy=P(y)] AVy[=P(b) Vy = bV ~P(y)]. (107)

The first-order formula (107) is logically equivalent to the second-order formula
(93). Consequently,

Circ(L; P;()) =T A [Vy=P(y)] AVy[=P(b) Vy = bV ~P(y)]. (108)
(107) can be simplified using some standard equivalences:

[Vy=P(y)] AVy[=P(b) Vy = bV ~P(y)] = Vy-P(y). (109)

O

6.6. An Existential Example

Kolaitis and Papadimitriou [12] show that the circumscription of any existential
first-order formula is equivalent to a first-order formula. We have already shown
that the algorithm we propose here generalizes Kolaitis and Papadimitriou’s results.
It is interesting to compare these reduction techniques in terms of complexity.
Kolaitis and Papadimitriou [12] state

We notice that computing a first-order sentence equivalent to the circum-
scription of P in an existential first-order formula v (P) seems to increase
the size of 1(P) exponentially, a phenomenon not observed in the other
known cases of first-order circumscription studied in [Lif85]. It would be
interesting to determine whether this is inherent to existential first-order
formula, or a particular creation of our proof.

Ezample: [Existential Example]

We now take the example used by Kolaitis and Papadimitriou and compare the
resulting first-order formula with that generated by our algorithm. Kolaitis and
Papadimitriou apply their reduction technique to the theory

E|z133v2 [R(El, 12) A P(El) A P(Eg)] (110)

and circumscribe P without varying predicates. The first-order equivalent they
obtain is

Jz1(R(z1,21) A P(z1) A (Vy(P(y) = y = 21))
\/[31313%2(]%(]31,]32) AN P(]}l) A P(]}z) A (]31 7é 162) AN

(Vy(P(y) = (y = 21 Vy = 22))) A ~R(21,21) A ~R(23, 22))]. (111)

We apply our reduction algorithm to the same theory and compare the results.
Let I'(P) be the theory

EImﬁm[R(ml,xQ) A P(El) A P(Eg)] (112)

324 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

The circumscription of I'(P) with P minimized without variable predicates is

Circ(T'(P); P;()) =T(P) AVR[L'(®)A[® < P] D[P L 9], (113)
where
F(q)) = 3113.’E2[R(.’E1, .’Ez) AN @(11) A @(.’Ez)] (114)
< P= Vz(®(z) D P(z)) (115)
P<d= Vz(P(z) D ®(z)). (116)
In the following, we will reduce
Ve[['(®)A[® < P] D[P L@ (117)

in (113). Negating (117), we obtain
3L (®) A [® < P]A [P < ?]]. (118)

Preprocessing. Replacing I'(®), ® < P and P < & by their equivalents given by
(114)—(116), eliminating D and renaming individual variables, we obtain

A®[3zy Az (R(z1,22) A B(z1) A B(22)) A
Vy(=2(y) V P(y)) A 3z(P(z) A —2(2))]. (119)

We next move Jz;3x53z to the left, obtaining

Jz1329323P[R (21, z2) A B(z1) A B(22) A
Vy(=%(y) vV P(y)) A P(z) A =®(z)]. (120)

Preparation for Ackermann’s Lemma. Applying Proposition 1 (15) and some
standard equivalences, we replace (120) by

Jz13253238V¢[((q) V (¢ # 21 A g # x2)) A (R(1,22) A
Vy(=®(y) vV P(y)) A P(2) A =2(z)]. (121)

Application of Ackermann’s Lemma. Ackermann’s Lemma can now be applied
to (121) resulting in

Jz13z932[R(z1,22) AVYy((y # 21 Ay # z2) V P(y)) A
P(z) Nz # x1 Az # x2). (122)

Simplification. Applying Proposition 1(18) to (122) results in
Jz13z23z[R(z1,22) A P(z1) A P(z2) A P(2) Az # 21 A 2 # Z3). (123)
Negating (123), we obtain

Vz1VzoVz[-R(z1,22) V=P (z1) V = P(z2) V-P(z)Vz =121 Vz = z3]. (124)

COMPUTING CIRCUMSCRIPTION REVISITED 325

The first-order formula (124) is logically equivalent to the second-order formula
(117). Consequently,

Circ(T; P) = T(P)A
Vz1VzoVz[-R(z1,22) V = P(z1) V - P(z2) V-P(2) Vz =21 V z = z2]. (125)

Comparing (125) with (111), it is easily observed that there is a substantial
difference in the size of the formulas. For example, the output of DLS contains a
total of 62 symbols versus 92 for the Kolaitis and Papadimitriou approach. Without
counting brackets and parentheses, the symbol count is 44 versus 57, respectively.
Of course, this is only one example. Whether the comparison holds for a larger
space of problems is questionable. [l

6.7. Interpreting the Results

There are a number of interesting observations that can be made on the basis of
the above examples.

1. In all the examples, the first-order equivalent of the circumscription axiom is
shorter than the axiom itself.

2. Note that for certain examples, such as the hospital example, the first-order
formula returned is of such a nature that without the algorithm, finding a
substitution for the circumscription axiom would be highly unlikely.

3. Execution of the algorithm is easily followed. For shorter examples the DLS
algorithm can be applied with pencil and paper, although an implementation
of DLS is obviously a better means of doing the reductions.

7. Related Work

Besides the work already mentioned in this article, there are a number of other
references related to the reduction problem that are worth mentioning and also
analyzing in future work. In addition to his work in the area of correspondence the-
ory ([3],[4]), Johan van Benthem has also investigated the logic of circumscription
and its first-order reduction [5]. Kartha and Lifschitz [11], have recently introduced
an action theory using nested circumscription [16], for reasoning about action and
change. The nested circumscription theories are reduced using the SCAN algorithm.
Doherty, Lukaszewicz, and Szalas [6], have recently investigated the characteriza-
tion of normal logic programs using a generalization of the algorithm described
in this article. Rather than reducing second-order formulas to logically equivalent
first-order formulas, one reduces to a fixpoint formula and looks for bounds on
the fixpoint. If successful then there is a reduction from the fixpoint formula to
a first-order formula. Doherty, Lukaszewicz, and Szatas [7], are also investigating
first-order reductions of a general form of domain circumscription which also uses
a generalization of the DLS algorithm.

326 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

8. Conclusion

In this paper, we have presented a general algorithm which transforms second-order
formulas into logically equivalent first-order formulas for a large class of second-
order formulas. The algorithm has been shown to have a number of attractive
properties, including a potentially wide area for practical application. To support
this claim, we have provided a detailed description of the algorithms application to
the reduction of circumscription axioms. In addition, we have shown that the algo-
rithm, in its general form, provably subsumes nearly all existing results concerning
the reduction of circumscription axioms. In the cases not subsumed, we have shown,
via the general methodology for use of the algorithm, how a slight specialization
of the algorithm provides a remedy, not only for these particular cases, but for
other potential exceptions. In contrast to previous results, the algorithm is more
constructive in the sense that it provides a step-by-step method for transforming a
formula and it also terminates.

In the future, we plan on investigating specializations of the algorithm where the
general methodology proposed may be used in combination with information about
the structure of particular domains of interest, such as the domain of action and
change, to generate specific heuristics which can be integrated with the preprocess-
ing and simplification stages. In addition, we feel that the use of circumscription
as a knowledge representation tool deserves reevaluation in light of not only the
results described here, but recent results of Lifschitz and Kartha [11] from a related
project in which reductions are based on the SCAN algorithm. The common view
of circumscription as an elegant formalism for conceptual analysis, but one that is
difficult to apply in practice due to its second-order nature, requires modification
if these and other algorithms can be applied practically, as we believe they can.

Acknowledgments

We would like to thank Thomas Drakengren, Joakim Gustafsson, Lars Karlsson,
G. Neelakantan Kartha, and Vladimir Lifschitz for useful discussions.

Appendix
The Algorithm in Detail

A.1. The Algorithm

The algorithm takes a formula of the form 3® A, where A is a first-order formula,
as an input and returns its first-order equivalent or reports failure”’. Of course, the
algorithm can also be used for formulas of the form V®. A, since the latter formula is
equivalent to -3®—A. Thus, by repeating the algorithm one can deal with formulas
containing arbitrarily many second-order quantifiers.

COMPUTING CIRCUMSCRIPTION REVISITED 327

The algorithm consists of four basic phases: (1) preprocessing; (2) preparation
for Ackermann’s Lemma; (3) application of Ackermann’s Lemma; and (4) simplifi-
cation. These phases are described below. It is always assumed that whenever the
goal specific for a current phase is reached, then the remaining steps of the phase
are skipped.

328 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

A.1.1. Preprocessing

Input: 39.4

:

Phase 1
May Fail!

Positive
Output: IT3P[(A1(®) A B1(®)) V...V (An(P) A B, (®))]

Negative

To Phase 2 To Phase 2

Figure A.1. Phase 1: Preprocessing the Input.

The purpose of this phase is to transform the formula 3®.A4 into a form that
separates positive and negative occurrences of the quantified predicate variable ®.
The form we want to obtain is

S730[(A1(8) A Bi(®)) V-V (A, (®) A B, ()], (A1)
where, for each 1 < i < n, A;(®) is positive w.r.t. ® and B;(®) is negative w.r.t.

®.8 It should be emphasized that not every formula is reducible into this form.
To achieve the goal of this phase, apply the steps below in the following order.

COMPUTING CIRCUMSCRIPTION REVISITED 329

1. Eliminate the connectives D and = using the usual definitions. Remove re-
dundant quantifiers. Rename individual variables until all quantified variables
are different and no variable occurs both bound and free. Using the usual
equivalences, move the negation connective to the right until all its occurrences
immediately proceed atomic formulas.

2. Move universal quantifiers to the right and existential quantifiers to the left
applying as long as possible the following equivalences (below @ € {V,3}, o €
{V, A} and B contains no occurrences of variables Z):

e Qz(A(Z)oB) = (QzA(Z)) o B
e Qz(Bo A(z)) Bo QZA(Z).

3. Move to the right the existential quantifiers that are in the scope of universal
quantifiers using the equivalences of step 2.

4. Repeat (2) and (3) as long as no new existentially quantified variable can be
moved into the prefix.

5. In the matrix of the formula obtained so far, distribute all top-level conjunc-
tions over the disjunctions, containing both positive and negative occurrences
of &, that occur among their conjuncts. For this purpose, apply the following
equivalences:

e AN(BVC) = (AANB)V(AACQ)
e (AVB)ANC = (ANC)V(BACQO)

only if BV C (A V B) have both positive and negative occurrences of ®

If the resulting formula is not in the form (A.1), then report the failure of the
algorithm. Otherwise replace (A.1) by its equivalent given by

32 (38 (A1 (@) A By (@) V -+ V 38.(4,(8) A B,(@))). (A.2)

For each disjunct 3®(A;(®)AB;(®)) of (A.2) try to find its first-order equivalent
by apply the next phases to the formula 3®(A;(®)AB;(®)). If all the equivalents
are obtained, return their disjunction, preceded by the prefix 3z, as the output
of the algorithm.

The following example illustrates the described phase.
Ezample: Consider the formula
3@ VzIy(P(y) vV It(2(t) V P(z) V R(z,t))) A Fz®(2) A Fu~®(u)].

The following lines show the subsequent transformations.

330 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

3®[VzIy(P(y) V 3t(2(t) vV P(z) V R(z,t))) A Fz8(2) A Fu—®(uw)] = (by 2)
JzuI®[VzIy(P(y) vV It(®(¢) V P(z) V R(z,t))) A ®(2) A =®(u)] = (by 3)
JzuIP[Vz(IyP(y) vV t(®(¢) V P(z) V R(z,t))) A ®(2) A =®(u)] = (by 2)
Jzu3R[(FyP(y) V VzIt(®(t) V P(z) V R(z,t))) A ®(2) A =®(u)] = (by 2)
Jzuy3®[(P(y) v Vz3t(®(t) vV P(z) V , ®(2) A=®(u)] = (by5)

Fzuy3IS[(P(y) A ®(2) A =®(u)) V (Vz3t(2(¢)
B(2) A =®(u))].

COMPUTING CIRCUMSCRIPTION REVISITED 331

A.1.2. Preparation for Ackermann’s Lemma

Input: EQ(A(Q) A B(®))

.....

Using 1st form of

Ackerman’s Lemma

\ Phase 2

pref[(®(11 V...V ®(t1n,) VCI) Ao . A (B(Fk1) V ...V B(Fkn,) V Ck) /\b]

ni>1\b ng =1

Az, (Vy(®(Y) VT ZYVC) AN (T =t V...V Ty = L, V C;)

\, Possible Skolemization Vyg(®(g) Vy #tia VC;)

If3%pref'IVG(R(G) VE £ GV C1) A ... AVG(B(G) V Zx #FV Cr] A E

\v B(®) /\b/\...
Output: IfIGVy[®(y) Vpref' (21 ZGV CL)A... A (T, £ GV C)) A pref'E]

\ To Phase 3

Figure A.2. Phase 2: Preparation for Ackermann’s Lemma

The goal of this phase is to transform a formula of the form 3®(A(®) A B(®)),
where A(®) (resp. B(®)) is positive (resp. negative) w.r.t. @, into one of the forms
(3) or (4) given in Lemma 1. Both forms can always be obtained. However, Skolem-
ization is sometimes necessary and unskolemization, which is to be performed in the
next phase, may fail. Accordingly, the algorithm performs both transformations.
Due to the symmetry of Ackermann’s Lemma, the steps stated below describe only
one of those transformations, namely that leading to the form (3).

1. Transform A(®) into the form

332 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

pref[(®(F11) V- V®(E1n,) VC1I) A A (®Er1) V-V B(Ekn,) V Cr) A D],

where pref is a prefix of first-order quantifiers and ¢ does not occur in
Ci,...,Ck, D. This step is always possible by applying the usual technique of
obtaining the conjunctive normal form.

2. Transform each conjunct in Step 1 of form (®(¢;1) V-V ®(Ein,) V C;), where
n; > 1, into its equivalent

Efl(vg(é(g) Vz; 75 yV Cl) N (.’E, = t_il VeeVz; = Ein,- \% Cl))

and move all existential quantifiers into the prefix pref in Step 1. This step
is justified by equivalence (16) of Proposition 1. In addition, move each of the
second conjuncts, (Z; = ;1 V-V Z; = t;,, V C;), into D in Step 1, renaming it
D'

3. Transform each conjunct in Step 1 of form (®(f;1) V C;) into its equivalent
Vy(2(y) VY # tia vV Ci)

4. Remove all existential quantifiers from the prefix pref using the equivalence of
Skolem given by

VZ. 3y A(Z,y,...) = 3fVE.AF,y « £(3),...), (A.3)

where f is a new function variable. After this transformation the input formula
takes the form

3f38pref'Vy(®(y) Va1 #yV C1) A--- AVy(S(y) Vax # §V Cr) A El,
(A.4)
where f is the tuple of the introduced Skolem functions, pref’ only contains
universal quantifiers, and E is D' A B(®).

5. Transform (A.4) into its equivalent given by

3f3eVy[®(g) Vpref (F1 #GV C1)A--- A (T, GV Cr)) Apref'E.
(A.5)

Ezample: [continued] There are two formulas to be considered in this phase, namely
3P(P(y) A ®(2) A—®(u)) and APVt (®(t) V P(z)) A ®(2) A—®(u). We apply phase
2 to the former of the above formulas.

IB(P(y) A ®(2) A =®(u)) = (by 2)
AB(P(y) AVr(®(r)Vz # 1) A —=®(u))

COMPUTING CIRCUMSCRIPTION REVISITED

Applying phase 2 to the second formula proceeds as follows.

oVt (D(t) V P(z) V R(z,t)) A ®(2) A =®(u)

OVzItVr(®(r) Vr £tV P(z) V R(z,t)) AVr(®(r) Vz #7) A=®(u)

If3®VaVr(®(r) Vr # f(z) V P(z) V R(z, f(z)))
AVr(®(r)Vz#1) A —=®(u)

3f3eVr[®(r) V (Vz(r # f(z) V P(z) V R(z, f(z))) Az £ 1) A

=P (u).

333

(by 3)
(by 4)

334 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

A.1.3. Application of Ackermann’s Lemma

Input: 3f3eVy[®(y) Vpref (1 ZGV C1)A...A (T # GV Ci)) Apref'E]

Phase 3.1
Apply

If[pref' E(=® « pref' (31 # GV C1) A... A (@ # GV Cx)))]

V.. A(Z,y,...) =3f VL. A(Z,y « f(Z),...)

Phase 3.2 May Fail!
Unskolemize

Output: pref”E(—MI) —opref'((Zy GV C) N ... AN (T 7V C)))]

\ To Phase 4

Figure A.3. Phase 3: Application of Ackermann’s Lemma

The goal of this phase is to eliminate the second-order quantification over @,
applying Ackermann’s Lemma, and then to unskolemize the introduced function
variables. The phase consists of the following two steps.

1. Apply Ackermann’s Lemma to the formula (A.5). The resulting formula is of
the form

3flpref'E(—® < pref' (1 # GV C1) A+ A (T # 5V Cr)))]

COMPUTING CIRCUMSCRIPTION REVISITED 335

2. Try to remove all existential quantifiers over function variables using the equiv-
alence (A.3). If this is impossible, the algorithm fails for the first form of
Ackermann’s Lemma. Using the second form returned from A.1.2, try to re-
move the existential quantifiers over function variables. If this is successful, go
to the next step. If not, the algorithm fails.

Ezample: [continued] We apply phase 3 for the pair of formulas obtained as the
result of phase 2.

IB(P(y) AVr(®(r)Vz#7r)A-®(u)) = (by 1)

P(y) A z # u.

3f3eVr[®(r) V (Vz(r # f(z) V P(z) V R(z, f(z))) Az £ 1)] A—-®(u) = (by 1
fVz(u # f(z) V P(z) V R(z, f(2))) A 2 # u = (by 2
Ve3t(u #tV P(z) V R(z,t)) A z # u.

336 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

A.1.4. Simplification

Input: pref"E(—® < pref'((z1 ZgV C1) A... A (T # GV Ci)))]

Output: Simplified Input Formula.

Figure A.j. Phase 4: Simplification

The formula obtained as the result of the previous phase can often be substantially
simplified using Proposition 1 (15), or its generalization (18). The simplification
phase consists of one step. In the formula obtained after successfully performing
phase 3,

1. Replace each subformula of the form VZ(A(f < Z) V Z # t) by A(%), and

2. Replace each subformula of the form VZ(Z ##t; A--- AT #t,)V A(t1 < T)) by
A(f) A - N A(Ey).

COMPUTING CIRCUMSCRIPTION REVISITED 337

Ezample: [continued] Since the simplification phase is inapplicable to the formulas
obtained in phase 3, the first-order equivalent of the input formula we finally obtain
is

Fz3uTyY[(P(y) Az #w) V (VzIt(u £tV P(z) V R(z,t)) A z # u)].

A.1.5. Remarks about the Algorithm

e The algorithm always terminates and is sound, i.e. the output first-order for-
mula, if obtained, is equivalent to the input second-order formula.

e Although the algorithm may seem a bit complex, the calculations it describes
may be performed without any computer support.

e For the sake of clarity the algorithm is not presented in its most efficient form.
The possible directions for its optimization follow from the examples presented
throughout the paper.

e Observe that one usually deals with the elimination problem over a first-order
definable class of models. In such cases it is sometimes possible to considerably
simplify the input formula before running the algorithm (see Section 4.1.2).
Such a possibility can be considered as an additional heuristics in the prepro-
cessing phase.

Notes

1. The failure of the algorithm does not mean that the second-order formula at hand cannot be
reduced to its first-order equivalent. The problem we are dealing with is not even partially
decidable, for first-order definability of the formulas we consider is not an arithmetical notion
(see, for instance, [4]).

2. Tt should be emphasized that not every formula is reducible into this form.

3. Toincrease the strength of the algorithm, it is essential to move as many existentially quantified
variables as possible into the prefix of (6).

4. Rabinov requires n-simplicity here.
5. The second form considered in Lemma 1 is symmetric to the first one.

6. If the axiom were added to the theory, the DLS algorithm would fail due to unskolemization
problems.

7. The failure of the algorithm does not mean that the second-order formula at hand cannot be
reduced to its first-order equivalent. The problem we are dealing with is not even partially
decidable, for first-order definability of the formulas we consider is not an arithmetical notion
(se, for instance, [4]).

8. To increase the strength of the algorithm, it is essential to move as many existentially quantified
variables as possible into the prefix of (A.1).

338 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS

References

1. W. Ackermann. Untersuchungen iiber das Eliminationsproblem der Mathematischen logik.
Mathematische Annalen, 110:390-413, 1935.

2. W. Ackermann. Solvable Cases of the Decision Problem. North-Holland, Amsterdam, 1954.

3. J Van Benthem. Modal Logic and Classical Logic. Bibliopolis, Napoli, 1983.

4. J. Van Benthem. Correspondence theory. In D. Gabbay and F. Guenthner, editors, Handbook
of Philosophical Logic, volume 2, pages 167-247. D. Reidel Publishing Co., 1984.

5. J. Van Benthem. Semantic parallels in natural language and computation. In H-D Ebbing-
haus et al., editors, Logic Colloguium, Granada 1987, pages 331-375, 1989.

6. P. Doherty, W Lukaszewicz, and A. Szalas. A characterization result for circumscribed
normal logic programs. Technical Report LITH-IDA-95-20, Department of Computer and
Information Science, Linkdping University, Linkoping, Sweden, 1995.

7. P. Doherty, W Lukaszewicz, and A. Szatas. General Domain Circumscription and its First-
Order Reduction. Technical Report LITH-IDA-95, Department of Computer and Information
Science, Linkoping University, Linkoping, Sweden, 1995.

8. D. Gabbay and H. J. Ohlbach. Quantifier elimination in second-order predicate logic. Techni-
cal Report MPI-1-92-231, Max-Planck Institut fiir Informatik, Saarbriicken, Germany, 1992.

9. M. Gelfond and V. Lifschitz. Compiling circumscriptive theories into logic programs. In
Proc. 2nd Int’l Workshop on Non-Monotonic Reasoning, volume 346 of Lecture Notes in
Artificial Intelligence, pages 74-99, Berlin, 1989. Springer-Verlag.

10. M. L. Ginsberg. A circumscriptive theorem prover. Artificial Intelligence, 39:209-230, 1989.

11. G. N. Kartha and V. Lifschitz. A simple formalization of actions using circumscription. In
Proceedings of the 14th Int’l Joint Conference on Artificial Intelligence, 1995.

12. P. Kolaitis and C. Papadimitriou. Some computational aspects of circumscription. In AAAI-
88: Proceedings of the 7Tth National Conference on Artificial Intelligence, pages 465-469,
1988.

13. V. Lifschitz. Computing circumscription. In Proceedings of the 9th Int’l Joint Conference
on Artificial Intelligence, volume 1, pages 121-127, 1985.

14. V. Lifschitz. Pointwise circumscription. In M. Ginsberg, editor, Readings in Nonmonotonic
Reasoning, pages 179-193. Morgan Kaufmann, 1988.

15. V. Lifschitz. Circumscription. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors,
Nonmonotonic Reasoning and Uncertain Reasoning, volume 3 of Handbook of Artificial In-
telligence and Logic Programming. Oxford University Press, 1994.

16. V. Lifschitz. Nested abnormality theories. Artificial Intelligence, 1995. To Appear.

17. L. Lowenheim. Uber Modglichkeiten im Relativekalkiil. Mathematische Annalen, pages 137—
148, 1915.

18. J. McCarthy. Circumscription — a form of non-monotonic reasoning. Artificial Intelligence,
13(1-2):27-39, 1980.

19. T. Przymusinski. An algorithm to compute circumscription. Artificial Intelligence, 38:49-73,
1991.

20. A.Rabinov. A generalization of collapsible cases of circumscription (research note). Artificial
Intelligence, 38:111-117, 1989.

21. R. Reiter. A logic for default reasoning. Artificial Intelligence, 13:81-132, 1980.

22. A. Szalas. On the correspondence between modal and classical logic: an automated approach.
Journal of Logic and Computation, 3:605-620, 1993.

