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ABSTRACT. This paper describes an experimental platform for approximate knowledge databases
called the Approximate Knowledge Database (AKDB), based on a semantics inspired by rough
sets. The implementation is based upon the use of a standard SQL database to store logical
facts, augmented with several query interface layers implemented in JAVA through which ex-
tensional, intensional and local closed world nonmonotonic queries in the form of crisp or
approximate logical formulas can be evaluated tractably. A graphical database design user
interface is also provided which simplifies the design of databases, the entering of data and
the construction of queries. The theory and semantics for AKDBs is presented in addition to
application examples and details concerning the database implementation.

KEYWORDS: approximate reasoning, approximate databases, knowledge representation, second-
order quantifier elimination

1. Introduction

An essential component in many AI agent-based architectures is the agent’s knowl-
edge representation component which includes a variety of knowledge and data repos-
itories with associated inference mechanisms. In the case of robotic systems, the
knowledge representation component is often intended to provide models of aspects
of the robot’s embedding environment and its own and other agent capabilities. De-
signing, specifying and implementing KR components in a robotic system is particu-
larly challenging due to soft and hard real-time constraints and the fact that knowledge
structures are often derived from sensory input and fusion processes.

It is becoming increasingly important to take seriously the gap between access to
low-level sensory data and its fusion and integration with more qualitative knowledge
structures. These signal-to-symbol transformations should be viewed as an on-going
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process with a great deal of feedback between the levels of processing. In addition, be-
cause the embedding environments are often as complex and dynamic as those faced
by humans, the knowledge representations which are used as models of the environ-
ment must necessarily be partial, elaboration tolerant and approximate in nature.

This type of requirement rules out the use of standard relational database technolo-
gies as commonly understood, where crisp relations are stored as tables and a standard
closed-world assumption is implicit in the query mechanism associated with a rela-
tional database. The focus of our research is to relax many of these standard as-
sumptions in order to meet the requirements associated with the use of knowledge
representation components in robotic systems. For example, approximate relations
will be used instead of crisp relations, an open-world assumption will be used instead
of the closed-world assumption and our query language will support the specification
of non-monotonic queries. In order to leverage the great amount of work already done
with traditional relational database technologies, we will also show how it is possible
to develop a theory of approximate databases and queries, but yet be able to com-
pile such representations into standard SQL queries. In this manner, tractability is
guaranteed through the use of smart encoding techniques.

A concrete domain, where such knowledge representation components are not only
desirable, but necessary, involves the use of an unmanned aerial vehicle (UAV) oper-
ating over a road and traffic environment. In this case, the UAV system must be able to
dynamically construct representations of objects it observes in the world and integrate
these representations with other static representations such as concepts and taxonomic
hierarchies about spatial or temporal relations, normative behavior of vehicles, traffic
representations, etc.

In this case, the meaning of concepts such as fast or slow, small or large vehicle,
near, far, or between, have a meaning different from that in applications with other
temporal and spatial constraints. Assuming these primitive concepts as given and that
they are continually re-grounded in changes in an operational environment via ma-
chine learning or sensor fusion, we would then like to use these primitive concepts
in our knowledge representation structures. Since they are inherently approximate,
any knowledge structure containing these concepts should also inherit or be influ-
enced by these characteristics. For the purposes of this paper, we will assume that the
approximate concepts have been generated in some manner. We will focus on their
representation, storage and use, in what we call approximate databases.

The research described in this paper was initiated within the framework of the
WITAS UAV Project.1 This was a larger project involving the design and use of au-
tonomous unmanned aerial vehicles and the development of an integrated software
architecture for low- and high-end autonomous functionality [DOH 00a, DOH 04a].

1. WITAS is an acronym for the Wallenberg Information Technology and Autonomous Systems
Laboratory at Linköping University, Sweden. UAV is an acronym for Unmanned Aerial Ve-
hicles. The WITAS UAV Project ended officially in 2004. See http://www.ida.liu.se/
~patdo/auttek/ for continued activities in this area.
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The research with approximate databases has been greatly influenced by the fact that
the system had to be integrated and used in a complex UAV system which has been
deployed in a number of complex scenarios involving photogrammetry, surveying,
vehicle tracking and multi-platform scanning.

The UAV experimental platform offers an ideal environment for experimentation
with the knowledge representation framework we propose, because the system archi-
tecture is rich with different types of knowledge representation structures, the opera-
tional environment is quite complex and dynamic, and signal-to-symbol transforma-
tions of data are an integral part of the architecture. In addition, much of the knowl-
edge acquired by the UAV is necessarily approximate in nature. In several of the
sections in this paper, we will use examples from this application domain to describe
and motivate some of our techniques.

In this paper, we focus on a generalization of deductive database technology suit-
able for the characteristics of robotic domains mentioned previously. A standard de-
ductive database (see, e.g., [ABI 95, PRZ 90]) can store ground atomic formulas to
represent factual knowledge and use, for example, Horn-clause logic formulas as de-
ductive rules to infer additional facts. Such databases often make assumptions, such
as the assumption that the stored knowledge is precise or complete, that render them
less suitable for the contexts we are interested in. Approximate databases, considered
in a number of our publications (see, e.g., [DOH 99, DOH 03b, DOH 04b, DOH 04d,
DOH 04e]) and summarized in book form in [DOH 06], relax many of these assump-
tions and become applicable in robotics contexts where standard techniques do not.
An important part of our investigation involved the design, development and im-
plementation of a database engine [MAG 05a], called the Approximate Knowledge
Database (AKDB), that serves as an experimental platform for our research. Since the
technology is built on top of traditional SQL relational database technology, its poten-
tial applicability goes well beyond the application domain described here although we
have not yet pursued its use with other domains.

The paper is structured as follows. Section 2 introduces and motivates the concepts
that are used in the remaining parts of the paper. Section 3 provides an overview
of the architecture of approximate knowledge databases. In Section 4 we present
syntax and semantics of approximate knowledge databases. Section 5 discusses the
relation of our solutions to other work. In Section 6 the concepts introduced earlier
are illustrated on a surveillance mission case study. Finally, Section 7 concludes the
paper and Appendix A mentions some additional functionality.

An online interface for experimenting with AKDBs is available via
http://www.ida.liu.se/~marma/akdb/



4 Journal of Applied Non-Classical Logics — January 5, 2006, 2nd submission.

SQL 
Database 

Extensional Database 

Intensional Database 

CCQ Database 

Query Compiler 

Inference Mechanism 

Circumscription 

DLS* 

Approximate Fixpoint Query 

Semi-Horn Theory, 
Minimization Policy, 
Crisp Formula Query 

Horn-form Deductive Rules, 
Approximate Fixpoint Query 

SQL 

Figure 1. An overview of the AKDB architecture.

2. Overview and Preliminaries

2.1. Approximate Knowledge Databases

The approximate knowledge database augments a standard SQL database with sev-
eral extension layers, each providing an extended query language building upon the
lower layers. As shown in the overview in Figure 1, there are three main layers. The
extensional database implements the concept of approximate relations based on the
three-valued logic of Kleene under an open world assumption by using a compila-
tion mechanism to regular database relations. The intensional database uses rules and
an inference mechanism to deduce both new positive and negative facts. Finally, the
CCQ database provides mechanisms to apply local closed world assumptions while
evaluating a query through the use of second-order circumscription that is reduced
to first-order logic using the DLS∗ second-order quantifier elimination algorithm. A
more detailed description of the AKDB system is found in Section 3.

2.2. Approximate Relations

Approximate relations are introduced as basic elements to be stored in approxi-
mate databases. These are intended to naturally express knowledge with imprecise
concepts and should be contrasted with the crisp (precise) relations and formulas used
in standard deductive databases. Approximate relations are based on ideas from rough
set theory.
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In rough set theory, a rough set is characterized by two classical sets, one repre-
senting a lower approximation to the set and one representing an upper approximation
to the set. Both lower and upper approximations to the set are defined in terms of
equivalence classes of individuals in the domain of discourse where the partitions are
generated relative to a set of attributes associated with individuals. The net result is
a partitioning of individuals relative to the lower and upper approximations and the
difference between the two, the boundary region of the rough set.

For approximate sets (relations), the basic semantics is generalized in a number of
ways to create a semantics for approximate databases. Most importantly, rather than
building up lower and upper approximations in terms of equivalence classes on indi-
viduals, one defines different types of neighborhood functions on individuals, where
each function may be specified using different sets of constraints. Rough sets then
become a special case of approximate sets with a particular set of constraints.

crisp relation (set) RR⊕

R−

R�

R+ R±

Figure 2. Approximations of a relation (set).

Any approximate relation R has (see Figure 2), a positive part, denoted by R +,
containing objects known to satisfy R, a negative part, denoted by R−, containing ob-
jects known not to satisfy R, a boundary part, denoted by R±, containing objects that
are neither known to satisfy R nor known not to, a positive-boundary part, denoted
by R⊕, containing objects in the positive or boundary part, a negative-boundary part,
denoted by R�, containing objects in the negative or boundary part.

Approximations of a set (relation) are usually given by means of a family of neigh-
borhoods of domain elements, as defined below. Note that such approximations not
only provide us with techniques for dealing with vague concepts, but also are impor-
tant in verifying whether in a given application domain one actually deals with rough
concepts, tolerance-based concepts or maybe concepts reflecting yet other similarity
constraints. Certain properties of similarities are also used to ensure the validity of
certain assumptions as, e.g., those discussed in Section 2.5.5.

DEFINITION 1. — Let DOM be a given domain of elements. Then any

n : DOM −→ 2DOM , such that for any u ∈ DOM, n(u) �= ∅
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is called a neighborhood function.

Sets n(u), for u ∈ DOM are interpreted as direct neighborhoods of elements. The
neighborhoods are usually generated by some similarity relation σ, by assuming that

n(x) def= {y | σ(x, y)}

(see, e.g., [DOH 04f, DOH 03a]). For example, when σ is an equivalence relation,
one has rough set approximations (cf. [PAW 91, PAL 04]), when σ is reflexive and
symmetric, one has tolerance-based approximations (cf. [DOH 03a]).

In some applications it is also reasonable to consider even weaker similarity rela-
tions (cf. [DOH 04f, DOH 05]).

The lower and upper approximation of R wrt n is defined as:

Rn+
def= {u ∈ DOM : n(u) ⊆ R}

Rn⊕
def= {u ∈ DOM : n(u) ∩R �= ∅}.

Observe that the requirement that n(u) �= ∅ in Definition 1 ensures that Rn+ ⊆ Rn⊕ .

In the presence of the neighborhood function n, R + def= Rn+ and R⊕ def= Rn⊕ .

As shown in [DOH 04f], one can obtain correspondences between similarities and
approximations using second-order quantifier elimination techniques. The techniques
described are similar to those used in modal correspondence theory. Such correspon-
dences are crucial when one wants to make sure that the underlying reasoning mech-
anism used with approximate relations reflects the properties of, say, rough sets or
tolerance spaces.

For example, in order to satisfy constraints associated with tolerance spaces, one
requires that R+ ⊆ R (reflexivity of σ) and R ⊆ (

R⊕)+
(symmetry of σ). In order to

satisfy constraints associated with rough sets, one has to additionally make sure that
R+⊆(

R+)+ (transitivity of σ).

One of the weakest requirements on approximations is that R+ ⊆ R⊕. This re-
quirement corresponds to the seriality of the underlying similarity relation, i.e., to
the requirement that ∀x∃yσ(x, y). This observation is crucial for the soundness and
completeness of the Feferman-Gilmore translation discussed in Section 2.5.5, since
R+ ⊆ R⊕ is equivalent to R+ ∩R− = ∅, required there.

REMARK 2. — As indicated in [DOH 04f], such correspondences can also be ob-
tained based on modal correspondence theory. 2 This is done by translating R+ into
�R and R⊕ into �R. Then the required properties of the similarity relation are ex-
actly those of the accessibility relation in Kripke structures for modal logics. Some-

2. For a survey of modal correspondence theory see [BEN 84]. For automated techniques for
correspondence theory see [GAB 92, SZA 93, NON 98, NON 99].



Approximate databases 7

times one can then apply known facts from the area of modal logics, e.g. the fact that
axiom 5:

�R→ ��R or, in the terminology of approximations, R⊕ ⊆ (
R⊕)+

can replace both properties of reflexivity and symmetry, since logic KT 5 is S5. �

Approximate relations can be constructed in a number of ways (see, e.g., [DOH 06,
DOH 04c, DOH 00b]), which include supervised machine learning, employing expert
knowledge, and approximating logical theories.

2.3. Open World Assumption

Traditionally, classical reasoning and planning techniques have been developed for
environments in which the reasoning agent is assumed to have complete information
about the world in which it is embedded and the only changes to the world are the
effects which result from the agent’s invocation of actions. Under this assumption, an
efficient means of representing negative information about the world in each planning
or reasoning state is to apply the Closed World Assumption (CWA) [ABI 95, REI 78].
In this case, information about the world, absent in a state, is assumed to be false.

In many realistic application domains, such as robotics, the assumption of com-
plete information is not feasible. Therefore, the CWA can not be used. The embedding
environment is simply too dynamic and information about it too sparse. For exam-
ple, a UAV flying over a region cannot have a complete model of that region. New
objects are continually sensed or encountered and agents other than the UAV agent
cause change in the region. In applications such as this, an Open World Assumption
(OWA), where information not known by the agent is assumed to be unknown, is the
ontologically right choice to make, but complicates both the representational and im-
plementational aspects associated with inference mechanisms and the use of negative
information.

The CWA and the OWA represent two extremes. Quite often, a reasoning agent has
information which permits the application of the CWA locally (see [ETZ 97, DOH 00c,
DOH 03b]). For example, if an agent has a camera sensor, the agent can assume
complete information about objects in the focus of attention (FOA) of the camera;
e.g., the only objects in the FOA are those identified by the image processing module.
This method of reasoning is called the Local Closed World Assumption (abbreviated
as LCWA).

The OWA is used with approximate databases. In this case, both positive and
negative information must be stored in the database. Positive and negative informa-
tion about relations is given via extensional and intensional database layers. Posi-
tive and negative facts that do not follow from these layers are assumed to be un-
known. We also provide a machinery of contextually closed queries (CCQ, introduced
in [DOH 03b]) for reasoning based on LCWA, which will be described more precisely
in Section 3.4.
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2.4. Second-order Quantifier Elimination

Many concepts associated with reasoning in the context of incomplete information,
such as the local closed-world assumption, approximate representations of logical the-
ories, or circumscription axioms, can often be specified in a succinct and efficient
manner using second-order logic. It is also sometimes the case that such second-
order formulas can be reduced to logically equivalent first-order or fixpoint formu-
las using second-order quantifier elimination techniques, such as the DLS [DOH 97]
and DLS∗ [DOH 96a] algorithms. The DLS algorithm is an extension of the algo-
rithm in [SZA 93] and is based on Ackermann’s lemma [ACK 35]. The DLS ∗ al-
gorithm makes use of a fixpoint elimination theorem in [NON 98] (Theorem 4 be-
low) and strengthens the DLS algorithm. For an early implementation of the DLS

algorithm see [GUS 96] and for newer generation implementations of the DLS and
DLS∗algorithms, see [MAG 05b].

Although it is clear that there is no algorithm for reducing any arbitrary second-
order formula to a logically equivalent first-order formula, when the application of
one of the algorithms described above is successful, the result may be a formula of
first-order logic, validity of which (over finite databases) is in PTIME and LOGSPACE

(here we apply the DLS algorithm) or a formula of fixpoint logic, validity of which
(over finite databases) is in PTIME.3 In the latter case we apply the DLS∗ algorithm.

In designing our solutions we always restrict the expressiveness of our knowl-
edge representation fragments to those where second-order quantifier elimination is
guaranteed to be in PTIME. Consequently, the methods we propose in this context
are guaranteed to be tractable, but still the resulting techniques cover all PTIME com-
putable queries on ordered databases due to the well-known expressiveness of fixpoint
queries (see, e.g., [ABI 95]).

Relations generated using fixpoint computations are one important aspect of ap-
proximate database use. In order to formulate the fixpoint theorem of [NON 98] (The-
orem 4 below), which is used in our semantic theory for approximate databases, we
require the following definitions.

DEFINITION 3. — A relation symbol R is said to occur positively (respectively neg-
atively) in a formula A if it appears under an even (respectively odd) number of nega-
tions.4 A formula A is positive w.r.t. relation symbol R iff all occurrences of R in A
are positive. A formula A is negative w.r.t. relation symbol R iff all occurrences of R
in A are negative. If B(X) is a second-order formula, where X is a k-argument rela-
tional variable and C(x̄) is a first-order formula with free variables x̄ = 〈x1, . . . , xk〉.
Then by B[X(t̄) := C(x̄)] we mean the formula obtained from B(X) by substituting

3. Recall that fixpoint logic captures all problems solvable in deterministic polynomial time,
provided that the underlying domain is linearly ordered — see, e.g., [ABI 95, IMM 98,
EBB 95].
4. It is assumed here that all implications of the form p → q are substituted by ¬p ∨ q and all
equivalences of the form p ≡ q are substituted by (¬p ∨ q) ∧ (¬q ∨ p).



Approximate databases 9

each occurrence of X of the form X(t̄) in B(X) by C(t̄), renaming any newly bound
variables in C(x̄) with fresh variables.

The fixpoint theorem of [NON 98] is formulated below.

THEOREM 4. — Assume that formula A is a first-order formula positive w.r.t. X .

– If B is a first-order formula negative w.r.t. X then

∃X
{
∀ȳ

[
A(X)→X(ȳ)

]
∧B(X)

}
≡ B

[
X(t̄) := lfpX(ȳ) [A(X)[t̄]]

]
. (1)

– If B is a first-order formula positive w.r.t. X then

∃X
{
∀ȳ

[
X(ȳ)→A(X)

]
∧B(X)

}
≡ B

[
X(t̄) := gfpX(ȳ) [A(X)[t̄]]

]
. (2)

A survey of various approaches to second-order quantifier elimination is given
in [NON 99].

2.5. Three-valued Logic of Kleene

The semantics of approximate databases is based on the strong three-valued logic
of Kleene, denoted by K3.5 In K3 we use three logical values

{TRUE, FALSE, UNKNOWN},

with the following logical truth ordering: FALSE ≤ UNKNOWN ≤ TRUE.

We define the set {UNKNOWN, TRUE} to be the set of designated truth values. 6

Below we shall briefly discuss propositional, first-order, fixpoint and second-order
three-valued logic, reflecting the languages used in AKDBs.

2.5.1. The Propositional Case

In the propositional version of K3 we build formulas based on a set P3 of three-
valued propositional variables using the standard recursive applications of the propo-
sitional connectives ∨,∧,→.

Any valuation v : P3 −→ {TRUE, FALSE, UNKNOWN} is extended to the set of
all formulas as follows:

– v(¬A) def=

⎧⎨
⎩

TRUE when v(A) = FALSE

FALSE when v(A) = TRUE

UNKNOWN when v(A) = UNKNOWN

5. This makes our solution, among others, compatible with standard SQL, where K3 is used to
define the semantics of queries when null values can appear in database relations.
6. Recall that in the area of many-valued logics, members of the set of designated truth values
act as being true and are used in the definition of entailment.
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– v(A ∨B) def= max{v(A), v(B)}
– v(A ∧B) def= min{v(A), v(B)}

– v(A→ B) def=

⎧⎨
⎩

TRUE when v(A) = FALSE or v(B) = TRUE

FALSE when v(A) = TRUE and v(B) = FALSE

UNKNOWN otherwise.

In K3, as in classical propositional logic, it is the case that:

v
(
A→ (B ∨ C)

)
= v

(
(A ∧ ¬B)→ C

)
(3)

v
(
(A ∧B)→ C

)
= v

(
A→ (¬B ∨ C)

)
. (4)

This is crucial in the definition of expansion (see Definition 13).

The choice of K3 is also crucial in guaranteeing that the Feferman-Gilmore trans-
lation (see Section 2.5.5) is sound and complete wrt the semantics accepted for AKDBs.

REMARK 5. — In the literature, the semantics of deductive databases is sometimes
specified using the logic proposed in [FIT 85] (see also [PRZ 90]) as a basis, where
¬,∨,∧ are defined as in K3 and→ is defined by

v(A→ B) def= v(A) ≤ v(B)). (5)

From our perspective, definition (5) is doubtful. First of all, equations (3) and
(4), crucial to our understanding of IDB rules (defined later) are no longer valid
within this semantics. Secondly, UNKNOWN intuitively denotes a value which is not
yet determined by a robotic agent, but may be determined at a future time. Thus
UNKNOWN → UNKNOWN, which is TRUE according to (5), should be UNKNOWN,
since such an implication, after determining truth values of assumption and conclu-
sion, may equally well appear FALSE or TRUE. Moreover, one sometimes obtains
results which we find counterintuitive. For example, consider the formula:[(

fourWheels(a) ∧ onRoad(a)
)→ car(a)

]
∧ ¬car(a). (6)

Assume that an agent has been able to determine that v
(
car(a)

)
= FALSE and has

been unable to determine whether a has four wheels, i.e., v
(
fourWheels(x)

)
=

UNKNOWN, or whether a is on the road, i.e., v
(
onRoad(x)

)
= UNKNOWN. The

definition provided by formula (5) would evaluate formula (6) to be FALSE. On the
other hand, intuitively (6) should not be inconsistent. Note that in K 3, formula (6) is
evaluated in this situation to be UNKNOWN. �

2.5.2. The First-Order Case

For the first-order language with quantifiers ∃, ∀, we define v on atomic formulas
and then extend it to deal with quantifiers:

– v
(∃xA(x)

) def= max
a∈ DOM

{v(
A(x := a)

)}

– v
(∀xA(x)

) def= min
a∈ DOM

{v(
A(x := a)

)}.
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2.5.3. The Second-Order Case

For the second-order language with second-order quantifiers ∃, ∀ ranging over re-
lations, we first define v on first-order formulas and then extend it to deal with second-
order quantifiers (below R is a three-valued relation over DOM with the same arity as
relational variable X):

– v
(∃X A(X)

) def= max
R
{v(

A(X := R)
)}

– v
(∀X A(X)

) def= min
R
{v(

A(X := R)
)}.

2.5.4. Fixpoint Formulas

For formulas A(X(x̄)) positive wrt X one can define operators

lfpX(x̄) [A(X(x̄))] and gfpX(x̄) [A(X(x̄))]

denoting the least and the greatest fixpoint of A(X(x̄)) (see, e.g., [ABI 95, EBB 95,
IMM 98]). Of course, the terms “least” and “greatest” are to be understood wrt a
particular ordering on relations. In AKDB we assume the truth ordering � defined as
follows (where t̄ can contain constants only):7

R � S
def≡ {t̄ | R(t̄) ≡ TRUE} ⊆ {t̄ | S(t̄) ≡ TRUE} and

{t̄ | R(t̄) ≡ FALSE} ⊇ {t̄ | S(t̄) ≡ FALSE}. (7)

In the classical two-valued case � coincides with the standard inclusion ⊆.

Assume the (three-valued) valuation v on first-order formulas is given. It is ex-
tended to deal with fixpoint operators as follows:

– v
(
lfpX(x̄) [A(X(x̄))]

) def= v
(
A(X := R)

)
, where R is the least (wrt �) rela-

tion such that A(X := R) = R

– v
(
gfpX(x̄) [A(X(x̄))]

) def= v
(
A(X := R)

)
, where R is the greatest (wrt �)

relation such that A(X := R) = R.

2.5.5. The Feferman-Gilmore Translation

In order to provide a semantics for approximate databases, we shall require the
definition of the Feferman-Gilmore translation (see [FEF 84, GIL 74]), used in trans-
lating three-valued logic formulas into the classical two-valued logic.

DEFINITION 6. — By a Feferman-Gilmore translation of a three-valued formula A,
denoted by FG(A), we shall mean the formula obtained from A by replacing all posi-
tive literals of the form R(ȳ) by R+(ȳ) and all negative literals of the form ¬R(ȳ) by
R−(ȳ).

7. In the literature one can also find knowledge ordering, defined by replacing ⊇ in the second
line of (7) by ⊆. Observe that this ordering appears naturally in AKDBs due to the application
of the translation defined in Section 2.5.5.
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In AKDBs, instead of dealing with a single relation symbol representing a classical
relation, say R, we introduce two relation symbols R+ and R−, the first one for rep-
resenting positive facts known about R and the second one for representing negative
facts known about R.

The Feferman-Gilmore translation is sound and complete for K 3 in the sense that
formula α entails formula β in K3 iff in the classical logic the following formula is
valid: [¬(R+

1 ∧R−
1 ) ∧ . . . ∧ ¬(R+

k ∧R−
k )

]→ (α→ β),

where R1, . . . , Rk are all atoms in α and β (see, e.g., [BUS 96]).

Observe that whenever the underlying similarity relation is at least serial then,
as indicated in Section 2.2, for any relation R approximated by means of similarity
neighborhoods we have that ¬(R+ ∧R−) holds.

2.6. Inconsistencies

Since we envision using approximate databases in a distributed manner across
agent systems and often assume several approximate databases being used in a single
agent system, fusing information from various sources will be common place. Con-
sequently, local inconsistencies may arise in AKDBs. Many approaches have been
proposed for dealing with such inconsistencies (see, e.g., [BEL 77]). For the purposes
of this paper, we do not deal with techniques for resolving inconsistencies, but instead
assume this is left to the user of the AKDB, who can provide IDB rules for resolving
inconsistencies. This should be considered a feature since there are many strategies
for resolving inconsistencies and their choice is often dependent on a particular con-
text. For example one can assume that whenever a tuple, say t̄, satisfies both a relation
R and its negation ¬R, then the result of query R( t̄) as well as ¬R(t̄) is UNKNOWN.
Another approach might depend on prioritizing data sources, prefer answers given
by more trustable sources, and rely on less trustable sources only when more trustable
provide answer UNKNOWN. Yet another solution might be based on providing weights
for data sources and consider the “weighted sum” of answers with thresholds allow-
ing to determine what logical value is actually represented by the computed answer
or to apply the majority voting principle. For a discussion of possible strategies see,
e.g., [DOH 02, DOH 06].

2.7. Circumscription

Circumscription is a powerful non-monotonic formalism introduced in [MCC 80]
(for a survey see [LIF 91]). Although circumscription is a second-order formalism,
for a rich class of formulas it can be reduced to first-order logic (see [DOH 97]) or to
the fixpoint logic using the DLS∗ algorithm.



Approximate databases 13

If U and V are relation expressions of the same arity, then U ≤ V stands for
∀x̄ (U(x̄) → V (x̄)).8 Similarly, if Ū = 〈U1, . . . , Un〉 and V̄ = 〈V1, . . . , Vn〉 are
similar tuples of relation expressions, i.e., for 1 ≤ i ≤ n, U i and Vi are of the same

arity, then Ū ≤ V̄ is an abbreviation for
n∧

i=1

[Ui ≤ Vi].

We write Ū = V̄ for (Ū ≤ V̄ )∧ (V̄ ≤ Ū), and Ū < V̄ for (Ū ≤ V̄ )∧¬(V̄ ≤ Ū).

DEFINITION 7. — Let P̄ = 〈P1 . . . , Pn〉 be a tuple of distinct relation symbols,
S̄ = 〈S1, . . . , Sm〉 be a tuple of distinct relation symbols disjoint with P̄ , and let
T (P̄ , S̄) be a theory. The circumscription of P̄ in T (P̄ , S̄) with varied S̄, written
CIRC(T ; P̄ ; S̄), is the sentence

T (P̄ , S̄) ∧ ∀X̄∀Ȳ
{[

T (X̄, Ȳ ) ∧ [X̄ ≤ P̄ ]
]→ [P̄ ≤ X̄ ]

}
(8)

where X̄ = 〈X1 . . . , Xn〉 and Ȳ = 〈Y1, . . . , Ym〉 are tuples of relation variables
similar to P̄ and S̄, respectively.

3. An Overview of the Architecture of Approximate Knowledge Databases

It is important to facilitate experimentation to provide a better feel for the util-
ity and applicability of the ideas and techniques behind approximate databases, and
such experience will likely only come from a real system. We have consequently
spent some considerable effort on an actual implementation called the Approximate
Knowledge Database (AKDB). Grounded in a standard SQL database, several exten-
sion layers each provide an extended query language building upon its lower layers.
Figure 1 displays an architectural overview of the system that is described in more
detail below, starting from the bottom abstraction layer, moving upwards.

It is important to emphasize that the intended user language is the language of
the classical crisp first-order or fixpoint logic. All facts, intensional rules and queries
are then translated using the Feferman-Gilmore translation and the results are then
translated back according to the semantics provided in Section 4. However, the user
can also access the database using the database syntax directly via a graphical user
interface (see Appendix A.1) or text files.

3.1. SQL Database

Even though the SQL database forms the fundamental layer of the system, it can
easily be replaced, choosing from a long list of SQL databases such as POSTGRESQL,
MYSQL, ORACLE, SYBASE, INFORMIX, DB2, MS SQL SERVER, etc. Whatever
database is chosen, it will use regular, crisp, database relations to store approximate

8. Note that U ≤ V means that the extension of U is a subset of the extension of V .
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relations, but need not know the details of the representation. Deciding the exact
format is the concern of the next abstraction layer, which still leaves the SQL database
the task of optimizing and executing SQL queries passed down from higher layers.

Note that for some applications a standard SQL database might not be the most ef-
ficient means of storing and retrieving data. In a robotic system a secondary memory
footprint may need to be minimized or a high frequency of low complexity queries
might call for an implementation where data is stored in primary memory, in which
case such an implementation can be plugged into the system, bypassing the SQL in-
terface.

3.2. Extensional Database

The Extensional Database layer (EDB) provides a mapping from approximate re-
lations to a specific representation scheme based on regular database relations. In
particular, the positive (R+) and negative (R−) parts of relations are stored explicitly
in tables while the boundary, positive boundary, and negative boundary are only stored
implicitly but can still be generated through more complex queries to the database.

When all relation arguments are assumed to have finite domains, all parts of rela-
tions consist of a finite number of tuples, and the division between explicit and implicit
storage becomes a potential implementation choice point to which the best answer will
depend on the final application. We believe that, in the general case, it is profitable to
save space by storing known information explicitly and unknown information implic-
itly since the amount of unknown information about world state is often vastly larger
than that which is known.

As mentioned previously, logic is consistently used as the query language in all
parts of the AKDB. Both the fact that the logical query language may refer explicitly
to the boundary parts that are not explicitly stored and the fact that any, arbitrarily
complex, logical formula may be used as a query contribute to the necessity of some
kind of evaluation mechanism. To make this feasible, we have developed a query
compilation mechanism that will recursively transform any logical formula query into
a, sometimes very elaborate, SQL query, the only exception being fixpoint formulas,
which need to be iteratively evaluated until a fixpoint is reached before the result can
be returned. By delaying the actual evaluation of any part of the query until it reaches
the SQL database we can benefit from the potential performance increase resulting
from SQL query optimization techniques employed by a particular database of choice.

In order to illustrate the use of the extensional database, let us assume that we have
a qualitative approximate relation specifying the colors of cars:

– Color(x, y) (the color of car x is y)

The EDB is populated with some facts, expressed using the Color relation, about
three cars, C1, C2, and C3, and two colors, Black and Red, as in (9).

Color(C1, Black) ∧ ¬Color(C1, Red) ∧ Color(C2, Red) (9)
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A simple query asking for the colors of cars, Color(x, y), results in the tuples
〈C1, Black〉 and 〈C2, Red〉, while ¬Color(x, y) would return 〈C1, Red〉. The color
of C3 is not known and an explicit query about it, e.g., Color(C 3, Black), results in
the value UNKNOWN. This is so because the OWA is being used and no additional
constraints restricting a car to have only one color are part of the theory.

More subtle queries can be formed by using the language of approximate relations
directly. Asking for cars that might not be red, Color�(x, Red), returns the cars 〈C1〉
and 〈C3〉, since C1 is known not to be red and C3 is possibly not. Any complex
formulas can be evaluated, e.g., a query asking if there is a color that all cars might
have and that some car is known to have can be expressed as ∀x[Color⊕(x, y)] ∧
∃x[Color+(x, y)], and returns the tuple 〈Black〉.

3.3. Intensional Database

The Intensional Database layer (IDB) uses stored rules to infer additional infor-
mation from the facts in the EDB. The intensional rules are approximate implications
with a single literal head, but differ from Horn-clause type rules in that the head literals
can contain negations. To deduce new facts, the rules are translated into approximate
formula fixpoint queries that must then be checked for consistency since both new
positive and new negative information might be produced.

Performing the necessary inferences for a specific query is the task of the inference
mechanism, which currently uses the naive method of repeatedly applying all IDB

rules until no new facts can be inferred, evaluating the query in this new context, and
finally withdrawing the generated facts to restore the original database state. This
method can clearly be improved upon using the rich set of techniques developed for
efficiently evaluating intensional database queries (see, e.g., Chapter 13 of [ABI 95]).

Continuing the previous example, we might use the IDB to add a rule that enables
us, whenever we detect the color of a car, to conclude that it has only that color and
not any other color, expressed in (10).

∀x, y1, y2[Color(x, y1) ∧ y1 �= y2 → ¬Color(x, y2)] (10)

If we then evaluate the query, ¬Color(x, y), the result will be both 〈C1, Red〉 and
〈C2, Black〉, which includes the new consequence that C2 can not be Black since it
was known to be Red.

3.4. Contextually Closed Query Database

The Contextually Closed Query database layer (CCQ) provides the functionality
that renders locally closed world reasoning feasible. This is accomplished through the
use of circumscription in the context of a closure policy provided by the user.
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A contextually closed query, as introduced in [DOH 03b], consists of a logical
formula query together with a crisp logical theory, describing the relations in the query,
and a closure policy defining what relations are affected by the closure in one of the
following ways:

– A relation may be fixed, in which case it will not be modified by the closure.

– A relation may be minimized, in which case tuples may be moved from the
boundary part into the negative part of the relation in order to minimize its extension.

– A relation may be varied, in which case tuples may be moved from the boundary
part into either the positive or negative part as an effect of the minimization of other
relations.

Closure policies reflect the ideas behind circumscription but with local theories or
contexts being attached directly to queries to contextualize them (see, e.g., [MCC 80,
LIF 91]). Of course, circumscription-based reasoning is not tractable. However, the
DLS∗ algorithm can reduce any second-order formula from the class of semi-Horn
formulas into an equivalent first-order formula in polynomial time [DOH 98], where
by a semi-Horn formula we understand any formula of the form appearing inside of
brackets {. . .} in (1) and (2). Consequently, second-order circumscription theories
can often be reduced to logically equivalent first-order theories and standard querying
techniques can then be used.

Another, important class of closure policies, the universal closure policies, com-
putable in polynomial time, is defined in [DOH 03b]).

The major difference between circumscription and closure policies lays in the un-
derlying methodology. Namely, contextually closed queries focus on preserving the
indicated integrity constraints, expressed by means of a first-order theory, that are
to be preserved while a given query is being evaluated. The set of chosen integrity
constraints can be made dependent on a particular context of a query.

Contextually closed queries are frequently used to model the LCWA (For the con-
nection between LCWAs and circumscription see also [DOH 00c]).

Adding another, undoubtedly approximate, relation to the previous example will
help illustrate a CCQ query:

– Sporty(x) (car x is kind of sporty)

Assuming that we want to express the opinion that red cars are sporty, we formulate
the simple integrity constraint in (11).

∀x[Color(x, Red)→ Sporty(x)] (11)

If we apply the closure policy of minimizing the new Sporty relation while vary-
ing the Color relation, a query such as, Sporty(x), will return the tuple 〈C2〉, since
C2 was known to be Red and therefore has to be sporty, while the query ¬Sporty(x)
returns the tuples 〈C1〉 and 〈C3〉 since these cars can be assumed not to be Red in
order to minimize Sporty.
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Running the DLS∗ algorithm on a circumscribed logical theory can have unde-
sirable effects on its complexity. Although encouraging results in [DOH 99] show
that, at least in the semi-Horn case, the size of the syntactic characterizations of var-
ied and minimized relations are linear in relation to the size of the CCQ query, in
practice there is often both a need and opportunity for simplifications. A number of
equivalence-preserving simplifications are applied to each contextually closed query,
e.g. taking advantage of the unique names assumption in the AKDB.

3.5. Logic Parser

A parser for database input was generated using the JAVACC parser generator.
Our syntax supports the representation of approximate formulas in addition to regular
first-order and fixpoint formulas, but also knowledge base-specific constructs such as
relation definitions, extensional facts, intensional rules, and logical theories together
with closure policies, making it possible to specify entire use scenarios in a single text
file. This latter functionality is complementary to the user of the AKDB as a service
in a larger system, in which case one would make direct use of the AKDB interface to
gain access to methods for, among others, adding and retracting facts or rules.

4. Syntax and Semantics of Approximate Knowledge Databases

4.1. Syntax of Formulas

The syntax for crisp first-order formulas is defined in the standard way, assum-
ing that “->", “|", “&", “-", “forall", “exists" denote implication, disjunction,
conjunction, negation, universal quantification and existential quantification, respec-
tively.

EXAMPLE 8. — Examples of crisp first-order formulas:
Edge(A,B)
forall x,y [exists z [Edge(x,z) & Path(z,y)] -> Path(x,y)] �

Approximate first-order formulas use the same syntax except that atomic formulas
have approximation symbols. We will refer to such formulas, assuming that “+",
“-", “+-", “++" and “--" denote the parts of approximate relations +,− ,± ,⊕ and
�, respectively.

Quantifier-free (crisp and approximate) formulas without variables are called ground
formulas.

EXAMPLE 9. — Examples of approximate first-order formulas:
Edge+(A,B)
forall x,y [exists z [Edge+(x,z) & Path+(z,y)] -> Path+(x,y)] �

Fixpoint formulas are like crisp first-order formulas except that there are two addi-
tional fixpoint operators, “lfp" and “gfp", denoting the least and the greatest fixpoint



18 Journal of Applied Non-Classical Logics — January 5, 2006, 2nd submission.

respectively. Combining the approximate first-order formula and fixpoint formula
grammar extensions yields the class of approximate fixpoint formulas.

EXAMPLE 10. — Examples of fixpoint and approximate fixpoint formulas:

gfp Safe(x) [Bad(x) & forall y [-Edge(x,y) | Safe(y)]]
gfp Safe(x) [Bad--(x) & forall y [Edge--(x,y) | Safe+(y)]]
lfp Tc(x,y) [Edge+(x,y) | exists z [Edge+(x,z) | Tc+(z,y)]] �

Second-order formulas are used to directly access the DLS and DLS ∗algorithms.
They have the same syntax as crisp first-order formulas except for two additional
second-order quantifiers, “forallrelations"and “existsrelation",denoting the
universal and existential second-order quantifier respectively.

EXAMPLE 11. — Example of a second-order formula:

forallrelations P [
forallrelations Q [

forall x [
-forall y [R(x,y) -> (P(y) | Q(y))] |
forall z [R(x,z) -> P(z)] |
forall v [R(x,v) -> Q(v)]

]
]

] �

4.2. The Extensional Database Layer

4.2.1. The Language of the Extensional Database Layer

The extensional database consists of sets of positive and negative facts. We thus
assume that the language of the extensional database is a set of ground literals, i.e.,
formulas of the form R(c̄) or ¬R(c̄), where R is a relation symbol and c̄ is a tuple
of constant symbols. In order to store such facts in the EDB we apply the Feferman-
Gilmore translation (see Definition 2.5.5). Thus, in the database syntax, these facts
are expressed by R+(c̄) and R-(c̄), respectively.

4.2.2. Semantics of the Extensional Database Layer

We give the semantics of relations of the EDB layer. The semantics of formulas
can then be extended according to the three-valued logic of Kleene, as defined in
Sections 2.5.1-2.5.4.

Consider an atomic ground formula R( t̄). Let EDBc denote the set of facts repre-
senting (positive and negative) database facts of a given database instance. Then, in
that instance, if R(t̄) is an atomic ground formula, then

– R+(t̄)
def≡ TRUE iff R+(t̄) ∈ EDBc

– R-(t̄)
def≡ TRUE iff R-(t̄) ∈ EDBc.
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Based on the above definitions one can define other approximation operators as well
as the semantics of the crisp relation:

– R++(t̄)
def≡ TRUE iff R-(t̄) �≡ TRUE

– R--(t̄)
def≡ TRUE iff R+(t̄) �≡ TRUE

– R+-(t̄)
def≡ TRUE iff R+(t̄) �≡ TRUE and R-(t̄) �≡ TRUE

– R(t̄)
def≡

⎧⎨
⎩

TRUE when R+(t̄) ≡ TRUE

FALSE when R-(t̄) ≡ TRUE

UNKNOWN otherwise.

Observe that a literal of EDB can be both TRUE and FALSE, resulting in inconsisten-
cies to be resolved as discussed in Section 2.6.

4.3. The Intensional Database Layer

4.3.1. The Language of the Intensional Database Layer

The intensional database is intended to infer new facts, both positive and negative
via application of intensional rules to the EDB. The rules are of the form

±P (x̄)← ±P1(x̄1), . . .± Pk(x̄k)

where ± is either the empty string or the negation symbol ¬.

The above rule, is translated into the database syntax by applying the Feferman-
Gilmore translation. For example, ¬P (x) ← Q(x) ∧ ¬R(x, y) is translated into
Q+(x) & R-(x,y) -> P-(x).

REMARK 12. — Note that contrary to DATALOG, we do not require the safety con-
dition, i.e., that a variable occurring in the rule’s head has to occur in the rule’s body.
In cases violating the safety condition, we assume that the total relation referring to
variables that are in the rule’s head and not in its body are added to the rule’s body.
More precisely, consider the rule

R(x̄)← R1(x̄1), . . . , Rk(x̄k). (12)

Let z̄
def= x̄ − (x̄1 ∪ . . . ∪ x̄k) be nonempty.9 Let T (z̄) be a new relation symbol,

representing the total relation, i.e., for all z̄, T (z̄) holds. Rule

R(x̄)← R1(x̄1), . . . , Rk(x̄k), T (z̄),

equivalent to (12), is safe. Note that T (z̄) is finite, since the database domain is finite.

The semantics for unsafe rules in AKDBs, is then provided by assuming that the
total relation binding the “unsafe” variables is implicitly added to each unsafe rule. �

9. By x̄ ∪ ȳ we shall mean all variables that are in x̄ or ȳ (after removing duplicates), and by
x̄ − ȳ we shall always mean all variables that are in x̄ and not in ȳ.
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4.3.2. Semantics of the Intensional Database Layer

Observe that, after the translation, all rules in IDB become Horn rules, as in the
case of standard DATALOG. We then use the standard semantics (see, e.g., [ABI 95]),
according to which minimal relations satisfying the rules are computed.

The semantics of IDB is now defined similarly as in the case of EDB. Namely,
let IDBc denote the set of facts representing (positive and negative) minimal relations
computed according to DATALOG semantics over a given database instance and let
R(t̄) be an atomic ground formula. Then, in that instance,

– R+(t̄)
def≡ TRUE iff R+(t̄) ∈ IDBc

– R-(t̄)
def≡ TRUE iff R-(t̄) ∈ IDBc.

The semantics of approximation operators R++( t̄), R--(t̄), R+-(t̄) as well as the
semantics of the crisp relation R(t̄) and arbitrary formulas can now be defined by
analogy with Section 4.2.2.

Observe that a literal of IDB can be both TRUE and FALSE, resulting in inconsis-
tencies to be resolved as discussed in Section 2.6.

4.4. Contextually Closed Queries

4.4.1. The Language of Contextually Closed Queries

Contextually closed queries use local contextual closure policies, LCC s, which are
expressions of the form

LCC [L1, . . . , Lp; K1, . . . , Kr] : I, (13)

where L1, . . . , Lp are (positive or negative) literals, K1, . . . , Kr are relation symbols
not appearing in Li’s and I is a set of integrity constraints. Literals L1, . . . , Lp are
minimized assuming that integrity constraints I are preserved and relations K 1, . . . , Kr

can vary. Thus LCC corresponds to circumscription of I ∪ EDB ∪ IDB with rela-
tions L1, . . . , Lp minimized (positive literals) or maximized (negative literals) and
K1, . . . , Kr allowed to vary. By an LCC assumption we mean a minimization or max-
imization of a single literal from L1, . . . , Lp in (13).

A contextually closed query consists of the query itself, which can be any fixpoint
or first-order formula together with the local closure policy representing the closure
context.

4.4.2. Semantics of Contextually Closed Queries

Let the EDB and IDB be defined as before, let I denote a finite set of integrity
constraints, and let LCC [L̄; K̄]:I be a specific LCC policy. Then, if R(t̄) is an atomic
ground formula, then under the given policy,
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– R+(t̄)
def≡ TRUE iff CIRC(I ∪ IDB ∪ EDB; L̄; K̄) |= R(c̄)

– R-(t̄)
def≡ TRUE iff CIRC(I ∪ IDB ∪ EDB; L̄; K̄) |= ¬R(c̄).

The semantics of approximation operators R++( t̄), R--(t̄), R+-(t̄) as well as the
semantics of the crisp relation R(t̄) and arbitrary formulas can again be defined by
analogy with Section 4.2.2.

4.4.3. Implementation Issues

In general, the problem of querying an approximate database containing LCC poli-
cies defined using unrestricted logical theories is CO-NPTIME-COMPLETE. When one
restricts theories to semi-Horn, the situation becomes tractable, since for such theories
DLS∗ succeeds (see, [DOH 96b]).

However, for the case of universal theories a more efficient computation mecha-
nism, not involving DLS∗ can be provided (see, [DOH 03b]). By a universal theory
we understand any set of formulas of the form,

∀y[(±R1(x1) ∧ · · · ∧ ±Rk(xk))→ ±R(x)] (14)

where ± denotes an optional negation sign, R1, . . . , Rk, R are relation symbols, y is
the vector of all variables occurring in x1, . . . , xk, x and x ⊆ x1 ∪ . . . ∪ xk.

To compute syntactic definitions of the minimized and varied relations we first use
the equivalences reflecting laws (3) and (4):

∀x[A(R)→ (B(R) ∨M(y))] ≡ ∀x[(A(R) ∧ ¬M(y))→ B(R)]
∀x[(A(R) ∧M(y))→ B(R)] ≡ ∀x[A(R)→ (B(R) ∨ ¬M(y))]

(15)

to generate the expansion of each formula in the logical theory, where the notion of
expansion is defined below.

DEFINITION 13. — The expansion of a universal formula F , wrt a closure policy,
is defined as the least set of formulas, obtained by applying tautologies (15) to F ,
such that any occurrence of a minimized or varied relation is a consequent of one
implication.

To minimize a relation we collect, from the expanded theory, all the antecedents
for which the relation must be true and make the relation false in all other cases. This
is accomplished by first applying the Feferman-Gilmore translation to the expanded
theory and then forming a disjunction of the implications’ antecedents where the con-
sequent is the positive part of the relation to be minimized. This serves directly as
a definition of the positive part of the new minimized relation, while the negative part
is defined by the rough negation of the positive part, where the rough negation of R + is
R� if R belongs to the set of relations to be minimized or varied given the closure pol-
icy being applied and R− otherwise (and similarly, the rough negation of R− is R⊕ or
R+). Definitions of the positive and negative parts of varied relations are constructed
by collecting antecedents from the implications with corresponding consequents, com-
bining them in disjunctions and finally substituting occurrences of minimized relations
by their new definitions obtained in the previous step (see [DOH 03b]).
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5. Relation to other Work

In comparison to variants of DATALOG (see [ABI 95, PRZ 90]) we are able to nat-
urally represent approximated concepts and relations. Instead of a single relation, say
R, we consider two relations, one responsible for positive information (R +) and the
other (R−) for negative information; then negative literals are substituted by R− using
the Feferman-Gilmore translation. We obtain negation-free IDB rules and apply the
standard DATALOG semantics for computing R+ and R− (with the CWA). However,
the relation R itself is represented by its positive and negative parts, which reflects the
OWA and can result both in inconsistencies and the lack of full knowledge about R.

Moreover, we permit the use of much more complicated IDB rules than those of-
fered by DATALOG. As mentioned before, we do not require the safety condition
that a variable occurring in the rule’s head has to occur in the rule’s body. Secondly,
users may supply IDB rules that contain negations in the head literal as well as the
body, which are then translated as noted above. Finally, the use of quantifiers is more
relaxed as existential quantifiers may be used freely in the rule body.

An approach to rough databases is provided in [VIT 03a, VIT 03b], where a logic
programming based implementation of rough databases is given. The strength of these
solutions is in applying numerical measures and quantitative reasoning not directly
present in AKDBs. On the other hand our approach offers a much greater flexibility
with our ability to deal not only with rough set-based reasoning but also with the
combination of rough and crisp logic.

Unlike both DATALOG and the rough database approach above, the AKDB intro-
duces the use of restricted circumscriptive policies in the form of contextually closed
queries, which allows for highly expressive nonmonotonic queries. We also provide
an algorithm for second-order quantifier elimination (DLS ∗) that has many important
applications, e.g. the calculation of weakest sufficient and strongest necessary condi-
tions discussed in Appendix A.3, and that is guaranteed to succeed for the well-defined
class of semi-Horn formulas.

6. A Surveillance Mission Case Study

Consider a scenario involving a UAV that makes use of contextually closed queries
during a surveillance mission. A black car has been reported stolen and the task of
the UAV is to locate the car by investigating areas in which the car is suspected to be
located. To represent this scenario we make use of the relations:

– In(x, y) (car x is in region y)

– Color(x, z) (the color of car x is z)

– SuspectIn(y) (the stolen car is suspected to be in region y)

– Investigate(x, y) (the UAV should search for car x in region y).
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Using these relations we construct a crisp logical theory (16) expressing the behavior
we wish the UAV to exhibit. All black cars that are in a suspect region should be
investigated. If a car is known to have some color other than black it is not necessary
to look for it in any region. Finally, when we know that the searched car is not in
a region, there is no point going there looking for it.

∀x, y
[(

In(x, y) ∧ SuspectIn(y) ∧ Color(x, Black)
)

→ Investigate(x, y)
]
∧

∀x, y, z
[(

Color(x, z) ∧ z �= Black
)→ ¬Investigate(x, y)

]
∧

∀x, y
[
¬In(x, y)→ ¬Investigate(x, y)

]
(16)

In AKDB (16) is translated and represented as

forall x,y [In+(x,y) & SuspectIn+(y) & Color+(x,Black)
-> Investigate+(x,y)] &

forall x,y,z [Color+(x,z) & z!=Black -> Investigate-(x,y)] &
forall x,y [In-(x,y) -> Investigate-(x,y)]

Additionally an intensional rule (17) is added to the IDB expressing the fact that if we
know the region a car is in, it can not simultaneously be in some other region.

∀x, y1, y2[¬In(x, y2)← In(x, y1) ∧ y1 �= y2] (17)

In the database syntax (17) is expressed as

forall x,y1,y2 [In+(x,y1) & y1!=y2 -> In-(x,y2)]

Continuing the example, we construct a specific scenario by adding facts to the ap-
proximate knowledge base. Given three cars, C1, C2 and C3, three regions, R1, R2

and R3, and two colors, Black and Red, we add the facts expressed in (18). A black
car C1 is known to be in region R1, the car C2 is red but we do not know in which
region it is, and nothing is known about the third car C 3. Furthermore, the stolen car
is believed to be located somewhere in region R1 or R2.

In+(C1,R1) &
Color+(C1,Black) & Color+(C2,Red) &
SuspectIn+(R1) & SuspectIn+(R2)

(18)

The current knowledge base does not contain any information about which cars
and what regions are interesting for the UAV, but this is information that would be in-
valuable when determining appropriate strategies to search regions for target vehicles.
To acquire such information, a contextually closed query can be formulated which
takes account of current context. In this case, new information specific to regions of
interest can be generated nonmonotonically.
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To do this, the closure policy associated with the contextually closed query will
minimize the number of suspected regions in order to avoid searching regions that
we have no specific reason to believe the stolen car to be in, while varying what cars
and regions the UAV should investigate to obtain information about possible actions to
take. Consequently we construct the policy of minimizing SuspectIn while varying
Investigate and fixing the remaining relations In and Color.

In order to ask contextually closed queries we first compute the expansion of (16)
(recall that expansion is defined in Definition 13), where the only formula containing
an occurrence of a minimized or varied relation that is not already in the consequent
is the first one. Thus, in this case, the expansion of (16) is obtained by replacing the
first conjunct by

∀x, y[In(x, y) ∧ SuspectIn(y) ∧Color(x, Black)
→ Investigate(x, y)]

∀x, y[In(x, y) ∧ ¬Investigate(x, y) ∧ Color(x, Black)
→ ¬SuspectIn(y)]

(19)

We now obtain syntactic definitions for SuspectIn and Investigate according to
the description provided in Section 4.4.3 and obtain the results shown in (20). The
positive part of the minimized SuspectIn relation is simply those tuples explicitly
stored as positive in the extensional database, while the negative part contains the rest
of the tuples, while the definition of the varied relation Investigate is more complex.

SuspectIn : SuspectIn+(y)
¬SuspectIn : SuspectIn--(y)
Investigate : Investigate+(x,y) |

In+(x,y) & SuspectIn+(y) & Color+(x,Black)
¬Investigate : Investigate-(x,y) | In-(x,y) |

exists z [Color+(x,z) & z!=Black]

(20)

Observe that the definitions contain unbound variables, and presenting them to the
knowledge base as queries will produce exactly the tuples satisfying the new relation
definitions. To evaluate a complex query containing the minimized or varied relations
it suffices to replace those occurrences with their syntactic definitions and pass the
modified query to the intensional database layer. Evaluating the definitions in our
examples produces the tuples in (21), including new tuples produced by the IDB rule.

In(x, y) : 〈C1, R1〉
¬In(x, y) : 〈C1, R2〉, 〈C1, R3〉

SuspectIn(y) : 〈R1〉, 〈R2〉
¬SuspectIn(y) : 〈R3〉

Investigate(x, y) : 〈C1, R1〉
¬Investigate(x, y) : 〈C1, R2〉, 〈C1, R3〉, 〈C2, R1〉,

〈C2, R2〉, 〈C2, R3〉

(21)

Although the IDB rule excluded the possibility of C1 being anywhere else than in
R1, it remains unknown which regions the other cars are in. Minimizing SuspectIn
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removes R3 from the set of suspected regions since there is no reason to believe oth-
erwise, while varying Investigate prompts the UAV to search for C1 in region R1

since we know it is a black car located in a region which we suspect the stolen car to
be in. In addition, the UAV concludes that it is not necessary to look for C 1 anywhere
else, using the IDB rule and the part of the theory stating that it should not investigate
a region, looking for a car it knows is not there. Car C2 can be in any of the regions but
there is no point looking for it as it has the color Red, different from Black. Finally,
it remains unknown, even after applying the closure policy, if searching for the car C 3

in any of the regions is necessary.

Now, assume the UAV takes action, flying over region R1 looking for C1, and that
it finds the car but it is not the stolen car we are looking for. It updates the knowledge
base by removing R1 from the list of suspected regions and adding the fact that, while
searching R1 for C1, the car C3 was not encountered, expressed by In-(C3,R1). Using
the same syntactic definitions of relations, we reevaluate the queries in light of these
new facts.

In(x, y) : 〈C1, R1〉
¬In(x, y) : 〈C1, R2〉, 〈C1, R3〉, 〈C3, R1〉

SuspectIn(y) : 〈R2〉
¬SuspectIn(y) : 〈R1〉, 〈R3〉

Investigate(x, y) :
¬Investigate(x, y) : 〈C1, R2〉, 〈C1, R3〉, 〈C2, R1〉,

〈C2, R2〉, 〈C2, R3〉, 〈C3, R1〉

(22)

The In tuples in (22) changed to incorporate the fact that C 3 has not yet been
found, and the R1 tuple in the SuspectIn relation has moved to reflect the fact that
no stolen car was found there, but the varied Investigate relation has changed too.
The UAV has already searched region R1 for C1, and it concludes that it is no longer
necessary to investigate whether C3 is in R1, but it is still unknown if the UAV should
look for C3 in one of the other regions.

Notice that without changing the definitions, the query results have changed to
reflect the new knowledge situation. This will stay true until we modify the closure
policy or the logical theory describing the mission, in which case the definitions must
be recalculated. As long as the policy and theory stay the same the AKDB caches the
calculated definitions, improving efficiency.

In its current state of uncertainty, the UAV might either explain the two remaining
possibilities to a mission operator, asking for new information or advice on which
action to take, or continue on itself, e.g. by systematically searching for C 3, first in
region R2 and then in R3. Assuming the latter alternative, and that the stolen car is in
fact located in one of the regions, the UAV will find it and successfully complete the
mission.
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7. Conclusions

We have developed an experimental environment in which the ideas and tech-
niques summarized in [DOH 06] can be investigated and explored. The system, called
the Approximate Knowledge Database, is implemented in JAVA and consists of a lay-
ered architecture based on a plug-in SQL database. The AKDB may be used either
as a service through an interface, or stand-alone through file input or a graphical user
interface, the Graphical Database Design Tool. This environment is intended to of-
fer robust support to users wishing to explore the use of approximate databases for
knowledge representation. A number of functionalities, not normally associated with
databases are also included such as quantifier elimination algorithms and generators
for WSCs and SNCs. The techniques used are tractable, but still allow for advanced
types of non-monotonic reasoning, including variants of default logics, limited cir-
cumscriptive reasoning as well as reasoning with the local closed world assumption.

The system is highly portable and may be embedded in robotic systems such as
the UAV platforms we use in our research. We are currently investigating the use of
AKDBs with planning algorithms which deal with incomplete information.
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Appendix

A. Additional Functionality

This appendix describes some additional functionality available in the current ver-
sion of our AKDBpackage.

A.1. Graphical Database Design

Even if not a necessary functional part of a system, a graphical user interface can
often substantially simplify experimentation. Since we built an experimental platform
for a collection of new deductive database techniques not yet extensively explored,
such functionality is beneficial. This is the idea behind the Graphical Database Design
Tool, shown in Figure 3, for the AKDB that provides an environment where knowledge
bases, complete with relation definitions, facts, rules, and theories, can be created,
changed, or removed. The interface is built upon a window system, where each rela-
tion, theory, policy, or query, has its own window. The windows can then be connected
to link a query with a policy and a theory.
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Figure 3. A screenshot of the Graphical Database Design user interface.

A.2. DLS∗

DLS∗ is substantial for many solutions offered by AKDBs. It is also possible to
call the DLS∗ algorithm using a www interface (see [MAG 05b]).

A.3. Weakest Sufficient and Strongest Necessary Conditions

Weakest sufficient (WSC) and strongest necessary (SNC) conditions have been in-
troduced in [LIN 00] in the framework of the classical propositional logic and then
generalized to the first-order case in [DOH 00b]. WSCs and SNCs have many im-
portant applications, including10 building communication interfaces between agents,
modularization and information hiding, knowledge compilation and theory approxi-
mation, abduction and hypotheses generation, reasoning with reduced data sets.

10. For a deeper discussion see, e.g., [LIN 00, DOH 00b, DOH 06, DOH 04b, DOH 04e].
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WSCs and SNCs can be calculated by right-clicking the title bar of a theory window
and selecting [Calculate WSC] or [Calculate SNC], respectively. The background the-
ory of the WSC or SNC will consist of the conjunction of the formulas in the theory
window, while the formula to be explained (〈formula〉) is entered into a dialog box,
as is a list of relations (〈rel-sym-list〉) that should be projected out of the resulting
explanation. The computation method used here has been proposed in [DOH 00b],
where WSCs and SNCs are first characterized by means of the second-order formulas
and then reduced by applying the DLS ∗. For a large class of formulas (semi-Horn)
reduction of WSCs and SNCs to the first-order or fixpoint logic is guaranteed.

A.4. Default Rules

An important functionality depends on providing default rules in the spirit of
default logic of Reiter [REI 80] and followers. Unfortunately, the original logic is
very complex. To make it tractable, we use the idea of approximations, as initiated

in [DOH 02].11 The idea is to formulate Reiter’s default rules A : B
C

as intensional

rules of the form
(
A+∧B⊕)→ C+.

The AKDB engine allows one to deal with such rules. However, in order to facil-
itate the use of default rules, a part of the graphical interface specialized to deal with
defaults is under development.
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[VIT 03a] VITÓRIA A., DAMÁSIO C., MAŁUSZYŃSKI J., “From rough sets to rough knowl-
edge bases”, Fundamenta Informaticae, vol. 57, num. 2-4, 2003, p. 215–246.

[VIT 03b] VITÓRIA A., DAMÁSIO C., MAŁUSZYŃSKI J., “Query answering for rough
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