
Semantically Grounded Stream Reasoning Integrated with ROS

Fredrik Heintz
Department of Computer and Information Science

Linköping University, Sweden
fredrik.heintz@liu.se

Abstract— High level reasoning is becoming essential to
autonomous systems such as robots. Both the information
available to and the reasoning required for such autonomous
systems is fundamentally incremental in nature. A stream is a
flow of incrementally available information and reasoning over
streams is called stream reasoning. Incremental reasoning over
streaming information is necessary to support a number of
important robotics functionalities such as situation awareness,
execution monitoring, and decision making.

This paper presents a practical framework for semantically
grounded temporal stream reasoning called DyKnow. Incre-
mental reasoning over streams is achieved through efficient
progression of temporal logical formulas. The reasoning is
semantically grounded through a common ontology and a
specification of the semantic content of streams relative to the
ontology. This allows the finding of relevant streams through
semantic matching. By using semantic mappings between
ontologies it is also possible to do semantic matching over
multiple ontologies. The complete stream reasoning framework
is integrated in the Robot Operating System (ROS) thereby
extending it with a stream reasoning capability.

I. INTRODUCTION

High level reasoning is becoming essential to autonomous
systems such as robots as they become equipped with more
sensors, actuators, and computational power and expected to
carry out ever more complex missions in more and more
challenging and unstructured environments.

Both the information available to and the reasoning re-
quired for such autonomous systems is fundamentally incre-
mental in nature. A flow of incrementally available infor-
mation is called a stream of information. As the number of
sensors and other stream sources increases there is a growing
need for incremental reasoning over streams in order to draw
relevant conclusions and react to new situations with minimal
delays. We call such reasoning stream reasoning. Reasoning
over incrementally available information is needed to sup-
port a number of important functionalities in autonomous
systems such as situation awareness, execution monitoring,
and decision making [1].

One major issue is grounding stream reasoning in robotic
systems. To do symbolic reasoning it is necessary to map
symbols to streams in a robotic system, which provides
them with the intended meaning for the particular robot.

This work is partially supported by grants from the Swedish Founda-
tion for Strategic Research (SSF) project CUAS, the Swedish Research
Council (VR) Linnaeus Center CADICS, the ELLIIT Excellence Center at
Linköping-Lund in Information Technology, the Vinnova NFFP5 Swedish
National Aviation Engineering Research Program, and the Center for
Industrial Information Technology CENIIT.

This is related to the general problem of symbol grounding
and anchoring [2], [3]. Existing systems do this syntactically
by mapping symbols to streams based on their names. This
makes a system fragile as any changes in existing streams
or additions of new streams require that the mappings be
checked and potentially changed. This also makes it hard to
reason over streams of information from multiple heteroge-
neous sources, since the name and content of streams must
be known in advance.

The main contribution of this work is the practical realiza-
tion of semantically grounded logic-based stream reasoning
in the Robot Operating System (ROS). Incremental temporal
reasoning using a metric temporal logic is achieved by eval-
uating temporal logical formulas over streams using progres-
sion. To address the problem of grounding stream reasoning
in existing robotic systems we have developed a semantic
matching approach using semantic web technologies. An
ontology is used to define a common vocabulary over which
symbolic reasoning can be done. Streams are annotated with
ontological concepts to make semantic matching between
symbols and streams possible. This is a significant exten-
sion of the stream-based knowledge processing middleware
DyKnow [4], [5] which was realized using CORBA.

To the best of our knowledge there does not really exist
any other system which provides similar stream reasoning
functionality. The KnowRob [6] system is probably the
closest match with its sophisticated and powerful knowledge
processing framework. However, it does not support reason-
ing over streaming information and the support for temporal
reasoning is limited.

II. SEMANTICALLY GROUNDED STREAM REASONING

The semantically grounded stream reasoning framework
consist of three main parts: a stream processing part, a
stream reasoning part, and a semantic grounding part. Each
part consists of a set of components. There are three types
of components: engines, managers and coordinators. An
engine takes a specification and carries out the processing
as specified. A manager keeps track of related items and
provides an interface to these. A coordinator provides a high-
level functionality by coordinating or orchestrating other
functionalities. An overview of the parts and the components
is shown in Fig 1. The design is very modular as almost every
component can be used independently.

The stream processing part is responsible for generating
streams by for example importing, merging and transforming

Fig. 1. An overview of the DyKnow components.

streams. The Stream Manager keeps track of all the streams
in the system. Streams can either be generated by a stream
processing engine or by some external program. A Stream
Processing Engine takes a stream specification and generates
one or more streams according to the specification.

The stream reasoning part is responsible for evaluating
logical formulas over streams. A Stream Reasoning Engine
takes a logical formula and a stream of states and evaluates
the formula over this stream. A Stream Reasoning Coordi-
nator takes a logical formula, finds all the relevant streams
needed to evaluate the formula, creates a stream specification
for generating a single stream of states from all the relevant
streams, and instructs the stream reasoning engine to evaluate
the formula over the stream as it is generated by a stream
processing engine. There are two different ways of grounding
a formula, which in our case means finding the relevant
streams for a formula. Either syntactic grounding, where
the formula explicitly states the names of the streams, or
semantic grounding, where the formula is written using
concepts from an ontology which are then matched against
the available streams.

The semantic grounding part is responsible for finding
streams based on their semantics relative to a common
ontology. The Stream Semantics Manager keeps track of se-
mantically annotated streams, where an annotation describes
the semantic content of a stream. The Ontology Manager
keeps track of the ontology which provides a common
vocabulary. The Semantic Matching Engine finds all streams
whose semantic annotation matches a particular ontological
concept. The semantic grounding part is used by the stream
reasoning part to find the relevant streams in order to evaluate
a logical formula. When the relevant streams have been found
they are merged together and synchronized by the stream
processing part to create the stream of states that is required
to evaluate the formula.

The following sections describe each of the parts in detail.

III. STREAM PROCESSING

Stream processing has a long history [7] and data stream
management systems such as XStream [8], Aurora [9], and
Borealis [9] provide continuous query languages supporting
filters, maps, and joins on streams. There are also commercial
stream processing tools such as RTMaps [10]. The stream
processing part of DyKnow provides similar functionality
specially designed for stream reasoning. One major differ-
ence is that time is essential in stream reasoning while data
stream management systems usually treat time as any other
value.

A stream is a sequence of time-stamped tuples which
becomes incrementally available. A stream is an abstraction
which has many realizations in different systems such as
topics in ROS and event channels in CORBA. A tuple in a
stream has one or more fields and is often called a sample
or a stream element. In ROS each tuple is a message.

Each tuple is associated with two time stamps, the valid
time and the available time. The valid time is the specific
time-point when the information in the tuple is valid. The
available time, is the time when the tuple is ready to
be processed by the receiving process after having been
transmitted through a potentially distributed system. The
available time is unique for each stream, i.e. there may
not be two tuples in a stream with the same available
time. The available time allows to formally model delays
in the availability of a value and permits an application to
use this information introspectively to determine whether to
reconfigure the current processing network to achieve better
performance. For example, assume a picture was taken at
time t, an object was extracted from this image and made
available in a stream at time-point t+ 5 then the valid time
for the object would be t and the available time t+ 5.

A stream specification is a declarative description of a
stream. It can include constraints on the stream such as
start and end times, maximum delay, sample period, and
sample period deviation. For example, if the maximum delay
allowed is 100ms then the difference between the available
time and the valid time may not be greater than 100ms. If
the sample period is 200ms and the sample period deviation
allowed is 50ms then the difference in valid times between
two consecutive samples has to be in the range 150ms to
250ms. If the sample period deviation is 0 then the sample
period has to be exact.

The DyKnow stream processing functionality currently
supports selecting values from a stream, merging multiple
streams, and synchronizing multiple streams. These are the
basic operations on streams required for stream reasoning.
Further, it is also possible to have user defined operations on
streams called computational units.

The stream specification language supported by DyKnow
for ROS has the following grammar:

DECL ::= SOURCE_DECL | SINK_DECL
| COMPUNIT_DECL | STREAM_DECL
DECLS ::= DECL | DECL SEMICOLON DECLS
SOURCE_DECL ::= source TYPE_DECL SOURCE_NAME
SINK_DECL ::= sink STREAM

Fig. 2. Stream processing example: select

Fig. 3. Stream processing example: merge

COMPUNIT_DECL ::=
compunit BASIC_TYPE COMPUNIT_NAME
LP TYPE_DECL (COMMA TYPE_DECL)* RP

STREAM_DECL ::= stream NAME EQ STREAM
TYPE_DECL ::= BASIC_TYPE | COMPLEX_TYPE
BASIC_TYPE ::= NAME COLON TYPE
COMPLEX_TYPE ::=
LP BASIC_TYPE (COMMA BASIC_TYPE)* RP
TYPE ::= int | float | string | boolean
STREAM ::= STREAM_TERM with STREAM_CONSTRAINTS
STREAMS ::= STREAM | STREAM COMMA STREAMS
STREAM_TERM ::= STREAM_NAME
| SOURCE_NAME
| COMP_UNIT_NAME LP STREAMS RP
| select SELECT_EXPRS from STREAM

where WHERE_EXPRS
| merge LP STREAMS RP
| sync LP STREAMS RP
SELECT_EXPR ::= FIELD_ID (as PSTRING)?
SELECT_EXPRS ::= SELECT_EXPR
| SELECT_EXPR COMMA SELECT_EXPRS
WHERE_EXPR ::= FIELD_ID EQ VALUE
WHERE_EXPRS ::= WHERE_EXPR
| WHERE_EXPR and WHERE_EXPRS
FIELD_ID ::= STRING | STRING DOT FIELD_ID
PSTRING ::= STRING
| STRING? PERCENT FIELD_ID PERCENT PSTRING?
STREAM_CONSTRAINTS ::= STREAM_CONSTRAINT
| STREAM_CONSTRAINT COMMA STREAM_CONSTRAINTS
STREAM_CONSTRAINT ::=

start_time EQ NUMBER | end_time EQ NUMBER
| max_delay EQ NUMBER | sample_period EQ NUMBER
| sample_period_deviation EQ NUMBER

The informal semantics of “select select expression from
stream where where expression with stream constraints”
is a stream that contains fields according to the se-
lect expression for every tuple in stream that satisfies the
where expression and such that the resulting stream satisfies
the stream constraints. Fig 2 shows an example of selecting
the fields A and D from a stream S1 when the value of the
field B is 2 and renaming D to Fx where x is the value of
the field C.

Fig. 4. Stream processing example: sync

The informal semantics for “merge streams with
stream constraints” is a stream that contains every tuple
from every stream in streams as long as the resulting stream
satisfies the stream constraints. An example of merge is
shown in Fig 3, where two streams S1 and S2 are merged
into a stream S3. One important observation is that when
two input tuples are available to the merge process at exactly
the same time it is non-deterministic which order they are
processed. In the resulting stream, they will have different
available times.

The informal semantics for “sync streams with
stream constraints” is a stream that contains tuples
which are constructed by joining a tuple from each stream
in streams to a new tuple so that all the tuples are valid
at the same time and the resulting stream satisfies the
stream constraints. The synchronization time-points, i.e. the
time-points for which a synchronized value will be computed
is either every time-point for which an input tuple exists
or determined by the start time and sample period for the
resulting stream. If no start time is given, then the start time
will be the minimum valid time of the input streams. To
approximate the value at a time-point t for a stream without
a tuple with a valid time of t the tuple with the latest valid
time before t will be used. This corresponds to assuming
that all value changes are contained in the stream. Other
approximation policies are also possible. Fig 4 shows the
synchronization of streams S1 and S2 into a stream S3 with
the sample period of 2.

IV. LOGIC-BASED TEMPORAL STREAM REASONING

One technique for incremental temporal reasoning over
streams is progression of metric temporal logic formulas.
This provides real-time incremental evaluation of logical
formulas as new information becomes available. First order
logic is a powerful technique for expressing complex rela-
tionships between objects. Metric temporal logics extends
first order logics with temporal operators that allows metric
temporal relationships to be expressed. For example, our
temporal logic, which is a fragment of the Temporal Action
Logic (TAL) [11], supports expressions which state that a
formula F should hold within 30 seconds and that a formula
F ′ should hold in every state between 10 and 20 seconds
from now. This fragment is similar to the well known Metric
Temporal Logic [12]. Informally, ♦[τ1,τ2] φ (“eventually”)
holds at τ iff φ holds at some τ ′ ∈ [τ + τ1, τ + τ2],
while �[τ1,τ2] φ (“always”) holds at τ iff φ holds at all

τ ′ ∈ [τ + τ1, τ + τ2]. Finally, φU[τ1,τ2] ψ (“until”) holds
at τ iff ψ holds at some τ ′ ∈ [τ + τ1, τ + τ2] such that φ
holds in all states in (τ, τ ′).

We have for example used this expressive metric temporal
logic to monitor the execution of complex plans [13] and
to express conditions for when to hypothesize the existence
and classification of observed objects in an anchoring frame-
work [14]. In execution monitoring, for example, suppose
that a UAV supports a maximum continuous power usage
of M , but can exceed this by a factor of f for up to
τ units of time, if this is followed by normal power usage
for a period of length at least τ ′. The following formula
can be used to monitor and detect violations of this spec-
ification: �∀uav : (power(uav) > M → power(uav) <
f ·M U[0,τ] �[0,τ ′] power(uav) ≤M).

The semantics of these formulas are defined over infinite
state sequences. To make metric temporal logic suitable
for stream reasoning, formulas are incrementally evaluated
using progression over a stream of timed states [13]. The
result of progressing a formula through the first state in
a stream is a new formula that holds in the remainder of
the state stream if and only if the original formula holds in
the complete state stream. If progression returns true (false),
the entire formula must be true (false), regardless of future
states. Even though the size of a progressed formula may
grow exponentially in the worst case, it is always possible
to use bounded intervals to limit the growth. It is also
possible to introduce simplifications which limits the growth
for common formulas [4].

V. SEMANTIC GROUNDING

DyKnow views the world as consisting of objects and fea-
tures, where features may for example represent properties of
objects and relations between objects. A sort is a collection
of objects, which may for example represent that they are
all of the same type.

Due to inherent limitations in sensing and processing, an
agent cannot always expect access to the actual value of a
feature over time, instead it will have to use approximations.
Such approximations are represented as streams of samples
called fluent streams. Each sample represents an observation
or estimation of the value of a feature at a specific point in
time represented by the valid time of the sample.

A temporal logic formula consists of symbols representing
variables, sorts, objects, features, and predicates besides the
symbols which are part of the logic. Consider ∀x ∈ UAV :
x 6= uav1→ �XYDist[x, uav1] > 10, which has the intended
meaning that all UAVs, except uav1, should always be more
than 10 meters away from uav1. This formula contains
the variable x, the sort UAV, the object uav1, the feature
XYDist, the predicates 6= and >, and the constant value 10,
besides the logical symbols. To evaluate such a formula an
interpretation of its symbols must be given. Normally, their
meanings are predefined. However, in the case of stream
reasoning the meaning of features can not be predefined since
information about them becomes incrementally available.
Instead their meaning has to be determined at run-time. To

evaluate the truth value of a formula it is therefore necessary
to map feature symbols to streams, synchronize these streams
and extract a state sequence where each state assigns a value
to each feature [4].

In a system consisting of streams, a natural approach is
to syntactically map each feature to a single stream, we call
this syntactic grounding. This works well when there is a
stream for each feature and the person writing the formula
is aware of the meaning of each stream in the system.
However, as systems become more complex and if the set
of streams or their meaning changes over time it is much
harder for a designer to explicitly state and maintain this
mapping. Therefore automatic support for mapping features
in a formula to streams in a system based on their semantics
is needed, we call this semantic grounding. The purpose of
this matching is for each feature to find one or more streams
whose content matches the intended meaning of the feature.
This is a form of semantic matching between features and
contents of streams. The process of matching features to
streams in a system requires that the meaning of the content
of the streams is represented and that this representation can
be used for matching the intended meaning of features with
the actual content of streams.

The same approach can be used for symbols referring to
objects and sorts. It is important to note that the semantics of
the logic requires the set of objects to be fixed. This means
that the meaning of an object or a sort must be determined for
a formula before it is evaluated and then may not change. It is
still possible to have different instances of the same formula
with different interpretations of the sorts and objects.

Our goal is to automate the process of matching the
intended meaning of features, objects, and sorts to content
of streams in a system. Therefore the representation of the
semantics of streams needs to be machine understandable.
This allows the system to reason about the correspondence
between stream content and symbols used in logical for-
mulas. The knowledge about the meaning of the content of
streams needs to be specified by a user, even though it could
be possible to automatically determine this in the future. By
assigning meaning to stream content the streams do not have
to use predetermined names, hard-coded in the system. This
also makes the system domain independent meaning that it
could be used to solve different problems in a variety of
domains without reprogramming.

Our approach to semantic grounding uses semantic web
technologies to define and reason about ontologies. On-
tologies provide suitable support for creating machine un-
derstandable domain models [15]. Ontologies also provide
reasoning support and support for semantic mapping which
is necessary for the grounding of symbols to streams from
multiple robotic systems.

To represent ontologies we use the Web Ontology Lan-
guage (OWL) [16]. Features, objects, and sorts are repre-
sented in an ontology with two different class hierarchies,
one for objects and one for features. The feature hierarchy
is actually a reification of OWL relations. The reason for this
is that OWL only supports binary relations while a feature

might be an arbitrary relation.
To represent the semantic content of streams in terms

of features, objects, and sorts we have defined a semantic
specification language called SSL [17]. This is used to
annotate the semantic content of streams.

Finally, a semantic matching algorithm has been developed
which finds all streams which contain information relevant to
a concept from the ontology, such as a feature. This makes it
possible to automatically find all the streams that are relevant
for evaluating a temporal logical formula. These streams
can then be collected, fused, and synchronized into a single
stream of states over which the truth value of the formula is
incrementally evaluated. By introducing semantic mapping
between ontologies from different robotic systems (e.g. C-
OWL [18]) and reasoning over multiple related ontologies
(e.g. DDL [19]) it is even possible to find relevant streams
distributed among multiple robots [17].

VI. INTEGRATION WITH ROS

ROS is an open-source framework for robot software de-
velopment which allows interfaces and services to be clearly
specified [20]. Software written for ROS is organized into
packages which contain nodes, libraries, and configurations.
Nodes represent computational processes in the system and
are written using language specific client libraries. These
nodes communicate in two ways. First, by passing structured
messages on topics using XML-RPC where topics can be
seen as named buses to which nodes can subscribe. Second,
by using request/reply communication through services. To
manage services and topics there is a common ROS Master,
a standard ROS component providing registration and lookup
functionality.

To integrate semantically grounded stream reasoning with
ROS each component in Fig 1 is realized as a ROS node
providing a number of related services. The details of the
most important services are provided below.

One interesting aspect is the realization of streams.
Streams are naturally realized as topics. However, there are
two issues. First, topics are strongly typed in ROS while a
single type for representing stream tuples is required to sup-
port the creation and processing of states containing arbitrary
fields. Second, ROS topics do not provide strong guarantees
about delays or reorderings of messages while according to
the semantics of streams the constraints associated with a
stream should be satisfied at the receiving end.

The first issue is handled by introducing a new message
type called Sample which is used to represent an arbitrary
stream element. It contains a common header, the valid time
and available time of the element, and the fields. Each field
consists of a string representation of its type, the name
of the field, and the value of the field represented as a
string. To automatically handle the conversion from ROS
types to Sample and back, a script has been written which
generates the necessary conversion functions directly from
ROS message types.

The second issue is handled by introducing a client side
helper class called StreamProxy which subscribes to a topic

Fig. 5. Realizing a stream using a topic.

and creates a stream that satisfies the associated constraints.
This could for example include reordering samples and throw
away samples that have been delayed for too long. An
overview of the realization of streams is shown in Fig 5.

A major benefit of the design is that any topic can be
treated as a stream by the framework since the conversion
from a ROS specific type to the general stream type is
handled by a StreamProxy. This makes it possible to use
any method to generate streams which can then be used by
the framework in the same manner as streams generated by
the framework itself.

A. Services

1) Stream Processing Engine: A stream processing engine
takes specifications in the DyKnow stream specification
language and creates streams according to those. There
can be many stream processing engines in a system. Each
stream processing engine also implements some of the stream
manager services since they manage their own local streams.

The following service specifications are written on the
form Name(parameters) : return values. The message types
are named to be self explanatory, instead of explicitly de-
fined. If a type ends with [] then it is a vector type.

StreamCreateFromSpec(StreamSpec spec)
: ExitStatus exit_status,
string stream_topic,
string stream_constraint_violation_topic

StreamDestroy(string stream_name)
: ExitStatus exit_status

ListStreams()
: ExitStatus exit_status,
string[] stream_names

2) Stream Manager: The Stream Manager keeps track
of all the streams in a system. There is only one Stream
Manager in the system. A stream that has been created
by a Stream Processing Engine can be registered with the
Stream Manager. It is also possible to create new streams
from stream specifications. The Stream Manager then selects
an appropriate stream processing engine that will process
the specification. The Stream Manager also keeps track of
the mapping between topic names and stream names. It
is possible to configure DyKnow to use a convention for
mapping between topic names and stream names to remove
the need for storing this explicitly.

StreamRegister(string engine_name,
string stream_name)

: ExitStatus exit_status
StreamDeregister(string stream_name)
: ExitStatus exit_status

StreamCreateFromSpec(StreamSpec spec)
: ExitStatus exit_status,
string stream_topic,

string stream_constraint_violation_topic
StreamDestroy(string stream_name)
: ExitStatus exit_status

StreamGetTopic(string stream_name)
: ExitStatus exit_status,
string topic_name

ListStreams()
: ExitStatus exit_status,
string[] stream_names

3) Ontology Manager: The Ontology Manager keeps track
of the ontology used in the system. It has services for
adding concepts and adding instances of concepts. It also has
services for getting the concepts of an instance. for getting
instances of a concept, and for evaluating OWL queries. The
service calls are translated into queries to an OWL ontology.

ConceptCreate(string concept_name,
string[] parent_concepts)

: ExitStatus exit_status
ConceptGetInstances(string concept_name)
: ExitStatus exit_status,
string[] instances

ConceptDestroy(string concept_name)
: ExitStatus exit_status

InstanceCreate(string instance_name,
string[] concept_names)

: ExitStatus exit_status
InstanceGetConcepts(string instance_name)
: ExitStatus exit_status,
string[] concepts

InstanceDestroy(string instance_name)
: ExitStatus exit_status

4) Stream Semantics Manager: The Stream Semantics
Manager keeps track of the semantic annotation of streams.
Any stream can be annotated by providing a SSL specifica-
tion of its semantic content.

AddSemanticSpecification(string ssl_statement)
: ExitStatus exit_status

5) Semantic Matching Engine: The Semantic Matching
Engine is responsible for matching concepts from the ontol-
ogy, managed by the Ontology Manager, to annotated streams,
managed by the Stream Semantics Manager. It is a separate
component since it can do semantic matching between any
ontology and any collection of stream specifications anno-
tated using that ontology. The service for finding all matching
streams for a specific concept, which might be quantified,
from the ontology returns a set of stream specifications since
it might be necessary to create a new stream rather than to
directly use an existing stream.

FindAllMatchingStreams(string concept)
: ExitStatus exit_status,
string[] stream_specifications

6) Stream Reasoning Engine: The Stream Reasoning
Engine evaluates metric temporal logical formulas using
progression. To evaluate multiple formulas over the same
domain and the same stream of states a formula group is
introduced which consists of a set of formulas, a domain,
and the name of an appropriate state stream topic. Each tuple
in the state stream must contain one field for each ground
feature that appears in any of the formulas. If not, then the
progression will fail. The domains, i.e. the set of objects, for
the sorts are fixed for each formula group. To support the
extraction of feature and sort symbols from a formula the
Stream Reasoning Engine provides a service for this.

FormulaGroupCreate(string formula_group_name)
: ExitStatus exit_status,
int formula_group_id

FormulaGroupAddFormula(int formula_group_id,
string formula_name,
string formula)

: ExitStatus exit_status,
int formula_id

FormulaGroupEvaluate(int formula_group_id,
Domain[] domains,
string state_stream,
string result_topic)

: ExitStatus exit_status
FormulaGroupExtractSymbols(int formula_grp_id)
: ExitStatus exit_status,
Symbol[] symbols

FormulaGroupDestroy(int formula_group_id)
: ExitStatus exit_status

7) Stream Reasoning Coordinator: The Stream Reasoning
Coordinator orchestrates the stream reasoning, the semantic
matching, and the stream processing necessary to evaluate
temporal logical formulas. The coordination required de-
pends on whether the formula is expressed with explicit
stream names or if it is expressed using feature concepts
from an ontology. In the first case there is no need to do
semantic matching which is required in the second case. A
benefit of the Stream Reasoning Coordinator is that a user
only needs to interact with a single service to evaluate a
formula. A detailed description of this process is described
in the next section.

EvaluateFormulaBlocking(string formula)
: ExitStatus exit_status,
bool result

EvaluateFormulaNonBlocking(string formula,
string result_topic)

: ExitStatus exit_status

VII. CASE STUDY: EXECUTION MONITORING

Execution monitoring is an important application for
stream reasoning. It can for example be used to make sure
that the execution of a plan is progressing as expected and
that a robot does not violate any restrictions placed on it,
such as going too fast, flying too high or too low, and so on.

This section describes the process of evaluating a temporal
logical formula in detail. The description shows the cooper-
ation among the components and how they all contribute.

1) A user calls an EvaluateFormula service implemented
by the Stream Reasoning Coordinator with the formula
f . The formula could for example be generated as part
of the planning process of the robot [13].

2) The Semantic Reasoning Coordinator calls the Formula-
GroupCreate service to create a group of formulas that
are all evaluated over the same state stream, and then
the FormulaGroupAddFormula service with the formula
f to add it to the group, both are implemented by the
Stream Reasoning Engine.

3) The Stream Reasoning Coordinator extracts the sorts
and features from the formula by calling the Formula-
GroupExtractSymbols service, also implemented by the
Stream Reasoning Engine.

4) For each sort, the Stream Reasoning Coordinator com-
putes the domain of the sort by getting all the instances

of the sort by calling the ConceptGetInstances service
implemented by the Ontology Manager.

5) For each feature, the Stream Reasoning Coordina-
tor requests all matching streams from the Semantic
Matching Engine by calling the FindAllMatchingStreams
service.

6) If every feature has at least one matching stream then
the Stream Reasoning Coordinator takes the individual
stream specifications and creates a stream specification
which synchronizes the streams for the individual
features into a single stream of states.

7) The Semantic Reasoning Coordinator calls the Formu-
laGroupEvaluate service with the domains of the sorts
and the name of the topic on which the state stream will
be delivered. The Stream Reasoning Engine subscribes
to the state stream topic. It is now ready to start
evaluating the formula.

8) The Stream Reasoning Coordinator subscribes to the
result topic of the formula group and when it receives
a true or false message it destroys the state stream and
returns the result to the client by completing its call to
the coordinator.

9) The Stream Reasoning Coordinator creates the state
stream by calling the StreamCreateFromSpec service
implemented by the Stream Manager.

10) The Stream Manager calls the StreamCreateFromSpec
service implemented by a Stream Processing Engine.

11) The Stream Processing Engine sets up the appropriate
topic subscriptions, processes the messages from these
subscriptions according to the specification, creates
synchronized states, and publishes them on the state
stream topic.

12) For every state in the state stream, the Stream Reason-
ing Engine progresses the formula over that state. If the
formula is progressed to either true or false a message
is sent on the result topic of the formula group.

13) During the process the Stream Processing Engine might
find that one of the constraints associated with the
stream specification is violated. In this case, a message
is sent on the constraint violation topic. The coordi-
nator subscribes to this topic and tries to handle the
situation if possible. Otherwise the call from the client
is terminated and an error message is returned.

The described execution monitoring approach has been
integrated with a planner that generates plans together with
execution monitoring formulas and used in UAV applica-
tions [13]. The formulas associated with a plan are automat-
ically added and removed appropriately during the execution
of the plan, thereby ensuring the proper monitoring of the
execution of the plan.

Other case studies using DyKnow are for example traf-
fic monitoring [21], distributed fusion for collaborative
UAVs [22], and anchoring [14].

VIII. PERFORMANCE EVALUATION

Estimating the performance of a complex stream process-
ing and stream reasoning framework like DyKnow is an

Fig. 6. Stream delays when varying the number of subscriptions.

Fig. 7. Performance when varying the number of stream specifications.

important and multi-faceted problem. This section briefly
discusses the most important aspects of the performance for
each part in the framework.

A. Efficiency of stream processing

Estimating the performance of the stream processing is ba-
sically about measuring the throughput and delays of streams
and stream processes. Since streams are implemented as
ROS topics, the performance of streams are equal to the
performance of ROS topics, which has a small overhead of a
few micro seconds per subscriber and message as can be seen
from Fig. 6. For merging and synchronization the overhead is
linear in the number of input streams and has been measured
to be about 50-100 microseconds per stream on an 8 core
Intel i7 CPU. Network delays are usually the limiting factor,
not the processing time.

B. Efficiency of semantic grounding

The performance of finding all matching streams for a
given feature, i.e. feature concept in the ontology, depends
both on the size of the ontology and the number of stream
specifications. Our experiments show that the cost is roughly
linear in the number of feature concepts in the ontology and
in the number of stream specifications [17]. Fig 7 shows an
experiment where the number of relevant stream semantics
specifications for a concept was varied and the time to match
this concept against the specification was measured. The
three categories are the time used for parsing the formula,

Fig. 8. Average progression time: �¬p → ♦[0,1000] �[0,999] p.

the ROS communication overhead for communicating the
parsing result to the semantic manager node, and the time
used by the semantic matching itself. It shows that the
time used for matching increases linearly from about 50ms
for 1 relevant specification to 110ms for 2000 relevant
specifications on an 8 core Intel i7 CPU.

C. Efficiency of temporal stream reasoning

To be practically useful it is important that the stream
reasoning is fast. Even though the size of a progressed
formula may grow exponentially in the worst case, the
growth can always be limited by introducing metric bounds
on the temporal operators. Our experiments show that even
with the worst possible inputs complex formulas can be
evaluated in less than 1 millisecond per state and formula
on a 1.4GHz Pentium M. One example formula is �¬p→
♦[0,1000] �[0,999] p, corresponding to the fact that if p is false,
then within 1000 ms, there must begin a period lasting at
least 1000 ms where p is true. To estimate the cost of
evaluating this formula, it was progressed through several
different state streams corresponding to the best case, the
worst case, and two intermediate cases. A new state in the
stream was generated every 100 ms, which means that all
formulas must be progressed within this time limit or the
progression will fall behind. Fig. 8 shows that 100 ms is
sufficient for the progression of between 1500 and 3000
formulas of this form on the computer on-board our UAV
(a 1.4GHz Pentium M), depending on the state stream.

IX. CONCLUSION

DyKnow is a pragmatic semantically grounded stream rea-
soning framework supporting efficient incremental temporal
logical reasoning over streams of information. The semantic
grounding allows the automatic collection and synchroniza-
tion of the streams needed to evaluate a particular formula
based on the semantics of the symbols in the formula and the
content of the available streams. This greatly increases the
value of DyKnow as it simplifies dynamic applications where

streams and concepts are added and removed at runtime.
By integrating the framework with ROS we make this very
powerful processing and reasoning capability available to a
wide range of robotic systems. DyKnow is designed for and
intended to be used in sophisticated autonomous systems
where there is a need to dynamically reason about the system
or its environment using streams of information.

We are currently working on several extensions. For
example, supporting the automatic federation and fusion of
streams generated by multiple robotic systems; automatically
changing the set of streams used to evaluate a formula when
the set of available streams is dynamically changing during
the evaluation; and extending the temporal reasoning with
support for spatial reasoning to allow spatio-temporal stream
reasoning which is important for many applications.

Semantically grounded stream reasoning is an important
step towards a new era of intelligent robots and systems that
meets the demanding needs of the future.

REFERENCES

[1] F. Heintz, J. Kvarnström, and P. Doherty, “Stream-based middleware
support for autonomous systems,” in Proc. ECAI, 2010.

[2] S. Harnad, “The symbol-grounding problem.” Physica D, no. 42, 1990.
[3] S. Coradeschi and A. Saffiotti, “An introduction to the anchoring

problem,” Robotics and Autonomous Systems, vol. 43, no. 2–3, 2003.
[4] F. Heintz, “DyKnow: A stream-based knowledge processing middle-

ware framework,” Ph.D. dissertation, Linköpings universitet, 2009.
[5] F. Heintz, J. Kvarnström, and P. Doherty, “Bridging the sense-

reasoning gap: DyKnow – stream-based middleware for knowledge
processing,” J. of Adv. Engineering Informatics, vol. 24, no. 1, 2010.

[6] M. Tenorth and M. Beetz, “KnowRob – A Knowledge Processing
Infrastructure for Cognition-enabled Robots. Part 1: The KnowRob
System,” Int. J. of Robotics Research, vol. 32, no. 5, 2013.

[7] R. Stephens, “A survey of stream processing,” Acta Informatica,
vol. 34, no. 7, 1997.

[8] L. Girod, Y. Mei, R. Newton, S. Rost, A. Thiagarajan, H. Balakrishnan,
and S. Madden, “Xstream: a signal-oriented data stream management
system,” in Proc. ICDE, 2008.

[9] U. Çetintemel et. al., “The Aurora and Borealis Stream Processing
Engines,” in Data Stream Management: Processing High-Speed Data
Streams, 2007.

[10] Intempora, “Rtmaps, a rapid and modular environment for your real-
time applications.” [Online]. Available: http://www.intempora.com/

[11] P. Doherty and J. Kvarnström, “Temporal action logics,” in Handbook
of Knowledge Representation. Elsevier, 2008.

[12] R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Systems, vol. 2, no. 4, pp. 255–299, 1990.

[13] P. Doherty, J. Kvarnström, and F. Heintz, “A temporal logic-based
planning and execution monitoring framework for unmanned aircraft
systems,” J. of Auton. Agents and Multi-Agent Systems, vol. 19, 2009.

[14] F. Heintz, J. Kvarnström, and P. Doherty, “Stream-based hierarchical
anchoring,” Künstliche Intelligenz, vol. 27, no. 2, pp. 119–128, 2013.

[15] I. Horrocks, “Ontologies and the Semantic Web,” Communications of
the ACM, vol. 51, no. 12, 2008.

[16] M. Smith, C. Welty, and D. McGuinness, “OWL Web Ontology
Language Guide,” 2004.

[17] F. Heintz and Z. Dragisic, “Semantic information integration for
stream reasoning,” in Proc. Fusion, 2012.

[18] P. Bouquet, F. Giunchiglia, F. Harmelen, L. Serafini, and H. Stucken-
schmidt, “C-OWL: Contextualizing ontologies,” in Proc. ISWC, 2003.

[19] A. Borgida and L. Serafini, “Distributed description logics: Assimilat-
ing information from peer sources,” J. on Data Semantics, 2003.

[20] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs,
E. Berger, R. Wheeler, and A. Ng, “ROS: an open-source robot
operating system,” in ICRA Workshop on Open Source Software, 2009.

[21] F. Heintz, P. Rudol, and P. Doherty, “From images to traffic behavior
– a UAV tracking and monitoring application,” in Proc. Fusion, 2007.

[22] F. Heintz and P. Doherty, “Federated dyknow, a distributed information
fusion system for collaborative UAVs,” in Proc. ICARCV, 2010.

