
  

  

CS Freiburg: Coordinating Robots for 

Successful Soccer Playing 

  

  

T. Weigel, J. -S Gutmann, M. Dietl, A. Kleiner and B. Nebel 

  

  

Post Print 

  

  

  

  

N.B.: When citing this work, cite the original article. 

  

  

  

©2002 IEEE. Personal use of this material is permitted. However, permission to 

reprint/republish this material for advertising or promotional purposes or for creating new 

collective works for resale or redistribution to servers or lists, or to reuse any copyrighted 

component of this work in other works must be obtained from the IEEE. 

T. Weigel, J. -S Gutmann, M. Dietl, A. Kleiner and B. Nebel, CS Freiburg: Coordinating 

Robots for Successful Soccer Playing, 2002, IEEE Transactions on Robotics and Automation, 

(18)5, 685-699. 

http://dx.doi.org/10.1109/TRA.2002.804041   

Postprint available at: Linköping University Electronic Press 

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72569 
 

http://dx.doi.org/10.1109/TRA.2002.804041
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72569


CS Freiburg: Coordinating Robots for
Successful Soccer Playing

Thilo Weigel, Jens-Steffen Gutmann, Markus Dietl, Alexander Kleiner, Bernhard Nebel

Abstract—Robotic soccer is a challenging research domain because many
different research areas have to be addressed in order to create a successful
team of robot players. This paper presents the CS Freiburg team, the win-
ner in the middle size league at RoboCup 1998, 2000 and 2001. The paper
focuses on multi-agent coordination for both perception and action. The
contributions of this work are new methods for tracking ball and players
observed by multiple robots, team coordination methods for strategic team
formation and dynamic role assignment, a rich set of basic skills allowing
to respond to large range of situations in an appropriate way, an action se-
lection method based on behavior networks as well as a method to learn the
skills and their selection. As demonstrated by evaluations of the different
methods and by the success of the team, these methods permit the creation
of a multi-robot group, which is able to play soccer successfully. In addi-
tion, the developed methods promise to advance the state of the art in the
multi-robot field.

I. INTRODUCTION

In 1993, Mackworth proposed robotic soccer as an applica-
tion for demonstrating integration of methods from AI, vision,
and robotics [22]. The RoboCup initiative [19] went one step
further and proposed to use this domain as a benchmark prob-
lem for AI and robotics, and they started to organize interna-
tional competitions. Nowadays, RoboCup comprises a scien-
tific symposium, robotic demonstrations, and competitions with
real and simulated robots in different leagues; and it enjoys high
popularity among researchers and in the general public.

The CS Freiburg1 team participates since 1998 in the middle-
size real robot league (F2000). In this league a maximum num-
ber of 4 autonomous robots per team with a footprint not greater
than 2000 mm

�
compete on a field of approximately 9 � 5 meters

fully surrounded by 50 cm high walls2. A game lasts 2 � 10 min-
utes. The particular challenge in this league is to cover a whole
spectrum of research issues ranging from robotic hardware de-
velopment and low level sensor interpretation up to planning and
multi-agent coordination.

In the F2000 league, global sensing systems, e.g., a camera
capturing the whole scene from a bird’s eye of view, are pro-
hibited and only local perception is allowed. However, wireless
communication between players and with processing units out-
side the soccer field is allowed and many teams make extensive
use of it. All players of a team are usually started and stopped
by wireless communication. Once a game is started, no further
human interaction is allowed and all decisions have to be taken
autonomously by the robots.

The CS Freiburg team has competed four times at interna-
tional RoboCup competitions. The team came in third at one
tournament [37], [26] and won the World Champion title three
times [1], [15], [28], [39], [4], [40].

�
CS Freiburg stands for Computer Science Department, University of

Freiburg. In addition, it is a pun on SC Freiburg, a famous local (human) soccer
team.�

Note, that from 2002 on, all walls around the field are removed.

This paper presents the CS Freiburg team as a case study of
a successful robotic soccer team with a focus on coordination
in both, perception and action. The main contributions we will
focus on are:

� new methods for tracking the ball and players observed by
multiple robots,

� team coordination methods for strategic team formation and
dynamic role assignment,

� a rich set of basic skills allowing to respond to large range of
situations in an appropriate way,

� an action selection method based on behavior networks, and
� a learning method to adapt to new hardware and to new envi-
ronments.

We will not describe our self-localization method based on
laser scans [17], [15]. Instead, we will only note that we get
almost perfect self-localization in the particular environment our
robots are acting in.

The paper is organized as follows. Section II gives an
overview of the hardware and the software architecture of the
CS Freiburg team. The perception technology and cooperative
sensor interpretation approach is presented in Section III. Sec-
tion IV illustrates the team coordination mechanism including
dynamic role assignment and team positioning. The player’s
basic skills and the method of selecting them are described in
Section V. Section VI concludes the paper.

II. OVERVIEW

A. Hardware

The basis of the CS Freiburg soccer robots are Pioneer I
robots as manufactured by ActivMedia Robotics. However, they
have been heavily modified and enhanced to meet the special re-
quirements of soccer playing. Figure 1 shows one of the players.

Fig. 1. A CS Freiburg player.



Equipped with a Pioneer II controller board instead of the
original one, a robot is able to move considerably faster. A caster
roller instead of the original rear caster wheel allows for more
precise motion control. Furthermore, nickel-cadmium batteries
are utilized because of their light weight and high speed charg-
ing capability.

For ball handling and shooting a kicking device with movable
ball steering flippers is incorporated. A close-up of the device is
shown in Figure 2. The kicking plate is strained by a wind-
screen wiper motor and released by a solenoid. The springs
pressing on the plate are strong enough to produce a kick that
shoots the ball well over the whole field. Two DC-motors al-
low to turn the flippers to an upright position and back. As the
flippers are only needed for controlling the ball, they are turned
upwards when the ball is not present in order to decrease the risk
of entanglements with other robots [39].

Fig. 2. Close-up of the kicking device.

For self-localization and recognition of other robots on the
field a SICK LMS200 laser range finder is employed. It provides
depth information for a

�������
field of view with an angular reso-

lution of
���
	��

and an accuracy of 1 cm [26].
The ball is perceived by a Sony DFW-V500 digital cam-

era. Frames are provided in YUV format with a resolution of
320x240 pixels and are processed at a frame rate of 30fps [40].

The ”brain” of a robot is a Sony Vaio PCG-C1VE notebook.
Via the firewire interface it connects directly to the camera.
Serial-to-USB converters are necessary to connect to the mo-
tor controller board (by RS232) and the laser range finder (by
RS422). As no commercially available RS422-to-USB con-
verter is capable of the range finder’s 500Mbaud rate, a custom
made one has been built by SICK AG.

The described hardware setup allows a player to play in a
fully autonomous way. However, for coordinated perception and
coordinated team play it communicates with its teammates and
an off-field (standard) computer using a WaveLan 11 Mbit/s (2.4
GHz) PCMCIA-card.

B. Software Architecture

The CS Freiburg players are capable of playing in a fully au-
tonomous way based solely on information from their own sen-
sors. Additionally, they are able to exploit the possibility of
communicating with their teammates during a game. Unfortu-
nately, wireless communication can be unreliable in many cases

and teams relying on it ran into severe problems in the past. CS
Freiburg’s design is to rely only on information gathered locally
on-board of each robot but to benefit from information broad-
casted by wireless communication if available.

Communication enables the players to organize themselves as
a team and to benefit from the sensory information of their team-
mates. Figure 3 depicts the team architecture. Via radio Ether-
net link the players communicate with an off-field computer. A
global sensor integration module running on the off-field com-
puter3 integrates the player’s local information about the world
into one consistent global world model. In turn the global world
model is distributed among the players giving them the possi-
bility to enhance their local models of the world. A graphical
user interface visualizes the global world model together with
various states of the robots and allows to send commands to the
players, i.e., for starting and stopping the game.

Global
Sensor

Integration

Graphical
User

Interface

nication
Commu−

Computer
Off−field

Radio Ethernet

Player 1 Player 2 Player 3 Goal
Keeper

Fig. 3. Team architecture.

Figure 4 shows the architecture of a player. The perception
module takes information from the sensors and – if available –
from the global world model and maintains a local world model.
The local world model provides the basis for the action selec-
tion mechanism that decides which action from a set of basic
skills should be carried out by the player. The strategy com-
ponent considers both the world model and messages from the
teammates, and ensures that an action according to the player’s
current team role is selected. All modules are activated every
100 msec in order to determine the next action to execute.

selection
actioncommunication

sensors
actuators

strategy 

perception basic
skills

Fig. 4. Player architecture.

�
Note, that the global sensor integration could be performed locally on a

player as well.



III. PERCEPTION AND COOPERATIVE SENSOR

INTERPRETATION

A. Perception system

The perception system of the CS Freiburg robot players is
based on laser range finder data and vision information from a
fixed-mounted monocular camera. Figure 5 depicts the percep-
tion module which is the core of each robot. Briefly, a robot first
localizes itself by extracting line segments from a scan taken by
the range finder and matching them with a hand-crafted a priori
line model of the RoboCup environment. Only lines of a certain
minimum extent are taken into account to discard other players
present in the sensor’s field of view. The scan-matched position
is fused in a Kalman filter with the estimate from odometry [15],
[16]. Experiments show that this localization technique is very
accurate (with an error of about 2 cm and

� �
) and that it is faster

and more robust than competing methods [17].

Matched
scan

position
Ball

positions
Player

position
Robot

Player
recognition

Ball
recognition
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Self−

modelling

World

Perception Module

Laser range
finder

Odometry

To global sensor integration

model
World

From global sensor integrationRoboCup field model

Vision

Fig. 5. Perception module running on each robot.

As in 2002 the field walls were replaced by poles surrounding
the playing field the described technique was extended to ex-
tract line segments by identifying the gaps between neighbour-
ing poles in the scan. For this, a scan is clustered and a ”virtual
line” is recorded if the distance between two clusters matches
the known pole distance. Virtual lines lying on the same indefi-
nite line are then merged to ”candidate lines” for being matched
with the field outline. However, only those candidate lines are
matched which have a certain minimum length and consist of
a sufficient number of virtual lines. Additionally, a candidate
line is filtered away if it is partially or completely covered by a
candidate line closer to the scan’s center (see Figure 6).

In anticipation of further rule changes leading to a reduction
of the number of field poles the monte-carlo-localization tech-
nique [34] was adopted as a localization method which will still
be applicable, even if the number of poles will be cut in half
[13].

After a robot has localized itself, players are extracted from
the scan by removing all points belonging to the field walls and
clustering the remaining ones. For each cluster the center of
gravity is computed and considered as the center of a player.
Inherent to this approach is the systematical error due to the
different shapes of the robots [38]. At least for some players
this error can be reduced, e.g., by assuming that the opponent
goalkeeper is usually oriented parallel to the goal line, adding a

Fig. 6. Screenshot of how the goalkeeper localized itself and recognized three
objects on the field. The small circles correspond to clustered scanpoints, the
light lines are candidate lines which are filtered away and the dark lines are
candidate lines which are matched with the field outline.

constant offset to the center of gravity generally reduces the po-
sition error for the opponent goalie4. From the extracted players,
one cannot decide which is friend or foe. This is the task of the
multi-robot sensor integration described in the next section.

Since the laser range finders are mounted at a level that pro-
hibits the detection of the ball, a camera is used for obtaining
information about the ball. Algorithms in the CMVision soft-
ware library [6] are utilized for extracting color-labeled regions
(called blobs) from YUV images taken by the camera and em-
ploying previously learned color tables.

A filter tests the plausibility of blobs and discards the ones
whose shape, size or position make it very unlikely to corre-
spond to the ball. From the remaining blobs the one closest
to the previously selected blob is chosen and various properties
such as center, radius, or size in pixels are determined.

From the computed blob center the global ball position is de-
termined by using an off-line learned mapping table that con-
tains distance and heading pairs for each pixel. This lookup
table is autonomously learned by the robot before the game by
positioning itself at various position on the field and taking mea-
surements of the ball which stays at a fixed position. Interpola-
tion is then used to compute the distance and heading pairs for
pixels where no explicit information is available [32].

Despite of the applied filters, wrong ball measurements still
occurred due to reflections on shiny surfaces or poorly trained
colors, e.g., the white field markings appeared to have a similar
color as shiny reflections on the ball. In order to detect such
wrong ball measurements, a global sensor integration module
integrates the observations of all players.

B. Multi-Robot Sensor Integration

All players send their own position, the position of observed
other players and the position of the ball (if detected) to the
global sensor integration module (see Figure 3). For each ob-
ject on the field (own players, opponent players and the ball) the
module maintains a track where observations sent by the robots
are associated with and fused to.

For player observations, tracks containing position measure-

�

Of course this offset depends on the shape of the opponent’s goalie and has
to be adjusted before a game.



ments from an own player are marked as teammate, all others as
opponent.

The ball position is determined by a probabilistic integration
of all ball measurements coming from the players. A combina-
tion of Kalman filtering and Markov localization as described
below is used for achieving maximum accuracy and robustness.

If no measurements can be associated with a track for a cer-
tain amount of time (e.g., 5 seconds in the current implementa-
tion), the track is deleted.

Because the global model integrates more data than a single
player is able to perceive, it should be more accurate and com-
prehensive than any local world model of a single player. The
fused positions of players and ball are sent back to all robots
on a regular basis where they are integrated into each robot’s
world model. For the integration, only objects currently not ob-
served by the robot are considered. Each robot usually knows its
own pose with high accuracy, therefore the information about a
robot’s pose in the global model is not taken into account. Fur-
thermore, since the information in the global model is usually
100 - 200 ms old, information about objects observed directly
by the robot’s sensors is more recent and more accurate than the
one contained in the global model. Therefore, only objects not
observed by the robot are integrated from the global model. Ad-
ditionally, the identification of players (teammate or opponent)
is taken from the global model.

Using the sensor information of the whole team enables a
player to consider hidden objects when selecting an action. This
proved to be especially advantageous for the global ball posi-
tion, since the ball is seen almost all the time by at least one
player. Furthermore, knowing whether an observed object is a
teammate or an opponent is, of course, very helpful for an effec-
tive cooperative team play.

C. Multi-Player Tracking from Reliable Data

For each object detected by one of the players the on-board
perception system computes heading and velocity information
based on the last few observations belonging to this object using
differentiation. Each observation is then communicated to the
multi-sensor integration module. Thus, the observation model
is a random variable x ��� ��� ���	�
���
�����	������������� with mean �x �
and covariance � � where the state vector contains the object’s
position, heading and translational and rotational velocities.

As the CS Freiburg robots know their own position with high
accuracy and the LRF provides accurate data, it is assumed that
for player observations � � is a constant diagonal matrix with the
diagonals manually determined through experiments.

Whenever a robot sends information about a player which
can’t be associated with an already existing track, i.e., if the
distance to all existing tracks exceeds a certain threshold, a new
track is initiated. Tracks are modeled as Gaussian variables x �
with mean �x � and covariance ��� . Thus, when initiating a new
track, it is set to

�x � � �x � � � � ��� � � (1)

For predicting the state of a track over time, a simple motion
model is used with the assumption that the object moves and
rotates with constant speed. Given a certain time interval � , the

track is projected according to

�x ��� � � � �x ���
�
�!�
"####
$
�� �&%('*)
+ � �� � � �� � ��� �&%,+
-/. � �� � � �� � ���0� % �� �1������� �

2*3333
4 � (2)

�5��� 67�8�*�5��67� �� % ��9 � �
��� (3)

where 6:�8� is the Jacobian of �8� and �;9 � �
� is the covariance of
some additive Gaussian noise with zero mean:

��9 � �
�<� =
>@?
A ��B �C�D ��� B �E�D ��� B �F D ��� B �GHD ��� B �IJD �
� (4)

with
B C D , B E D , B F D , B G D and

B I D being some constant standard
deviations estimated through experiments.

Now, when a new measurement �x � arrives from one of the
robots which corresponds to a track x � , observation and track
are fused according to:

�x � � � �LKNM� % �LKNM� ��KOM � �LKOM� �x �&% �LKOM� �x � ��� (5)�5�P� � � KNM� % � KNM� � KOM � (6)

Note, that since the sensor model does directly observe the sys-
tem state, the simplified Kalman filter equations found in May-
beck [24] can be utilized.

The success of a Kalman filter depends on a reliable data as-
sociation method. In the current implementation a geometric
method developed by Veloso et al. [36] is used. The method as-
signs measurements to tracks by minimizing the sum of squared
error distances between observations and tracks. Although this
geometric method already yields reasonable results in practice,
it should be noted that the application of a probabilistic method
such as joint probabilistic data association filters (JPDAF) [2],
[8], [27] might still improve the results.

D. Ball Tracking from Noisy Data

Tracking the ball from observations of multiple robots is sim-
ilar to tracking different players but there are some notable dif-
ferences. Data association is easier as there can be only one ball
in the field during a game. However, since ball recognition usu-
ally employs vision, measurements are less accurate and can be
in few cases unreliable, e.g., when observing false positives due
to reflections or poorly trained colors.

Since the vision sensor is only able to determine the heading
to the ball with good accuracy but fails to provide accurate range
data, especially if the ball is far away from the robot, the covari-
ance ��Q of a ball observation �x Q depends on the distance to the
ball. Given the range �R Q �TS � �� Q!U �� �HVWQ � � % � �� Q�U �� �HV	Q � �

and
heading �X Q5�ZYW[ . KOM �
� ��
Q U ��
�WVWQ��	\ � �� Q U �� �WVWQ
�	� U ��0�WVWQ of the ball
with respect to the robot located at pose

� �� �WVWQ]� ����HV	Q1� ��0�HV	QW� � , the
uncertainty � �W^ of the ball position is modeled as

�5�W^ � =
>_?�A � �R Q B ��
` � B �^0` ��� (7)

where
B �
` and

B ^0` are some constant standard deviations de-
termined empirically. From this, the observation error can be
computed as

� Q � 67ab�!c�6:a � � (8)



where

a � �R Q]� �X Q]� ���Q*� ���Q*� ��8QW� �
"####
$
�� �WVWQ % �R Q '1)J+ � �� �HVWQ % �X Q �����HV	Q % �R Q +	- . � ��0�WVWQ % �X QW����Q���Q�� Q

2 3333
4 �

�!c � =�>_?
A � �R Q B ��	` � B �^0` � B �F ` � B �G ` � B �I ` ���
and

B F ` , B G ` and
B I ` are further constant standard deviations

estimated by experiments.
Initiation of a new track x � from a ball observation is per-

formed according to:

�x �L� �x Q1� �5�L����Q � (9)

For predicting the ball state over time a similar function as for
player movements is used but the assumption is taken that the
ball rolls on a straight line and slows down with deceleration ? Q ,

�x � � � Q � �x � �	�
�!�
"####
$
�� � %,'1)J+ � ������ � ���� U ? Q
� � �_� ��� �&%(+	- . � �� � � � �� �;U ? Q � � �_� ��� ����� U ? Q�� ���8�

2*3333
4 � (10)

�5� � 6:� Q��5�]6:� �Q % � � 9 � �
�1� (11)

where � � ��� - . � ��� �� \0? QW� and � � 9 � �
� is a similar constant covari-
ance matrix as � 9 � �
� to flatten the Gaussian distribution over
time. Finally, fusing new observations to this track is analogous
to equations (5) and (6).

The Kalman filter for ball tracking presented in this section
assumes noisy but reliable data, that is, no outliers are inte-
grated. However, sometimes completely wrong ball measure-
ments were observed by one of the robots due to reflections on
walls or poorly trained colors. One possibility to filter out such
outliers is to use a validation gate that discards measurements
whose Mahalanobis distance is larger than a certain threshold = ,
where = is chosen from a � �

distribution.
Such a validation gate, however, has the problem that when

one robot is constantly sending out wrong observations and the
Kalman filter for some reason is tracking these wrong observa-
tions and filters out all others, the global ball position becomes
unusable. Furthermore, when the robot stops sending wrong
observations it takes several cycles until other observations are
taken into account again. For these reasons a more sophisticated
filter method is employed which is described in the next section.

E. Markov Localization as Observation Filter

In localization experiments carried out on the mobile robot
Rhino [33], it became evident that Markov localization is more
robust, while Kalman filtering is more accurate when compared
to each other [14]. A combination of both methods is likely to
provide a maximum robust and accurate system.

For ball localization, this result is utilized by employing a
Markov process as an observation filter for the Kalman filter.
A grid-based approach with a 2-dimensional

� � �
� � grid is used
where each cell � is associated with the probability � � � � that

the ball is in this cell. The grid is initialized with a uniform
distribution before any observation is processed. The integration
of new ball measurements is then done in two steps: prediction
and update.

In the prediction step, ball motion is modeled by a conditional
probability � � ���	� � � which denotes the probability that the ball
is at position � given that it was at position � � . Upon ball motion,
the new ball position is calculated as:

� � � � � 
���
�� � ����� � ��� � � � � � (12)

Grid-based Markov localization can be computational expen-
sive if the size and especially the dimension of the grid is large.
For efficiency, only a 2-dimensional grid is used that does not
store any heading or velocity information of the ball. This means
that the position cannot accurately be estimated when the ball is
moving. For the motion model � � ����� � � it is assumed that all
directions are equally possible and velocities are normally dis-
tributed with zero mean and covariance

B �G . Therefore, � � ����� � �
can be expressed as a Gaussian distribution around � � :

� � ����� � ��� � � � � �W=�>_?
A ��B �G ��� B �G �
�	��� (13)

where � is the time passed during ball motion.
In the update step, a new ball observation � Q is fused into the

probability distribution according to Bayes’ law:

� � � � � � � �0Q���� ��� � � �� ��
 � � � Q ��� � ��� � � � ��� (14)

The sensor model � � � Q ��� � determines the likelihood of observ-
ing �0Q given the ball is at position � . It is modeled according
to:

� � � Q ���J��� � � �� Q �H� � Q ��� (15)

where ��0Q are the
� � �	� � components of ball observation �x Q as

defined in Section III-D and � � Q is the upper left � ��� sub matrix
of ��Q as calculated in equation (8).

Maintaining the multi-modal probability grid makes it very
easy to distinguish which ball measurement should be integrated
by the Kalman filter and which not. After updating the grid
with a new measurement the most likely ball position is deter-
mined, that is, the cell with the highest probability. Only mea-
surements that are close to the most likely position are fused into
the Kalman filter and all others are considered as outliers. Fur-
thermore, if the current state of the Kalman filter does not cor-
respond to the most likely ball position in the grid, the Kalman
filter is re-initialized using this position.

By using this dual probabilistic localization method high ac-
curacy is achieved through Kalman filtering together with high
robustness through Markov localization. One might argue that
Markov localization alone could be sufficient for localizing the
ball. However, since positions are discretized into a grid and the
ball position cannot be accurately estimated on ball motion due
to the 2 dimensionality of the grid, the resulting position would
be less accurate than the one from the combined method.



F. Results

In order to demonstrate the performance of the ball tracking
algorithm, let us consider an ambiguous situation such as the
one in Figure 7. Two robots, player 1 and 3, observe the ball at
the true location in front of the goal but one robot, player 2, gets
it all wrong and thinks the ball is somewhere on the center line.

Fig. 7. Player 2 observes a false positive on the center line.

Assuming that all three players send their ball observations
to the global sensor integration module on a regular basis, the
probability distributions as shown in Figure 8 result.
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Fig. 8. Evolution of the position probability grid.

When integrating the first three measurements, all of them
are fused by the Kalman filter since none of them has been de-
tected to be an outlier yet. Note that after updating the grid
with the second measurement, the probability distribution has a
sharp peak at the center line caused by the low uncertain mea-
surement of player 2 which thinks the ball is close. After inte-
grating more measurements, the probability distribution concen-
trates more and more on the true ball location and further mea-
surements from player 2 (left graph on bottom row in Figure 8)
cannot out-weigh the true location anymore. Thus, after the first
integration of observations from all players, subsequent read-

ings from player 2 are filtered out and the Kalman filter tracks
the ball based on observations from player 1 and 3 only.

In order to verify that the ambiguous situation as described
above is not an academic case, data recorded from competition
games have been reviewed. From the 118,388 ball observations
during RoboCup 2000, 938 of these observations ( � ��� ���

) were
excluded using the described kind of filtering. The implications
from such a filtering and more information about the accuracy of
the tracking methods can be found in our paper on cooperative
sensing [9].

IV. TEAM COORDINATION

Soccer is a complex game where a team usually has to meet
several requirements at the same time. To ensure that in any
game situation a team is prepared to defend its own goal, but
also ready to attack the opponent goal, the various team players
have to carry out different tasks and need to position themselves
at appropriate strategic positions on the field.

To express that a player has a task which is related to a po-
sition in the team formation a player is said to pursue a certain
role [29]. Distinguishing between different areas of responsibil-
ity the following roles are established:

� active: the active player is in charge of dealing with the ball.
The player with this role has various possible actions to ap-
proach the ball or to bring the ball forward towards the opponent
goal.

� strategic: the task of the strategic player is to secure the de-
fense. It maintains a position well back in its own half.

� support: the supporting player serves the team considering
the current game situation. In defensive play it complements
the team’s defensive formation and in offensive play it presents
itself to receive a pass close to the opponents goal.

� goalkeeper: the goalkeeper stays on its goal line and moves
depending on the ball’s position, direction and velocity.

As the goalkeeper has a special hardware setup for its task,
it never changes its role. The three field players, however, are
mechanically identical and switch their roles dynamically when-
ever necessary.

A. Preferred Poses

The approach of CS Freiburg for determining a preferred pose
for each field player role is similar to the SPAR method of the
CMU team in the small size league [30]. From the current situ-
ation as observed by the players, a potential field is constructed
which includes repulsive forces arising from undesirable posi-
tions and attracting forces from desirable ones.

Figure 9 shows an example of a potential field for the pre-
ferred position of the active player. Dark cells indicate very un-
desirable positions whereas light positions represent very desir-
able positions. The resulting position is marked white. The ideal
position for the active player is considered to be at least a certain
distance away from other players and at an optimum distance
and angle to the ball. While the optimum distance is fixed, the
optimum angle is determined by interpolating between a defen-
sive and an offensive variant depending on the ball’s position. A
defending player should be placed between the ball and the own
goal, but in offensive play the ball should be between the player



and the opponent goal and the player should face the opponent
goal.

Fig. 9. Potential field for determining the active position.

Figure 10 shows the potential field for the desired position
of the strategic player. It is based on the same game situation
and uses the same colors as the example for the active player.
The strategic player is supposed to stay well behind all play-
ers and the ball and should prefer central positions with regard
to its own goal. Only the active player is assigned a repulsive
force explicitly in order to enforce staying out of its way. Other
players are avoided implicitly by the path planner which finds
an appropriate position close to the desired one.

Fig. 10. Potential field for determining the strategic position.

Figure 11 shows how in the same game situation as above the
defensive support position is determined. The supporter should
stay away from all other players and at a certain distance to the
ball. As the supporting player should complement the team’s
defensive formation, additionally positions behind and aside the
active player are preferred.

Fig. 11. Potential field for determining the support position.

To avoid ”overreacting” to the constantly changing environ-
ment a player’s current pose is favored with a persistence value.

Additionally, the tolerances for reaching the preferred pose of
the defending players are determined dynamically depending on
how much turning is required to move to these poses. By allow-
ing large tolerances for large angles but requiring small toler-
ances for small angles it is achieved that a player only starts to
update its pose if the new pose differs considerably from the old
one. But once the player is moving towards that preferred pose
it intends to approach it accurately.

To reach a preferred pose, a player follows a collision-free tra-
jectory generated by a path planning system which constantly
(re)plans paths based on the player’s perception of the world.
The system is based on potential fields and uses ��� search for
finding its way out of local minima [35], [40]. In order to
avoid interfering with the active player, the strategic and sup-
porting player are adding extra sources of repulsive forces ahead
of the active’s way. Furthermore, to reduce collisions between
teammates the prioritized path coordination method [21], [3]
was adopted. The players communicate their current paths to
their teammates and check for potential collisions in the future.
Whenever a collision is detected the robot with the lower priority
reduces its velocity such that collisions with higher prioritized
robots are avoided. The player’s priorities are derived from their
current role, assigning the highest priority to the active and the
lowest to the supporting player [12].

B. Roles

After a field player has determined the best active, strate-
gic and support poses from its perspective, it estimates utili-
ties for each role, which are based on the role itself and on
an approximation for the time it would take the player to reach
the corresponding preferred pose. The utilities are determined
by taking into account the robot pose

��� �
�
���0�	�0�]� � , the ball
position

��� Q]�	�
Q	� � , the preferred pose
� � c �
� c �
� c � � , and posi-

tions
� � V �	� V � � of other objects from the set of objects � in the

player’s world model. In order to simplify notation, positions� ��� �	� � � are abbreviated by vectors �� � . X � �� � � � ��?�� KOM � � � \ ��� �
denotes the orientation of a vector and �	�� � � � S � �� % � ��

its
length. The utility for a preferred pose � is calculated from the
following constituents:

� Distance to target position: 
��L� �
���c U �� � �
� Angle necessary for the robot to turn towards the preferred
position: 
���� � � X � �� c U ������ U ��� �

� Objects between the player and the target position: 
 V �� - . V���� � ���� V;U �� � � � +
-/. � X � �� V;U �� � � U X � ���c U �� � �	� � �
� Angle necessary to turn the robot at the preferred position
into the orientation of the preferred pose. The target orien-
tation is either the bearing to the opponent’s goal (role ac-
tive) or the bearing to the ball (roles strategic and support):

���� � � X � �� c U ������ U � c �

The total utility � � � � for the preferred pose � is now com-
puted as the weighted sum of all criteria

� � � � � �����
� � 
���� % � � ��� � � � 
 � ��� %
� V���V � 
 V]� % ����������� � 
�������� (16)

where the weights � � sum up to
�

and � � are fuzzy functions
yielding values in the interval  � � �	! . The value returned by a
function � � is the higher, the better the value of its argument is



considered to be for the player. Finally, the utilities are weighted
by the importance of the role, i.e., the active role is more impor-
tant than the strategic role, which in turn is more important than
the supporter role.

In order to decide which role to take a player sends the utilities
estimated for each role to its teammates and compares them with
the received ones. Following a similar approach taken by the
ART team [7], each player’s objective is to take a role so that
the sum of the utilities of all players is maximized - under the
assumption that all other team players do the same. In contrast
to the ART approach a player doesn’t take its desired role right
away, but checks first if no other player is currently pursuing the
same role and considering that role best for itself as well. As the
world models of the players are not identical their perspectives
can in fact differ. Therefore a player only takes a role if either no
other player is currently pursuing that role or the pursuing player
signals that it actually wants to change its role. That way with
only little extra communication effort the number of situations
is reduced where more than one player have the same role.

A problem for this approach are situations where different
players come up with very similar utilities for a certain role and
the roles might oscillate. However, by adding a hysteresis factor
to the utility of a player’s current role it is ensured that a player
only gives up a role if its real utility for that role is clearly worse
than the one of its teammate.

As this approach depends heavily on communication, a ”fall-
back” strategy is implemented for situations in which commu-
nication is not possible or not working. A CS Freiburg player
detects these situations by monitoring the time it last received a
message from the global world model. If the last message is too
old, it assumes a communication malfunction and limits its area
of play to a predefined competence area [16]. The competence
areas of the players are designed in a way that important areas
on the field are covered by at least one player and ensuring that
the players (which don’t recognize their teammates anymore)
don’t disturb each other.

Figure 12 shows a screenshot of the global view during a
game. While the active player dribbles the ball around an op-
ponent the supporting player moves to its preferred position and
the strategic player observes the ball.

Fig. 12. Visualization of the results of the global sensor integration together
with a player’s utilities for taking a certain role, its current role and its current
action. The small white circle denotes the position of the ball as determined by
the global sensor integration, whereas the small grey ones correspond to the ball
as perceived by the individual players.

C. Results

In order to verify the effectiveness of the team coordination
approach, log-files of games the CS Freiburg team played at
RoboCup 2001 were evaluated.

Table I displays statistics evaluating the role assignment
method. All values are averaged over the games played at
RoboCup 2001 in Seattle. In the first line the length of the time
intervals our players kept a certain role are listed. Interestingly
the values for the field players are similar to the average between
role switches of 7 seconds reported by the ART team [7]. The
second line shows how long (on average) a role was not unique
when there was a role change. This time is different from zero
because of two reasons. Firstly, the communication of the robots
is not synchronized, so one robot might already take on a role
even if the other one will only give it up the next time it sends
an information package. Since the cycle time of our robots is
100 msec, one would expect an average delay of 50 msec at this
point. Secondly, there is the problem that there are glitches in
the wireless communication, leading to the loss of some infor-
mation packages, which means that a role change is not recorded
immediately, which explains the remaining 25–55 msec.

Role Active Support Strategic

Role kept 5.4 s 8.1 s 5.7 s
Role not unique (per change) 0.106 s 0.075 s 0.076 s

TABLE I

EVALUATION OF THE ROLE ASSIGNMENT METHOD

V. BASIC SKILLS AND ACTION SELECTION

In order to play an effective and successful game of robotic
soccer, a powerful set of basic skills is needed.

A. Goalkeeper

As in most other robot soccer teams in the middle size league
the hardware configuration of the goalkeeper differs from the
one of the field players which is mainly because of the differ-
ent tasks the goalkeeper and field players are designed for. The
CS Freiburg goalkeeper has a special hardware setup where the
top part of the robot, containing laser range finder and vision
camera, is mounted � � � to one side allowing the robot to move
quickly parallel to the goal line (see Figure 13). This kind of
setup is quite popular in the middle size league and used by
other teams, too.

The goalkeeper uses six skills for defending its goal as
sketched in Figure 13. If the goalkeeper doesn’t know where
the ball is, it alternately moves a little bit closer towards the goal
center and rotates left and right searching for the ball. When the
ball is moving slowly the goalkeeper blocks in order to minimize
the area of attack. However, if the ball is moving fast, the goal-
keeper intercepts at the point where the ball is expected to pass
the goal line. In practice a ”smooth” behavior is achieved by
interpolating between the block and intercept position consider-
ing the ball’s velocity. If the ball is on the side of the goal, the
robot turns towards the corners to maintain the ball in its field
of view and to make it more difficult for an opponent to score a
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Fig. 13. Goalkeeper’s tactics for saving the CS Freiburg’s goal: (a) ball search-
ing, (b) minimizing the area of attack, (c) intercepting the ball, (d) turning to
corner, (e) interception using opponent heading, and (f) interception using op-
ponent to ball heading.

direct goal. The last two and more sophisticated tactics for inter-
cepting the ball are based on the heading of an opponent owning
the ball (Figure 13(e)), or the heading of an opponent to the ball
(Figure 13(f)). They assume that the attacking robot will kick
the ball straight ahead which is true for most robot teams partic-
ipating in the middle size league but is not true for a few teams
(e.g., Golem or Alpha++). For this reason these two tactics can
be turned on or off at game start.

B. Basic Skills of Field Players

To get hold of the ball a player moves to a position behind
the ball following a collision-free trajectory generated by the
path planning system which constantly (re)plans paths based on
the player’s perception of the world (GoToBall). If close to the
ball a player approaches the ball in a reactive manner to get
it precisely between the flippers while still avoiding obstacles
(GetBall). Once in ball possession, a player turns and moves
the ball carefully until facing in a direction which allows for
an attack (TurnBall). If the player is right in front of the op-
ponent goal, it kicks the ball in a direction where no obstacles
block the direct way to the goal (ShootGoal). Otherwise it first
heads towards a clear area in the goal and turns sharply just be-
fore kicking in case the opponent goalkeeper moved in its way
(MoveShootFeint). However, if obstacles are in the way to the
goal, the player tries to dribble around them (DribbleBall) un-
less there is not enough room. In this case the ball is kicked
to a position close to the opponent goal (ShootToPos). In the
event of being too close to an opponent or to the field border
the ball is propelled away by turning quickly in an appropriate
direction (TurnAwayBall). If a player gets stuck close to an ob-
stacle it tries to free itself by first moving away slowly and (if
this doesn’t help) then trying random moves (FreeFromStall).
However a player doesn’t give way if the ball is stuck between

himself and an opponent to avoid being pushed with the ball
towards his own goal (WaitAndBlock).

Against fast playing teams the CS Freiburg players are often
outperformed in the race for the ball when approaching it care-
fully. Therefore two variants of a skill for situations in which
speed is crucial were developed. Both let the robot rush to the
ball and hit it forwards while still avoiding obstacles. In offen-
sive play BumpShootOffense is employed to hit the ball into the
opponents goal when very close to it. In defensive play the use
of BumpShootDefense can be switched on or off according to
the strength of the opponent.

Players fulfilling strategic tasks compute their positions and
follow collision-free paths to dynamically determined positions
(GoToPos). From these positions the players either search the
ball if not visible (SearchBall) by rotating constantly or observe
it by turning until facing it (ObserveBall). In offensive play a
supporting player may also take a position from where it should
be able to score a goal directly (WaitForPass). Once in such a
position, it signals to its teammates that it is waiting to get the
ball passed. The decision is then up to the ball owning player
whether to pass the ball (PassBall) or to try to score a goal by
itself.

To comply with the “10-seconds rule”5 a player keeps track of
the time it is spending in a penalty area. Whenever it come close
to violating the 10-seconds rule, it leaves the area following a
collision-free path generated by the same path planning system
as employed in the GoToBall skill (LeavePenaltyArea).

The CS Freiburg players are capable of effectively dribbling
with the ball around obstacles and exploiting deliberately the
possibility of rebound shots using the walls6. In the following
these two skills are described in more detail.

Figure 14(a) shows a screenshot of a player’s local view while
dribbling. In every cycle, potential continuations of the current
play are considered. Such continuations are lines to points closer
to the opponent’s goal within a certain angle range around the
robot’s heading.

(a) (b)

Fig. 14. A CS Freiburg player’s view of the world while (a) dribbling and
(b) ball-shooting. Circles denote other robots and the small circle in front of
the player corresponds to the ball. Lines almost parallel to the field borders are
perceived by the laser range finder. The other lines leading away from the player
are evaluated by the skills.

All the possible lines are evaluated and the direction of the
�

A player is allowed to enter a goal area for no more than 10 seconds. Visit
www.robocup.org for a complete description of the rules.

�

Of course, rebound shots only make sense when games are played according
to the ”old rules” which envision walls as field borders



best line sample is taken as the new desired heading of the robot.
A line is evaluated by assigning a value to it, which is the higher
the further it is away from objects, the less turning is necessary
for the player and the closer its heading is to the opponent’s goal
center. Determining the robots heading this way and adjusting
the wheel velocities appropriately in every cycle lets the robot
smoothly and safely dribble around obstacles without loosing
the ball. The CS Freiburg team scored some beautiful goals after
a player had dribbled the ball over the field around opponents
along an S-like trajectory. Of course, all this only works because
the ball steering mechanism allows for a tight ball control.

Figure 14(b) shows a screenshot of a player during ball-
shooting. For this skill the lines are reflected at the walls and
are evaluated to find the best direction where to kick the ball. A
line’s value is the higher the further away from obstacles it is, the
closer its endpoint is to the opponent’s goal and the less turning
is required for the player to face in the same direction. Taking
into account that the ball doesn’t rebound at the field borders in
a perfect billiard-like manner the correlation between the angles
of reflection is calibrated manually. Using the shooting skill the
players were able to play the ball effectively to favorable posi-
tions and even to score goals directly.

C. Action Selection for Field Players

The CS Freiburg’s action selection module is based on ex-
tended behavior networks developed by Dorer [11]. They are
a revised and extended version of the behavior networks intro-
duced by Maes [23] and can be viewed as a particular form of
decision-theoretic planning. The main structural element in ex-
tended behavior networks is the competence module, which con-
sists of preconditions, effects, and a certain behavior that has to
be executed. Goals can be explicitly specified and can have a
situation-dependent relevance, reflecting the agent’s current mo-
tivations. The state of the environment, as it is perceived by the
agent, is described via a number of continuously valued proposi-
tions � ���  ��� � � ! . Competence modules are connected with goals
if they are able to influence goal conditions and also with each
other, if a competence module has an effect that is a precon-
dition of another. Along the resulting network connections an
activation spreading mechanism is defined, with goals being the
source of activation. An action is selected by considering each
competence module’s executability and received activation.

Figure 15 shows a part of the extended behavior network [25]
used for the CS Freiburg players. The ellipses represent the
competence modules with their preconditions below and their
effects on top of them. The players have two goals: Shoot a
soccer goal or cooperate with teammates. The relevance condi-
tion role active (player has active role) ensures that only one of
these goals is relevant at a time depending on the player’s cur-
rent role. The strength of the effect connections (indicated by
the numbers next to arrows) are set manually and are related to
the probability of success.

D. Learning Basic Skills and Action Selection

One difficulty in robotics (and in particular in robotic soccer)
is to adapt skills and the overall behavior to changes in the envi-
ronment. An upgrade of the robot’s kicking device, for example,
influences the overall performance drastically and parameters of
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Fig. 15. A part of CS Freiburg’s extended behavior network.

the skills and the action selection mechanism have to be revised.
In order to address this issue, learning methods for learning un-
supervised and online have been evaluated. The ultimate goal in
this context is to build robotic soccer agents that improve their
skills during their whole life as efficiently and quickly as possi-
ble [20].

We applied hierarchical Reinforcement Learning (RL) based
on Semi Markov Decision Processes (SMDPs) as proposed by
Bradtke and Duff [5]. In contrast to Markov Decision Processes
(MDPs), which are defined for an action execution at discrete
time steps, SMDPs are providing a basis for learning to choose
among temporally abstract actions. Temporally abstract actions
are considered in standard SMDPs as black box skills, which
execute a sequence of actions in a defined partition of the state
space for an arbritrary amount of time.

In contrast to other implementations based on SMDPs the de-
scribed implementation has the capability of learning simulta-
neously and online on all levels of the hierarchy, similar as Di-
etterich’s MAXQ method [10]. Hence skills were modelled as
MDPs with rewards defined according to the specific task.

The learner’s state space consists of position and velocity� � Q]�
�
Q*�
��QH� of the ball, the pose and velocity
� ���� �
� �� �
� �� �
� �� � ,

with
������� � , of other robots in the field of view, and pose

and velocity
� � � �
� � �	� � �
� � � of the robot itself. The learner’s

action space is given by the set values for translational and ro-
tational velocity

� �
���
����� and a binary value for triggering the
kicking device. Since the state space, though based on features,
is still large, the method of Tile Coding has been utilized to gain
the effect of generalization [31].

Depending on the skill’s natural goal, terminal states have
been defined that indicate a successful execution by a reward of�����

and a non-successful execution by a reward of U �����
. Fur-

thermore, in order to foster near optimal and thus fast solutions,
a negative reward of U �

was emitted for each selected action.
The SMDP and the MDPs have been learned with Q( 	 ) and

Sarsa( 	 ), respectively. At this, Q-learning is used with Eligibil-
ity Traces in order to improve the learning process. Experiences
are taken for an update of the whole trace rather than for the
last transition only. As the execution of a skill usually envolves
many perception-action cycles, Eligibility Traces accelerate the
distribution of information within the value function. 7



The influence of experiences on former states is set by the parameter �
���� �
(a common value when learning with n-step updates). The other learning

parameters have been choosen as follows: Learning rate ��� ����� (small, due
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Fig. 16. Learning the skill ApproachBall after (a) 10, (b) 100, (c) 500 and (d)
15000 episodes. After 500 episodes the goal of the task could continuously be
achieved. The time indicates the average duration of one episode.

The training process has been carried out in a straightforward
manner, similar to the way humans would train soccer. Firstly,
basic skills, as described in section V-B,8 have been trained in
simple, static scenarios. Secondly, the appropriate selection of
these skills and their embedding into the task has been trained in
a realistic scenario which was a game against a hand-crafted CS
Freiburg player. Due to the complexity of the task it turned out
to be necessary to develop a simulation for a faster pre-training
of the robots. Figure 16 gives an impression of the evolution of
the skill ApproachBall during learning in the simulation.

E. Results

Table II shows statistics of how often a skill was performed in
the final games at RoboCup 2000 broken down for the different
roles. It seems quite surprising that the players were searching
for the ball up to 10 % of the total playing time. However anal-
ysis of the log-files showed that the high numbers can be either
attributed to communication problems or to one of the few situ-
ations where none of the players was seeing the ball. The sup-
porting and strategic player spent most of their time observing
the ball. This was intended since moving more often or more
accurately to a target positions would result in a very nervous
and less effective behavior.

At a first glance it seems surprising that the active player was
most of the time (64 %) occupied with getting hold of the ball.
However the fact that after kicking the ball the active player
usually starts to follow the ball again explains the high num-
bers for GoTo and GetBall. Nevertheless it made use of all the
skills available to it demonstrating that it distinguished between
a large number of different game situations.

The learning of skills and their selection has been evaluated
with respect to the systems capability of adaption to the task.
Figure 17 documents the rewards received during learning by
the robot with the reduced kicking device (normal kicker) and

to the non-determinism of the environment), exploration rate � � ��� ��� (small,
since high exploration could lead to failures) and discounting parameter � � � � �
(due to the presence of an absorbing state).�

Note, that the skills are learned from scratch without a priori knowledge
expect the rewards.

Active Strategic Support

BumpShootDefense 7 0 0
BumpShootOffense 1 0 0
DribbleBall 4 0 0
FreeFromStall 3 0 0
GetBall 32 0 0
GotoBall 32 0 0
GoToPos 0 16 40
LeavePenaltyArea 1 0 0
MoveShootFeint 1 0 0
ObserveBall 0 75 50
SearchBall 5 9 10
ShootGoal 3 0 0
ShootToPos 2 0 0
TurnBall 2 0 0
TurnAwayBall 4 0 0
WaitAndBlock 3 0 0

TABLE II

TIME IN PERCENT A SKILL WAS PERFORMED IN THE FINAL GAMES AT

ROBOCUP 2000 BROKEN DOWN FOR THE DIFFERENT ROLES
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Fig. 17. Learning to improve pre-learned skills and their selection while com-
peting with a hand-crafted player. If equipped with a different kicking device
(normal kicker), the robot adapts its strateg.

the robot with the kicking device used for pre-learning (strong
kicker). The baseline indicates the average of the accumulated
rewards a CS Freiburg Player with normal velocity achieves dur-
ing one episode. Due to the fact that skills were pre-trained with
a strong kicker the learner using the normal kicker reaches less
rewards during the first

� �����
episodes. After � ����� episodes,

however, playing with a normal kicker turns out to be more suc-
cessful than playing with the strong one. The learner with the
normal kicker develops a different way of playing: He is drib-
bling more often to the front of the goal and performs a rather
precise shoot from small distance.

Finally the trained system has been run on a real robot. While
playing for one hour the learner was able to score

����� 	
goals per

minute. In contrast, the hand-crafted CS Freiburg player scores��� �	� goals per minute. Note, that compared to the hand-crafted
player far less time was needed for design and parameterization.



VI. CONCLUSION AND DISCUSSION

The combination of methods described above as well as the
implementation of the methods themselves led to a successful
robotic soccer team, as demonstrated by the performance of CS
Freiburg at the RoboCup competitions. Nevertheless, there are
two important questions. Firstly, there is the question whether
there are alternative successful designs for robotic soccer teams.
Secondly, there is the question in how far RoboCup can influ-
ence the multi-robot and/or multi-agent research areas.

A. Designs for Robotic Soccer Teams

Reconsidering the history of the last five years of RoboCup,
there are, of course, other quite successful robotic soccer team
designs. Our team represents just one point in the space of pos-
sible designs. It can be characterized by the following salient
properties:
1. accurate and reliable self-localization
2. a large set of basic skills
3. deliberation and reactive planning
4. group coordination for sensing and acting
5. restricted perception (only to the front)
6. restricted mobility (two differential drives and one caster)

(1)–(4) are properties that definitely help to win games. In
particular, without self-localization it can often happen that a
team scores own goals (and the history of RoboCup is full
of examples of that). Furthermore, accurate and reliable self-
localization allows the CS Freiburg players to go to their kick-
off positions automatically (while other teams place their robots
manually). In addition, accurate self-localization is needed
when one wants to comply with the 10-seconds rule (see Sec-
tion V-B). However, an uncertain but good enough pose estima-
tion might often be enough. As a matter of fact, in the two final
games at RoboCup 2000 and 2001, the other teams did not use
accurate self-localization, but were nevertheless very strong.

At RoboCup 2000, the Golem team demonstrated that robots
with omni-directional vision and an omni-directional drive can
be very agile and reactive, enabling them to be faster at the ball
than the CS Freiburg players. The strength of the Golem team
can, for instance, be judged from Figure 18, which shows the
traces of the positions of the ball and the CS Freiburg players as
recorded in the quarter final game and the final game.

While in the quarter final against CMU Hammerheads the CS
Freiburg players spent most of the time in the opponent’s half,
they were forced into their own half most of the time during
the final game against Golem. The game was finally won by
CS Freiburg by penalty kicks. All in all, it was the overall im-
pression that the mechanical design and the sensor setup of the
Golem team was superior, but that CS Freiburg was able to com-
pensate for this by accurate self-localization, team play, and a
good goalie.

Similarly, during the final game at RoboCup 2001, the Os-
aka Trackies put CS Freiburg under a lot of pressure. They also
used an omni-directional camera, but no omni-directional drive.
Nevertheless, the platform had high agility and the players of
Osaka Trackies were much faster at the ball than the CS Freiburg
players. This game was decided because one Osaka robot was
removed from the field because of a red card, one was removed

(a)

(b)

Fig. 18. Trace of the positions of the ball (black) and the CS Freiburg’s player’s
(light color) at RoboCup 2000 during (a) the quarter final and (b) the final – both
times playing from left to right.

because of a hardware problem and the goalie had a severe prob-
lem as well. In this situation, CS Freiburg scored the only goal
during the game. From this game one got the impression that CS
Freiburg was able to compensate the speed of the other team by
a very reliable goalie and robustness of the hard- and software.

Summarizing the brief comparison with designs of other
strong teams, it is clear that the CS Freiburg design is quite com-
petitive, but there are alternative designs that are as competitive
as CS Freiburg.

B. The Relevance for Multi-Robot- and Multi-Agent-Systems

As should have become obvious, robotic soccer is a rich
source of inspiration for multi-robot and multi-agent research.
It has already led to the development of interesting methods,
e.g., our fast scan-based localization method in polygonal envi-
ronments [17], our global object tracking technique described in
Section III-B, the SPAR method for deciding the placement of
players on the field [30], and the dynamic role assignment tech-
nique developed by Castelpietra et al. [7]. And this list is by
far not complete. Although some of these methods are specific
to robotic soccer, they may nevertheless serve as inspiration for
similar problems in other multi-robot applications.

Furthermore, RoboCup is an attractive testbed for comparing
different methods under “hostile” conditions. The most inter-
esting aspect of the RoboCup, however, is the need to design
and implement systems that “close the loop” from observation
over action planing and action selection to action execution and
monitoring. It is not enough to come up with methods that work
in isolation under ideal conditions, but one has to use methods
that can be integrated into a large system and that show graceful
degradation when something goes wrong.



Of course, the RoboCup environment has a number of prop-
erties which may limit transferability to other multi-robot ap-
plications. For example, on a robotic soccer field one can as-
sume that communication radius is not a limiting factor in es-
tablishing successful communication links between the agents,
while in larger scale applications one might be very well forced
to consider local, temporary, ad-hoc communcation links [18].
Also, the robots can almost always observe the rest of the group,
which may not be true when operating in larger environments.
However, the necessity to be responsive to dynamic changes, to
substitute roles of broken robots and to be robust in general, are
properties found in almost all multi-robot applications.
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[12] B. Dümler. Kooperative Pfadplanung (in German). Diplomarbeit, Albert-
Ludwigs-Universität Universität Freiburg, Institut für Informatik, 2001.

[13] B. Fischer. Robuste Positionsschätzung mittels Monte-Carlo-
Lokalisierung in der RoboCup-Umgebung (in German). Diplomarbeit,
Albert-Ludwigs-Universität Universität Freiburg, Institut für Informatik,
2002.

[14] J.S. Gutmann, W. Burgard, D. Fox, and K. Konolige. An experimental
comparison of localization methods. In Proc. Int. Conf. on Intelligent

Robots and Systems (IROS), pages 736 – 743, Victoria, Canada, October
1998.

[15] J.S. Gutmann, W. Hatzack, I. Herrmann, B. Nebel, F. Rittinger, A. Topor,
and T. Weigel. The CS Freiburg team: Playing robotic soccer on an explicit
world model. AI Magazine, 21(1):37–46, 2000.

[16] J.S. Gutmann, W. Hatzack, I. Herrmann, B. Nebel, F. Rittinger, A. Topor,
T. Weigel, and B. Welsch. The CS Freiburg robotic soccer team: Reliable
self-localization, multirobot sensor integration, and basic soccer skills. In
Asada and Kitano [1], pages 93–108.

[17] J.S. Gutmann, T. Weigel, and B. Nebel. A fast, accurate, and robust
method for self-localization in polygonal environments using laser-range-
finders. Advanced Robotics Journal, 14(8):651–668, 2001.
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