
Journal of Automated Reasoning, 18, 297{334 (1997)c
 1997 Kluwer Academic Publishers, Boston. Manufactured in The Netherlands.
Computing Circumscription Revisited:A Reduction AlgorithmPATRICK DOHERTY* patdo@ida.liu.seDepartment of Computer and Information Science,Link�oping University, S-581 83 Link�oping, SwedenWITOLD LUKASZEWICZ AND ANDRZEJ SZA LAS** witlu/szalas@mimuw.edu.plInstitute of Informatics,Warsaw University, 02-097 Warsaw, Banacha 2, PolandAbstract. In recent years, a great deal of attention has been devoted to logics of common-sensereasoning. Among the candidates proposed, circumscription has been perceived as an elegantmathematical technique for modeling non-monotonic reasoning, but di�cult to apply in practice.The major reason for this is the second-order nature of circumscription axioms and the di�culty in�nding proper substitutions of predicate expressions for predicate variables. One solution to thisproblem is to compile, where possible, second-order formulas into equivalent �rst-order formulas.Although some progress has been made using this approach, the results are not as strong as onemight desire and they are isolated in nature. In this article, we provide a general method which canbe used in an algorithmic manner to reduce certain circumscription axioms to �rst-order formulas.The algorithm takes as input an arbitrary second-order formula and either returns as output anequivalent �rst-order formula, or terminates with failure. The class of second-order formulas, andanalogously the class of circumscriptive theories which can be reduced, provably subsumes thosecovered by existing results. We demonstrate the generality of the algorithm using circumscriptivetheories with mixed quanti�ers (some involving Skolemization), variable constants, non-separatedformulas, and formulas with n-ary predicate variables. In addition, we analyze the strength of thealgorithm, compare it with existing approaches, and provide formal subsumption results.Keywords: Circumscription, Non-monotonic Reasoning, Quanti�er Elimination, Common-senseReasoning1. Introduction and PreliminariesIn recent years, a great deal of attention has been devoted to logics for common-sense reasoning. Among the candidates proposed, circumscription ([18], [15]), hasbeen perceived as an elegant mathematical technique for modeling non-monotonicreasoning, but di�cult to apply in practice. Practical application of circumscriptionis made di�cult due to two problems. The �rst concerns the di�culty in �ndingthe proper circumscriptive policy for particular domains of interest. The secondconcerns the second-order nature of circumscription axioms and the di�culty in�nding proper substitutions of predicate expressions for predicate variables so theaxioms can be used for making inferences. There have been a number of proposals* supported in part by Swedish Research Council for Engineering Sciences (TFR) grant 93-270.** supported in part by KBN grant 3 P406 019 06.

298 P. DOHERTY, W. LUKASZEWICZ, A. SZALASfor dealing with the second problem ranging from compiling circumscriptive theoriesinto logic programs [9], to developing specialized inference methods for such theories([10],[19]).A third alternative is to focus on the more general problem of �nding methods forreducing second-order formulas to logically equivalent �rst-order formulas, wherepossible. Although some progress has been made using this approach, the class ofsecond-order circumscription formulas shown to be reducible is not as large as onemight desire, the reduction methods proposed are somewhat isolated relative toeach other and, most importantly, the existing reduction theorems generally lackalgorithmic procedures for doing the reductions.In this article, we provide a general method which can be used in an algorithmicmanner to reduce certain classes of second-order circumscription axioms to logicallyequivalent �rst-order formulas. The algorithm takes as input an arbitrary second-order formula and either returns as output an equivalent �rst-order formula, orterminates with failure. Of course, failure does not imply that there is no �rst-order equivalent for the input, only that the algorithm can not �nd one. Theclass of second-order formulas, and analogously the class of circumscriptive theorieswhich can be reduced, provably subsumes those covered by existing results. Thealgorithm can be applied successfully to circumscriptive theories which may includemixed quanti�ers (some involving Skolemization), variable constants, n-ary tuplesof minimized and varied predicates, separable, separated and in some cases, non-separated formulas, and formulas with n-ary predicate variables, among others. Inaddition to demonstrating the algorithm by applying it to some of these theories, weanalyze its strength and provide formal subsumption results based on comparisonwith existing approaches.1.1. Outline of the PaperIn Sections 1.2, 1.3 and 1.4 the notation used throughout the paper is introduced inaddition to a number of preliminary de�nitions and useful tautologies. In Section 2,existing results on reducing second-order circumscription are reviewed. In Section 3,the major components of the elimination algorithm are described. An in-depthpresentation of the algorithm may be found in Appendix A. In Section 4, thestrengths and weaknesses of the algorithm are discussed and subsumption resultsover existing reduction techniques are proven. In Section 5, complexity issues areconsidered. In Section 6, the algorithm is applied in an informal manner to anumber of examples each characterized by a speci�c feature that illuminates certainaspects of the algorithm and its generality. In Section 7, we discuss related work.In Section 8, we conclude with a discussion and future work.

COMPUTING CIRCUMSCRIPTION REVISITED 2991.2. NotationAn n-ary predicate expression is any expression of the form �x: A(x), where x isa tuple of n individual variables and A(x) is any formula of �rst- or second-orderclassical logic. If U is an n-ary predicate expression of the form �x: A(x) and � isa tuple of n terms, then U(�) stands for A(�). As usual, a predicate constant P isidenti�ed with the predicate expression �x: P (x). Similarly, a predicate variable �is identi�ed with the predicate expression �x: �(x).Truth values true and false are denoted by > and ?, respectively.If U and V are predicate expressions of the same arity, then U � V stands for8x: U(x) � V (x). If U = (U1; : : : ; Un) and V = (V1; : : : ; Vn) are similar tuples ofpredicate expressions, i.e. Ui and Vi are of the same arity, 1 � i � n, then U � Vis an abbreviation for Vni=1[Ui � Vi]. We write U = V for (U � V)^ (V � U), andU < V for (U � V) ^ :(V � U).If A is a formula, �� = (�1; : : : ; �n) and �� = (�1; : : : ; �n) are tuples of any expres-sions, then A(�� ��) stands for the formula obtained from A by simultaneouslyreplacing each occurrence of �i by �i (1 � i � n). For any tuple �x = (x1; : : : xn) ofindividual variables and any tuple �t = (t1; : : : tn) of terms, we write �x = �t to denotethe formula x1 = t1^� � �^xn = tn. We write �x 6= �t as an abbreviation for :(�x = �t).1.3. De�nitionsDe�nition. [Second-Order Circumscription] Let P be a tuple of distinct predicateconstants, S be a tuple of distinct function and/or predicate constants disjoint fromP , and let T (P ; S) be a sentence. The second-order circumscription of P in T (P; S)with variable S, written Circ(T ;P ;S), is the sentenceT (P; S) ^ 8� 	: [T (�;) ^ � < P] (1)where � and 	 are tuples of variables similar to P and S, respectively.Observe that (1) can be rewritten asT (P; S) ^ 8� 	[T (�;) ^ [� � P]] � [P � �]]:From the point of view of the elimination of second-order quanti�cation, it isgenerally su�cient to consider only the second-order part of the above formula, i.e.8� 	[T (�;) ^ [� � P]] � [P � �]]:De�nition. A predicate variable � occurs positively (resp. negatively) in a formulaA if the conjunctive normal form of A contains a subformula of the form �(�t) (resp.:�(�t)). A formulaA is said to be positive (resp. negative) w.r.t. � i� all occurrencesof � in A are positive (resp. negative).

300 P. DOHERTY, W. LUKASZEWICZ, A. SZALASDe�nition. A �rst-order sentence T is said to be existential (universal) i� it is ofthe form 9x T1 (8x T1), where T1 is quanti�er free.De�nition. A formula T is said to be monadic i� it contains one-place predicateconstants only, and no function constants except 0-place function constants.De�nition. [Separated and Separable Formulas] Let � be either a predicate con-stant or a predicate variable and � be a tuple of predicate constants or a tuple ofpredicate variables. Then� a formula T (�) is said to be separated w.r.t. � i� it is of the form T1(�)^T2(�)where T1(�) is positive w.r.t. � and T2 is negative w.r.t. �, and� a sentence T is said to be separable w.r.t. � i� T is equivalent to a formula ofthe formm_i=1 [Bi(�) ^ (U i � �)] (2)where Bi(�) is a formula containing no positive occurrences of predicate con-stants (variables) from � and each U i is an n-tuple of predicate expressions notcontaining predicate constants (variables) of �.1.4. Useful TautologiesLet us now list some useful tautologies that are used throughout the paper.Proposition 1 The following pairs of formulas are equivalent. (Here Q standsfor any quanti�er and A, B, C are formulas such that C does not contain freeoccurrences of the variable x. In clauses (15), (16) and (18), �t; �t1; : : : ; �tn are n-tuples of terms and it is assumed that neither C nor any term from �t; �t1; : : : ; �tncontains variables from �x. In clause (17), f is a function variable which does notoccur in A.)

COMPUTING CIRCUMSCRIPTION REVISITED 301(1) ::A and A(2) :(A ^ B) and :A _ :B(3) :(A _ B) and :A ^ :B(4) :8xA(x) and 9x:A(x)(5) :9xA(x) and 8x:A(x)(6) 9x(A(x) _ B(x)) and 9xA(x) _ 9xB(x)(7) 8x(A(x) ^ B(x)) and 8xA(x) ^ 8xB(x)(8) Qx(A(x)) ^ C and Qx(A(x) ^ C)(9) C ^Qx(A(x)) and Qx(C ^ A(x))(10) Qx(A(x)) _ C and Qx(A(x) _ C)(11) C _Qx(A(x)) and Qx(C _ A(x))(12) QxQyA and QyQxA(13) A ^ (B _ C) and (A ^ B) _ (A ^ C)(14) (A _B) ^ C and (A ^ C) _ (B ^ C)(15) A(�t) and 8�x(A(�t �x) _ �x 6= �t)(16) A(�t1) _ � � � _ A(�tn) and 9�x((�x = �t1 _ � � � _ �x = �tn) ^ A(�t1 �x))(17) 8�x9yA(�x : : :) and 9f8�xA(�x; y f(�x); : : :)(18) A(�t1) ^ � � � ^ A(�tn) and 8�x((�x 6= �t1 ^ � � � ^ �x 6= �tn) _ A(�t1 �x)):The equivalence (15) was found particularly useful by Ackermann (see [1],[2]). Weextend the method by adding the equivalence (16). It makes the technique work inthe case of clauses containing more than one positive (or negative) occurrence of theeliminated predicate. This substantially generalizes Ackermann's technique. Theequivalence (17) is a second-order formulation of the Skolem reduction (see [3]).It allows us to perform Skolemization (i.e. elimination of existential quanti�ers)and unskolemization (i.e. elimination of Skolem functions) in such a way thatequivalence is preserved. We call this equivalence second-order Skolemization.2. Known Results about Reducing Second-Order CircumscriptionA collection of current results concerning the reduction of second-order circum-scription axioms to the �rst-order case may be found in the handbook article oncircumscription by Lifschitz [15], in addition to references to reduction results ofother authors not covered in the handbook. In this section, we provide the relevantresults from the handbook, in addition to results by other authors pertaining toreduction results for circumscription and second-order logic. The original notationsare slightly adjusted to agree with the notation used in this paper.2.1. Lifschitz' ResultsIn Lifschitz [13] we are presented with the following result concerning the reductionof second-order circumscription into �rst-order logic.

302 P. DOHERTY, W. LUKASZEWICZ, A. SZALASTheorem 1 If T (P) is a separable formula of the form in Equation (2), thenCirc(T ;P ; ()) is equivalent tom_i=1 [Ci ^ (U i = P)]where Ci isBi(U i) ^ ĵ 6=i: [Bj(U j) ^ (U j < U i)]:Theorem 1 is inapplicable in cases where constants, di�erent than those beingcircumscribed, are allowed to vary. This limitation can often be avoided by applyingthe following result (Lifschitz [13]).Theorem 2 Circ(T (P ; S);P ;S) is equivalent to T (P; S)^Circ(9�: T (P;�);P ; ()).Although Theorem 2 allows us to transform any second-order circumscriptioninto a circumscription without variable constants, the transformation introducesnew second-order variables. These can often be eliminated as follows (Lifschitz[13]).Theorem 3 If T (�) is equivalent to Equation (2), then 9�: T (�) is equivalent toWmi=1 Bi(U i):A di�erent result concerning the reduction of second-order circumscription into�rst-order logic is presented in Lifschitz [14]. The details are these.Theorem 4 If all occurrences of P = (P1; : : : ; Pn) are positive, then Circ(T ;P ; ())is equivalent ton̂i=1[T (Pi) ^ 8x: [Pi(x) ^ T (�y: (P (y) ^ y 6= x)]]:In [15], Lifschitz also formulated the following theorem.Theorem 5 If T (P) is a �rst-order sentence separated w.r.t. P thenCirc(T (P);P ; ()) is equivalent to a �rst-order sentence.2.2. Rabinov's ResultRabinov [20] provides the following result which subsumes the earlier results ofLifschitz (excluding Theorem 5).If U and V are predicate expressions, then U \ V stands for �x: (U(x) ^ V (x)).Let Di(P) denote Ni(P)^Mi(P) such that the predicate constant P is positive inMi and negative in Ni. Di(P) is said to be p-simple if Mi(P) has the form Ui � P ,where Ui is a predicate expression not containing P . Di(P) is said to be n-simpleif Ni(P) has the form P � Ui, where Ui is a predicate expression not containing P .

COMPUTING CIRCUMSCRIPTION REVISITED 303Theorem 6 If T (P) is of the formN0(P) ^_i Di(P)where each Di(P) is either p-simple or n-simple and P is negative in N0(P), thenCirc(T ;P ; ()) is equivalent toT (P) ^ î Ri(P)where Ri(P) stands for :Mi(P \Qi)_Circ(Mi(P);P ; ()) if Di(P) is n-simple, andfor :Ni(Ui) _ :(Ui < P) otherwise.2.3. Kolaitis & Papadimitriou's resultIn [12], Kolaitis & Papadimitriou present the following result.Theorem 7 If T is a �rst-order existential sentence, then Circ(T ;P ; ()) is equiv-alent to a �rst-order sentence.2.4. Second-Order Monadic LogicThe following result is due to L�owenheim (see [17]).Theorem 8 If T is a monadic second-order sentence, then T is equivalent to a�rst-order sentence T 0.2.5. The SCAN AlgorithmThe SCAN algorithm was introduced by D. Gabbay and H. J. Ohlbach in [8]. It isformulated as follows:De�nition. Given a second-order formula 9�1 : : :�nA, where A is a classical �rst-order formula, perform the following steps:1. Transform A into clause form using the equivalences given in Proposition (1).Ignore the pre�x with existential �rst- and second-order quanti�ers.2. Generate all C-resolvents and C-factors with the predicate variables �1; : : : ;�naccording to the following rules:(A) �(s1; : : : ; sn) _ C; :�(t1; : : : ; tn) _D ` C _D _ s1 6= t1 _ : : : _ sn 6= tn(B) �(s1; : : : ; sn)_�(t1; : : : ; tn)_C ` �(s1; : : : ; sn)_C_s1 6= t1_: : :_sn 6= tn.

304 P. DOHERTY, W. LUKASZEWICZ, A. SZALASNo self-resolution is allowed. All equivalence preserving simpli�cations may beapplied freely.3. If the previous step terminates try to unskolemize the resulting formula. Ifthis is successful, the obtained formula is a �rst-order formula equivalent to theinput second-order one.3. The Elimination AlgorithmIn this section we brie
y discuss the elimination algorithm. Its complete formulationcan be found in the Appendix. The algorithm was originally formulated in a weakerform in [22], in the context of modal logics. It is based on Ackermann's techniquesdeveloped in connection with the elimination problem (see [1]).The elimination algorithm is based on the following lemma, proved by Ackermannin 1934 (see [1]). The proof can also be found in [22].Lemma 1 (Ackermann Lemma) Let � be a predicate variable and A(�x; �z), B(�)be formulas without second-order quanti�cation. Let B(�) be positive w.r.t. � andlet A contain no occurrences of � at all. Then the following equivalences hold:9�8�x[�(�x) _ A(�x; �z)] ^ B(� :�) � B(� A(�x; �z)) (3)9�8�x[:�(�x) _ A(�x; �z)] ^B(�) � B(� A(�x; �z)) (4)where in the right-hand formulas the arguments �x of A are each time substitutedby the respective actual arguments of � (renaming the bound variables whenevernecessary).The following proposition, together with the equivalences given in Proposition(1), is also used in the algorithm.Proposition 2 Let A be a formula of the form pref(A1 ^ � � � ^ Aq), where prefis a pre�x of �rst-order quanti�ers and A1; : : : ; Aq are disjunctions of literals. Inaddition, let � be a predicate variable occurring in A and Conj(A) those conjunctsin A where � occurs. Assume that for any conjunct in Conj(A), � occurs ei-ther positively, or both positively and negatively (or analogously, negatively, or bothnegatively and positively). Then9�A � pref(Ai1 ^ � � � ^Air) (5)where i1; : : : ; ir 2 f1; : : : ; qg and Ai1 ; : : : ; Air are all the conjuncts that do notcontain occurrences of � (the empty conjunction is regarded to be equivalent to >).Proof: See [22].

COMPUTING CIRCUMSCRIPTION REVISITED 3053.1. Outline of the Elimination AlgorithmWe are now ready to outline the elimination algorithm. The algorithm takes aformula of the form 9�A, where A is a �rst-order formula, as an input and returnsits �rst-order equivalent or reports failure1. Of course, the algorithm can alsobe used for formulas of the form 8�A, since the latter formula is equivalent to:9�:A. Thus, by repeating the algorithm one can deal with formulas containingmany arbitrary second-order quanti�ers.The elimination algorithm consists of four phases: (1) preprocessing; (2) prepa-ration for Ackermann's Lemma; (3) application of the Ackermann Lemma; and (4)simpli�cation. These phases are described below. It is always assumed that (i)whenever the goal speci�c for a current phase is reached, then the remaining stepsof the phase are skipped, (ii) every time the equivalence (5) of Proposition 2 isapplicable, it should be applied.(1) Preprocessing. The purpose of this phase is to transform the formula 9�Ainto a form that separates positive and negative occurrences of the quanti�edpredicate variable �. The form we want to obtain is29�x9�[(A1(�) ^B1(�)) _ � � � _ (An(�) ^ Bn(�))]; (6)where, for each 1 � i � n, Ai(�) is positive w.r.t. � and Bi(�) is negative w.r.t.�.3 The steps of this phase are the following. (i) Eliminate the connectives �and � using the usual de�nitions. Remove redundant quanti�ers. Renameindividual variables until all quanti�ed variables are di�erent and no variableoccurs both bound and free. Using the usual equivalences, move the negationconnective to the right until all its occurrences immediately precede atomic for-mulas. (ii) Move universal quanti�ers to the right and existential quanti�ers tothe left, applying as long as possible the equivalences (8) { (11) from Proposi-tion 1. (iii) In the matrix of the formula obtained so far, distribute all top-levelconjunctions over the disjunctions that occur among their conjuncts, applyingthe equivalences (13) { (14) from Proposition 1. (iv) If the resulting formula isnot in the form (6), then report the failure of the algorithm. Otherwise replace(6) by its equivalent given by9�x(9�(A1(�) ^ B1(�)) _ � � � _ 9�(An(�) ^ Bn(�))): (7)Try to �nd Equation (7)'s �rst-order equivalent by applying the next phases inthe algorithm to each disjunct in (7) separately. If the �rst-order equivalents ofeach disjunct are successfully obtained then return their disjunction, precededby the pre�x 9�x, as the output of the algorithm.(2) Preparation for Ackermann's Lemma. The goal of this phase is to trans-form a formula of the form 9�(A(�) ^ B(�)), where A(�) (resp. B(�)) ispositive (resp. negative) w.r.t. �, into one of the forms (3) or (4) given in

306 P. DOHERTY, W. LUKASZEWICZ, A. SZALASLemma 1. Both forms can always be obtained and both transformations shouldbe performed because none, one or both forms may require Skolemization. Un-skolemization, which occurs in the next phase, could fail in one form, but notthe other. In addition, one form may be substantially smaller than the other.The steps of this phase are based on equivalences (13) { (17) from Proposition 1.(3) Application of Ackermann's Lemma. The goal of this phase is to eliminatethe second-order quanti�cation over �, by applying Ackermann's Lemma, andthen try to unskolemize the function variables possibly introduced. This latterstep employs the equivalence (17) from Proposition 1.(4) Simpli�cation. Generally, application of Ackermann's Lemma in step (3)often involves the use of equivalence (15) in Proposition 1 in the left to rightdirection. If so, the same equivalence, or its generalization (18), may often beused after application of the Lemma in the right to left direction, substantiallyshortening the resulting formula.3.2. Discussion of the AlgorithmAssume we have a second-order formula A of the form9�[(prefB) ^ (pref 0C)]; (8)where,� pref and pref 0 are sequences of �rst-order quanti�ers,� B and C are quanti�er-free formulas in conjunctive normal forms,� B is positive w.r.t. �, and� C is negative w.r.t. �.Then, the following proposition holds.Proposition 3 Let A be an input formula of the form (8). Then, as a result, thealgorithm returns a �rst-order formula provided that unskolemization (if necessary)succeeds.Observe that Skolem functions are introduced in the second step of the algo-rithm whenever existential quanti�ers are to be eliminated. These can appear inthe input formula or may be introduced via application of the equivalence (16) ofProposition 1.In the following proposition, we formulate conditions under which no Skolemfunctions are introduced and the algorithm terminates successfully.Proposition 4 If one of the following conditions holds

COMPUTING CIRCUMSCRIPTION REVISITED 307� B is universal and each conjunct of B contains at most one occurrence of �, or� C is universal and each conjunct of C contains at most one occurrence of :�,then the algorithm always returns a �rst-order formula as output.Proof: The algorithm can fail for two reasons. (1) The input can not be putin separated form. (2) If skolemization is necessary, the algorithm may not beable to unskolemize before termination. Since the input is of the form (8), it isseparated. In the two cases above, skolemization is not necessary. In both cases,B and C are universal, so no skolemization is necessary relative to pref and pref 0,respectively. The only way for new existential quanti�ers to be introduced duringthe steps in the algorithm is if any of the conjuncts in B or C contain more thanone occurrence of � or :�, respectively. By assumption, this is not the case.If the input formula cannot be transformed into the form (8) then the algorithmfails.4. On the Strength of the AlgorithmLet us �rst prove that the algorithm subsumes, and is even stronger than the resultsgiven in [12], [13], [14], [20]. Recall that the formulation of those results is quotedin Section 2.Let us start with Rabinov's result (and thus the subsumed results of Lifschitz).In fact, the following theorem is stronger than the result of Rabinov.Theorem 9 If T (P) is of the formN0(P) ^_i Di(P)where each Di(P) is either p-simple or contains no positive occurrences of P andN0(P) is negative w.r.t. P , then the algorithm eliminates the second-order quanti-�ers from Circ(T ;P ; ()).4Proof: The negated second-order part of Circ(T ;P ; ()) takes the following form,9�[N0(�) ^_i Di(�) ^ [� � P] ^ :[P � �]]:The following steps show the respective reduction9�[N0(�) ^WiDi(�) ^ [� � P] ^ :[P � �] �9�[Wi(N0(�) ^Di(�) ^ [� � P] ^ :[P � �])] �Wi 9�[N0(�) ^Di(�) ^ [� � P] ^ :[P � �]] �Wi 9�[N0(�) ^Di(�) ^ 8�x(:�(�x) _ P (�x)) ^ 9�z(P (�z) ^ :�(�z))] �Wi 9�z9�[N0(�) ^Di(�) ^ 8�x(:�(�x) _ P (�x)) ^ :�(�z) ^ P (�z)] �Wi 9�z9[�Di(�) ^N0(�) ^ 8�x(:�(�x) _ P (�x)) ^ :�(�z) ^ P (�z)]:

308 P. DOHERTY, W. LUKASZEWICZ, A. SZALASObserve that all occurrences of � in N0(�)^8�x(:�(�x)_ P (�x))^:�(�z)^P (�z) arenegative. Moreover, Di either contains no positive occurrences of � or is p-simple.In the �rst case, there are no positive occurrences of � at all and it su�ces to applyequivalence (5) of Proposition 2. In the second case, where Di is p-simple, it takesthe form Ui � �, i.e. 8�x(�(�x)_:Ui(�x)) and the Ackermann Lemma can be applieddirectly.It is worth noting that Lifschitz should probably be credited with rediscovering thepositive form of Ackermann's Lemma (Lemma 1, Equation 3). One can observe thisis the case by combining Equation 2 in the de�nition of separability with Theorem 3.The following theorem shows that the algorithm eliminates second-order quan-ti�cation in the case of existential theories considered in [12].Theorem 10 If T is a �rst-order existential sentence, then the algorithm elimi-nates second-order quanti�cation from Circ(T ;P ; ()).Proof: The negated second-order part of Circ(T ;P ; ()) takes the following form,9�[T (�) ^ [� � P] ^ :[P � �]]:By assumption T (�) is of the form 9�x:T 0(�x), where T 0(�x) is quanti�er free.The following steps show the respective reduction9�[T (�) ^ [� � P] ^ :[P � �]] �9�9�x[T 0(�) ^ [� � P] ^ :[P � �]] �9�x9�[T 0(�) ^ 8�y(:�(�y) _ P (�y)) ^ 9�z(P (�z) ^ :�(�z))] �9�x�z9�[T 0(�) ^ 8�y(:�(�y) _ P (�y)) ^ P (�z) ^ :�(�z)]:Next we transform the above formula into the disjunctive normal form (treating8�y(:�(y)_P (�y)) as an atomic formula) and then distribute the existential quanti-�ers over disjunctions. Now each disjunct is a conjunction of atomic formulas and8�y(:�(y)_P (�y)). Thus, by a simple application of equivalence (15) of Proposition1, each disjunct can be transformed into the form required in Ackermann's Lemma.Theorem 11 If T is a �rst-order monadic sentence, then the algorithm eliminatessecond-order quanti�cation from Circ(T ;P ;S).Proof: The reduction that works here is given in Ackermann [[2], pp. 41-46],which uses Proposition 1 and a weaker form of Lemma 1. It can easily be reformu-lated in terms of the phases of our elimination algorithm.4.1. Comparison of ApproachesIn comparing the di�erent approaches and results concerning the reduction of cir-cumscriptive theories, we will refer to Figure 1 below, which provides a pictorial

COMPUTING CIRCUMSCRIPTION REVISITED 309view of the subsumption relation between the various theorems and types of theoriesreduced. DLS refers to our algorithm, MIXED refers to theories with mixed quan-ti�ers, VC refers to theories which allow variable constants, and MONAD refersto theories with only monadic sentences. In addition, 8 and 9 refer to purely uni-versal and existential theories, respectively, while 89 refers to those theories whereSkolemization is necessary, and 98 refers to mixed theories not requiring Skolemiza-tion. The solid arrows denote subsumption. In addition there are two broken-linearrows. The arrow pointing towards Th 5 is open to signify that although the DLSalgorithm in its general form does not fully subsume Theorem 5, when specializedappropriately, it does. The arrow pointing towards SKOLEM is broken to signifythat the DLS algorithm works for those theories involving Skolemization when theunskolemization step is successful and the algorithm returns a �rst-order formula asoutput. Since, it may not be possible to unskolemize certain theories successfully,there is no complete subsumption of this class.
98898 VCMIXED9 MONAD

(Separable)
(P[N]-simple)

(Separated)
[DLS]

(Separable)SKOLEM[DLS]Th 9[DLS] Th 10[DLS] Th 9[DLS] Th 11[DLS]Th 6[Rabinov] Th 7[Kol,Pap]Th 1[Lifschitz] Th 5[Lifschitz] Th 1-3[Lifschitz]
Figure 1. Subsumption Results.

310 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS4.1.1. Positive ResultsIn addition to the results described in the previous section, observe that the methodwe propose is also stronger in regard to the following features:� DLS provides us with a more general approach to existential quanti�cation dueto the possibility of allowing Skolemization. Thus it works for combinations ofexistential and universal quanti�ers. On the other hand, Kolaitis and Papadim-itriou consider pure existential formulas, while Lifschitz and Rabinov considerpure universal theories.� DLS does not distinguish between theories with variable constants and thosewithout. On the other hand both Rabinov, Kolaitis and Papadimitriou, (andLifschitz to some extent), restrict their theories to those without variable con-stants. In some cases, Lifschitz's results can reduce theories with variable con-stants if the theories are separable and no Skolemization is involved. (See thenext section for problems DLS has with separated theories).� DLS permits as input circumscriptive theories with arbitrary numbers of min-imized and varied predicates. This is not the case for Rabinov's result nor forLifschitz's result pertaining to separated formulas.� DLS describes how to constructively transform formulas into the required form.4.1.2. Negative ResultsNote that in the end of Section 3.2 we characterized the class of formulas for whichthe algorithm fails. Let us now discuss an additional source of weaknesses of thealgorithm and a possible way of overcoming those weaknesses.Observe that the elimination algorithm we deal with is independent of any par-ticular theory. On the other hand, it is well known that second-order quanti�erscan sometimes be eliminated when additional information is given.One good illustrative example originates from the area of modal logics. Namely,McKinsey's axiom is not equivalent to any �rst-order formula. Accordingly, ouralgorithm fails (see [22]). However, when one assumes that the accessibility relationis transitive, the elimination is possible, since McKinsey together with transitivityis �rst-order de�nable (see [4]).The same situation may occur when one computes circumscription. Consider thetheorem of Lifschitz (Theorem 5 above). It permits us to deal with any sequencesof �rst-order quanti�ers provided that the formula is separated. The proof given byLifschitz is based on a clever move which applies knowledge about the �rst-ordertheory one works with. Observe that in Theorem 5 the sentence T (P) is assumedto be separated, i.e. it is of the form T1(P) ^ T2(P), where T1(P) is positive w.r.t.P and T2(P) is negative w.r.t. P . Thus Circ(T1 ^ T2;P ; ()) is equivalent toT1(P) ^ T2(P) ^ :9�[T1(�) ^ T2(�) ^ � < P]:

COMPUTING CIRCUMSCRIPTION REVISITED 311Since T2(P) is negative w.r.t. P , T2(P) together with � < P imply T2(�). Thuswhen T2(P) is taken into consideration, one substantially simpli�es the second ordercircumscription into the following second-order formulaT1(P) ^ T2(P) ^ :9�[T1(�) ^ � < P]:The last formula is reducible to a �rst-order sentence (and is, in fact, in the scopeof our algorithm).The above examples show that the general algorithm we presented can (and shouldbe) tuned to the particular situation it is applied to. Since circumscription is alwaysde�ned over some �rst-order theory, moves similar to the method used by Lifschitzabove, should be incorporated into the algorithm. If this is done for the case ofseparated theories, then the specialized version of our algorithm subsumes all pre-vious results concerning the reduction of circumscriptive theories. (see Section 4.2for more details).4.1.3. Comparison with SCANThe SCAN algorithm eliminates the second-order quanti�cation for a large classof formulas and can be applied in computing circumscription. On the other hand,the SCAN algorithm may not terminate and the sets of C-resolvents and C-factorsmay be large. It is di�cult to provide a formal comparison between DLS andSCAN since no syntactic characterization of formulas accepted by SCAN is known.What we can do is provide several examples where DLS fares better than SCANand mention a method to construct an example where SCAN would fare betterthan DLS due to its use of optimization techniques associated with the resolutiontheorem proving method.Observe that some examples where SCAN fared better than the algorithm given in[22] were known. On the other hand, in the present paper the algorithm described in[22] is strengthened by adding the equivalence (16) of Proposition 1. An additionaladvantage of our algorithm is that it always terminates, while SCAN may loop.In the �rst example, DLS, when given the formula8�[(8x�(x) � 9y�(y) ^Q(x)) � 8x:�(x)];terminates, while for SCAN it does not.In the second example, DLS, when given the formula9x9y(P (x) _ P (y) _R(x; y)) ^ 8x9y(:P (x) _ :P (y) _ S(x; y));terminates with success and returns a logically equivalent �rst-order formula, whileSCAN fails due to unskolemization problems.The obvious question arises whether there is an example where SCAN terminateswith a logically equivalent �rst-order formula while DLS terminates with failure.One way to construct such an example would be to provide an input formula where

312 P. DOHERTY, W. LUKASZEWICZ, A. SZALASone or more subformulas are subsumed by another part of the formula. In thiscase, SCAN would delete these clauses using its subsumption deletion heuristic.If these clauses were set up to provide unskolemization problems, then becauseDLS has no subsumption deletion heuristic, it could possibly fail to unskolemizethe example. Of course, it should be possible to extend the DLS algorithm withadditional optimization heuristics, but we save this for future research.4.2. A General Methodology for Use of the AlgorithmThe elimination algorithm we present is very general in that it can be applied toany second-order formula. However, in speci�c applications the algorithm can oftenbe substantially improved. Two such improvements have already been provided. Inthe �rst case, we suggest using Proposition 2 each time it is applicable. The reasonfor this is that the proposition allows one to immediately eliminate a second-ordervariable in the formula in question. As shall be seen in section 6, the propositionis not just a theoretical result { it is sometimes applicable when reducing circum-scription axioms.Another improvement we provide is the phase of simpli�cation. It was observedthat in many practically occurring situations the formula obtained as the result ofapplying the Ackermann Lemma can be substantially simpli�ed by using Proposi-tion 1 (15). Perhaps this is the case because of the speci�c form of the circumscrip-tion axiom. However, it is obviously worth doing while applying the eliminationalgorithm to circumscriptive theories.As already stated, our algorithm subsumes almost all known results concerningthe reduction of circumscriptive theories. The only exception appears to be theresult of Lifschitz, presented in Theorem 5. However, when specifying our algorithmfor the purpose of reducing circumscription, this specialized result can easily bebuilt into the preprocessing phase. Moreover, even the result of Rabinov, which issubsumed by the elimination algorithm, could also be built in, simply to make thealgorithm more e�ective.In conclusion, the situation may be summarized as follows. Given the general formof our algorithm and a domain to which it will be applied, analyze the syntacticcharacter of theories in the domain and integrate any useful reduction heuristic inthe preprocessing or simpli�cation phase of the algorithm.5. Complexity of ReductionObserve that the elimination algorithm we consider, terminates and is easily mech-anizable. Let us now estimate its complexity.First observe that during phase (3) of the algorithm, the form of the formula tobe transformed is59�8�x[�(�x) _ A(�x; �z)] ^ B(� :�) (9)

COMPUTING CIRCUMSCRIPTION REVISITED 313and then its form isB(� A(�x; �z)) (10)after application of Ackermann's Lemma.Thus, if the length of (9) is n, then the length of (10) is less than n2. Observe,however, that this worst case occurs when � has O(n) occurrences in (9). Inpractical examples, however, the length of (10) is usually O(n) (and often less thanthe length of (9)).The worst case analysis of steps (1) and (2) shows that the size of the transformedformula can increase exponentially (due to possible transformations between dis-junctive and conjunctive normal forms). This, however, is again a rare phenomenon{ see examples below, in particular Section 6.6 concerning a Kolaitis and Papadim-itriou example.6. Applying the Algorithm to some ExamplesThe best way to understand how the algorithm works is to apply it to examples. Inthis section, we apply the algorithm to a number of di�erent examples, each high-lighting a particular strength of the algorithm. A number of examples are takenfrom the literature concerning the use of circumscription in knowledge representa-tion. We take a number of liberties in applying the algorithm so as not to get lostin details. For example, step (2) in the previous Section 3.1 states that both formsof Ackermann's Lemma should be considered. In the examples, we choose one formand apply the algorithm. This saves considerable space. Also, the simpli�cationphase is omitted unless it can be applied.6.1. Block ExampleExample: [Block example]Let �(Ab;On) be the theory[b1 6= b2 ^ B(b1) ^ B(b2) ^ :On(b1)] ^ [8x(B(x) ^ :Ab(x) � On(x))]; (11)where B and On are abbreviations for Block and Ontable, respectively. The cir-cumscription of �(Ab;On) with Ab minimized and On varied isCirc(�(Ab;On);Ab;On) ��(Ab;On) ^ 8�8	[[�(�;)^ � � Ab] � [Ab � �]]; (12)where�(�;) � [b1 6= b2 ^ B(b1) ^ B(b2) ^ :	(b1)]^8x(B(x) ^ :�(x) � 	(x)) (13)� � Ab � 8x(�(x) � Ab(x)) (14)Ab � � � 8x(Ab(x) � �(x)): (15)

314 P. DOHERTY, W. LUKASZEWICZ, A. SZALASIn the following, we will reduce8�8	[�(�;)^ [� � Ab] � [Ab � �]] (16)in (12). Negating (16), we get9�9	[�(�;) ^ [� � Ab] ^ :[Ab � �]]: (17)Since we will try to remove � �rst, we replace (17) by the equivalent9	9�[�(�;) ^ [� � Ab] ^ :[Ab � �]]: (18)Preprocessing. Replacing �(�;), � � Ab and Ab � � by their equivalent forms(13){(15), eliminating � and renaming individual variables, we obtain9	9�[b1 6= b2 ^B(b1) ^B(b2) ^ :	(b1)^8x(:B(x) _ �(x) _	(x)) ^ 8y(:�(y) _ Ab(y)) ^ 9z(Ab(z) ^ :�(z))]: (19)We next move 9z to the left, obtaining9z9	9�[b1 6= b2 ^ B(b1) ^ B(b2) ^ :	(b1)^8x(:B(x) _ �(x) _	(x)) ^ 8y(:�(y) _ Ab(y)) ^ (Ab(z) ^ :�(z))]: (20)Preparation for Ackermann's Lemma. (20) is in the form suitable for appli-cation of Ackermann's Lemma. To make this more explicit, we rewrite (20) as9z9	9�8x[(�(x) _ :B(x) _	(x)) ^ 8y(:�(y) _ Ab(y)) ^ :�(z) ^ Ab(z)^:	(b1) ^ b1 6= b2 ^ B(b1) ^ B(b2)]: (21)Application of Ackermann's Lemma. Applying Ackermann's Lemma to (21),we obtain9z9	[8y(:B(y) _	(y) _ Ab(y)) ^ (:B(z) _	(z)) ^ Ab(z)^:	(b1) ^ b1 6= b2 ^ B(b1) ^ B(b2)]: (22)We next try to remove 	 in (22).Preprocessing. The formula (22) is already in the form which is the goal of thisphase. To see this, we rewrite it as9z9	[:	(b1) ^ 8y((y) _ :B(y) _Ab(y))^((z) _ :B(z)) ^ Ab(z) ^ b1 6= b2 ^B(b1) ^ B(b2)]: (23)Preparation for Ackermann's Lemma. Applying Proposition 1 (15) to :	(b1)in (23), we obtain9z9	8s[(:	(s) _ s 6= b1) ^ 8y((y) _ :B(y) _ Ab(y))^((z) _ :B(z)) ^ Ab(z) ^ b1 6= b2 ^ B(b1) ^ B(b2)]: (24)

COMPUTING CIRCUMSCRIPTION REVISITED 315Application of Ackermann's Lemma. We apply Ackermann's Lemma to (24),obtaining9z8y[(y 6= b1 _ :B(y) _ Ab(y))^(z 6= b1 _ :B(z)) ^ Ab(z) ^ b1 6= b2 ^ B(b1) ^ B(b2)]: (25)Simpli�cation. Using Proposition 1 (15), we replace (25) by9z[(:B(b1) _ Ab(b1)) ^ (z 6= b1 _ :B(z)) ^ Ab(z) ^ b1 6= b2 ^ B(b1) ^ B(b2)]: (26)Negating (26) results in8z[(B(b1) ^ :Ab(b1)) _ (z = b1 ^ B(z)) _ :Ab(z)_b1 = b2 _ :B(b1) _ :B(b2)]: (27)The �rst-order formula (27) is logically equivalent to the second-order formula (16).Consequently,Circ(�(Ab;On);Ab;On) � �(Ab;On) ^ 8z[(B(b1) ^ :Ab(b1))_(z = b1 ^ B(z)) _ :Ab(z) _ b1 = b2 _ :B(b1) _ :B(b2)]: (28)At this stage, the algorithm terminates but we can continue simplifying relative tothe original theory. (27) together with (11) impliesAb(b1) � 8z(:Ab(z) _ (z = b1 ^ B(z))); (29)and thus implies8z(Ab(z) � (z = b1 ^ B(z))); (30)which states that for any object z, either it is normal (:Ab(z)) or it is a block andb1. In other words, the only abnormal object is the block b1.6.2. The Birthday ExampleExample: [Birthday Example] This example contains both existentially quanti�edand universal formulas. In addition, it contains both unary and binary predicates.Let �(Ab;G) be the theory[9x9y(B(y) ^ F (x; y) ^ :G(x; y))]^[8x8y(B(y) ^ F (x; y) ^ :Ab(x; y) � G(x; y))]; (31)where B, F and G are abbreviations for Birthday, Friend and Gives-Gift, re-spectively. Here Ab(x; y) has the following intuitive interpretation: \x behavesabnormally w.r.t. y in the situation when y has a birthday and x is a friend of y".The circumscription of �(Ab;G) with Ab minimized and G varied isCirc(�(Ab;G);Ab;G) ��(Ab;G) ^ 8�8	[�(�;)^ [� � Ab] � [Ab � �]]; (32)

316 P. DOHERTY, W. LUKASZEWICZ, A. SZALASwhere�(�;) � [9x9y(B(y) ^ F (x; y) ^ :	(x; y))]^[8x8y(B(y) ^ F (x; y) ^ :�(x; y) � 	(x; y))] (33)� � Ab � 8x8y[�(x; y) � Ab(x; y)] (34)Ab � � � 8x8y[Ab(x; y) � �(x; y)]: (35)In the following, we will reduce8�8	[�(�;)^ [� � Ab] � [Ab � �]] (36)in (32). Negating (36), we obtain9�9	[�(�;) ^ [� � Ab] ^ :[Ab � �]]: (37)We remove 	 �rst.Preprocessing. Replacing �(�;), � � Ab and Ab � � by their equivalents givenby (33){(35), eliminating �, renaming individual variables and moving existentialquanti�ers over individual variables to the left, we obtain9x9y9q9r9�9	[B(y) ^ F (x; y) ^ :	(x; y) ^ 8u8z(:B(z)_ :F (u; z)_�(u; z) _	(u; z)) ^ 8s8t(:�(s; t) _ Ab(s; t)) ^ Ab(q; r) ^ :�(q; r)]: (38)Preparation for Ackermann's Lemma. (38) is in the form suitable for appli-cation of Ackermann's Lemma. To see this, we rewrite it as9x9y9q9r9�9	8u8z[((u; z)_ :B(z) _ :F (u; z) _ �(u; z)) ^ :	(x; y)^B(y) ^ F (x; y) ^ 8s8t(:�(s; t) _ Ab(s; t)) ^Ab(q; r) ^ :�(q; r)]: (39)Application of Ackermann's Lemma. Applying Ackermann's Lemma to (39),we obtain9x9y9q9r9�[(:B(y) _ :F (x; y) _ �(x; y)) ^B(y) ^ F (x; y)^8s8t(:�(s; t) _ Ab(s; t)) ^Ab(q; r) ^ :�(q; r)]: (40)We now remove � in (40).Preprocessing. (40) is in the form which is the goal of this phase.Preparation for Ackermann's Lemma. Using Proposition 1 (15), we replace(40) by9x9y9q9r9�8v8w[(�(v; w) _ v 6= x _ w 6= y _ :B(y) _ :F (x; y))^8s8t(:�(s; t) _ Ab(s; t)) ^ :�(q; r) ^ B(y) ^ F (x; y) ^ Ab(q; r)]: (41)Application of Ackermann's Lemma. Applying Ackermann's Lemma to (41),we obtain9x9y9q9r8s8t[(s 6= x _ t 6= y _ :B(y) _ :F (x; y) _ Ab(s; t))^(q 6= x _ r 6= y _ :B(y) _ :F (x; y)) ^ B(y) ^ F (x; y) ^Ab(q; r)]: (42)

COMPUTING CIRCUMSCRIPTION REVISITED 317Simpli�cation. We replace (42) by9x9y9q9r[(:B(y) _ :F (x; y) _ Ab(x; y))^(q 6= x _ r 6= y _ :B(y) _ :F (x; y)) ^ B(y) ^ F (x; y) ^Ab(q; r)]: (43)Negating (43), we obtain8x8y8q8r[(B(y) ^ F (x; y) ^ :Ab(x; y))_(q = x ^ r = y ^ B(y) ^ F (x; y)) _ :B(y) _ :F (x; y) _ :Ab(q; r)]: (44)(44) is logically equivalent to8x8y8q8r[:(B(y) ^ F (x; y)) _ ((B(y) ^ F (x; y))^(:Ab(x; y) _ (q = x ^ r = y))) _ :Ab(q; r)]; (45)which is equivalent to8x8y8q8r[:(B(y) ^ F (x; y)) _ :Ab(x; y) _ (q = x ^ r = y) _ :Ab(q; r)]: (46)The �rst-order formula (46) is logically equivalent to the second-order formula (36).Consequently,Circ(�(Ab;G);Ab;G) � �(Ab;G)^8x8y8q8r[:(B(y) ^ F (x; y)) _ :Ab(x; y) _ (q = x ^ r = y) _ :Ab(q; r)]: (47)A more informative sentence, equivalent to (46), is8x8y8q8r[Ab(x; y) ^Ab(q; r) ^ B(y) ^ F (x; y) � (q = x ^ r = y)]: (48)(48), together with the theory �(Ab;G), states that there is exactly one pair ofindividuals, x and y, such that y has a birthday, x is a friend of y and x does notgive a gift to y.6.3. The Hospital ExampleExample: [Hospital Example] Let � be the theory[8x9y(Ab(x; y) � H(x; y))] ^ [8x9y(:Ab(x; y) � H(x; y))]: (49)Here H(x; y) and Ab(x; y) are to be intuitively interpreted as \x is in a hospitalin a situation y" and \x behaves abnormally in a situation y", respectively. Thecircumscription of �, with Ab minimized and H varied isCirc(�;Ab;H) � � ^ 8�8	[�(�;)^ [� � Ab] � [Ab � �]]; (50)where�(�;) � 8x9y[�(x; y) � 	(x; y)]^ 8x9y[:�(x; y) � 	(x; y)] (51)� � Ab � 8x8y[�(x; y) � Ab(x; y)] (52)Ab � � � 8x8y[Ab(x; y) � �(x; y)]: (53)

318 P. DOHERTY, W. LUKASZEWICZ, A. SZALASIn the following, we will reduce8�8	[�(�;)^ [� � Ab] � [Ab � �]] (54)in (50). Negating (54), we obtain9�9	[�(�;) ^ [� � Ab] ^ :[Ab � �]]: (55)Since we will try to remove � �rst, we replace (55) by its equivalent given by9	9�[�(�;) ^ [� � Ab] ^ :[Ab � �]]: (56)Preprocessing. Replacing �(�;), � � Ab and Ab � � by their equivalents givenby (51){(53), eliminating � and renaming individual variables, we obtain9	9�[8x9y(:�(x; y) _	(x; y)) ^ 8q9r(�(q; r) _	(q; r))^8u8v(:�(u; v) _ Ab(u; v)) ^ 9s9t(Ab(s; t) ^ :�(s; t))]: (57)Moving 9s9t to the left and rearranging the resulting formula, we obtain9s9t9	9�[8q9r(�(q; r) _	(q; r)) ^ 8x9y(:�(x; y) _	(x; y))^8u8v(:�(u; v) _ Ab(u; v)) ^Ab(s; t) ^ :�(s; t)]: (58)Preparation for Ackermann's Lemma. Using Proposition 1 (15), we replace�(q; r) in (58) by 8z8w(�(z; w) _ z 6= q _ w 6= r). This results in9s9t9	9�[8q9r(8z8w(�(z; w) _ z 6= q _ w 6= r) _	(q; r))^8x9y(:�(x; y) _	(x; y)) ^ 8u8v(:�(u; v) _ Ab(u; v)) ^Ab(s; t) ^ :�(s; t)] (59)which is equivalent to9s9t9	9�[8q9r8z8w(�(z; w) _ z 6= q _ w 6= r _	(q; r))^8x9y(:�(x; y) _	(x; y)) ^ 8u8v(:�(u; v) _ Ab(u; v)) ^Ab(s; t) ^ :�(s; t)]: (60)We next eliminate 9r by Skolemization and move 8q to the right and 8z8w to theleft. The resulting formula is (below f is the introduced function variable)9s9t9	9f9�8z8w[(�(z; w) _ 8q(z 6= q _ w 6= f(q) _	(q; f(q))))^8x9y(:�(x; y) _	(x; y)) ^ 8u8v(:�(u; v) _ Ab(u; v)) ^Ab(s; t) ^ :�(s; t)]: (61)Application of Ackermann's Lemma. Applying Ackermann's Lemma to (61),we obtain9s9t9f9	[8x9y(8q(x 6= q _ y 6= f(q) _	(q; f(q))) _	(x; y))^8u8v(8q(u 6= q _ v 6= f(q) _	(q; f(q))) _ Ab(u; v))^Ab(s; t) ^ 8q(s 6= q _ t 6= f(q) _	(q; f(q)))] (62)which is equivalent to9s9t9f9	8x9y8q8u8v[(x 6= q _ y 6= f(q) _	(q; f(q)) _	(x; y))^(u 6= q _ v 6= f(q) _	(q; f(q)) _ Ab(u; v))^Ab(s; t) ^ (s 6= q _ t 6= f(q) _	(q; f(q)))]: (63)

COMPUTING CIRCUMSCRIPTION REVISITED 319Since all occurrences of 	 in each conjunct in (63) are positive, all the conjunctsincluding 	, together with 9	, can be removed by Proposition 2. This yields9s9t9f9	8x9y8q8u8v:Ab(s; t) (64)which reduces to9s9tAb(s; t): (65)Since we negated the original formula before applying the algorithm, we now negatethe result, obtaining8s8t:Ab(s; t): (66)The �rst-order formula (66) is logically equivalent to the second-order formula (54).Consequently,Circ(�;Ab;H) � � ^ 8s8t::Ab(s; t): (67)which implies8x9yH(x; y): (68)6.4. The Vancouver ExampleThis is a variant of an example from Reiter [21]. Rather than using the functioncity as Reiter does, we will use a relation C(x; y) with suitable axioms.Example: [Vancouver Example]We begin by de�ning the binary relation C with the intention that C(x; y) holdsi� the city of x is y. In our axiomatization, Reiter's axiom,8x(:Ab(x) � city(x) = city(wife(x))) (69)is replaced with8x8y8z(:Ab(x) ^ C(x; y) ^ C(wife(x); z) � y = z): (70)In addition, we add the following axiom guaranteeing that C represents a function:8x8y8z(C(x; y) ^ C(x; z) � y = z): (71)We do not require that all people live in cities, i.e. we reject the axiom68x9yC(x; y): (72)So, the distinction is that our representation of the city function is partial, whereasReiter's is total. Intuitively, our choice seems to make more sense.

320 P. DOHERTY, W. LUKASZEWICZ, A. SZALASLet �(Ab;C) be the theory[8x8y8z(:Ab(x) ^ C(x; y) ^ C(wife(x); z) � y = z)]^[8x8y8z(C(x; y) ^ C(x; z) � y = z)]: (73)The circumscription of �(Ab;City) with Ab minimized and C varied isCirc(�(Ab;C);Ab;C) � �(Ab;C) ^ 8�8	[�(�;)^ [� � Ab] � [Ab � �]; (74)where�(�;) � [8x8y8z(:�(x)^	(x; y) ^	(wife(x); z) � y = z)] ^[8x8y8z((x; y)^	(x; z) � y = z)]: (75)� � Ab � 8x(�(x) � Ab(x)) (76)Ab � � � 8x(Ab(x) � �(x)): (77)In the following, we will reduce8�8	[�(�;)^ [� � Ab] � [Ab � �]] (78)in (74). Negating (78), we obtain9�9	[�(�;) ^ [� � Ab] ^ :[Ab � �]]: (79)We start by removing 	.Preprocessing. Replacing �(�;), � � Ab and Ab � � by their equivalents givenby (75){(77), eliminating � and renaming individual variables, we obtain9�9	[8x8y8z(�(x)_ :	(x; y) _ :	(wife(x); z) _ y = z) ^ 8u8v8w(:	(u; v)_:	(u;w) _ v = w)) ^ 8s(:�(s) _ Ab(s)) ^ 9t(Ab(t) ^ :�(t))]: (80)Note that 	 can be removed directly using Proposition 2, since all instances of 	occurring in (80) are negative. To prepare the latter formula into the form suitablefor the application of Proposition 2, we move all quanti�ers ranging over individualvariables to the left. This results in9�9	8x8y8z8u8v8w8s9t[(�(x)_ :	(x; y) _ :	(wife(x); z) _ y = z) ^(:	(u; v) _ :	(u;w) _ v = w) ^ (:�(s) _ Ab(s)) ^ Ab(t) ^ :�(t)]: (81)Applying Proposition 2 to (81), we obtain9�8x8y8z8u8v8w8s9t[(:�(s)_Ab(s)) ^Ab(t) ^ :�(t)] (82)which reduces to9�8s9t[(:�(s) _ Ab(s)) ^ Ab(t) ^ :�(t): (83)We next try to remove �. Again, this can be done directly using Proposition 2,since all instances of � in (83) are negative. This results in8s9tAb(t) (84)

COMPUTING CIRCUMSCRIPTION REVISITED 321which is equivalent to9tAb(t): (85)Taking the negation of (85) results in8t:Ab(t): (86)The �rst-order formula (86) is logically equivalent to the second-order formula(78). Consequently,Circ(�;Ab;C) � � ^ 8t:Ab(t): (87)6.5. A Preprocessing ExampleIn the previous examples, the preprocessing phase was very simple. In this example,which appears to be a relatively trivial theory, the preprocessing stage is much morecomplex.Example: [Preprocessing Example]Let � be the theoryP (a) � P (b): (88)The circumscription of �, with P minimized isCirc(�;P ; ()) � � ^ 8�[�(�)[^� � P] � [P � �]]; (89)where �(�) � �(a) � �(b); (90)� � Ab � 8x(�(x) � P (x)); (91)Ab � � � 8x(P (x) � �(x)): (92)In the following, we will reduce8�[�(�) ^ [� � Ab] � [Ab � �]] (93)in (89). Negating (93), we obtain9�[�(�) ^ [� � Ab] ^ :[Ab � �]]: (94)Preprocessing. Replacing �(�;), � � Ab and Ab � � by their equivalents givenby (90){(92), eliminating � and renaming individual variables, we obtain9�[(:�(a) _ �(b)) ^ 8x(:�(x) _ P (x)) ^ 9y(P (y) ^ :�(y))]: (95)Moving 9y to the left, we obtain9y9�[(:�(a) _ �(b)) ^ 8x(:�(x) _ P (x)) ^ P (y) ^ :�(y)]: (96)

322 P. DOHERTY, W. LUKASZEWICZ, A. SZALASSince positive and negative occurrences of � are not properly separated, we dis-tribute the conjunction 8x(:�(x) _ P (x)) ^ P (y) ^ :�(y) over :�(a) _�(b). Thisleads to9y9�[(:�(a) ^ 8x(:�(x) _ P (x)) ^ P (y) ^ :�(y))_(�(b) ^ 8x(:�(x) _ P (x)) ^ P (y) ^ :�(y))]: (97)Applying Proposition 1(6) to (97), we obtain9y9�[:�(a) ^ 8x(:�(x) _ P (x)) ^ P (y) ^ :�(y)]_9y9�[�(b) ^ 8x(:�(x) _ P (x)) ^ P (y) ^ :�(y)]: (98)The preprocessing phase is successfully completed. We now process the disjunctsfrom (98) as separate problems. Let us begin with the �rst disjunct. Note that �can be removed from it directly, using Proposition 2. To this end, we replace thedisjunct with its equivalent given by9y9�8x[:�(a) ^ (:�(x) _ P (x)) ^ P (y) ^ :�(y)]: (99)Applying Proposition 2 to (99), we obtain9y8xP (y) (100)which reduces to9yP (y): (101)We have succeeded in reducing the �rst disjunct in (98) to a �rst-order formula.We now try to do the same for the second one, i.e.9y9�[�(b) ^ 8x(:�(x) _ P (x)) ^ P (y) ^ :�(y)]: (102)Preparation for Ackermann's Lemma. Using Proposition 1 (15), we replace(102) by9y9�8z[(�(z) _ z 6= b) ^ 8x(:�(x) _ P (x)) ^ P (y) ^ :�(y)]: (103)Application of Ackermann's Lemma. Applying Ackermann's Lemma to (103),we obtain9y8x[(x 6= b _ P (x)) ^ y 6= b ^ P (y)]: (104)We have now succeeded in reducing the second disjunct of (98). The original second-order formula (97) has now been reduced to the equivalent �rst-order formula[9yP (y)] _ [9y8x[(x 6= b _ P (x)) ^ y 6= b ^ P (y)]]: (105)Applying the simpli�cation step to (105) using Proposition 1 (15), we obtain[9yP (y)] _ [9y[P (b) ^ y 6= b ^ P (y)]]: (106)

COMPUTING CIRCUMSCRIPTION REVISITED 323Finally, we negate (106), obtaining[8y:P (y)] ^ 8y[:P (b) _ y = b _ :P (y)]: (107)The �rst-order formula (107) is logically equivalent to the second-order formula(93). Consequently,Circ(�;P ; ()) � � ^ [8y:P (y)] ^ 8y[:P (b) _ y = b _ :P (y)]: (108)(107) can be simpli�ed using some standard equivalences:[8y:P (y)] ^ 8y[:P (b) _ y = b _ :P (y)] � 8y:P (y): (109)6.6. An Existential ExampleKolaitis and Papadimitriou [12] show that the circumscription of any existential�rst-order formula is equivalent to a �rst-order formula. We have already shownthat the algorithm we propose here generalizes Kolaitis and Papadimitriou's results.It is interesting to compare these reduction techniques in terms of complexity.Kolaitis and Papadimitriou [12] stateWe notice that computing a �rst-order sentence equivalent to the circum-scription of P in an existential �rst-order formula (P) seems to increasethe size of (P) exponentially, a phenomenon not observed in the otherknown cases of �rst-order circumscription studied in [Lif85]. It would beinteresting to determine whether this is inherent to existential �rst-orderformula, or a particular creation of our proof.Example: [Existential Example]We now take the example used by Kolaitis and Papadimitriou and compare theresulting �rst-order formula with that generated by our algorithm. Kolaitis andPapadimitriou apply their reduction technique to the theory9x19x2[R(x1; x2) ^ P (x1) ^ P (x2)] (110)and circumscribe P without varying predicates. The �rst-order equivalent theyobtain is 9x1(R(x1; x1) ^ P (x1) ^ (8y(P (y) � y = x1))_[9x19x2(R(x1; x2) ^ P (x1) ^ P (x2) ^ (x1 6= x2) ^(8y(P (y) � (y = x1 _ y = x2))) ^ :R(x1; x1) ^ :R(x2; x2))]: (111)We apply our reduction algorithm to the same theory and compare the results.Let �(P) be the theory9x19x2[R(x1; x2) ^ P (x1) ^ P (x2)]: (112)

324 P. DOHERTY, W. LUKASZEWICZ, A. SZALASThe circumscription of �(P) with P minimized without variable predicates isCirc(�(P);P ; ()) � �(P) ^ 8�[�(�) ^ [� � P] � [P � �]]; (113)where �(�) � 9x19x2[R(x1; x2) ^ �(x1) ^ �(x2)] (114)� � P � 8x(�(x) � P (x)) (115)P � � � 8x(P (x) � �(x)): (116)In the following, we will reduce8�[�(�) ^ [� � P] � [P � �]] (117)in (113). Negating (117), we obtain9�[�(�) ^ [� � P] ^ :[P � �]]: (118)Preprocessing. Replacing �(�), � � P and P � � by their equivalents given by(114){(116), eliminating � and renaming individual variables, we obtain9�[9x19x2(R(x1; x2) ^ �(x1) ^ �(x2)) ^8y(:�(y) _ P (y)) ^ 9z(P (z) ^ :�(z))]: (119)We next move 9x19x29z to the left, obtaining9x19x29z9�[R(x1; x2) ^ �(x1) ^ �(x2) ^8y(:�(y) _ P (y)) ^ P (z) ^ :�(z)]: (120)Preparation for Ackermann's Lemma. Applying Proposition 1 (15) and somestandard equivalences, we replace (120) by9x19x29z9�8q[(�(q) _ (q 6= x1 ^ q 6= x2)) ^ (R(x1; x2) ^8y(:�(y) _ P (y)) ^ P (z) ^ :�(z)]: (121)Application of Ackermann's Lemma. Ackermann's Lemma can now be appliedto (121) resulting in9x19x29z[R(x1; x2) ^ 8y((y 6= x1 ^ y 6= x2) _ P (y)) ^P (z) ^ z 6= x1 ^ z 6= x2]: (122)Simpli�cation. Applying Proposition 1(18) to (122) results in9x19x29z[R(x1; x2) ^ P (x1) ^ P (x2) ^ P (z) ^ z 6= x1 ^ z 6= x2]: (123)Negating (123), we obtain8x18x28z[:R(x1; x2) _ :P (x1) _ :P (x2) _ :P (z) _ z = x1 _ z = x2]: (124)

COMPUTING CIRCUMSCRIPTION REVISITED 325The �rst-order formula (124) is logically equivalent to the second-order formula(117). Consequently,Circ(�;P) � �(P)^8x18x28z[:R(x1; x2) _ :P (x1) _ :P (x2) _ :P (z) _ z = x1 _ z = x2]: (125)Comparing (125) with (111), it is easily observed that there is a substantialdi�erence in the size of the formulas. For example, the output of DLS contains atotal of 62 symbols versus 92 for the Kolaitis and Papadimitriou approach. Withoutcounting brackets and parentheses, the symbol count is 44 versus 57, respectively.Of course, this is only one example. Whether the comparison holds for a largerspace of problems is questionable.6.7. Interpreting the ResultsThere are a number of interesting observations that can be made on the basis ofthe above examples.1. In all the examples, the �rst-order equivalent of the circumscription axiom isshorter than the axiom itself.2. Note that for certain examples, such as the hospital example, the �rst-orderformula returned is of such a nature that without the algorithm, �nding asubstitution for the circumscription axiom would be highly unlikely.3. Execution of the algorithm is easily followed. For shorter examples the DLSalgorithm can be applied with pencil and paper, although an implementationof DLS is obviously a better means of doing the reductions.7. Related WorkBesides the work already mentioned in this article, there are a number of otherreferences related to the reduction problem that are worth mentioning and alsoanalyzing in future work. In addition to his work in the area of correspondence the-ory ([3],[4]), Johan van Benthem has also investigated the logic of circumscriptionand its �rst-order reduction [5]. Kartha and Lifschitz [11], have recently introducedan action theory using nested circumscription [16], for reasoning about action andchange. The nested circumscription theories are reduced using the SCAN algorithm.Doherty, Lukaszewicz, and Sza las [6], have recently investigated the characteriza-tion of normal logic programs using a generalization of the algorithm describedin this article. Rather than reducing second-order formulas to logically equivalent�rst-order formulas, one reduces to a �xpoint formula and looks for bounds onthe �xpoint. If successful then there is a reduction from the �xpoint formula toa �rst-order formula. Doherty, Lukaszewicz, and Sza las [7], are also investigating�rst-order reductions of a general form of domain circumscription which also usesa generalization of the DLS algorithm.

326 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS8. ConclusionIn this paper, we have presented a general algorithm which transforms second-orderformulas into logically equivalent �rst-order formulas for a large class of second-order formulas. The algorithm has been shown to have a number of attractiveproperties, including a potentially wide area for practical application. To supportthis claim, we have provided a detailed description of the algorithms application tothe reduction of circumscription axioms. In addition, we have shown that the algo-rithm, in its general form, provably subsumes nearly all existing results concerningthe reduction of circumscription axioms. In the cases not subsumed, we have shown,via the general methodology for use of the algorithm, how a slight specializationof the algorithm provides a remedy, not only for these particular cases, but forother potential exceptions. In contrast to previous results, the algorithm is moreconstructive in the sense that it provides a step-by-step method for transforming aformula and it also terminates.In the future, we plan on investigating specializations of the algorithm where thegeneral methodology proposed may be used in combination with information aboutthe structure of particular domains of interest, such as the domain of action andchange, to generate speci�c heuristics which can be integrated with the preprocess-ing and simpli�cation stages. In addition, we feel that the use of circumscriptionas a knowledge representation tool deserves reevaluation in light of not only theresults described here, but recent results of Lifschitz and Kartha [11] from a relatedproject in which reductions are based on the SCAN algorithm. The common viewof circumscription as an elegant formalism for conceptual analysis, but one that isdi�cult to apply in practice due to its second-order nature, requires modi�cationif these and other algorithms can be applied practically, as we believe they can.AcknowledgmentsWe would like to thank Thomas Drakengren, Joakim Gustafsson, Lars Karlsson,G. Neelakantan Kartha, and Vladimir Lifschitz for useful discussions.AppendixThe Algorithm in DetailA.1. The AlgorithmThe algorithm takes a formula of the form 9�A, where A is a �rst-order formula,as an input and returns its �rst-order equivalent or reports failure7. Of course, thealgorithm can also be used for formulas of the form 8�:A, since the latter formula isequivalent to :9�:A. Thus, by repeating the algorithm one can deal with formulascontaining arbitrarily many second-order quanti�ers.

COMPUTING CIRCUMSCRIPTION REVISITED 327The algorithm consists of four basic phases: (1) preprocessing; (2) preparationfor Ackermann's Lemma; (3) application of Ackermann's Lemma; and (4) simpli�-cation. These phases are described below. It is always assumed that whenever thegoal speci�c for a current phase is reached, then the remaining steps of the phaseare skipped.

328 P. DOHERTY, W. LUKASZEWICZ, A. SZALASA.1.1. PreprocessingInput:

Output: 9x9�[(A1(�) ^ B1(�)) _ : : : _ (An(�) ^ Bn(�))]9x(9�(A1(�) ^ B1(�)) _ : : : _ 9�(An(�) ^ Bn(�)))To Phase 2

9�:A

To Phase 2
Positive NegativePhase 1May Fail!

Figure A.1. Phase 1: Preprocessing the Input.The purpose of this phase is to transform the formula 9�:A into a form thatseparates positive and negative occurrences of the quanti�ed predicate variable �.The form we want to obtain is9�x9�[(A1(�) ^ B1(�)) _ � � � _ (An(�) ^Bn(�))]; (A.1)where, for each 1 � i � n, Ai(�) is positive w.r.t. � and Bi(�) is negative w.r.t.�.8 It should be emphasized that not every formula is reducible into this form.To achieve the goal of this phase, apply the steps below in the following order.

COMPUTING CIRCUMSCRIPTION REVISITED 3291. Eliminate the connectives � and � using the usual de�nitions. Remove re-dundant quanti�ers. Rename individual variables until all quanti�ed variablesare di�erent and no variable occurs both bound and free. Using the usualequivalences, move the negation connective to the right until all its occurrencesimmediately proceed atomic formulas.2. Move universal quanti�ers to the right and existential quanti�ers to the leftapplying as long as possible the following equivalences (below Q 2 f8; 9g; � 2f_;^g and B contains no occurrences of variables �x):� Q�x(A(�x) �B) � (Q�xA(�x)) �B� Q�x(B �A(�x)) � B �Q�xA(�x).3. Move to the right the existential quanti�ers that are in the scope of universalquanti�ers using the equivalences of step 2.4. Repeat (2) and (3) as long as no new existentially quanti�ed variable can bemoved into the pre�x.5. In the matrix of the formula obtained so far, distribute all top-level conjunc-tions over the disjunctions, containing both positive and negative occurrencesof �, that occur among their conjuncts. For this purpose, apply the followingequivalences:� A ^ (B _ C) � (A ^ B) _ (A ^ C)� (A _ B) ^ C � (A ^ C) _ (B ^ C)only if B _ C (A _ B) have both positive and negative occurrences of �If the resulting formula is not in the form (A.1), then report the failure of thealgorithm. Otherwise replace (A.1) by its equivalent given by9�x(9�(A1(�) ^ B1(�)) _ � � � _ 9�:(An(�) ^ Bn(�))): (A.2)For each disjunct 9�(Ai(�)^Bi(�)) of (A.2) try to �nd its �rst-order equivalentby apply the next phases to the formula 9�(Ai(�)^Bi(�)). If all the equivalentsare obtained, return their disjunction, preceded by the pre�x 9�x, as the outputof the algorithm.The following example illustrates the described phase.Example: Consider the formula9�[8x9y(P (y) _ 9t(�(t) _ P (x) _ R(x; t))) ^ 9z�(z) ^ 9u:�(u)]:The following lines show the subsequent transformations.

330 P. DOHERTY, W. LUKASZEWICZ, A. SZALAS9�[8x9y(P (y) _ 9t(�(t) _ P (x) _R(x; t))) ^ 9z�(z) ^ 9u:�(u)] � (by 2)9zu9�[8x9y(P (y) _ 9t(�(t) _ P (x) _R(x; t))) ^ �(z) ^ :�(u)] � (by 3)9zu9�[8x(9yP (y) _ 9t(�(t) _ P (x) _R(x; t))) ^ �(z) ^ :�(u)] � (by 2)9zu9�[(9yP (y) _ 8x9t(�(t) _ P (x) _R(x; t))) ^ �(z) ^ :�(u)] � (by 2)9zuy9�[(P (y) _ 8x9t(�(t) _ P (x) _ R(x; t))) ^ �(z) ^ :�(u)] � (by 5)9zuy9�[(P (y) ^�(z) ^ :�(u)) _ (8x9t(�(t) _ P (x) _R(x; t))^�(z) ^ :�(u))]:

COMPUTING CIRCUMSCRIPTION REVISITED 331A.1.2. Preparation for Ackermann's Lemma

pref [(�(�t11 _ : : : _ �(�t1n1) _ C1) ^ : : : ^ (�(�tk1) _ : : : _ �(�tknk) _ Ck) ^D]ni > 19�xi(8�y(�(�y) _ �xi 6= �y _ Ci) ^ (�xi = �ti1 _ : : : _ �xi = �tini _ Ci)Possible Skolemization

9�(A(�) ^B(�))

8�y(�(�y) _ �y 6= �ti1 _ Ci)
To Phase 3

Using 1st form ofAckerman's Lemma Phase 2
Input:

Output:
n1 = 1
B(�) ^D ^ : : :9 �f9�8�y[�(�y) _ pref 0((�x1 6= �y _ C1) ^ : : : ^ (�xk 6= �y _ Ck)) ^ pref 0E]9 �f9�pref 0[8�y(�(�y) _ �x1 6= �y _ C1) ^ : : : ^ 8�y(�(�y) _ �xk 6= �y _ Ck) ^ E]

Figure A.2. Phase 2: Preparation for Ackermann's LemmaThe goal of this phase is to transform a formula of the form 9�(A(�) ^ B(�)),where A(�) (resp. B(�)) is positive (resp. negative) w.r.t. �, into one of the forms(3) or (4) given in Lemma 1. Both forms can always be obtained. However, Skolem-ization is sometimes necessary and unskolemization, which is to be performed in thenext phase, may fail. Accordingly, the algorithm performs both transformations.Due to the symmetry of Ackermann's Lemma, the steps stated below describe onlyone of those transformations, namely that leading to the form (3).1. Transform A(�) into the form

332 P. DOHERTY, W. LUKASZEWICZ, A. SZALASpref [(�(�t11) _ � � � _�(�t1n1) _ C1) ^ � � � ^ (�(�tk1) _ � � � _ �(�tknk) _ Ck) ^D];where pref is a pre�x of �rst-order quanti�ers and � does not occur inC1; : : : ; Ck; D. This step is always possible by applying the usual technique ofobtaining the conjunctive normal form.2. Transform each conjunct in Step 1 of form (�(�ti1) _ � � � _ �(�tini) _ Ci), whereni > 1, into its equivalent9�xi(8�y(�(�y) _ �xi 6= �y _ Ci) ^ (�xi = �ti1 _ � � � _ �xi = �tini _ Ci))and move all existential quanti�ers into the pre�x pref in Step 1. This stepis justi�ed by equivalence (16) of Proposition 1. In addition, move each of thesecond conjuncts, (�xi = �ti1 _ � � � _ �xi = �tini _Ci), into D in Step 1, renaming itD0.3. Transform each conjunct in Step 1 of form (�(�ti1) _ Ci) into its equivalent8�y(�(�y) _ �y 6= �ti1 _ Ci)4. Remove all existential quanti�ers from the pre�x pref using the equivalence ofSkolem given by8�x:9y:A(�x; y; : : :) � 9f:8�x:A(�x; y f(�x); : : :); (A.3)where f is a new function variable. After this transformation the input formulatakes the form9 �f9�pref 0[8�y(�(�y) _ �x1 6= �y _ C1) ^ � � � ^ 8�y(�(�y) _ �xk 6= �y _ Ck) ^ E];(A.4)where �f is the tuple of the introduced Skolem functions, pref 0 only containsuniversal quanti�ers, and E is D0 ^ B(�).5. Transform (A.4) into its equivalent given by9 �f9�8�y[�(�y) _ pref 0((�x1 6= �y _ C1) ^ � � � ^ (�xk 6= �y _ Ck)) ^ pref 0E:(A.5)Example: [continued] There are two formulas to be considered in this phase, namely9�(P (y)^�(z)^:�(u)) and 9�8x9t(�(t)_P (x))^�(z)^:�(u). We apply phase2 to the former of the above formulas.9�(P (y) ^ �(z) ^ :�(u)) � (by 2)9�(P (y) ^ 8r(�(r) _ z 6= r) ^ :�(u))

COMPUTING CIRCUMSCRIPTION REVISITED 333Applying phase 2 to the second formula proceeds as follows.9�8x9t(�(t) _ P (x) _ R(x; t)) ^ �(z) ^ :�(u) � (by 3)9�8x9t8r(�(r) _ r 6= t _ P (x) _R(x; t)) ^ 8r(�(r) _ z 6= r) ^ :�(u) � (by 4)9f9�8x8r(�(r) _ r 6= f(x) _ P (x) _ R(x; f(x)))^8r(�(r) _ z 6= r) ^ :�(u) � (by 5)9f9�8r[�(r) _ (8x(r 6= f(x) _ P (x) _ R(x; f(x))) ^ z 6= r)] ^ :�(u):

334 P. DOHERTY, W. LUKASZEWICZ, A. SZALASA.1.3. Application of Ackermann's Lemma9 �f9�8�y[�(�y) _ pref 0((�x1 6= �y _ C1) ^ : : : ^ (�xk 6= �y _ Ck)) ^ pref 0E]
9 �f [pref 0E(:� pref 0((�x1 6= �y _ C1) ^ : : : ^ (�xk 6= �y _ Ck)))]8�x:9y:A(�x; y; : : :) � 9f:8�x:A(�x; y f(�x); : : :)

pref 00E(:� pref 0((�x1 6= �y _ C1) ^ : : : ^ (�xk 6= �y _ Ck)))]

Input:
Phase 3.1

Phase 3.2Output:

Apply
Unskolemize May Fail!

To Phase 4Figure A.3. Phase 3: Application of Ackermann's LemmaThe goal of this phase is to eliminate the second-order quanti�cation over �,applying Ackermann's Lemma, and then to unskolemize the introduced functionvariables. The phase consists of the following two steps.1. Apply Ackermann's Lemma to the formula (A.5). The resulting formula is ofthe form9 �f [pref 0E(:� pref 0((�x1 6= �y _ C1) ^ � � � ^ (�xk 6= �y _ Ck)))]

COMPUTING CIRCUMSCRIPTION REVISITED 3352. Try to remove all existential quanti�ers over function variables using the equiv-alence (A.3). If this is impossible, the algorithm fails for the �rst form ofAckermann's Lemma. Using the second form returned from A.1.2, try to re-move the existential quanti�ers over function variables. If this is successful, goto the next step. If not, the algorithm fails.Example: [continued] We apply phase 3 for the pair of formulas obtained as theresult of phase 2.9�(P (y) ^ 8r(�(r) _ z 6= r) ^ :�(u)) � (by 1)P (y) ^ z 6= u:9f9�8r[�(r) _ (8x(r 6= f(x) _ P (x) _ R(x; f(x))) ^ z 6= r)] ^ :�(u) � (by 1)9f8x(u 6= f(x) _ P (x) _ R(x; f(x))) ^ z 6= u � (by 2)8x9t(u 6= t _ P (x) _ R(x; t)) ^ z 6= u:

336 P. DOHERTY, W. LUKASZEWICZ, A. SZALASA.1.4. Simpli�cationInput: pref 00E(:� pref 0((�x1 6= �y _ C1) ^ : : : ^ (�xk 6= �y _ Ck)))]

Output: Simpli�ed Input Formula.

A(�t1) ^ : : : ^A(�tn)8�x(A(�t �x) _ �x 6= �t)
8�x(�x 6= �ti ^ : : : ^ �x 6= �tn) _ A(�t �x))

A(�t)
Figure A.4. Phase 4: Simpli�cationThe formula obtained as the result of the previous phase can often be substantiallysimpli�ed using Proposition 1 (15), or its generalization (18). The simpli�cationphase consists of one step. In the formula obtained after successfully performingphase 3,1. Replace each subformula of the form 8�x(A(�t �x) _ �x 6= �t) by A(�t), and2. Replace each subformula of the form 8�x(�x 6= �t1 ^ � � � ^ �x 6= �tn) _A(�t1 �x)) byA(�t1) ^ � � � ^ A(�tn).

COMPUTING CIRCUMSCRIPTION REVISITED 337
Example: [continued] Since the simpli�cation phase is inapplicable to the formulasobtained in phase 3, the �rst-order equivalent of the input formula we �nally obtainis 9z9u9y[(P (y) ^ z 6= u) _ (8x9t(u 6= t _ P (x) _ R(x; t)) ^ z 6= u)]:A.1.5. Remarks about the Algorithm� The algorithm always terminates and is sound, i.e. the output �rst-order for-mula, if obtained, is equivalent to the input second-order formula.� Although the algorithm may seem a bit complex, the calculations it describesmay be performed without any computer support.� For the sake of clarity the algorithm is not presented in its most e�cient form.The possible directions for its optimization follow from the examples presentedthroughout the paper.� Observe that one usually deals with the elimination problem over a �rst-orderde�nable class of models. In such cases it is sometimes possible to considerablysimplify the input formula before running the algorithm (see Section 4.1.2).Such a possibility can be considered as an additional heuristics in the prepro-cessing phase.Notes1. The failure of the algorithm does not mean that the second-order formula at hand cannot bereduced to its �rst-order equivalent. The problem we are dealing with is not even partiallydecidable, for �rst-order de�nability of the formulas we consider is not an arithmetical notion(see, for instance, [4]).2. It should be emphasized that not every formula is reducible into this form.3. To increase the strength of the algorithm, it is essential to move as many existentially quanti�edvariables as possible into the pre�x of (6).4. Rabinov requires n-simplicity here.5. The second form considered in Lemma 1 is symmetric to the �rst one.6. If the axiom were added to the theory, the DLS algorithm would fail due to unskolemizationproblems.7. The failure of the algorithm does not mean that the second-order formula at hand cannot bereduced to its �rst-order equivalent. The problem we are dealing with is not even partiallydecidable, for �rst-order de�nability of the formulas we consider is not an arithmetical notion(se, for instance, [4]).8. To increase the strength of the algorithm, it is essential to move as many existentially quanti�edvariables as possible into the pre�x of (A.1).

338 P. DOHERTY, W. LUKASZEWICZ, A. SZALASReferences1. W. Ackermann. Untersuchungen �uber das Eliminationsproblem der Mathematischen logik.Mathematische Annalen, 110:390{413, 1935.2. W. Ackermann. Solvable Cases of the Decision Problem. North-Holland, Amsterdam, 1954.3. J Van Benthem. Modal Logic and Classical Logic. Bibliopolis, Napoli, 1983.4. J. Van Benthem. Correspondence theory. In D. Gabbay and F. Guenthner, editors, Handbookof Philosophical Logic, volume 2, pages 167{247. D. Reidel Publishing Co., 1984.5. J. Van Benthem. Semantic parallels in natural language and computation. In H-D Ebbing-haus et al., editors, Logic Colloquium, Granada 1987, pages 331{375, 1989.6. P. Doherty, W Lukaszewicz, and A. Sza las. A characterization result for circumscribednormal logic programs. Technical Report LITH-IDA-95-20, Department of Computer andInformation Science, Link�oping University, Link�oping, Sweden, 1995.7. P. Doherty, W Lukaszewicz, and A. Sza las. General Domain Circumscription and its First-Order Reduction. Technical Report LITH-IDA-95, Department of Computer and InformationScience, Link�oping University, Link�oping, Sweden, 1995.8. D. Gabbay and H. J. Ohlbach. Quanti�er elimination in second-order predicate logic. Techni-cal Report MPI-I-92-231, Max-Planck Institut f�ur Informatik, Saarbr�ucken, Germany, 1992.9. M. Gelfond and V. Lifschitz. Compiling circumscriptive theories into logic programs. InProc. 2nd Int'l Workshop on Non-Monotonic Reasoning, volume 346 of Lecture Notes inArti�cial Intelligence, pages 74{99, Berlin, 1989. Springer-Verlag.10. M. L. Ginsberg. A circumscriptive theorem prover. Arti�cial Intelligence, 39:209{230, 1989.11. G. N. Kartha and V. Lifschitz. A simple formalization of actions using circumscription. InProceedings of the 14th Int'l Joint Conference on Arti�cial Intelligence, 1995.12. P. Kolaitis and C. Papadimitriou. Some computational aspects of circumscription. In AAAI-88: Proceedings of the 7th National Conference on Arti�cial Intelligence, pages 465{469,1988.13. V. Lifschitz. Computing circumscription. In Proceedings of the 9th Int'l Joint Conferenceon Arti�cial Intelligence, volume 1, pages 121{127, 1985.14. V. Lifschitz. Pointwise circumscription. In M. Ginsberg, editor, Readings in NonmonotonicReasoning, pages 179{193. Morgan Kaufmann, 1988.15. V. Lifschitz. Circumscription. In D. M. Gabbay, C. J. Hogger, and J. A. Robinson, editors,Nonmonotonic Reasoning and Uncertain Reasoning, volume 3 of Handbook of Arti�cial In-telligence and Logic Programming. Oxford University Press, 1994.16. V. Lifschitz. Nested abnormality theories. Arti�cial Intelligence, 1995. To Appear.17. L. L�owenheim. �Uber M�oglichkeiten im Relativekalk�ul. Mathematische Annalen, pages 137{148, 1915.18. J. McCarthy. Circumscription { a form of non-monotonic reasoning. Arti�cial Intelligence,13(1-2):27{39, 1980.19. T. Przymusinski. An algorithm to compute circumscription. Arti�cial Intelligence, 38:49{73,1991.20. A. Rabinov. A generalization of collapsible cases of circumscription (research note). Arti�cialIntelligence, 38:111{117, 1989.21. R. Reiter. A logic for default reasoning. Arti�cial Intelligence, 13:81{132, 1980.22. A. Sza las. On the correspondence between modal and classical logic: an automated approach.Journal of Logic and Computation, 3:605{620, 1993.

