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Abstract. Characters recognition in natural images is a challenging problem, as
it involves segmenting characters of various colours on various background. In
this article, we present a method for segmenting images that use a colour percep-
tion graph. Our algorithm is inspired by graph cut segmentation techniques and
it use an edge detection technique for filtering the graph before the graph-cut as
well as merging segments as a final step. We also present both qualitative and
quantitative results, which show that our algorithm perform at slightly better and
faster to a state of the art algorithm.

1 Introduction

Segmentation of an image has a wide range of application, it is commonly used in image
understanding to split up the objects contained in the image. Images can contain differ-
ent type of objects, like animals, cars or text. Those different types have very different
characteristics and require the use of different type of algorithms [1]. For instance, most
characters in a text are strokes of a constant width of the same colour, they also have
high contrast with the background, however, animals will have very complex shapes,
with different colours and textures. The main motivation behind this article is the ex-
traction and detection of characters in natural images, which require an algorithm for
extracting sharp and uniform segments in images.

Segmentation by region growing and edges detection A first approach to image segmen-
tation is to use edges between region [2]. An other idea is to consider that image seg-
mentation is about aggregating pixels in group based on their similarity: based on this
idea, a region growing algorithm was proposed in [3], however since both approaches
have advantages and drawbacks, a combination gives better results [4].

Depending on the selection of seeds, region growing algorithms will give different
results, [5] show that the best segmentation algorithm that combine region growing and
edge detection relies on using edges to find good seeds [6].

But it would be better to use a method that does not require the selection of seeds at
all.
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Graph-based techniques for automatic segmentation Images can be perceived as a
graph where pixels are nodes and adjacent pixels are connected by an edge [7], this
representation of an image allows to apply many of the graph theory algorithms. For
instance, the graph cut algorithm is commonly used for solving the supervised segmen-
tation problem [8].

The graph formalism can also used for the unsupervised problem to solve the seed
problem. In [9], Felzenszwalb propose to compute a colour distance between each pix-
els and then to start the region growing process by first connecting pixels which have
a small distance, until the sum of all the distance in a region reach a certain thresh-
old. Depending on the choice of the threshold, this algorithm is either too eager or too
conservative, making it diffcult to segment characters in images.

Human Colour Perception The most commonly used colour model for images is RGB,
it is used for sensing, displaying and processing. However it has a poor representation
of colour, the Lab [10] colour model was designed to model the perception of colour
by human, which results in an interesting property, the Euclidean distance between two
Lab pixels (often noted ∆E∗ab) is a good representation of the distance between two
colours. And it is considered that ∆E∗ab(c1, c2) < 20 means that the human eye cannot
make a difference between the two colours c1 and c2 which is very convenient, since it
allows to define a meaningful threshold.

In [11], Karatzas makes use of that property, he suggested a two steps algorithm, in
the first step, pixels are grouped together if the ∆E∗ab between a pixel and the average
colour of a segment is below the 20 threshold. In a second step, he suggested some
heuristic for merging the segments.

Overview of our approach In our approach, colour are modelled using the Lab colour
space. The image is represented as a graph of pixels. Pixels are classified on whether
they belong to an edge or are interior pixels. Using this classification, edges are removed
from the graph. Then the graph is segmented using a modified version of the efficient
graph algorithm [9]. After that segmentation, the classification results are used to merge
segments together.

Fig. 1. Notations used for neighbour pixels Fig. 2. Direction indices to neighbour pix-
els.

Notations and Definitions We will adopt the following notations in this article, pix(x, y)
represent the pixel at coordinates (x, y) in the image. pixi(x, y) is one of the neigh-
bouring pixel of (x, y) (see figure 1), those pixels are ordered so that pixi−1(x, y) and
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pixi+1(x, y) are neighbour pixels of pix(x, y) and pixi(x, y). pixi+4(x, y) is the op-
posite pixel of pixi(x, y), for instance, pix0(x, y) = pix(x, y − 1), then pix1(x, y) =
pix(x+ 1, y − 1) and pix4(x, y) = pix(x, y + 1).

A similar notation is use to indicate direction (as shown on figure 2). For instance,
dir = 1 correspond to the horizontal direction, from pixel pix1(x, y) to pixel pix5(x, y).

We define the ratio function as follows:

if a < b, ratio(a, b) =
a

b
otherwise ratio(a, b) =

b

a
(1)

2 Colour Perception Graph

2.1 Colour Distance Measurements

In the first step we compute a set of colour distance that will be helpful for the classifi-
cation process, the first one is the Neighbour Pixels Distances, it is the colour distance
between a given pixel and its neighbour. With i ∈ [0, 7]:

NDi(x, y) = ∆E∗ab(pix(x, y), pixi(x, y)) (2)

This measurement allows to determine how much the pixel colour is different from
its neighbour, a high value would indicate the presence of an edge. In case NDi(x, y)
has a high value andNDi+4(x, y) has a low value, then the pixel is clearly located near
the edge of an area of the image. However if both values are high, it can either means
that the pixel is part of a smooth edge (see table 1) or is a one pixel wide segment (for
instance, a black line on a white background).

pixel index 0 1 2 3 4 5 6 7
pixels value 0 0 0 100 155 255 255 255

segment label a a a b c d d d
Table 1. Illustration of a smooth gradient from an area of value 0 to 255. Based uniquely on the
Euclidean distance applied in the Lab colour space, this sequence of pixels would be cut in four
segments a, b, c and d. In reality, the segments b and c are artefacts caused by sensor noise and
lack of sharpness and pixels 3 and 4 should belong to either segment a and d.

Using the fact that pixels that belongs to a transition will form a gradient, it is
possible to use the Average Colour Distances to find out if a pixel is part of a smooth
edge, with dir ∈ [0, 3]:

ADdir(x, y) = ∆E∗ab

(
pix(x, y),

pixi(x, y) + pixi+4(x, y)

2

)
(3)

The idea behind this measurement is that if the pixel (x, y) is part of a smooth edge,
then it will be a mix between the colour in the two different area, hence it should be
close in colour to the average to the opposite colours.
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Finally, one pixel wide segement can be detected using the Opposite Neighbour
Distances, with i ∈ [0, 3]:

ODi(x, y) = ∆E∗ab(pixi(x, y), pixi+4(x, y)) (4)

This last measurement is useful to determine if the pixel is part of a 1-thick area,
since a small value of ODi(x, y) combine with high values on NDi(x, y) indicate that
the current pixel is very different from its neighbour, but that the neighbours are very
similar to each other.

2.2 Graph structure

Given an image I, the pixels pix(x, y) are the node of the graph. By default, each pixel
is connected to its eight neighbour in the image. Each edge of the graph is labelled with
the Euclidean distance between the colours of the two neighbour pixels: NDi(x, y).

3 Sharp Segmentation

The first section describes the edge classification of each direction in a pixel, the second
section explains how this classification is used to pre-process the graph, the third section
describe the modified version of the Efficient Graph-Based Image Segmentation [9] and
the last two sections describe two segments merging algorithms.

3.1 Classification of pixels as edges or non-edges

This algorithm was designed around the idea of using only thresholds that would either
have a meaning, like the one used on ∆E, or that would have limited influence on
the end results. An other important aspect considered during the design stage of the
algorithm was to make sure that region with a width of one pixel would be detected.
Also, state of the art approach to edge detection [12] locate edges on a single pixel,
while we need to locate the full extent of the edge on the fuzzy area.

Also for each pixels, our algorithm look if there is an edge in the four possible
direction: horizontal, vertical and the two diagonal.

This is a multiple step algorithm, first a set of colour distances is computed around
each pixels, then those colour distances are used to compute an orientation and then a
classification (edge or not edge pixel), using the classification gives the location of the
edges in the image.

Classification The goal of the classification process is to determine if there is an edge
in the direction dir, the following classes are defined:

– interior this means the pixel does not belong to an edge in the direction dir
– directed edge this class represents edges for which a direction has been established

(from interior of area to an other area) in the direction dir, in other words, it means
that pixdir(x.y) and pixdir+4(x, y) belongs to different segment. Only direction
dir = [0, 3] are considered, we will call directed edge the class when the edge
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is going from pixdir(x, y) to pixdir+4(x, y) and opposite directed edge when the
edge is going from pixdir+4(x, y) to pixdir(x, y).

– undirected edge this class represent an edge for which no direction could be found
in the direction dir, this is likely to happen because the strength of the edge is too
small, or because the pixel is in the middle of smooth edge

– 1-thick represent a pixel belonging to a 1-thick area, in other words pixdir(x.y),
pix(x.y) and pixdir+4(x, y) all belongs to different segment

– Centred edge it is a class when a directed edge is coming in opposition from each
direction

The following values are used to determine the class of the pixel:

sum(x, y) =

3∑
i=0

(NDi(x, y) +NDi+4(x, y))

(5)

avg(x, y) =
sum(x, y)

2
(6)

max(x, y) = max
i∈[0,3]

(NDi(x, y), NDi+4(x, y))

(7)

ratdirnorm(x, y) = ratio(NDdir, NDdir+4)

(8)

ratdiracross(x, y) = ratio(ODdir, sum(x, y))
(9)

ratdiraverage(x, y) = ratio(ADdir, avg(x, y))

(10)

Check the conditions in the following order:
We note Cdir(x, y) the class of pixel pix(x, y) in the direction dir

1. max(x, y) < 5 implies Cdir(x, y) is interior, this condition implies that the colour
distance between the pixel pix(x, y) and its neighbour pixels is small, and therefore
all three pixels are likely to belong to the same segment

2. max(x, y) > 20 and ratdiracross(x, y) <
1
3 implies Cdir(x, y) is 1-thick. A colour

distance above 20, implies that the two colours are perceived as different colour by
the human eyes, at the same time, the low value on ratacross(x, y) indicates that the
pixel pix(x, y) is not part of a gradient between pixdir(x, y) and pixdir+4(x, y).

3. max(x, y) > 20 and ratdirnorm(x, y) < 2
3 implies Cdir(x, y) is a directed edge.

A small value for ratnorm(x, y) indicates that there is a larger difference between
pixi(x, y) and either of its neighbour pixel pixdir(x, y) or pixdir+4(x, y), meaning
that is likely that pixi(x, y) is part of a segment with either of the neighbour pixel.

4. max(x, y) > 20 implies Cdir(x, y) is an undirected edge. The high value on the
color edge indicates that there is an edge, but it is not possible to determine the
direction.

5. ratdiraverage(x, y) >
3
4 implies interior. This check if the colour distance between

pix(x, y) and its neighbours are similar, indicating that the colour difference is
likely caused by noise.

6. ODdir(x, y) > 20 and ratdirnorm(x, y) < 2
3 implies Cdir(x, y) is a directed edge.

The neighbour pixels pixdir(x, y) and pixdir(x, y) are very different which indi-
cate the presence of an edge.

7. ODdir(x, y) > 20 and ratdirnorm(x, y) > 2
3 implies Cdir(x, y) is an undirected

edge. Same as previous condition, but in this case it is not possible to be certain
about direction.
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8. otherwise interior

Directed Edges Diffusion Edges will be detected when two pixels have directed edge
in opposite directions. However, at this point, most of the pixels are labelled with an
undirected edge, which does not allow to determine the exact location of an edge. It is
therefore necessary to determine the direction of each of those edges into directed edge,
using a diffusion process.

As long as the image still contains undirected edges, for each undirected edge at
pixel (x, y) in the direction idir, we will refer as the positive neighbour of (x, y) the
pixel (xp, yp) located in direction idir(x, y) while the negative neighbour (xn, yn) is
in the direction −idir(x, y).

As part of the directed edges diffusion, we introduce a new possible edge class, that
we call centred edge, which happen when pixdir(x, y) and pixdir+4(x, y) are directed
edges of opposite directions and the direction is pointing toward pix(x, y).

The following condition are checked in the given order:
1. if either the positive neighbour or negative neighbour is undirected edge or interior

and the other one is either directed edge or 1-thick then the pixel (x, y) is relabelled
as directed edge and its direction is aligned with the directed edge

2. if either positive neighbour or negative neighbour are directed edge of the same
direction then the pixel is relabelled as a directed edge

3. if either positive neighbour or negative neighbour are directed edge of the opposite
direction and pointing toward pix(x, y) then the pixel is relabelled as a centred
edge otherwise pix(x, y) is relabelled as interior

4. if either positive neighbour or negative neighbour are 1-thick then the pixel is rela-
belled as a 1-thick

3.2 Cutting the graph using a connectivity rule

1t DE ODE I CE
1-thick (1t) 1

Directed Edge (DE) 1 1 1 1
Opposite Directed Edge (ODE) 1

Interior (I) 1 1
Centred Edge (CE)

Table 2. This table show the connectivity rules C(pix1, pix2) (pix1 is in the row and pix2 the
column, a 1 indicate that the two pixels are connected in the graph, while an empty cell indicates
no connection.

Using this connectivity function it is possible to remove graph edges. The graph
edge between pixels pix1 and pix2 is kept only and only if C(pix1, pix2) = 1, other-
wise it is discarded. The connectivity function is defined in the table 2.

It is worth to mention that the edge detection algorithm is not perfect, while it always
correctly mark edge pixels in at least one direction, it may miss some direction. It also



Lecture Notes in Computer Science 7

fails to work with a very smooth gradient. This is why it is still necessary to apply the
efficient graph segmentation algorithm.

3.3 Efficient graph segmentation using a colour perception metric

In [9], Felzenszwalb suggested to group the nodes in segments, such that for all segment
S ∑

pix(x,y)∈Spixi(x,y)∈S

∆E∗ab(pix(x, y), pixi(x, y)) < T (11)

Instead, we suggest to ensure that:

∀pix(x, y) ∈ S∆E∗ab(pix(x, y), colour(S)) < T (12)

Where colour(S) is the average colour over all the pixels in the segment:

colour(S) =
1

|S|
·

∑
pix(x,y)∈S

pix(x, y) (13)

In order to guarantee that similar pixels are grouped first, the list of graph edges is
sorted from smallest to largest and then for each graph edge, between pixel pix(x, y)
and pix(x′, y′), if pix(x′, y′) ∈ S then the condition 13 is checked between pix(x, y)
and the average colour of S and if that condition holds, then the pixel pix(x, y) is added
to the segment S. The process is repeated until all graph edges have been considered.

3.4 Fusing segment using edge information

After the initial segmentation, it is possible to improve the segmentation by merging
segments that follow certain properties [13]. A graph of segments is generated where
nodes in the graph are segments and two nodes of the graph are connected if the nodes
have adjacent pixels. Also, for each segment S, |Sint| is the number of interior pixels
(ie pixels that are only connected to pixels that belongs to segment S), while |Sext| is
the number of exterior pixels (ie pixels which are connected to at least one pixel that
does not belong to S).

For each edge between segment Si and Sj of the graph, the following values are
computed:
1. nce(i, j) number of connections with centred edges
2. ncp(i, j) number of connected pixels
3. nncp(i, j) number of non connected pixels

Pixels are considered connected following the connectivity rule of section 3.2.
Segments are sorted in size and we first try to merge smaller segments.
Given a segment Si and Ni is the set of neighbour of Si, if there is a connected

segment Sj ∈ Ni that respect the following conditions:
1. nce(i, j) > 2.0 ∗ nncp(i, j)
2. ∀Sk ∈ Ni/∆E

∗
ab(avgcolour(Si), avgcolour(Sj)) < ∆E∗ab(avgcolour(Si), avgcolour(Sk))

3. At least Si or Sj have less interior pixels than exterior pixels



8 Cyrille Berger

Where avgcolour(S) is the average colour of the segment S. If such a segment Sj

exists, then Si and Sj are merged.
Once all the segments have been tested for the previously mentioned conditions, the

following conditions are checked:
1. ncp(i, j) > 2.0 ∗ nncp(i, j)
2. ∀Sk ∈ Ni/∆E

∗
ab((Si, Sj) < ∆E∗ab((Si, Sk)

3. At least Si or Sj have less interior pixels than exterior pixels
And once again, if such a segment Sj exists, then Si and Sj are merged.

3.5 Fuzzy merging

In [11], Karatzas present a fuzzy merging algorithm that is applied after a very simplistic
and conservative segmentation algorithm. In reality, its fuzzy merging algorithm can
also be applied as a last step for our algorithm. The main idea behind his merging
algorithm is to merge segment that have similar colour and that are strongly connected
to each other.

4 Results and Evaluation

We are now presenting qualitative as well as quantitative results of our algorithm (called
CPGS) compared to the Human Color Perception (HCP [11]). We also show result with
the fuzzy filtering enabled and disabled on the CPGS algorithm.

4.1 Qualitative results

We have included several results of the use of the segmentation algorithm. First when
the algorithm is applied to a full image (see figure 3) and also when applied only around
words (see figures 4).

The result of HCP and CPGS without fuzzy do looks roughly equivalent to the eye
and neither algorithm seems to perform better than the other, sometimes HCP gives
better results, like on the “2” of figure 3, or CPGS without fuzzy on the “R” and “c” of
figure 4.

More interestingly is that the results show that for some of the images, the fuzzy
merging step is too eager when applied to the result of our algorithm (CPGS), as can
be seen on figures 3, where letters are completely disappearing from the segmentation
result. At the same time, it can improve the quality of the results and reduce the amount
of noise, as can be seen on the left images of figure 3 or by comparing the result of
CPGS with and without fuzzy in figure 4, looking around the letters “Y”, “a”, “r” and
“m” show clearly that some of the small segments are correctly integrated.

4.2 Characters recognition

The end goal would be to be able to recognize characters, so we were interested in
testing how our algorithm performed when used with an Optical Characters Recognition
algorithm. For those tests, we used the “Word recognition” dataset from the ICDAR
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2003 Competition [14] and the NEOCR dataset [15], using HCP or CPGS, the image
was segmented and then for each segment the Tesseract OCR engine [16] was used to
recognize the character.

The results are shown in table 3. They show that CPGS without fuzzy gives slightly
and faster result than HCP.

The reason why the NEOCR dataset shows much slower results is because images
have a size of 4000x3000 while ICDAR have images in the size of 1000x1000. Also,
the NEOCR dataset is much more challenging, which explain the lower recall rate.

Conclusion

We have presented an algorithm for segmenting text characters in natural images that is
both fast and gives good results. We have presented a comparison with a state of the art
algorithm [11]. We have also tested whether we could further improve the results of our
algorithm, by using the fuzzy filtering of [11] and unfortunately, while on some images
it does seem to bring improvement in the segmentation, it also ruin it for many images.

Further work would involve integrating the algorithm in a full process of automated
character recognition in natural images, which would involve improvement to the de-
tection of character location as well as character recognition. There was two main moti-
vation behind our work, the first one is that we considered that the principle behind the
algorithm in [11] were sound and that the use of the colour distance was a good solution
for segmenting characters, however the algorithm was too slow when applied to natural
images and we wanted a faster algorithm, which we have managed to achieve. However
we also wanted to generate segment of better quality, less sensitive to noise and espe-
cially with fewer holes inside and we have not achieve that. It is possible that further
improvement can be applied to the segmentation algorithm to also solve that problem.
Otherwise, future work could involve improving the character recognition algorithms,
so that this sensitivity to noise is less of a problem.

ICDAR 2003 NEOCR
recall time (ms) recall time (ms)

CPGS (No Fuzzy) 0.72 84 0.19 12151
CPGS (with fuzzy) 0.54 92 0.14 544937

HCP 0.70 145 0.17 307407

Table 3. Characters recognition on ICDAR 2003 Words (4874 images) and NEOCR dataset (660
images)
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(a) Original image

(b) HCP Segmentation (2171
ms, 390ms)

(c) HCP character masks

(d) CPGS (No Fuzzy) Segmenta-
tion (1877 ms, 258ms)

(e) CPGS (No Fuzzy) character
masks

(f) CPGS (with fuzzy) Segmen-
tation (5804 ms, 371ms)

(g) CPGS (with fuzzy) character
masks

Fig. 3. Full images segmentation
and character masks

(b) Original image

(d) HCP Segmentation (379 ms, 35 ms, 11ms,
34ms)

(f) HCP character masks

(h) CPGS (No Fuzzy) Segmentation (243 ms,
11ms, 4ms, 31ms)

(j) CPGS (No Fuzzy) character masks

(l) CPGS (with fuzzy) Segmentation (597 ms,
12ms, 4ms, 33ms)

(n) CPGS (with fuzzy) character masks

Fig. 4. Connells, yarmouth and recovering: segmentations
and character masks
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