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Abstract— In this paper we consider the problem of searching 
for an arbitrarily smart and fast evader in a large environment 
with a team of unmanned aerial vehicles (UAVs) while providing 
guarantees of detection. Our emphasis is on the fast execution 
of efficient search strategies that minimize the number of 
UAVs and the search time. We present the first approach for 
computing fast guaranteed search strategies utilizing additional 
searchers to speed up the execution time and thereby enabling 
large scale UAV search. In order to scale to very large environ-
ments when using UAVs one would either have to overcome 
the energy limitations of UAVs or pay the cost of utilizing 
additional UAVs to speed up the search. Our approach is based 
on coordinating UAVs on sweep lines, covered by the UAV 
sensors, that move simultaneously through an environment. 
We present some simulation results that show a significant 
reduction in execution time when using multiple UAVs and 
a demonstration of a real system with three AR.Drone 2.0. 

I. I N T R O D U C T I O N 

Guaranteed search is one of the many applications for 
which recent progress in the development of cheaper and 
improved unmanned aerial vehicles (UAVs) is leading to 
new exciting possibilities. Especially for search and rescue 
in large and dangerous areas, UAVs offer an unparalleled 
advantage of being highly mobile and truly expendable with 
a cost of only a few hundred dollars for current consumer 
platforms. The downside of these platforms, however, is their 
severe limitation with regard to energy and flight time. Prior 
work on guaranteed search in robotics has almost exclusively 
focused on the computation of search strategies that mini-
mize the number of searchers. The recent survey on search 
and pursuit-evasion in robotics [3] has identified the mini-
mization of time and travel distance for guaranteed search 
strategies as an important problem that has not received much 
attention. We concur with this assessment especially when 
considering UAVs instead of ground, underwater vehicles 
or pan-tilt-zoom cameras, which suffer less from energy 
limitations. The goal of this paper is to provide a first 
step towards the consideration of execution time for search 
strategies, the computation of fast and efficient strategies, 
and the demonstration of powerful search capabilities with 
real systems using teams of UAVs. 

One of the few results regarding the minimization of time 
for search strategies on graphs are found in [2]. Therein 
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it is shown that the computation of the minimum time to 
search a graph with a team of searchers is strongly NP-
Complete even for stars, trees, two-vertex graphs and most 
other types of graphs except for paths and cycles. In addition, 
minimizing time has not only received very little attention 
in robotics, but also the graph searching literature on this 
topic, see [6], is sparse and we do not have such a large 
body of research available as for minimizing the number of 
searchers. As a consequence, our approach in this paper is 
that of speeding up the execution of given strategies rather 
than computing time optimal strategies from scratch. This 
has the advantage of simplifying the problem in addition to 
being able to use the approach for any strategy, even those 
modified by a human operator or modified to consider criteria 
other than the number of searchers, such as terrain difficulty, 
online adaptation, or probabilistic considerations. 

The work presented here is based on extensive prior 
work building towards real search systems which we review 
briefly in Section II and Section III. This is followed by our 
contribution towards parallelizing the execution of strategies 
in Section IV and experiments in V. Finally, we conclude 
with a discussion in Section VI. 

Fig. 1. The motivation for this work is the fast execution of guaranteed 
search strategies with a team of UAVs in large and complex environments. 

II. R E L A T E D W O R K 

Guaranteed search and pursuit-evasion problems have been 
an active research area in robotics and other related fields 
such as graph theory for an extended period of time. From a 
robotics perspective the survey by Chung et al. [3] provides 
an excellent summary. Fomin et al. [6] provide a good 
overview of the problem from a graph theoretical perspective. 

This paper work is based on our prior work in guaranteed 
search and an extension thereof [15], [16], [11], [9]. In [16], 
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[11] Kolling ET AL. introduced a formalism and algorithms indices of the obstacles, i.e., the polygon edges, are assumed 
to coordinate the motion of robots moving on sweep lines, to be circular and we identify i + n with i. 
reusing prior graph-based approaches [15]. The time it takes The original formulation of this approach in form of 
to execute these strategies was first evaluated in simulations the Line-Clear problem was given in [11]. Therein any 
in [9], revealing considerable potential for improvements. We number of sweep lines can be placed in the environment and 
shall discuss the connection to this work in more detail in moved around to clear more of it. To minimize the number 
Section III. of searchers needed tocover these lines with their sensor 

Other work that considers line-based abstractions is [5]. footprint, however, it is was shown it suffices to consider 
Therein Efrat ET AL. consider an approach where multiple strategies that move at most one line at any time. This 
UAVs, each with an unlimited range sensor, are arranged approach was adopted in all subsequent work on line-based 
in a single movable polygonal chain operating in a sim- search, namely [13], [14], [16]. In order to enable fast line-
ply connected environment. Their algorithm for computing based search we have to consider the concurrent motion of 
motion strategies runs in O(n3), an improved version of multiple sweep lines. In the following, we will first describe 
the algorithms runs in O(n2) time [17]. Another similar sequential strategies, such as the one computed in [16] and 
approach that assumes limited sensing range is presented then show how to parallelize these, possibly using additional 
in [1] where the authors present a system where multiple searchers. 
UAVs trap faster intruders, once they detect them, by forming Suppose we are given a line-based search strategy, e.g. 
a surrounding chain. Also closely related to our work, computed by the algorithm from [16]. It was shown therein 
Durham ET AL. presented a distributed algorithm guarantee- that such search strategies can be represented by an obstacle 
ing complete coverage of the frontier between cleared and index sequence, o1, . . . , on containing all indices from P . 
contaminated areas during expansion [4]. The search strategy proceeds by first setting up a sweep 

To the best of our knowledge no work considering the fast line between obstacles o1 and o2, and then subsequently 
execution of guaranteed search strategies has been pursued splitting the sweep line on the next obstacle index in the 
in the robotics community. The closest related work is [8] sequence. This is best illustrated with an example, seen in 
which minimizes distance by improving the average-case Fig. 2. The corresponding obstacle sequence for the strategy 
performance for non-adversarial motion models. shown therein is {o1 = 2,o2 = 3, o3 = 4, o4 = 17, o5 = 

1 , o6 = 18, o7 = 22, o8 = 19, o9 = 21 , o10 = 20, o11 = 
I I I . SEARCH STRATEGIES WITH LINES 5,012 = 16,oi3 = 6,014 = 7,oi5 = H,oi6 = 10,oi7 

In this section we briefly describe the basics of our line- 8, ois = 9,019 = 12,020 = 15,021 = 13, 022 = 14} 
based search approach, first presented in more detail in computed with the sensing range rs shown in Fig. 2. The 
[16] and [11]. The goal is to find an unknown number procedure for splitting an existing sweep on a new obstacle 
of targets in an environment represented by a polygon, is quite simple. For the computation of the strategy a point 
grid, or elevation map. For this paper we assume a simply- on the new obstacle that minimizes the cost of the split in 
connected 2D polygon. In [16] it was shown how to apply terms of the number of searchers was computed. The existing 
the resulting strategies to multiply-connected and even 2.5D sweep line is simply moved towards this point and then split 
environments and the same approach can be applied for into two sweep lines. One or both of these sweep lines can 
the fast strategies we compute here. Regarding the tar- be of zero length if the obstacle indices are adjacent. If both 
gets, we make the same assumptions as is customary for are zero, then then no new sweep lines are formed. This 
pursuit-evasion problems, namely that targets are evaders procedure is described in more detail in [16]. 
moving at unbounded speed, are omniscient and are able Another representation of this strategy that is more conve-
to evade the searcher optimally. As a consequence targets nient for our purposes is as a surveillance tree. Surveillance 
can conveniently be represented with contamination which trees were introduced in [15] and are trees T = (V, E) with a 
is cleared by the searcher as they proceed to clear the set of vertices V and edges E c V x V and a weight function 
environment. Contamination spreads immediately whenever w : V x E :—> N that associates a cost to each vertex and 
possible, simulating the fact that omniscient and fast targets edge. This cost represents the number of robots needed to 
will exploit any possibility to move into areas not covered clear a vertex and block an edge. Hence, the surveillance tree 
by sensor or obstacles. Contamination simplifies the target can represent the cost of the block lines in the environment 
model and allows the efficient computation of strategies and the cost of the split by associating blocks to edges and 
at least for simply-connected environments [15], [16]. In splits to vertices. We construct such a surveillance tree by 
our line-based approach searchers clear the environment by creating a node in V for every os and using c(os), the cost 
moving together on sweep lines, necessitated by the limited of splitting a sweep line on obstacle os at step s in the 
sensing range. These sweep lines are simply lines between obstacle sequence, as its weight. The edges are given by 
the obstacle boundaries of the environments. As a sensor the progression of the sweep lines and their weights b(os) 
we assume a circular footprint, such as a downward facing for the cost of the blocking sweep line prior to the split. This 
camera of a UAV, with a radius rs. The environment is given simple construction is illustrated in Fig. 3 for the example 
by a simply-connected polygon P = {vi,... ,vn}, with n environment from Fig. 2. 
vertices and edges, written ej = [wj,«j+i], i = 1 , . . . , n. The The representation as a surveillance tree describes the 
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Fig. 2. An example of a sweep line strategy with a) showing the first split 
of a blocking sweep line between obstacles 2 and 4 splitting on obstacle 
17 = 04. Subsequently the left and right side of the split move to a shorter 
final sweep line for this split. In b) the final sweep line from on the left is 
further split onto 05 = 1 into two sweep lines, one of which is zero, since 
05 = 1 is adjacent to o\ = 2 and moved to a final blocking sweep line 
between 17 and 1. In c) the search strategy continues to the left side until 
it is cleared and the sweep line on the left disappears. In d) when splitting 
on 015 another two non-zero sweep lines are created. 

b{oig) = V £ S Y ( 0 1 6 ) = l 

b(o2) = 0 

Fig. 3. A surveillance tree representing the line-based search strategy 
shown in 2. The cost of the vertices are shown inside the vertices and 
the cost for the edges are shown to the side of the edges. Dashed lines 
indicate a continuation of the tree, omitting some nodes for a more concise 
presentation. 

temporal dependencies between the sweep lines, which is 
important for parallelization. At every split into two non-
zero sweep lines, represented by a node with two children 
in the surveillance tree, there is an opportunity to continue 
both lines in parallel. 

IV. PARALLELIZATIO N OF STRATEGIES 

In this section we discuss how to speed up the execution 
of a given line-based strategy. A purely sequential execution 
of the obstacle sequence, as in [16], assigns searchers to the 
current step based on their distance to the sweep line. Once 
all searchers reach the line they cover it with sensors and 
push it forward. In the meantime all blocking sweep lines 
that may exist are covered by searchers that remain stationary 
on these lines. We can interpret this sequential execution as 
putting a delay on the sweep lines after each split. So before 
a sweep line splits on another obstacle os at step s it has 
remained stationary at its blocking locations for some delay 
Ss > 0. The delay in a sequential execution is given by the 
time it takes until all steps i < s have been executed and the 
assigned robots, which may have been at different locations 
of previously moved sweep lines have arrived at os. This case 
is seen in Fig. 4 for the strategy in 2. Here the searchers not 
only have to wait for previous steps to finish but also for 
searchers traveling between steps for step 15. 

It is easy to notice that some of these delays can be 
stripped out without increasing the cost. This is shown in Fig. 
5 which shows the same strategy permitting simultaneous 
motion of more than one sweep line without requiring 
additional robots. Notice that due to the increased delay 615 
not much is gained in terms of overall speed of execution in 
the first steps, but the last steps are considerably faster. While 
this case trivially illustrates the shortcoming of preventing 
simultaneous motion whenever a blocking line can be moved 
further at no additional cost, the main problem will become 
the simultaneous motion of lines whenever the cost of motion 
increase. We will then require additional searchers in order 
to improve the parallel execution. In fact, even this simple 
example can already benefit from an additional searcher to 
remove the delay J1 5 entirely, as seen in Fig. 6. 

The above example illustrates one key problem. Unless 
resources, i.e., additional searchers, are committed right from 
the start for every sweep line so that they can arrive when 
needed we will get delays introduced by moving resources 
between the sweep lines, as seen by comparing Fig. 5 and 
Fig. 6. Only if robots on lines move significantly slower 
then we can have robots be reused without losing time due 
to long travel distances between different sweep lines in far 
away parts of the environment. Therefore, the fastest possible 
execution of a strategy is achieved by using the number 
of robots given by cp(o\), the parallelized cost computed 
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Fig. 4. The execution of a strategy as time progresses, illustrated by placing 
the surveillance tree on a timeline. The delays <$n and <$ig result from the 
sequential execution with steps 11 and 19 having to wait until the previous 
steps are finished. The delay ($15, however, is due to the travel time that the 
searcher needs to be able to contribution to step 15 while having previously 
executed steps 5 to 10. 

recursively as follows: 

cp(os) £ c"(0),c(0fl)_ 
I o(Echildren(os) I 

with children(os) containing the obstacle indices in T that 
are the children of the node for os. 

a) Depth-first Committed Parallelization: At this point 
we know the minimum cost to execute a strategy entirely 
sequentially, essentially without regard to minimizing time, 
and as well as the usually much higher cost of executing it 
completely in parallel. In between these two extremes lie a 
range of possible ways to execute the search strategy, each 
utilizing or leading to different delays 5S. 

Let us now write ts for the time it takes to execute step s, 
i.e., split onto os. This time can be computed straightforward 

'15 
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Fig. 5. An improved strategy based on Fig. 4 that considers the parallel 
execution of sweep lines and thereby removing some delays without 
requiring additional UAV. 

by using the locations of robots on the sweep line, as done 
in [16] or using a simulator with simulated robots following 
planned trajectories as in [9]. 

In the following, we first adopt a depth-first parallelization 
perspective. Depth-first search strategies are one of the 
standard search approaches, but have also been used to 
compute pursuit-evasion strategies in [10], [7], [12] but to the 
best of our knowledge not with regard to time. Suppose we 
are given r < cp(o\) searchers, not sufficient for complete 
parallelization. In this case we have to introduce some non-
zero delays 5 for some of the steps. 

To do this we introduce a separate sequential depth-first 
cost cd(os) computed recursively as follows: 

cd(os) = max{min{cd(0i) + b(or
s), cd(or

s) + b(ol
s)},c(os)}, 

with children(os) = {ol
s,ol} as before with the obvious 

exception that ol
s = 0 or <fs = 0 and 6(0) = 0 and cd(0) = 0 

when there are only one or no children. 
The depth-first parallelization now proceeds according to 

Alg. 1 setting the 5 delays to 0 wherever parallel execution 
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Fig. 6. An improved strategy based on Fig. 4 that uses an additional UAV 
to further reduce the time required to execute the search. 

executing lines in parallel. The larger maze benefits more 
from further searchers, as one would expected, but with 
diminishing returns. 

The slightly more realistic environment from Fig. 9 shows 
a similar trend, but requires significantly less time due to 
the shorter paths between most locations compared to the 
mazes, even at comparable sizes. Town has a size of 76.95m 
x 76.95m with a UAV sensing range of 2.82m while Full 
Maze has a size of 19.2m 12.16m and a sensing range of 
0.7m. 

i-w -d L 

(b) (c) 

Fig. 7. The three different maze environments used. In (a) we have the 
Maze, in (b) the Half Maze, and in (c) the Quarter Maze. 

Algorithm 1 Depth_First_Par(s, k, 5) 

5 s <- S 
{oi,or} 4— children(os) 
if cp(os) < k then 

t <- Depth_First_Par(oi, cp(oi),0) 
t 4— max(t , Depth _First-Par{or, cp(or), 0)) 

else 
if cd(oi) + b(or) < cd(or) + b(oi) then 

t <- Depth.First-Par(oi,k - b(or), 0) 
t 4— t + Depth_First-Par(or, k, t) 

else 
t «— Depth_First-Par(or, k - b(oi), 0) 
t <-t + Depth_First-Par(oi, k, t) 

end if 
end if 
return t + ts 

of both subtrees is possible. Once the algorithm enters line 
4 the further calls to Depth .First-Par will all lead to 
completely parallelized subtrees. This is the depth-first bias 
towards parallelization in favor of the smaller and deeper 
subtrees. 

V. E X P E R I M E N T S A N D R E S U L T S 

We ran experiments in simulation as well as a demonstra-
tion of a real system with three AR.Drone 2.0, a consumer 
electronics device available commercially. The positions of 
the UAVs were controlled using a Vicon motion capture sys-
tem. The code used for these experiments is made available 
at http://code.google.eom/p/guaranteed-search/ under a GNU 
GPLv3 license. 

The simulation environments used are shown in Fig. 7 
and Fig. 9. Fig. 8 shows the result of applying Alg. 1 and 
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Fig. 8. The time that a given number of searchers needs to clear the maze 
using Alg. 1 to parallelize the sweep lines. 

For the real system we used the environment from Fig. 2 
and computed trajectories for the UAVs for three different 
scenarios. The first scenario was the sequential execution of 
a strategy computed as in [16] with two UAVs as seen in 4. 
This strategy took 72 seconds to execute with the real UAVs. 
A parallelization, applying Alg. 1, lead to the parallelized 
strategy shown in Fig. 5 with a minor improvement to 64 
seconds due to the final few steps being executed in parallel. 
With one additional UAV Alg. 1 resulted in a strategy that 
was executed in 43 seconds, a much larger improvement. 
The accompanying video shows the third scenario with three 
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Fig. 9. An artificial town, denoted as Town, and the resulting simply-
connected polygon computed as in [16]. 

UAVs. While these demonstrations do not reveal any par-
ticular insights they do demonstrate feasibility and motivate 
further experiments, especially outdoor search utilizing GPS. 

VI. DISCUSSION AND CONCLUSION 

The presented approach and algorithm are but a very small 
step towards addressing the problem of fast search with 
UAVs. Nonetheless, the motivation from the possibility of 
a real system should provide a good basis for further work 
on this problem. Our initial results strongly indicate that 
significant improvements can be made to speed up search 
strategies and scale to large environments. The additional 
searchers added in our simulations and the real experiments 
reduced the search time significantly. Outdoor experiments 
with ten UAVs in environments that comprise multiple 
buildings are easily envisioned at this point. Despite the NP-
completeness of the problem of minimizing search strategies 
on even simple types of graph we have shown that simple 
heuristics can already provide significantly faster strategies. 

While the algorithm we presented here follows the depth-
first approach that some graph-based algorithms, e.g. [10], 
[7], there is clearly room for improvement. As noted in the 
survey [3] approximation for hard search problems have not 
yet received much attention and are a promising avenue for 
further work. Yet, the most interesting direction, rather than 
trying to push the limits of minimizing time or the number 
of robots, is to work on more adaptive and decentralized 
approaches with less strict assumptions. One such step has 
been made in [14] wherein robots did not need a map nor 
sophisticated localization to search an environment. 
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