
2013 IEEE/RSJ International Conference on
Intelligent Robots and Systems (IROS)
November 3-7, 2013. Tokyo, Japan

Fast Guaranteed Search With Unmanned Aerial Vehicles

Andreas Rol l ing1 , Alexander Kleiner2, and Piotr Rudol 2

Abstract— In this paper we consider the problem of searching
for an arbitrarily smart and fast evader in a large environment
with a team of unmanned aerial vehicles (UAVs) while providing
guarantees of detection. Our emphasis is on the fast execution
of efficient search strategies that minimize the number of
UAVs and the search time. We present the first approach for
computing fast guaranteed search strategies utilizing additional
searchers to speed up the execution time and thereby enabling
large scale UAV search. In order to scale to very large environ-
ments when using UAVs one would either have to overcome
the energy limitations of UAVs or pay the cost of utilizing
additional UAVs to speed up the search. Our approach is based
on coordinating UAVs on sweep lines, covered by the UAV
sensors, that move simultaneously through an environment.
We present some simulation results that show a significant
reduction in execution time when using multiple UAVs and
a demonstration of a real system with three AR.Drone 2.0.

I. I N T R O D U C T I O N

Guaranteed search is one of the many applications for
which recent progress in the development of cheaper and
improved unmanned aerial vehicles (UAVs) is leading to
new exciting possibilities. Especially for search and rescue
in large and dangerous areas, UAVs offer an unparalleled
advantage of being highly mobile and truly expendable with
a cost of only a few hundred dollars for current consumer
platforms. The downside of these platforms, however, is their
severe limitation with regard to energy and flight time. Prior
work on guaranteed search in robotics has almost exclusively
focused on the computation of search strategies that mini-
mize the number of searchers. The recent survey on search
and pursuit-evasion in robotics [3] has identified the mini-
mization of time and travel distance for guaranteed search
strategies as an important problem that has not received much
attention. We concur with this assessment especially when
considering UAVs instead of ground, underwater vehicles
or pan-tilt-zoom cameras, which suffer less from energy
limitations. The goal of this paper is to provide a first
step towards the consideration of execution time for search
strategies, the computation of fast and efficient strategies,
and the demonstration of powerful search capabilities with
real systems using teams of UAVs.

One of the few results regarding the minimization of time
for search strategies on graphs are found in [2]. Therein

1 Department of Automatic Control and Systems Engineering,
University of Sheffield, Sheffield, SI 3JD United Kingdom
a n d r e a s . k o l l i n g @ g m a i l . c o m

2 Department of Computer and Information Science, Linkoping Univer-
sity, 58738 Linkoping, Sweden

This work is partially supported by the Swedish Foundation for Strategic
Research and the Excellence Center at Linkoping and Lund in Information
Technology (ELLIIT), the Swedish Foundation for Strategic Research
CUAS Project, and the EU FP7 project SHERPA, grant agreement 600958.

it is shown that the computation of the minimum time to
search a graph with a team of searchers is strongly NP-
Complete even for stars, trees, two-vertex graphs and most
other types of graphs except for paths and cycles. In addition,
minimizing time has not only received very little attention
in robotics, but also the graph searching literature on this
topic, see [6], is sparse and we do not have such a large
body of research available as for minimizing the number of
searchers. As a consequence, our approach in this paper is
that of speeding up the execution of given strategies rather
than computing time optimal strategies from scratch. This
has the advantage of simplifying the problem in addition to
being able to use the approach for any strategy, even those
modified by a human operator or modified to consider criteria
other than the number of searchers, such as terrain difficulty,
online adaptation, or probabilistic considerations.

The work presented here is based on extensive prior
work building towards real search systems which we review
briefly in Section II and Section III. This is followed by our
contribution towards parallelizing the execution of strategies
in Section IV and experiments in V. Finally, we conclude
with a discussion in Section VI.

Fig. 1. The motivation for this work is the fast execution of guaranteed
search strategies with a team of UAVs in large and complex environments.

II. R E L A T E D W O R K

Guaranteed search and pursuit-evasion problems have been
an active research area in robotics and other related fields
such as graph theory for an extended period of time. From a
robotics perspective the survey by Chung et al. [3] provides
an excellent summary. Fomin et al. [6] provide a good
overview of the problem from a graph theoretical perspective.

This paper work is based on our prior work in guaranteed
search and an extension thereof [15], [16], [11], [9]. In [16],

978-1-4673-6358-7/13/$31.00 ©2013 IEEE 6013

[11] Kolling ET AL. introduced a formalism and algorithms indices of the obstacles, i.e., the polygon edges, are assumed
to coordinate the motion of robots moving on sweep lines, to be circular and we identify i + n with i.
reusing prior graph-based approaches [15]. The time it takes The original formulation of this approach in form of
to execute these strategies was first evaluated in simulations the Line-Clear problem was given in [11]. Therein any
in [9], revealing considerable potential for improvements. We number of sweep lines can be placed in the environment and
shall discuss the connection to this work in more detail in moved around to clear more of it. To minimize the number
Section III. of searchers needed tocover these lines with their sensor

Other work that considers line-based abstractions is [5]. footprint, however, it is was shown it suffices to consider
Therein Efrat ET AL. consider an approach where multiple strategies that move at most one line at any time. This
UAVs, each with an unlimited range sensor, are arranged approach was adopted in all subsequent work on line-based
in a single movable polygonal chain operating in a sim- search, namely [13], [14], [16]. In order to enable fast line-
ply connected environment. Their algorithm for computing based search we have to consider the concurrent motion of
motion strategies runs in O(n3), an improved version of multiple sweep lines. In the following, we will first describe
the algorithms runs in O(n2) time [17]. Another similar sequential strategies, such as the one computed in [16] and
approach that assumes limited sensing range is presented then show how to parallelize these, possibly using additional
in [1] where the authors present a system where multiple searchers.
UAVs trap faster intruders, once they detect them, by forming Suppose we are given a line-based search strategy, e.g.
a surrounding chain. Also closely related to our work, computed by the algorithm from [16]. It was shown therein
Durham ET AL. presented a distributed algorithm guarantee- that such search strategies can be represented by an obstacle
ing complete coverage of the frontier between cleared and index sequence, o1, . . . , on containing all indices from P .
contaminated areas during expansion [4]. The search strategy proceeds by first setting up a sweep

To the best of our knowledge no work considering the fast line between obstacles o1 and o2, and then subsequently
execution of guaranteed search strategies has been pursued splitting the sweep line on the next obstacle index in the
in the robotics community. The closest related work is [8] sequence. This is best illustrated with an example, seen in
which minimizes distance by improving the average-case Fig. 2. The corresponding obstacle sequence for the strategy
performance for non-adversarial motion models. shown therein is {o1 = 2,o2 = 3, o3 = 4, o4 = 17, o5 =

1 , o6 = 18, o7 = 22, o8 = 19, o9 = 21 , o10 = 20, o11 =
I I I . SEARCH STRATEGIES WITH LINES 5,012 = 16,oi3 = 6,014 = 7,oi5 = H,oi6 = 10,oi7

In this section we briefly describe the basics of our line- 8, ois = 9,019 = 12,020 = 15,021 = 13, 022 = 14}
based search approach, first presented in more detail in computed with the sensing range rs shown in Fig. 2. The
[16] and [11]. The goal is to find an unknown number procedure for splitting an existing sweep on a new obstacle
of targets in an environment represented by a polygon, is quite simple. For the computation of the strategy a point
grid, or elevation map. For this paper we assume a simply- on the new obstacle that minimizes the cost of the split in
connected 2D polygon. In [16] it was shown how to apply terms of the number of searchers was computed. The existing
the resulting strategies to multiply-connected and even 2.5D sweep line is simply moved towards this point and then split
environments and the same approach can be applied for into two sweep lines. One or both of these sweep lines can
the fast strategies we compute here. Regarding the tar- be of zero length if the obstacle indices are adjacent. If both
gets, we make the same assumptions as is customary for are zero, then then no new sweep lines are formed. This
pursuit-evasion problems, namely that targets are evaders procedure is described in more detail in [16].
moving at unbounded speed, are omniscient and are able Another representation of this strategy that is more conve-
to evade the searcher optimally. As a consequence targets nient for our purposes is as a surveillance tree. Surveillance
can conveniently be represented with contamination which trees were introduced in [15] and are trees T = (V, E) with a
is cleared by the searcher as they proceed to clear the set of vertices V and edges E c V x V and a weight function
environment. Contamination spreads immediately whenever w : V x E :—> N that associates a cost to each vertex and
possible, simulating the fact that omniscient and fast targets edge. This cost represents the number of robots needed to
will exploit any possibility to move into areas not covered clear a vertex and block an edge. Hence, the surveillance tree
by sensor or obstacles. Contamination simplifies the target can represent the cost of the block lines in the environment
model and allows the efficient computation of strategies and the cost of the split by associating blocks to edges and
at least for simply-connected environments [15], [16]. In splits to vertices. We construct such a surveillance tree by
our line-based approach searchers clear the environment by creating a node in V for every os and using c(os), the cost
moving together on sweep lines, necessitated by the limited of splitting a sweep line on obstacle os at step s in the
sensing range. These sweep lines are simply lines between obstacle sequence, as its weight. The edges are given by
the obstacle boundaries of the environments. As a sensor the progression of the sweep lines and their weights b(os)
we assume a circular footprint, such as a downward facing for the cost of the blocking sweep line prior to the split. This
camera of a UAV, with a radius rs. The environment is given simple construction is illustrated in Fig. 3 for the example
by a simply-connected polygon P = {vi,... ,vn}, with n environment from Fig. 2.
vertices and edges, written ej = [wj,«j+i], i = 1 , . . . , n. The The representation as a surveillance tree describes the

6014

a) 04 = 17 b) o 5 = 1

19 15

17

, 1

2

3 .*■ I

jt ' 1

12

11

<8? fl
1 /»

5

4
9

,. 19 15

17

° i

2

12

11

<& /
5

4
9

c) 0 9 = 21 rf) O15 = 11

^

I V - ^ ' . K ©

5

4

- sensing range rs

final sweep line
splitting sweep line
blocking sweep line

Fig. 2. An example of a sweep line strategy with a) showing the first split
of a blocking sweep line between obstacles 2 and 4 splitting on obstacle
17 = 04. Subsequently the left and right side of the split move to a shorter
final sweep line for this split. In b) the final sweep line from on the left is
further split onto 05 = 1 into two sweep lines, one of which is zero, since
05 = 1 is adjacent to o\ = 2 and moved to a final blocking sweep line
between 17 and 1. In c) the search strategy continues to the left side until
it is cleared and the sweep line on the left disappears. In d) when splitting
on 015 another two non-zero sweep lines are created.

b{oig) = V £ S Y (0 1 6) = l

b(o2) = 0

Fig. 3. A surveillance tree representing the line-based search strategy
shown in 2. The cost of the vertices are shown inside the vertices and
the cost for the edges are shown to the side of the edges. Dashed lines
indicate a continuation of the tree, omitting some nodes for a more concise
presentation.

temporal dependencies between the sweep lines, which is
important for parallelization. At every split into two non-
zero sweep lines, represented by a node with two children
in the surveillance tree, there is an opportunity to continue
both lines in parallel.

IV. PARALLELIZATIO N OF STRATEGIES

In this section we discuss how to speed up the execution
of a given line-based strategy. A purely sequential execution
of the obstacle sequence, as in [16], assigns searchers to the
current step based on their distance to the sweep line. Once
all searchers reach the line they cover it with sensors and
push it forward. In the meantime all blocking sweep lines
that may exist are covered by searchers that remain stationary
on these lines. We can interpret this sequential execution as
putting a delay on the sweep lines after each split. So before
a sweep line splits on another obstacle os at step s it has
remained stationary at its blocking locations for some delay
Ss > 0. The delay in a sequential execution is given by the
time it takes until all steps i < s have been executed and the
assigned robots, which may have been at different locations
of previously moved sweep lines have arrived at os. This case
is seen in Fig. 4 for the strategy in 2. Here the searchers not
only have to wait for previous steps to finish but also for
searchers traveling between steps for step 15.

It is easy to notice that some of these delays can be
stripped out without increasing the cost. This is shown in Fig.
5 which shows the same strategy permitting simultaneous
motion of more than one sweep line without requiring
additional robots. Notice that due to the increased delay 615
not much is gained in terms of overall speed of execution in
the first steps, but the last steps are considerably faster. While
this case trivially illustrates the shortcoming of preventing
simultaneous motion whenever a blocking line can be moved
further at no additional cost, the main problem will become
the simultaneous motion of lines whenever the cost of motion
increase. We will then require additional searchers in order
to improve the parallel execution. In fact, even this simple
example can already benefit from an additional searcher to
remove the delay J1 5 entirely, as seen in Fig. 6.

The above example illustrates one key problem. Unless
resources, i.e., additional searchers, are committed right from
the start for every sweep line so that they can arrive when
needed we will get delays introduced by moving resources
between the sweep lines, as seen by comparing Fig. 5 and
Fig. 6. Only if robots on lines move significantly slower
then we can have robots be reused without losing time due
to long travel distances between different sweep lines in far
away parts of the environment. Therefore, the fastest possible
execution of a strategy is achieved by using the number
of robots given by cp(o\), the parallelized cost computed

6015

022

I
]

<5l9

1

#15

4

1
]

l<~-|
^

/

|
«*

ŝ

11
V

|
<A?.

«© — - * h

r « |

[} \ <&_,

rH
L<€

<?

t <©

I

If"

fl

fl

/l

time

Fig. 4. The execution of a strategy as time progresses, illustrated by placing
the surveillance tree on a timeline. The delays <$n and <$ig result from the
sequential execution with steps 11 and 19 having to wait until the previous
steps are finished. The delay ($15, however, is due to the travel time that the
searcher needs to be able to contribution to step 15 while having previously
executed steps 5 to 10.

recursively as follows:

cp(os) £ c"(0),c(0fl)_
I o(Echildren(os) I

with children(os) containing the obstacle indices in T that
are the children of the node for os.

a) Depth-first Committed Parallelization: At this point
we know the minimum cost to execute a strategy entirely
sequentially, essentially without regard to minimizing time,
and as well as the usually much higher cost of executing it
completely in parallel. In between these two extremes lie a
range of possible ways to execute the search strategy, each
utilizing or leading to different delays 5S.

Let us now write ts for the time it takes to execute step s,
i.e., split onto os. This time can be computed straightforward

'15

Iti

<^?-

-

^ir

V

<& n

time

Fig. 5. An improved strategy based on Fig. 4 that considers the parallel
execution of sweep lines and thereby removing some delays without
requiring additional UAV.

by using the locations of robots on the sweep line, as done
in [16] or using a simulator with simulated robots following
planned trajectories as in [9].

In the following, we first adopt a depth-first parallelization
perspective. Depth-first search strategies are one of the
standard search approaches, but have also been used to
compute pursuit-evasion strategies in [10], [7], [12] but to the
best of our knowledge not with regard to time. Suppose we
are given r < cp(o\) searchers, not sufficient for complete
parallelization. In this case we have to introduce some non-
zero delays 5 for some of the steps.

To do this we introduce a separate sequential depth-first
cost cd(os) computed recursively as follows:

cd(os) = max{min{cd(0i) + b(or
s), cd(or

s) + b(ol
s)},c(os)},

with children(os) = {ol
s,ol} as before with the obvious

exception that ol
s = 0 or <fs = 0 and 6(0) = 0 and cd(0) = 0

when there are only one or no children.
The depth-first parallelization now proceeds according to

Alg. 1 setting the 5 delays to 0 wherever parallel execution

6016

•̂ -̂ r i n

A I _

ti =^©z

i
i i

<« ?lf j «

1

/i

time

Fig. 6. An improved strategy based on Fig. 4 that uses an additional UAV
to further reduce the time required to execute the search.

executing lines in parallel. The larger maze benefits more
from further searchers, as one would expected, but with
diminishing returns.

The slightly more realistic environment from Fig. 9 shows
a similar trend, but requires significantly less time due to
the shorter paths between most locations compared to the
mazes, even at comparable sizes. Town has a size of 76.95m
x 76.95m with a UAV sensing range of 2.82m while Full
Maze has a size of 19.2m 12.16m and a sensing range of
0.7m.

i-w -d L

(b) (c)

Fig. 7. The three different maze environments used. In (a) we have the
Maze, in (b) the Half Maze, and in (c) the Quarter Maze.

Algorithm 1 Depth_First_Par(s, k, 5)

5 s <- S
{oi,or} 4— children(os)
if cp(os) < k then

t <- Depth_First_Par(oi, cp(oi),0)
t 4— max(t , Depth _First-Par{or, cp(or), 0))

else
if cd(oi) + b(or) < cd(or) + b(oi) then

t <- Depth.First-Par(oi,k - b(or), 0)
t 4— t + Depth_First-Par(or, k, t)

else
t «— Depth_First-Par(or, k - b(oi), 0)
t <-t + Depth_First-Par(oi, k, t)

end if
end if
return t + ts

of both subtrees is possible. Once the algorithm enters line
4 the further calls to Depth .First-Par will all lead to
completely parallelized subtrees. This is the depth-first bias
towards parallelization in favor of the smaller and deeper
subtrees.

V. E X P E R I M E N T S A N D R E S U L T S

We ran experiments in simulation as well as a demonstra-
tion of a real system with three AR.Drone 2.0, a consumer
electronics device available commercially. The positions of
the UAVs were controlled using a Vicon motion capture sys-
tem. The code used for these experiments is made available
at http://code.google.eom/p/guaranteed-search/ under a GNU
GPLv3 license.

The simulation environments used are shown in Fig. 7
and Fig. 9. Fig. 8 shows the result of applying Alg. 1 and

o o o
00

11
o o o

Quarter Maze
Half Maze
Full Maze
Town

oo
ooooo.

oooooo
\
OOOOOOOOOOOOOO

A A A A A / \

— I —
10

"T " "T "

20 30

Number of searchers

40

Fig. 8. The time that a given number of searchers needs to clear the maze
using Alg. 1 to parallelize the sweep lines.

For the real system we used the environment from Fig. 2
and computed trajectories for the UAVs for three different
scenarios. The first scenario was the sequential execution of
a strategy computed as in [16] with two UAVs as seen in 4.
This strategy took 72 seconds to execute with the real UAVs.
A parallelization, applying Alg. 1, lead to the parallelized
strategy shown in Fig. 5 with a minor improvement to 64
seconds due to the final few steps being executed in parallel.
With one additional UAV Alg. 1 resulted in a strategy that
was executed in 43 seconds, a much larger improvement.
The accompanying video shows the third scenario with three

6017

Fig. 9. An artificial town, denoted as Town, and the resulting simply-
connected polygon computed as in [16].

UAVs. While these demonstrations do not reveal any par-
ticular insights they do demonstrate feasibility and motivate
further experiments, especially outdoor search utilizing GPS.

VI. DISCUSSION AND CONCLUSION

The presented approach and algorithm are but a very small
step towards addressing the problem of fast search with
UAVs. Nonetheless, the motivation from the possibility of
a real system should provide a good basis for further work
on this problem. Our initial results strongly indicate that
significant improvements can be made to speed up search
strategies and scale to large environments. The additional
searchers added in our simulations and the real experiments
reduced the search time significantly. Outdoor experiments
with ten UAVs in environments that comprise multiple
buildings are easily envisioned at this point. Despite the NP-
completeness of the problem of minimizing search strategies
on even simple types of graph we have shown that simple
heuristics can already provide significantly faster strategies.

While the algorithm we presented here follows the depth-
first approach that some graph-based algorithms, e.g. [10],
[7], there is clearly room for improvement. As noted in the
survey [3] approximation for hard search problems have not
yet received much attention and are a promising avenue for
further work. Yet, the most interesting direction, rather than
trying to push the limits of minimizing time or the number
of robots, is to work on more adaptive and decentralized
approaches with less strict assumptions. One such step has
been made in [14] wherein robots did not need a map nor
sophisticated localization to search an environment.

REFERENCES

[1] S. Bopardikar, F Bullo, and J. P. Hespanha. On discrete-time
pursuit-evasion games with sensing limitations. IEEE Transactions
on Robotics, 24(6): 1429-1439, 2008.

[2] R. Borie, C. Tovey, and S. Koenig. Algorithms and complexity results
for pursuit-evasion problems. In Proceedings of the International Joint
Conference on Artificial Intelligence, pages 59-66, 2009.

[3] T. Chung, G. Hollinger, and V. Isler. Search and pursuit-evasion in
mobile robotics. Autonomous Robots, 31(4):299-316, 2011.

[4] J. Durham, A. Franchi, and F Bullo. Distributed pursuit-evasion
without mapping or global localization via local frontiers. Autonomous
Robots, pages 81—95, 2012.

[5] A. Efrat, L. J. Guibas, S. Har-Peled, D. C. Lin, J. S. B. Mitchell, and
T. M. Murali. Sweeping simple polygons with a chain of guards. In
Proceedings of the ACM-SIAM Symposium on Discrete Algorithms,
pages 927-936, 2000.

[6] F V. Fomin and D. M. Thilikos. An annotated bibliography on guaran-
teed graph searching. Theoretical Computer Science, 399(3):236-245,
2008.

[7] G. Hollinger, A. Kehagias, and S. Singh. GSST: Anytime guaranteed
search. Autonomous Robots, 29(1):99-118, 2010.

[8] G. Hollinger, S. Singh, and A. Kehagias. Improving the efficiency of
clearing with multi-agent teams. The International Journal of Robotics
Research, 29(8): 1088-1105, 2010.

[9] A. Kleiner and A. Rolling. Guaranteed search with large teams of
unmanned aerial vehicles. In Proceedings of the IEEE International
Conference on Robotics and Automation, 2013. accepted for publica-
tion.

[10] A. Kleiner, A. Rolling, M. Lewis, and K. Sycara. Hierarchical visibil-
ity for guaranteed search in large-scale outdoor terrain. Autonomous
Agents and Multi-Agent Systems, pages 1-36, 2011.

[11] A. Kolling. Multi-Robot Pursuit-Evasion. PhD thesis, University of
California, Merced, December 2009.

[12] A. Kolling and S. Carpin. The GRAPH-CLEAR problem: definition,
theoretical properties and its connections to multirobot aided surveil-
lance. In Proceedings of the IEEE/RSJ International Conference on
Intelligent Robots and Systems, pages 1003-1008, 2007.

[13] A. Kolling and S. Carpin. Surveillance strategies for target detection
with sweep lines. In Proceedings of the IEEE/RSJ International
Conference on Intelligent Robots and Systems, pages 5821-5827,
2009.

[14] A. Kolling and S. Carpin. Multi-robot pursuit-evasion without maps.
In Proceedings of the IEEE International Conference on Robotics and
Automation, pages 3045-3051, 2010.

[15] A. Kolling and S. Carpin. Pursuit-evasion on trees by robot teams.
IEEE Transactions on Robotics, 26(l):32-47, 2010.

[16] A. Kolling and A. Kleiner. Multi-uav motion planning for guaranteed
search. In Proceedings of the Twelth International Joint Conference
on Autonomous Agents and Multiagent Systems, pages 79-86, 2013.

[17] X. Tan. Sweeping simple polygons with the minimum number of
chain guards. Information processing letters, 102(2-3):66-71, 2007.

6018

