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Abstract— Modern robotic systems often consist of a growing
set of information-producing components that need to be ap-
propriately connected for the system to function properly. This
is commonly done manually or through relatively simple scripts
by specifying explicitly which components to connect. However,
this process is cumbersome and error-prone, does not scale well
as more components are introduced, and lacks flexibility and
robustness at run-time. This paper presents an algorithm for
setting up and maintaining implicit subscriptions to information
through its semantics rather than its source, which we call
semantic subscriptions. The proposed algorithm automatically
reconfigures the system when necessary in response to changes
at run-time, making the semantic subscriptions adaptive to
changing circumstances. To illustrate the effectiveness of adap-
tive semantic subscriptions, we present a case study with two
SoftBank Robotics NAO robots for handling the cases when
a component stops working and when new components, in
this case a second robot, become available. The solution has
been implemented as part of a stream reasoning framework
integrated with the Robot Operating System (ROS).

I. INTRODUCTION

Robots are increasingly forced to share their operational
environment with humans who can cause harm to, or be
harmed by, those robots. Providing a safe environment for
robots and humans alike is important. Stream reasoning can
help by e.g. performing execution monitoring. This can be
used to ensure that a robot’s behavior is in accordance with
its specifications. Stream reasoning is understood as incre-
mental reasoning with incrementally-available information.

As a concrete application domain, consider the RoboCup
Standard Platform League (SPL) in which teams of SoftBank
Robotics NAO robots are tasked with playing soccer with
and against each other. Different game states have differ-
ent playing styles associated with them. Recognizing when
the game state changes is important in order to respond
effectively. For example, if the ball is on the opponent’s
side and one of our team’s robots has control of the ball,
we can go on the offensive. However, if the ball leaves
the opponent’s side of the soccer field for too long, we
should perhaps switch to a defensive posture and pull back
our forward players. These rules can elegantly be expressed
using a combination of temporal formalisms, such as Metric
Temporal Logic (MTL) [1], and spatial formalisms, such as
the Region Connection Calculus (RCC8) [2]. By checking
whether the ball does not leave the opponents’ side for more
than a certain amount of time, and registering a violation of
such a rule, we can respond appropriately. It can however
be a challenge to perform this type of reasoning if a robot’s

∗Department of Computer and Information Science, Linköping Univer-
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configuration is fixed. The larger an autonomous system gets,
the more components it is composed of, and the connections
between components get confusing and error-prone. In these
cases, reasoning about streams and their provenance can help
by allowing us to reorganize the stream processing to respond
to reasoning needs.

While scenarios such as this one may seem rather con-
trived, the problems they illustrate become even more
relevant when taken to the scale of smart cities or the
Internet of Things (IoT). Many present-day stream-based
systems subscribe to information by its source rather than
by its semantics, making them fragile in cases where the
subscribed-to information’s quality deteriorates with environ-
mental changes (e.g. day-night cycle, weather) or even the
addition, replacement, or removal of information sources.

The main contribution of this paper is a formalization
and concrete realization of adaptive semantic subscriptions,
which subscribe to information based on its semantics rather
than its source and periodically evaluate the quality of the
subscriptions. Adaptive semantic subscriptions can be used to
robustly generate state streams over which stream reasoning
can be performed. A concrete realization of the framework
is given by the latest generation of the DyKnow-ROS stream
reasoning framework1, which previously extended the Robot
Operating System (ROS) with reconfigurability support for
nodelets [3]. The proposed adaptive semantic subscriptions
were applied to and tested with Linköping University’s
RoboCup SPL implementation.

The remainder of this paper is organised as follows.
Related work is presented in Section II, followed by a formal
model of the stream reasoning framework and semantic sub-
scriptions in particular in Section III. A concrete realization
of this formal model is presented in Section IV. Section V
presents a real-world robot case study wherein SoftBank
Robotics NAO platforms are used to monitor a ball on
a RoboCup soccer field while their configurations change
during run-time. Finally, the paper concludes in Section VI
with a recap and a discussion of potential future work.

II. RELATED WORK

The DyKnow-ROS realization of the stream reasoning
framework presented in this paper is a descendent of the
original DyKnow stream reasoning framework [4], [5], which
was integrated with the Common Object Request Broker
Architecture (CORBA) and lacked support for semantic

1DyKnow-ROS website: http://www.dyknow.eu



subscriptions. A comprehensive survey on other stream rea-
soning approaches is given by Cugola and Margara [6],
who cover both Data Stream Management Systems (DSMS)
and Complex Event Processing (CEP) systems. The survey
precedes recent work on analyzing stream processing as
done by for example SECRET [7] or more recently for
stream reasoning by LARS [8], [9], which complement our
formalization of semantic subscriptions.

A related approach was proposed by Bröring et al., who
identified challenges to achieving semantically-enabled sen-
sor plug-and-play [10]. They proposed a method for plug-
and-play functionality by making use of a Sensor Bus [11]
that matches services to sensors. Research towards Semantic
Sensor Networks led to the development of the Semantic
Sensor Network ontology (SSN) [12], which focuses on well-
structured semantic descriptions of sensors. Our work makes
use of semantic descriptions of streaming components rather
than sensors by using functional descriptions of the inputs
and outputs of these components. These functional descrip-
tions are extensions of the OWL-S service ontology [13]
applied to a streaming context. Our proposed solution for
semantic subscriptions is more advanced than the Sensor Bus
approach in that we periodically recombine and reconnect
components whereas the Sensor Bus directly connects with
information sources.

These reconfiguration capabilities are closely related to
configuration planning. Automatic (re)configuration tech-
niques have been studied in detail [14], [15], [16]. The work
by Tang and Parker [17] on ASyMTRe is an example of
a system geared towards the automatic self-configuration of
robot resources in order to execute a certain task. Similar
work was performed by Lundh, Karlsson and Saffiotti [18]
related to the Ecology of Physically Embedded Intelligent
Systems, also called the PEIS-ecology [19]. Given a high-
level goal describing as a task, Lundh et al. use a configu-
ration planner to configure a collection of robots towards
the execution of the task rather than logic-based stream
reasoning. Their solution is however designed for use within
the PEIS middleware and does not easily transfer to the
ROS middleware. Lundh [20] further points out that their
approach uses static cost measures and could benefit from
incorporating semantic knowledge. Our approach focuses on
a more advanced representation of cost, and makes use of
semantic descriptions for components.

III. FORMAL MODEL

We use the term stream reasoning framework to mean a
generic framework that is used for the refinement of streams
for purposes of stream reasoning. The primary task of a
stream reasoning framework is thus to make possible and
maintain stream reasoning. A high-level overview of the ar-
chitecture is shown in Fig. 1. It considers three primary mod-
ules: a stream reasoning manager (SRM), a stream reasoning
engine (SRE), and a computational environment. A client
send queries to the SRM (1), which in turn reconfigures the
computational environment (2) to produce streams required
to answer the query. This is achieved by adding, removing,

Fig. 1. Architecture of the proposed stream reasoning framework.

and reconnecting the resident components, which are tasked
with stream refinement. The query is then forwarded to the
SRE (3) together with the semantic subscriptions (4) that
were set up by the SRM earlier. Once the SRE generates an
answer it is returned to the SRM (5) to handle any side-
effects such as unloading components that are no longer
needed; and to external entities such as the client (6).

We present a formal model of the SRM and the com-
putational environment, which deal with setting up and
maintaining semantic subscriptions. The SRE, which will not
be covered in further detail for the sake of brevity, performs
progression over MTL formulas in accordance with the
procedure proposed by Bacchus and Kabanza [21], [22]. Pro-
gression incrementally evaluates an MTL formula through
syntactic rewritings based on the information received thus
far, thereby making it possible to potentially draw a con-
clusion prior to the receipt of the entire stream. Semantic
subscriptions provide streams over which progression can be
performed once synchronized into a single stream of states.

A. Computational Environment

We formally represent a stream reasoning framework
by a computation graph, transformations and targets. The
computation graph represents the computational environment
consisting of computation units connected by streams.

Definition 1 (Stream): A stream is an unbounded se-
quence of time-stamped values ((l0, v0, t0), (l1, v1, t1), . . . )
where vi ∈ V represent (structured) values, li ∈ Var
represent variable names, and ti ∈ T represent time-points.

Streams thus represent information flows over a transporta-
tion mechanism, which we refer to as a channel. Streams
are the product of transformations, which can either refine
existing streams into new streams, or act as sources by
generating streams without requiring any input streams.
In practice, sources often use information external to the
computational environment to generate streams, for example
through sensor observations. A transformation is considered
to be an annotated streaming function that needs a context
to perform its operations, whereas a computation unit is the
application of such a streaming function to a specific context.

Definition 2 (Transformation): A transformation (TF) is
an annotated stream-generating function that takes streams
as inputs. It is described by a tuple

〈tid, f(x1, . . . , xn,S), [itag1, . . . , itagn] , otag〉 ,



where tid ∈ N represents a unique transformation identifier,
f : Vn×S ↪→ V×S represents a partial function from input
values and an initial state to an output value and a resulting
state, itagi ∈ Tag represent tags for inputs, and otag ∈ Tag
represents the output tag.

Definition 3 (Computation Unit): A computation unit
(CU) is a component that is described by a tuple

〈cid, tid, [in1, in2, . . . , inn] , out,S〉 ,

where cid ∈ N represents a unique identifier for CUs,
tid ∈ N represents the unique identifier of the transformation
which this CU is an instance of, ini ∈ N∪{none} represent
incoming channels, out ∈ N∪{none} represents the outgoing
channel, and S ⊆ Var × V represents the state as a relation
between variables and values.

Lastly, the computational environment contains targets,
which describe semantic subscriptions for outside modules
such as the SRE. Note that subscriptions also occur within the
computational environment, but that these are not referred to
as targets because they do not reflect the global configuration
goals of the computational environment.

Definition 4 (Target): A target describes a desired seman-
tic subscription and is denoted by a tuple 〈qid, tag, chan〉,
where qid ∈ N is a unique (query) identifier, tag ∈ Tag
is a description of the desired information, and chan is the
channel the described stream is expected on.

Targets thus indirectly represent configuration goals for
the computational environment by indirectly referencing de-
sired streams by their semantic descriptions. These streams
are generated by transformation, which in turn have input
requirements. For a given set of targets, there may be many
different computation graphs which satisfy all of the input
requirements and similarity relations. However, these graphs
likely have different costs associated with them.

By combining these elements, we can formally describe
the concept of a computational environment.

Definition 5 (Environment): An environment is denoted
by a tuple ε = 〈CU,F, T,∼〉, where CU denotes a set of
computation units called a computation graph, F denotes a
collection of transformations called a library, T denotes a
set of targets called a goal, and ∼ ⊆ Tag × Tag denotes a
similarity relation between tags. Elements of environment
ε have short-hand representations CUε, Fε, Tε, and ∼ε
respectively.

B. Dynamics

An environment is a representation of the configuration
of the computational environment, which may be subjected
to changes over time. These changes are represented by a
change set.

Definition 6 (Change Set): A change set is a tuple

δ = (CU+, CU−, F+, F−, T+, T−)

consisting of set additions and set removals denoted by
superscript ‘+’ and ‘−’ respectively.

Whenever an environment changes we call this an update.
An update is the result of applying a change to an environ-
ment, yielding a new environment.

Definition 7 (Update): An update applying a change set
δ to an environment ε is denoted by ε′ = ε⊗δ (alternatively:
ε ⇒δ ε

′), where ⊗ maps environments ε and change set δ
to resulting environments ε′ such that

CUε′ = (CUε ∪ CU+
δ ) \ CU−δ ,

Fε′ = (Fε ∪ F+
δ ) \ F−δ ,

Tε′ = (Tε ∪ T+
δ ) \ T−δ .

Updates thus apply additions before removals and may
take a certain amount of time to complete. They also have an
immediate cost associated with them based on the individual
instantiation costs of transformations, referred to as labor,
and a latent cost from the upkeep requirements of the
resulting computation graph. The combination of the one-
time labor cost estimation with the run-time upkeep cost
estimation gives us a cost estimator for updates.

Definition 8 (Cost estimator): The cost estimator ĉost

combining estimators ûpkeep and l̂abor is defined as

ĉost(ε, δ, τ,H) = l̂abor(δ, τ) +

τ+H∑
t=τ+1

ûpkeep(ε⊗ δ, t)

for update ε⊗ δ at time-point τ with a horizon of H time-
units. The cost estimator thus combines short-term labor with
long-term upkeep costs taking into account the horizon.

C. Validity and Optimality

As the result of updates, a computational environment
ε may become invalid or suboptimal. This may for exam-
ple happen due to changing operational costs associated
with CUs (upkeep), CUs may crash and require replacing,
transformations may become unavailable rendering their CU
instances invalid, or new transformations may become avail-
able for a lower cost. In order to maintain adaptive semantic
subscriptions, the problem is to find a change set such that,
when applied to ε, the resulting environment is valid and
update is optimal.

Definition 9 (Validity): An environment ε is valid, de-
noted by ε ∈ Valid, iff for every CU:

1) there exists an associated TF in F ;
2) for every identifier ini there exists a CU in CU for

every 1 ≤ i ≤ n, i.e. no subscriptions to none;
3) for every target 〈qid, tag, chan〉 in ε, there exists a CU

with an associated TF such that tag ∼ε otag; and
4) itagi ∼ε otag holds for every connected pair of CUs.
We can exclude change sets that yield an invalid environ-

ment when used in an update. This reduces the number of
applicable change sets to just those that yield environments
that satisfy all targets. An optimal update is one that min-
imizes the estimated cost of applying a change set and the
estimated upkeep over a predetermined horizon.

Definition 10 (Optimality): An update ε ⊗ δ∗ yielding a
valid environment is optimal relative to a horizon of H time-



units at time-point τ iff δ∗ ∈ ∆∗, where

∆∗ = arg min
δ

ĉost(ε, δ, τ,H)

subject to ĉost(ε, δ, τ,H) ≤ MAX COST

for cost estimator ĉost and upper bound MAX COST.
Note that there may be many optimal change sets, in which

case any can be chosen. Alternatively, if no change set can
make the resulting environment valid (∆∗ = ∅), there are no
optimal change sets. The choice of horizon determines how
conservative change sets are; if the horizon is large, upkeep
starts to outweigh cost more than in cases where the horizon
is kept short. Different estimators can be used, ranging from
simplistic constant values to advanced predictive models
whose accuracy is used to increase or decrease the length of
the horizon. By performing an optimal update at the end of
each horizon, the system adaptively establishes and maintains
semantic subscriptions described by the (possibly changing)
set of targets.

IV. IMPLEMENTATION

The latest version of DyKnow-ROS is concrete realization
of a stream reasoning framework integrated with ROS and
implements adaptive semantic subscriptions. To implement
CUs it makes use of extended ROS nodelets, which are pro-
cedures that can be started (loaded) and stopped (unloaded)
during run-time. Nodelets are hosted in a nodelet manager
which runs the procedures using a thread pool. ROS nodes,
on the other hand, are themselves run as processes rather than
threads. Since there exists no built-in services for loading
or unloading nodes during run-time, nodelets were chosen
instead. Nodelets and nodes alike publish on and subscribe
to topics, which are named channels over which data flows.
Our earlier work [3] extended ROS nodelets with services
that allow for the run-time reconfiguration of these publishers
and subscribers by changing their target topics. The SRM
makes use of these services to perform updates as presented
in the formal model.

A. Transformation and Target Specifications

Transformations from the formal model are realized by
transformation specifications. The SRM keeps track of these
specifications in addition to the computation graph and
targets. For practicality, we allow for nodelets to have
multiple outputs, which formally corresponds to multiple
transformations that take the same inputs performed by a
single CU.

The specifications contain a reference to a nodelet’s im-
plementation, which is required to load that nodelet. Addi-
tionally, a configuration and label are added. An example
of a transformation specification is shown in Listing 1. The
label of a transformation corresponds to a tid. The source
refers to the path used by the ROS nodelet manager to
dynamically load a nodelet. The parameters are passed to the
nodelet after loading, when the SRM sets its configuration.
A listing of ports is provided, corresponding to input and
output indices which are given a programmer-friendly name

Listing 1. Transformation specification example
<transformation type="nodelet">

<label>undistort (cam1 )</label>
<source>package/Undistort</source>
<params>

<param name="configPath" type="string">
/path/to/configuration/cam1/

</param>
</params>
<ports>

<port type="out">undist</port>
<port type="in">rawCamera</port>

</ports>
<tags>

<tag port="undist">Undistorted (cam1 )</tag>
<tag port="rawCamera">RawRGB (cam1 )</tag>

</tags>
</transformation>

Listing 2. Target specification example
<target>
<label>undistortSub</label>
<topic>/result</topic>
<tag>Undistorted (cam1 )</tag>

</target>

that can be used in the program code. These ports can
subsequently be annotated using tags from the Tag set. In
the example in Listing 1, first-order predicates are used as
tags to describe a transformation which takes RGB image
data and produces undistorted images based on a lens model
which was provided as part of the configuration.

A target specification is similar to a transformation specifi-
cation. An example target specification is shown in Listing 2.
It is given a programmer-friendly name undistortSub, and
requires a stream of undistorted images from cam1 to be sent
over a ROS topic labelled /result. Components external
to the computational environment, such as the SRE, can then
subscribe to these ROS topics with the assurance that they
carry the desired information.

B. Semantic Tagging and Matching

A different approach to tagging is to use ontological con-
cepts from the Semantic Web [23]. We can specify complex
concepts in Description Logic (DL) which are expressible
in various syntaxes. The semantics of the undist output port
from Listing 1 can be expressed as

Undistorted u ∃hasSource.cam1

in DL syntax (using punning), i.e. the intersection of indi-
viduals of the concept Undistorted with the individuals for
which there is a hasSource relation to cam1. Similarly, the
semantics of the rawCamera input port can be expressed as

RawCamera u ∃hasSource.cam1

in DL syntax. Turtle syntax or Manchester syntax could be
used instead of DL syntax for the XML specifications.

If we want to check whether a transformation with an
output port tag C can be subscribed to for the rawCamera
input port, we have to establish whether

C ∼ (RawCamera u ∃hasSource.cam1)



holds. For semantic matching with DL concepts, we therefore
use Cout ∼ Cin ≡def Cout v Cin where Cout denotes the
output port tag and Cin denotes the input port tag.

We use the same subsumption relation to determine valid-
ity for all targets. A valid target is thus any (complex) DL
concept. For example, the target containing the tag

Undistorted u ∃hasSource.Camera

would match the undistort(cam1) transformation’s undist
port if cam1 ∈ Camera (i.e. Camera(cam1) holds).

C. Configuration Life-Cycle

The proposed semantic subscriptions are adaptive in the
sense that they are periodically evaluated and updated to
repair or improve the underlying computation graph. This
recurring process is referred to as the configuration life-cycle.
This configuration life-cycle is composed of a number of
phases which are repeated every cycle, which starts with
a review interval followed by a stable interval. During the
review interval, the SRM searches for a change set δ∗ such
that its application to the current environment constitutes an
optimal update. Whether an update is optimal is determined
by a combination of instantiation costs and upkeep relative to
a horizon. DyKnow-ROS uses a fixed horizon length and uses
CPU time (combined user and system time) for instantiation
cost and upkeep.

This search is followed up with the execution of the found
optimal update. Once the update has been performed, the
stable interval begins. During the stable interval, the SRM
waits for a perturbation to occur while the computational
environment is left unchanged. A perturbation is said to occur
whenever a CU unexpectedly gets unloaded, subscriptions
between CUs are unexpectedly removed, targets are added, or
the horizon is reached. The first three types of perturbations
are premature (they occur potentially well before the horizon
is reached) but potentially result in the environment to be
invalid, which needs to be mitigated quickly with the start
of a new cycle. The last perturbation is the normal way
for a cycle to end and a new one to start, as it is used
in determining the most cost-efficient change set. Premature
perturbations may therefore be expensive whereas horizon-
based perturbations are anticipated.

At the end of every cycle, the estimators for labor and
upkeep are updated by the SRM based on the weighted
recent history of observed labor and observed upkeep. The
estimators for upkeep are averaged over the various observed
CUs clustered by tid. The initial estimations for previously
unobserved labor and upkeep however require bootstrapping
with an initial guess. One can encourage the SRM to explore
or exploit by assigning very low or very high initial guesses
respectively. These labor and upkeep estimators will then
be updated with more accurate values when the SRM tries
to use them. When new transformations become available
during run-time, these too are then either preferred or avoided
depending on the bootstrapping strategy used.

Algorithm 1: Exploration procedure
1 function EXPLORE(Environment ε):
2 root ← Node(nil, nil)
3 i← 1
4 queue← Queue()
5 foreach target ∈ Tε do
6 targetNode← Node(root, target)
7 addOption(root, targetNode, i)
8 i← i+ 1
9 enqueue(queue,EXPAND(targetNode, ε))

10 end
11 while |queue| > 0 ∧ ¬TIMEOUT do
12 node← dequeue(queue)
13 enqueue(queue,EXPAND(node, ε))
14 end
15 return COMPILE (root, ε)

D. Update Procedure

Whenever a perturbation is detected, either due to the
horizon being reached or otherwise, the SRM performs its
update procedure. The task of the update procedure is to find
a change set δ∗ for the current environment ε with which an
optimal update ε⊗ δ∗ can be performed. This change set is
approximated by exploring the search space for change sets
such that the resulting environment ε ⊗ δ∗ is in the Valid
relation.

The search algorithm used is based on breadth-first (back-
wards) search with branch-and-bound, which is followed up
by some post-processing to eliminate any duplicate subtrees.
The nodes in the tree correspond to either transformations to
be instantiated or existing CUs. The edges then correspond
to publisher and subscriber pairs.

When a perturbation is detected, the first step is to check
whether the set of transformations has changed. If they have,
we generate a new validity graph. A validity graph is a
directed graph where nodes correspond to transformations
and labelled edges correspond to whether the output tag and
input tag are sufficiently similar (∼). For example, if an
output tag for transformation t1’s output index i is C1 and
an input tag for transformation t2’s input index j is C2, then
there exists an edge ((t1, i), (t2, j)) iff C1 v C2. This graph
can be compact represented as a validity matrix where rows
and columns correspond to inputs and outputs, allowing for
constant time look-up. Rows and columns should be added
or removed whenever transformations are added or removed
in order to stay up-to-date.

The procedure starts as shown in Algorithm 1 by generat-
ing a root node for which the arity is set to |T |, i.e. equal to
the number of targets. For every target, any transformations
that satisfy that target are added as candidates for their
associated query and added to the expansion queue. We now
have a tree consisting of a root where for every target its
satisfying transformations are children associated with that
input. The second step is to expand the tree breadth-first.
This is done for every element in the expansion queue in
sequence, where for every such transformation we consider
each of its inputs. The algorithm for expansion is shown in



Algorithm 2: Node expansion
1 function EXPAND(Node node, TF[] transforms, Queue

queue):
2 arity ← getArity(getType(node))
3 fwdCost← getFwdCost(getParent(node)) +

getCost(getType(node))
4 bestCostChain← getBestCostChain(node)
5 for i← 1 to arity do
6 bestCost ← getBestCost(node, i)
7 candidates ← getValid(getType(node), i)
8 foreach c ∈ candidates do
9 cost ← getCost(c)

10 if cost+ fwdCost < bestCostChain then
11 option ← Node(node, c)
12 optionArity ← getArity(c)
13 addOption(node, option, i)
14 if optionArity > 0 then
15 enqueue(queue, option)
16 else
17 setBestCost(option, getCost(c))
18 Propagate new best cost up the tree
19 end
20 end
21 end
22 end

Algorithm 2. For every input, the validity matrix is queried
for the row associated with the transformation-input pair,
yielding a set of transformation-output pairs that are valid
for feeding into the input that is under consideration. These
candidate transformations are used for two purposes;

1) To check whether there exist CUs in CUε for which the
type matches the candidate transformation and which
we can re-use;

2) To check whether we can instantiate a new computa-
tion unit of the candidate transformation.

The cost for re-using a computation unit is assumed to be
free; no work needs to be done to connect to a stream
it is already producing, although it still generates upkeep.
Candidates are rejected if they are known to exceed the
currently-known best solution in terms of estimated cost and
estimated upkeep relative to the horizon. If the candidate
leads to a new valid subtree, its cost is propagated up the
tree to keep track of new solutions. The algorithm recursively
calls EXPAND for both TFs and CUs. CUs, like TFs, are also
expanded to ensure they form a valid subtree without gaps
caused by CUs having been unloaded.

The algorithm terminates whenever the entire space has
been searched or when a time-out is reached. Time-out
limits are provided every time the update procedure is run,
and may be adjusted between cycles. For the resulting tree
there may exist common subtrees that could have been
shared. This is a problem as this unnecessarily instantiates
duplicate transformations, leading to a greater cost and a
greater upkeep. A post-processing step therefore recursively
steps through the tree breadth-first considering only the best-
found candidate for every input, and indexes these nodes. If
a subtree is encountered for which the root has already been
indexed, the subtree is replaced with a pointer to the root

Fig. 2. Piff and Puff’s transformation pipeline conceptually showing the
transformations from camera images to ball positions.

of the earlier-found duplicate subtree. This pointer tells the
algorithm to subscribe to whatever stream is being produced
by that subtree, avoiding duplicate subtrees.

In the final step of the algorithm, we end up with a
trimmed-down tree that the algorithm now steps through
depth-first, limiting itself to the best-found candidates as
previously. For every node, it determines unique topic names
to subscribe to, and recursively informs its children of these
names so they can publish to those topics. In stepping
through the tree, the algorithm incrementally builds a change
set of transformations to instantiate and topics for CUs to
subscribe or produce to. Since the existing CUs are taken
into account, the algorithm keeps a list of CUs that are going
to be re-used, protecting them from being removed. Any CUs
that end up not being protected are subsequently added to
the change set for removal, reducing the global upkeep. This
change set is then returned as the result of the algorithm, and
can be applied to the environment to approximate an optimal
update.

Since the exploration procedure applies an exhaustive
search of valid configurations, the time and memory require-
ments are closely tied to the average branching factor of
the search tree and the granularity of the transformations.
The branching factor is in turn determined by the similarity
relation and semantic annotations used. In other words,
if every transformation can be connected to every other
transformation, the branching factor will be high and the time
to complete a search will go up. Likewise, the more fine-
grained transformations are, the deeper the search will have
to go before finding valid change sets. In practice, software
components are not so general that they could be connected
to any other component. Data types alone impose constraints
on what can be connected; semantic constraints further limit
the number of candidates. The time-out mechanism further
makes it possible to conclude the exploration procedure early.

V. CASE STUDY

Our case study focuses on two NAO robots, called Piff
and Puff (Swedish for Chip ’n Dale). Both Piff and Puff
are capable of running a processing pipeline that takes in
sensor information and produces ball coordinates relative
to the soccer field. This series of transformations is shown
conceptually in Fig. 2. For the case study, we are interested
in situations where semantic subscriptions can provide added
value to Piff in performing its task of tracking the ball. We
consider two cases; 1) Piff is tracking the ball but something
goes wrong; and 2) Piff is tracking the ball and Puff offers
to help for a while. Piff and Puff are assumed to be part of



TABLE I
TRANSFORMATION ANNOTATIONS FOR GENERATING BALL POSITIONS

(1) Label: bottom cam(${NAO})
In: ∅
Out: YUVImage u ∃hasSource.${NAO}

(2) Label: subsampler
In: YUVImage u ∃hasSource.${NAO}
Out: Y640X480Image u ∃hasSource.${NAO}, . . . ,

U640X480Image u ∃hasSource.${NAO}, . . . ,
V640X480Image u ∃hasSource.${NAO}, . . . ,

(3) Label: segmenter
In: Y80X60Image u ∃hasSource.${NAO},

V80X60Image u ∃hasSource.${NAO}
Out: ConvHull u ∃hasSource.${NAO}

u∃hasTarget.field
(4) Label: ball detector

In: ConvHull u ∃hasSource.${NAO}
u∃hasTarget.field,

Y640X480Image u ∃hasSource.${NAO},
Y320X240Image u ∃hasSource.${NAO}

Out: PixelPos u ∃hasSource.${NAO}
u∃hasTarget.Ball

(5) Label: ball localization
In: PixelPos u ∃hasSource.${NAO}

u∃hasTarget.Ball,
Pose u ∃hasSource.${NAO}

Out: Position u ∃hasSource.Ball

the same computational environment; a multi-agent system
approach is beyond the scope of this paper.

A. Initial Set-Up

Initially, Piff is the only NAO that will try to continuously
report the position of the ball. A target is provided by a
user with a tag Position u ∃hasSource.Ball in DL, and a
topic /result. At this time, no transformations are known
to the SRM, so the update amounts to adding the new
target 〈qid0,Position u ∃hasSource.Ball,/result〉 to Tε.
The resulting environment is already optimal since there are
no known transformations satisfying the target.

Later on, Piff gets registered to the SRM by reporting
its transformations as being available for use. Due to space
limitations, we cannot show the full XML transformation
specifications. However, the ball detection pipeline’s tags
are shown in Table I, where ${NAO} refers to a collection
piff, puff ∈ NAO, i.e. Piff and Puff are instances of the NAO
concept referenced by the template variable ${NAO}.

The bottom cam TF provides a YUV image stream, which
can be subscribed to by the subsampler TF. This transfor-
mation down-samples the resolution of the three channels
into 640x480, 320x240, 160x120, 80x60, and 40x30. The
segmenter TF instances may subscribe to low-resolution Y
and V channels to determine the convex hull of the green
field, ignoring the space in the image which captures things
outside of the field. This convex hull is combined with the Y
channel by the ball detector TF to produce pixel coordinates
of balls, which is then combined with pose information by
the ball localization TF to produce ball position data, which
matches the query. Since the validity matrix is updated when
transformations are added or removed, the result is a 11×19
validity matrix for the 11 inputs and 19 outputs. Based on

this new matrix, the ball localization TF now satisfies the
target.

As the result of the perturbation, the planner searches for
a solution and finds one as shown conceptually in Fig. 2.
The change set is the instantiation of all transformations,
and the connection of the resulting CUs in accordance with
their annotations. Piff now produces a ball position stream
on the /result topic, to which for example the SRE can
subscribe as an adaptive semantic subscription.

B. Recovery from Failures

Unfortunately, something goes wrong and the image seg-
menter is unloaded, leaving a hole in the computation
graph and interrupting the flow of position information. This
perturbation is detected as CU− = {segmenter 1}. The
subsampler is still producing a stream of low-resolution
images, but the segmenter no longer exists to do anything
with them. The environment is now 〈CU,F, T,v〉, where
T = {〈qid0,Position u ∃hasSource.Ball,/result〉}, and
the computation graph CU is as in Fig. 2 but without a
segmenter. This perturbation results in the update procedure
generating a change set by re-using the part of CU that still
exists, but instantiating a new computation unit segmenter 2
and reconfiguring it to subscribe to the streams that were
already being produced by the subsampler. This is important
because if the publishers of the subsampler were to be
reconfigured, the detector would no longer receive anything
unless it too is reconfigured. The detector’s subscription to
the defunct segmenter is then replaced by one to the new
segmenter, and the position information flow is restored.

C. Combining Resources

Some time later, Puff joins Piff on the field and registers its
own transformations in accordance with the transformation
table. Given the possibility to generate a second pipeline
for ball positions, the SRM nevertheless does not use the
second pipeline as-is. The reason for this is that the cost
for re-using Piff’s part of the computation graph is assumed
to be free, whereas a lot of effort would have to be spent
in order to instantiate Puff’s pipeline to switch away from
Piff’s stream. An exception to this occurs when we introduce
a transformation fuse ball pos, which specifically attempts
to fuse two streams containing ball position information
into a stream with improved ball position information. By
itself, this new TF will not be used because it adds to the
upkeep of the computation graph. This is currently a short-
coming of the proposed approach, because we limit ourselves
to the cost of updates without taking into consideration
the potential for an increase of quality of the information
semantically-subscribed to. This problems highlights the
difficulty in balancing the cost of updates with the quality of
a stream resulting from such an update. Taking into account
quality in addition to the cost measurements focused on
in this paper is left for future work. A temporary work-
around is to explicitly describe fusion transformations. In
this example, we could replace the target with one like
FusedPosition u ∃hasSource.Ball in DL, and describe the



fusion TF accordingly. Alternatively, the SRM can be forced
to use fusion TFs if they are available. In that case, the
planner will find three solutions:

1) Keep using Piff’s ball position stream;
2) Instantiate and switch to Puff’s ball position stream;
3) Instantiate Puff’s ball position stream and fuse with

Piff’s existing ball position stream;

but it is forced to pick the fusion approach despite being
more expensive. The update procedure then instantiates a
second pipeline as shown in Fig. 2 and connects the resulting
position streams as inputs to a domain-specific ball fusion
stream, for which the output is produced to /result.

VI. CONCLUSIONS

ROS is a powerful middleware for robotic application that
provides built-in capabilities to subscribe to and produce
data incrementally. However, these subscriptions are static
subscriptions based on a topic name rather than a description
of the desired information. Furthermore, static subscriptions
are not robust to changing conditions during run-time, such
as the introduction of additional components or the removal
of existing components.

This paper presents an algorithm for semantic subscrip-
tions, which subscribe to information by its semantics rather
than its source. Semantic subscriptions are described by
targets, and optimal updates seek to apply a change set to
an environment such that the resulting environment satisfies
the targets. The combined cost of the change set with the
upkeep of the resulting environment relative to a horizon
is approximately minimized. DyKnow-ROS is a concrete
instantiation of a stream reasoning framework that supports
semantic subscriptions in the ROS. It makes use of Semantic
Web concepts to semantically annotate transformations with
tags for inputs and outputs, and applies semantic matching
to determine whether subscriptions are valid. ROS nodelets
extended with reconfiguration services are used as transfor-
mation instances, which can be loaded, unloaded, and the
subscriptions of which can be reconfigured during run-time.
A concrete update procedure periodically updates the com-
putational environment to cope with changes, using historic
CPU time as an estimator for transformation instantiation
cost and CU upkeep. DyKnow-ROS is shown to work in
a real-world scenario involving two NAO robots tracking a
ball, where the computational environment changes due to
robots joining or leaving.

Future work can include the consideration of different
application areas, such as smart cities and the IoT, as well as
various improvements to the proposed model and associated
life cycle. For example, more expressive tagging languages
can be developed, and cost measures can be extended by
taking into consideration the changing quality of streams.
The proposed solution is a step forward towards making
robotic systems more robust and capable of adapting to
changes in their computational environment during run-time.
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