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Pursuit-Evasion in 2.5d based on Team-Visibility

A. Kolling* and A. Kleiner** and M. Lewis* and K. Sycara**

Abstract— In this paper we present an approach
for a pursuit-evasion problem that considers a 2.5d
environment represented by a height map. Such a
representation is particularly suitable for large-scale
outdoor pursuit-evasion, captures some aspects of
3d visibility and can include target heights. In our
approach we construct a graph representation of the
environment by sampling points and computing de-
tection sets, an extended notion of visibility. More-
over, the constructed graph captures overlaps of de-
tection sets allowing for a coordinated team-based
clearing of the environment with robots that move to
the sampled points. Once a graph is constructed we
compute strategies on it utilizing previous work on
graph-searching. This is converted into robot paths
that are planned on the height map by classifying the
terrain appropriately. In experiments we investigate
the performance of our approach and provide exam-
ples including a sample map with multiple loops and
elevation plateaus and two realistic maps, one of a
village and one of a mountain range. To the best of our
knowledge the presented approach is the first viable
solution to 2.5d pursuit-evasion with height maps.

I. Introduction

Pursuit-evasion problems are an interesting domain for
multi-robot systems. The spatial distribution and flexi-
bility they can achieve are a great advantage compared
to centralized and immobile systems. So far, however,
most of the research pursuit-evasion problems have con-
sidered idealized scenarios restricted to graphs or two-
dimensional environments or certain types of idealized
sensors such as unlimited range target detection. Yet,
considerable progress has been made and more realistic
applications are now coming into reach. The purpose of
this paper is a first attempt to use part of the large
body of research relating to pursuit-evasion with robot
teams and apply it to a challenging scenario closer to
real world pursuit-evasion, namely large 3d environments
represented by height maps. Related to this effort we
have research on visibility-based pursuit-evasion in two-
dimensional environments and with unlimited range sen-
sors [1], [2]. But these methods do not extend to very
large teams of robots nor limited range and only deal
with two-dimensional environments. Very litte work has
so far been done for three-dimensional pursuit-evasion
problems. A report by Lazebnik [3] discusses the chal-
lenges and complications when extending the ideas from

** Robotics Institute, Carnegie Mellon University, 500 Forbes
Ave., Pittsburgh, PA 15213 * School of Information Sciences,
University of Pittsburgh, 135 N. Bellefield Ave., Pittsburgh, PA
15260

two-dimensional visibility-based pursuit-evasion to three-
dimensions. In the two-dimensional case so called critical
events that occur as a robot moves through the envi-
ronment fully determine the changes in the information
about the evaders possible locations. Critical events turn
out to be significantly more complex in three-dimensions.
Not only is the catalogue of such events larger they also
lead to non-local changes in the information states. As a
consequence the problem received little attention so far.
The height maps that we consider capture at least some
of the structure of a three-dimensional space.

Apart from visibility-based approaches we also find a
number of attempts to utilize various forms of graph-
searching, i.e. pursuit-evasion problems on graphs, for
robotic pursuit-evasion. In [4], [5] the edge-searching
problem is modified to better suit a robotic applica-
tion by considering vertex-located intruder instead of
edge-located. Furthermore, labeling based approaches,
frequently found in edge-searching on trees, are incorpo-
rated into an anytime algorithm that tries many span-
ning trees of the graph. This allows the computation
of strategies on graphs from the labels computed on a
spanning tree. It is shown in [5] that for some labeling
approaches this leads to a probabilistically complete
algorithm for graphs. An alternative graph model for
robotic pursuit-evasion, called Graph-Clear, is presented
in [6], [7]. Therein actions on the graph that can detect a
target can require multiple robots and the restriction of
contamination is achieved not through placing searchers
in vertices but also on edges. Automated methods to
extract a graph representation for Graph-Clear have
been presented in [8] and are based on detecting narrow
parts of the environment via its Voronoi Diagram. An
extension to probabilistic sensing models for Graph-
Clear is found in [9] and can likely be extended to the
edge-searching model as well. Similarly, the ideas of the
anytime algorithm from [4] can also be applied to the tree
algorithms from [7]. How to obtain a good graph rep-
resentation, however, remains an open problem. Apart
from [8], [10] we have [11] in which a graph is extracted
from the environment through random sampling, similar
to our approach for obtaining an initial graph.

From the above we can see that a great deal of
progress has been made in transporting the theory from
graph-based pursuit-evasion to a robotic context. This,
however, has been restricted to two-dimensional environ-
ments and in this paper we shall present the first attempt
to tackle 2.5d robotic pursuit-evasion with height maps
using a graph-based approach. We introduce a novel



method for computing guaranteed clearing strategies for
a team of robots searching for an evader on height maps.
This is carried out by first, randomly sampling strategic
locations on the map and computing their detection
set, i.e., the set of locations at which an evader can
be detected. The overlaps between these detection sets
are computed which determines which detection set can
guard the boundaries of another. The set of strategic
locations and the overlaps of their detection sets are
captured in a graph on which we can compute clearing
strategies for robot teams. The strategy is executed by
selecting for each robot at each time step an appropriate
strategic location, which is then reached by planning
a trajectory executable on the terrain. We will first
describe the problem in Section II, outline our algorithm
in Section III, discuss trajectory planning on height maps
in Section IV. Finally we shall present our experimental
results in Section V and conclude with Section VI

II. Problem Description

We consider a 2.5d map represented by a height
function h : H → R+. The domain H is continuous
and H ⊂ R2 which for all practical purpose can be
approximated by a 2d grid map that contains the heights
as described in Section IV. We write E ⊂ H for the free
space in which robots can move and assume that it is
connected, i.e. regardless of deployment a robot should
always be able to move to another feasible point in E . All
points not in E are considered non-traversable obstacles.
The problem is to move a number of robots equipped
with a target detection sensor through E to detect all
targets that are potentially located therein. Targets are
assumed to move on continuous trajectories within E but
at unbounded speeds and are omniscient. Additionally,
targets have a minimum height ht that can influence
the visibility of a target. To capture the target detection
capabilities of the robots let D(p) ⊂ H, the detection set
of a point p ∈ H, be the set of all points in H on which
a target is detectable by a robot located at p. In general
D(p) depends on the sensor model, height of the sensor
hr relative to h(p) and height of targets ht. We consider
a limited range three-dimensional and omni-directional
sensor. Hence, a target on p′ ∈ H detectable by a robot
on p if the line segment {p′, h(p′)} to {p′, h(p′) + ht}
embedded in R+ is visible from {p, h(p)+hr} at distance
sr. Here ht can be understood as the minimum height of
any target for which we seek to guarantee a detection
with the pursuit strategy. Notice that this is simply
straight line visibility in the 3d space which the height
map represents. Yet, even with such a simple detection
model it is not guaranteed that D(p) is simply-connected
nor that it is connected. This applies even if the free
space of the environment in which robots and targets
can move is simply-connected and also when E = H. In
this sense, our pursuit-evasion problem on height maps
already captures significant complications that also arise
in 3d pursuit-evasion.

The inclusion of target and sensor heights allows us to
answer a variety of questions relating to hr,ht. As seen
in fig. 1, as ht increases the size of D(p) increases as
well. With ht = 0 we revert back to visibility of points
on the height map, i.e., a target is seen if the ground it
is on is seen. In a practical application this means that
we can inform a user that with 10 ground robots with
omni-directional cameras mounted at 1m height we can
detect all targets in a mountainous region if no target is
smaller than 0.4m and that a further reduction to 0.3m
means 12 ground robots or a sensor height of 2m.

ht{

robot sensor

visible

target detectable
ground

hr{

Fig. 1. An illustration how to compute target detection areas with
a simple straight line visibility sensor model.

III. Algorithm

Considering the difficulties visibility-based approaches
face in 3d pursuit-evasion, as well as in 2d when the
environment is multiply connected, we present a first
attempt to solve our 2.5d pursuit-evasion by creating
a graph that captures the visibility information in our
environment heuristically and is directly embedded into
the map. Each vertex is associated to a location which
can be used as waypoints to plan the motion of the robot
team. To assign these waypoints to individual robots
we utilize previous work in edge-searching with a minor
modification.

We randomly select points in free space as follows.
First, pick p1 from E and then subsequently pick another
pi, i = 2, . . . from E \⋃i

j=1D(pi) until E \⋃i
j=1D(pi) is

the empty set. This ensures that a target on any point in
E can be detected from some point pi. Write m for the
number of points that are created during this procedure
resulting in a graph with m vertices in a set V , each
corresponding to a point. Fig. 2 shows a few examples
of such vertices and their respective detection sets. The
vertices can be understood as waypoints that will be
used for the robot paths. In principle, this construction
does not differ significantly from basic attempts to solve
an art gallery problem for complete coverage or for 2d
pursuit-evasion scenarios in which graphs are constructed
at random. The main difference are the detection sets
D(p) which we shall now use to construct edge set E
to complete the graph G = (V,E). Notice that, due to
our visibility model we have that if ht < hr, then for
pair every p, p′ ∈ E if p′ ∈ D(p), then p ∈ D(p′), i.e.
in colloquial terms they are mutually detectable. As a



simple corollary for the graph construction we get that
for all i, j, i 6= j we have pi /∈ D(pj).

Intuitively, the edges of G should capture the neighbor-
hood relationships between the detection sets D(pi). In a
2d scenario the analogue of our detection sets are guaran-
teed to be connected, allowing for simpler neighborhood
relationships. In our case, however, these sets can be
more complex. Consider the boundary of D(pi) written
δD(pi). We are interested in which vertices can guard, i.e.
avoid recontamination, of D(pi) if a robot is placed on
them. Clearly, all vertices whose detection set intersect
with δD(pi) can prevent targets from passing through
aforementioned intersection. Hence, we are considering
δD(pi) ∩ D(pj), j 6= i. If for a vertex j 6= i we have
δD(pi) ∩ D(pj) 6= ∅ then a robot on vj can guard
part of δD(pi). For convenience let us write Gi,j :=
δD(pi) ∩ D(pj) 6= ∅ and call it the guard region of vi
from vj . From this guard region we shall now construct
two types of edges. To distinguish the types we define
the following condition

shady(vi, vj) :=

{
1 ∃vj′ ∈ V, j′ 6= j, i : Gi,j ( Gi,j′

0 otherwise
(1)

For now suppose edges have a direction and are written
[vi, vj ] from vi to vj . The first type, a regular edge, is cre-
ated from vi to vj , i 6= j, iff Gi,j 6= ∅ and shady(vi, vj) =
0. In colloquial terms vi and vj get a regular edge if and
only if there is no third vertex vj′ whose guard region
of vi completely covers the guard region of vi from vj .
The second type, a so called shady edge, is created from
vi to vj iff Gi,j 6= ∅ and shady(vi, vj) = 1. In this case
there is a third vertex that completely covers the guard
region. Hence if Gi,j 6= ∅, then we have an edge [vi, vj ]
that is either shady or regular. To get a graph without
directional edges, written (vi, vj), we simply add an edge
if we have either [vi, vj ] or [vj , vi] with regular edges
dominating shady edges. Write E = Er∪Es for the set of
undirected edges where Er are the regular and Es are the
shady edges. Algorithms 1, and 2 present the above in
details with pseudo-code. The reasoning behind creating
two types of edges is straightforward. If a robot is placed
at pi, i.e. vertex vi, it sees all targets in D(pi) and hence
clears it. The robot can only be removed without causing
recontamination if it can be guaranteed that no target
can pass through δD(pi). This is satisfied if all vertices
that are neighbors of vi through regular edges are either
clear or have a robot on them. The shady edges capture
the remaining intersections between detection sets that
are dominated by larger intersections.

Let us now describe the pursuit-evasion model on
the graph level. At first sight it seems that we can
solve a standard edge-searching pursuit-evasion problem
on G, as done in [4], and use the resulting strategy
as a solution. But apart from the addition of shady
edges there is another crucial difference. In the edge-
searching scenario contamination spreads through any

vertex that is not guarded, but the robot on a guarded
can slide along an edge and guard a new vertex without
contamination spreading from the new vertex to the
old. This also applies to the edge-searching variant from
[4] that considers contamination in vertices instead of
edges. For our problem this implies that while we move
a robot from vertex vi to vj we would have to guarantee
that no target could enter from contaminated areas of
vj to vi. Since we cannot guarantee that the path a
robot takes in our height map will continuously cover
the boundaries of these region we cannot allow such
sliding moves. Instead we only allow the removal and
placement of agents on vertices in order not to impose
additional requirements on the paths between vertices.
The following modification incorporates this into edge-
searching. As a basis we use the simple label-based
algorithm from [12] with a modified label equation. The
result of this algorithm is a contiguous strategy on a tree
without recontamination, i.e. a sequence of vertices that
guarantees that all clear vertices are a connected subtree.
Hence we assume that we converted our graph into a tree
by selecting a spanning tree T . For now we can ignore the
difference between shady and regular edges. The label
on an edge e = (vx, vy) is directional and represented
by λvx(e) for the direction from vx to vy. If vy is a
leaf then λvx(e) = 1. Otherwise let v1, . . . , vm be the
m = degree(vx) − 1 neighbors of vy different from vx.
Now define ρi := λvy ( (vy, vi) ) and order all v1, . . . , vm
with ρi descending, i.e. ρi ≥ ρi+1. The team of robots
now clears the subtrees that are found at each vi in the
order vm, . . . , v1. This leads to an overall cost represented
by the next label λvx(e). In original edge searching the
label would now be λvx(e) = max{ρ1, ρ2 + 1}. In our
modified version the equation becomes:

λvx(e) =

{
ρ1 + 1 ifρ1 = 1
max{ρ1, ρ2 + 1} otherwise

(2)

Where we assume that ρ2 = 0 if m = 1. The change
results from the fact that only after the first vertex of the
last subtree, i.e. v1, is cleared then the guard on vy can be
removed. Hence if ρ1 = which implies that v1 is a leaf the
label is ρ1 + 1. Otherwise, if ρ1 > 1, then the robot can
be removed after v1 is cleared and used subsequently in
the remaining subtree beyond v1. In edge-searching the
guard on vy can be move into v1 earlier to clear it.

Our formulation now allows us to use the idea from
the anytime algorithm, called GSST, from [4] which
tries multiple spanning trees to improve the strategy for
the graph. For this we generate a number of spanning
trees for our graph G and compute a strategy for each
which we convert to a strategy on the graph by leaving
robots at their position whenever a cycle edge leads to
a contaminated vertex. Finally we select the strategy
across all spanning trees that leads to the least robots
that are needed on the graph. In [5] it was proven that
this can lead to an asymptotically optimal algorithm
for graphs, i.e. if run for a sufficiently long time it will



i← 0, V ← ∅, P ← ∅
while E \⋃i

j=1D(pj) 6= do

pick any pi ∈ E \
⋃i

j=1D(pj)
V ← V ∪ vi, P ← P ∪ pi, i← i+ 1

Return V, P

Algorithm 1: V ertex Construction()

Er, Es ← ∅, Er,dir, Es,dir ← ∅
for i = 1 to m do
for j = 1 to m do
I ← δD(pi) ∩D(pj)
if I 6= ∅ then

if shady(vi, vj) then
Es,dir ← Es,dir ∪ {[vi, vj ]}

else
Er,dir ← Er,dir ∪ {[vi, vj ]}

for i = 1 to m do
for j = i+ 1 to m do
if [vi, vj ] ∈ Er,dir OR [vj , vi] ∈ Er,dir then
Er ← Er ∪ (vi, vj)

else if [vi, vj ] ∈ Es,dir OR [vj , vi] ∈ Es,dir then
Es ← Es ∪ (vi, vj)

Return Es, Er

Algorithm 2: Edge Construction(V, P )

find the optimal spanning tree for some of the label-
based approaches. We conjecture that the result also
holds for the simpler modified version presented here
and the multiple spanning tree idea can be applied in
a straightforward fashion. In Section V we confirm that
this method works well in practice.

Fig. 2. The figure shows overlapping detection sets that enable
two vertices to guard part of the boundary of the red detection sets.
Yellow covers more of the boundary and hence receives a regular
edge to red while green only gets a shady edge.

IV. Trajectory Planning on Height Maps

In this section we describe our approach for trajectory
planning on height maps according to the motion model
of the robot. A height map is represented by a two-
dimensional array storing at each discrete location the
corresponding elevation of the environment. On the one
hand, height maps are widely available on the Internet
as digital elevation maps (DEMs), e.g. from USGS [13]
at a resolution of up to 10 meters. On the other hand, as
we have shown in previous work, higher resolutions can

max cost←∞
for i = 1 to trees do

Generate a spanning tree T from G
Compute strategy ST on T
Convert ST to a strategy SG on G
if cost(SG) < max cost then
best strategy ← ST ,max cost← cost(SG)

Return best strategy

Algorithm 3: Compute Strategy(G, trees)

be achieved by traversing the terrain with a mobile robot
platform [14]. On the mobile robot, elevation values are
computed by successively integrating three-dimensional
point clouds, generated by a tilted or rotated Laser
Range Finder (LRF), with the 6D pose (x, y, d, ψ, θ, φ)
of the robot.

Height maps are classified into traversable and non-
traversable terrain, which is needed for computing the
pursuit-evasion graph, but also for path planing trajec-
tories towards strategic locations encoded in this graph.
The classification is carried out according to the motion
model of the robot. Basically, different robot platforms
have different capabilities to traverse terrain. For exam-
ple, whereas a wheeled platform, such as the Pioneer
AT, depend on even surfaces, tracked platforms, such as
the Telemax robot, are capable of negotiating stairs and
slopes up to 45◦. This specific parameters are taken into
account by the classifier described in the following.

For each cell of the height map, representative fea-
tures are created that discriminate different structure
element from the environment. We choose to use fuzzified
features, which are generated by functions that project
parameters, as for example, the height difference between
cells, into the [0, 1] interval. In contrast to binary {0, 1}
features, fuzzification facilitates the continuous projec-
tion of parameters, as well as the modeling of uncer-
tainties. Fuzzification is carried out by combining the
functions SUp(x, a, b) (Equation 3) and SDown(x, a, b)
(Equation 4), where a and b denote the desired range of
the parameter.

SUp(x, a, b) =


0 if x < a
x−a
b−a if a ≤ x ≤ b
1 if x > b

(3)

SDown(x, a, b) = 1− SUp(x, a, b) (4)

For example, the features Flat Surface, Wall Height and
Ramp Angle are build from the parameters δhi, denoting
the maximum height difference around a cell, and αi,
denoting the angle between the normal vector ni and
the upwards vector (0, 1, 0)T , as shown by Equation 5
and Equation 6, respectively.

δhi = max
j is neighbor to i

|hi − hj | (5)

αi = arccos
(
(0, 1, 0)T · ni

)
= arccos

(
niy
)

(6)



For example, on a tracked platform, these features are
defined by:

• Flat Surface = SDown(δhi, 15mm, 40mm)
• Wall Height = SUp(δhi, 200mm, 300mm)
• Ramp Angle = SUp(αi, 3

◦, 25◦) ·
SDown(αi, 25◦, 40◦)

Each time the elevation map is updated, the classifica-
tion procedure applies fuzzy rules on the latest height
estimates in order to classify them into regions, such as
flat ground, and steep wall.

Inference is carried out by the minimum and maximum
operation, representing the logical and and or operators,
respectively, whereas negations are implemented by 1−x,
following the definition given in the work of Elkan [15].
After applying the rule set to each parameter, the clas-
sification result is computed by defuzzification, which
is carried out by choosing the rule yielding the highest
output value. For discriminating more complex obstacle
types, such as ramps and stairs, Markov Random Field
(MRF) models, can be used [16].

We employ two-dimensional A* search for trajectory
planning. The A* algorithm performs informed search
on graphs, which have a cost function assigned to their
edges. To facilitate A* planning a graph has to be
constructed from the height map. This is carried out
by computing a distance map from the height map
encoding in each cell the minimal distance to the next
non-traversable cell. From the distance map a plan is
generated by expanding each connected traversable cell
with the following cost function:

c (si+1) = c (si) + α
d (si+1, si)

df (si+1)
(7)

Where d(.) is the Manhattan distance, df(s) the distance
map entry for cell s, and α a factor for varying the cost for
passing nearby obstacles. The heuristic used for guiding
the A* search is the Euclidean distance h =

√
δx2 + δy2,

which is commonly employed.

V. Experiments and Results

There are a number of variations that are possible for
the generation of multiple spanning trees as well as the
conversion of the spanning tree strategy to the graph in
Algorithm 3. In the first variant we generate a random
depth-first spanning tree using all edges from E and con-
vert the strategy from the spanning tree by considering
all cycle edges from E that are not in the spanning tree.
This treats all regular and shady edges equally. In the
second variant we modify the conversion of the spanning
tree strategy to the graph by only considering cycle
edges that are regular. This is equivalent to removing
all shady edges that are not part of the spanning tree
since they cannot lead to recontamination. Finally, we
can also bias the generation of the spanning tree to only
include regular edges for the depth-first traversal. This
leads to more cycle edges that are shady and can then
be removed for the second variant. Hence this bias is

expected to improve the cost of strategies for the second
variant and is equivalent to removing all shady edges.
Note that the removal of a shady edge does not neces-
sarily imply that strategies will get better since we are
considering contiguous strategies. Contiguous strategies
on graphs are generally more costly than non-contiguous
strategies since contiguity is an additional requirement.
Hence, removing an edge may prevent us to find a good
contiguous strategy because it then turns into a non-
contiguous strategy. Despite this potential effect we shall
show in our experiments that one can generally expect
an improvement when removing shady edges.

(a) (b) (c)

Fig. 3. (a) Sample map for testing with a three-way canyon,
three plateaus with each its own ramp and several concave sections
(843x768 cells). (b) Map of a small village with surrounding hills
(798x824 cells). (c) Map of a mountain area located in Colorado,
US (543x699 cells).

We present result on three maps seen in fig. 3. The res-
olution of (a) and (b) is 0.1units/pixel, and 10units/pixel
for (c). Sensing ranges mentioned below are always mea-
sured in units. The height of cell in the map is given
by its grey level and ranges from 0m to 10 units with 0
as white and 10 as black. Traversability classification as
seen in fig. 4 is always based on a Telemax robot.

(a) (b)

Fig. 4. (a) Terrain traversability on the Colorado map. Non-
traversable regions are marked red. (b) Detection sets on the same
map with according graph computed for robots with hr = 2.0,
sr = 10, and ht = 1.0.

Recall that there are two random components to our
algorithm. First, the graph that covers the map with
vertices located within the map is generated by ran-
domly sampling points from free space on which target
cannot yet be detected. Hence, all our tests with every
configuration are run and averaged across 100 graphs
generated via the random sampling within E Second, the
strategy on the generated graph is computed by trying
strategies on multiple random spanning trees. For this
we conducted extensive tests to investigate the effect
with our sample map seen in fig. 3. This is done with



Fig. 5. A strategy for our sample map from fig. 3 with 6
robots. Detection sets are marked red and cleared areas not under
observation are marked green. At step 0 on the upper left all robots
are at their deployment location at the bottom left. The pictures
show steps 0, 1, 3, 5, 6, 7, 10 and 12 from left to right and top to
bottom. At each step the path of the last robot moving is drawn.
At step 1 the first robot moves to a plateau and after step 5 the
robots cleared half the map. In step 6 all 6 robots are required to
avoid recontamination of the graph. In step 8 the first cleared but
unobserved part of the environment appears until in step 12 the
entire environment is cleared.

the first variant that considers all edges and no bias in
the generation of the spanning trees. Then for each of
these graphs we computed the best strategies based on
1) 10, 2) 100, and 3) 1000 randomly generated depth-first
spanning trees, similar to [4]. Across all spanning trees
we selected the one leading to the best strategy, i.e. the
one needing the least robots. The results are presented
in table V. Fig. 6 shows the distribution of number of
robots across the 100 randomly generated graphs for 100
and 10000 spanning trees. Only for the smallest sensing
range sr = 10 the difference in the number of spanning
trees had an effect on the best strategy that was found.
For all other cases 100 spanning trees sufficed. Notice
that smaller sensing ranges lead to more vertices and one
would expect to require more spanning trees for larger

sr spanning trees min max mean covariance
10 100 15 22 18.69 2.36
10 1000 14 20 16.8 1.58
10 10000 13 18 15.66 1.12
30 100 6 11 8.47 0.98
30 1000 6 10 7.96 0.73
30 10000 6 9 7.71 0.63
50 100 6 11 8.04 1.17
50 1000 6 11 7.70 0.98
50 10000 6 11 7.67 0.99
70 100 5 11 7.92 1.04
70 1000 5 10 7.70 0.98
70 10000 5 10 7.63 1.00

TABLE I

Results of the experiments on the sample map from fig. 3

with hp = 1.0 and ht = 1.0 and varying range and number of

spanning trees.

graphs. Regarding the sensing range an increase from 10
to 30 reduces the number of robots needed significantly,
while a further increase to 50 has no effect and to 70
only a small effect of a reduction by one. Notice that
for complex environments a gain in the sensing range is
mediated through the number of occlusions. With many
occlusions an increase in sensing range is less likely to
lead to improvements.
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Fig. 6. Two histograms of the distributions of the number of robots
needed for the 100 randomly generated graphs.

We also tested the algorithm on a realistic map from
a small village also seen in fig. 3. Here we also varied
the sensing range from 10 to 70 also observing a steep
decrease in the number of robots from 10 to 30 and then
to 50 and 70 only a small changes of one. Since this map
has considerably more elevation structure we also tested
the effect of varying hr and ht. A reduction of ht from 1
to 0.5 requires 9 instead of 8 for the same sensing range
and hr = 1. A reduction of hr from 1 to 0.5 requires
10 instead of 8 for the same sensing range and ht = 1.
Reducing both, ht and hr to 0.5 needs 11 instead of
8 robots. Changes in hr modify the set of visible cells
and hence the detection sets while changes in ht only
modify the detection sets and the effect is not necessarily
identical as suggested by the data.

The next question we investigated relates to the second
variant of Algorithm 3 which only considers regular edges



sr hr ht min max mean covariance
10 1 1 16 22 19.46 1.71
30 1 1 9 17 12.14 2.69
50 1 1 8 15 11.76 2.10
70 1 1 8 16 11.66 2.47
50 0.5 0.5 11 21 15.46 3.44
50 0.5 1 10 17 12.82 2.23
50 1 0.5 9 18 14.52 2.57

TABLE II

Results of the experiments on the village map from fig. 3

with varying range and hc,ht.

trees v bias min max mean p− value
100 1 no 7 12 8.73 ± 1.05 0.0324
100 1 yes 7 12 9.05 ± 1.16
100 2 no 6 9 6.94 ± 0.56 <0.0001
100 2 yes 6 9 7.6 ± 0.61
1000 1 no 7 11 8.54 ± 1.02 0.7855
1000 1 yes 6 11 8.58 ± 1.13
1000 2 no 5 8 6.65 ± 0.43 0.0007
1000 2 yes 5 9 7.01 ± 0.66
10000 1 no 6 11 8.51 ± 0.90 0.3894
10000 1 yes 7 10 8.4 ± 0.73
10000 2 no 5 8 6.64 ± 0.45 0.2442
10000 2 yes 5 8 6.75 ± 0.43

TABLE III

The results from experiments with sr = 30, hr = 1 and

ht = 1. The last column shows the p− value from a

standard T-test between two subsequent rows.

as cycle edges as well as the bias on the spanning tree
generation. A well chosen bias in the spanning tree
generation can potentially speed up the discovery of a
good spanning tree for the graph thereby reducing the
number of trees that need to be tested. Furthermore, the
bias should be more beneficial for the second variant than
the first. Table V shows the results for these questions.
They indicate that when generating 100 spanning trees
the bias significantly improves the average across all
strategies, although it does not have an effect on the
minimum number of robots. With 1000 spanning trees we
only see a significant improvement for the second variant
when using the bias. The second variant, as expected,
benefits more from the bias. Finally, when generating
a larger number of spanning trees the positive effect of
the bias diminishes. Comparing the minimum number
of robots for the first and second variant in Table V
shows a significant difference with a p−value < 2.210−16

for all conditions. In all cases the minimum number of
robots needed for the second variant is better by 2 or 3
robots. Also the variance of the cost of strategies across
the 100 generated graphs is less than the variance for
the first variant. Hence, the second variant is generally
preferable. This applies particularly to larger graphs for
which generating a large number of spanning trees is
computationally expensive.

Finally, we tested variant one and two with a biased

map name sr Variant min max mean

Sample map

10.0 2 12 17 14.3 ± 1.1
10.0 1 13 20 16.5 ± 1.7
20.0 2 6 17 7.5 ± 3.0
20.0 1 7 19 9.2 ± 3.3
30.0 2 5 9 6.7 ± 0.5
30.0 1 6 12 8.3 ± 1.1
50.0 2 5 8 6.0 ± 0.5
50.0 1 6 10 7.8 ± 0.8
70.0 2 4 8 5.9 ± 0.4
70.0 1 5 10 7.9 ± 1.0

Village

10.0 2 15 20 17.2 ± 1.2
10.0 1 16 23 19.1 ± 2.0
20.0 2 9 14 11.0 ± 1.3
20.0 1 10 18 13.6 ± 2.2
30.0 2 7 12 9.5 ± 1.3
30.0 1 9 15 12.1 ± 1.9
50.0 2 6 12 8.8 ± 1.0
50.0 1 8 15 11.6 ± 1.8
70.0 2 6 11 8.6 ± 1.2
70.0 1 8 16 12.1 ± 2.7

Colorado

10.0 y 12 17 14.1 ± 1.2
10.0 n 13 20 16.3 ± 1.9
20.0 y 11 18 14.6 ± 2.7
20.0 n 12 20 17.1 ± 3.5
30.0 y 12 22 16.9 ± 5.3
30.0 n 14 25 19.1 ± 5.8
50.0 y 14 27 19.8 ± 5.8
50.0 n 16 30 22.0 ± 6.1
70.0 y 15 26 20.2 ± 5.6
70.0 n 18 29 22.8 ± 6.3

TABLE IV

Results of the experiments on the three maps from fig. 3.

spanning tree generation on all three maps with sensing
ranges from 10 to 70 as seen in Table V. Again variant
two always outperforms variant one at all sensing ranges.
This applies to the sample map and to more the realistic
and very complex maps Village and Colorado. Most
notably, as the sensing range increases in maps Sample
map and Village the number of robots decreases, but
in map Colorado it first improves slightly and then gets
worse. Fig. 7 illustrates this. This is likely due to the more
complex structure of Colorado. In this case an increased
sensing range does not yield a much larger detection set,
but a detection set with a more complex boundary due to
many more occlusions. This complex boundary leads to
many more edges in the graph. The plot in fig. 8 verifies
that the number of edges increases for Colorado but not
for the other maps as the sensing range increases.

VI. Conclusion

We have proposed a novel and to our best knowl-
edge the first approach for 2.5d pursuit-evasion with
height maps. Our approach is as a first baseline for
the problem and as such serves for future comparisons
with improved methods. The random graph generation
can readily be substituted with either better sampling
by biasing selection towards points with large detection
sets or geometric methods that construct graphs such
as in [8] based on visibility information. We have pre-
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sented a novel graph structure that captures visibility
information that arises in 2.5d problems and designed
several variants that utilize this information differently.
This graph model also poses a new set of questions for
further work. One next step is to consider non-contiguous
strategies which should lead to a significant improvement
since all shady edges can be ignored without jeopardizing
the graph strategy. Yet, despite this problem we have
shown that discarding shady edges generally leads to
better strategies. We have also demonstrated the effect of
changing target and robot heights on strategies. Another
important result relates to changes in the sensing ranges
which have an effect that is highly dependent on the
map. In complex maps a larger sensing range can lead
to worse strategies. Finally, our approach allows us to
identify a sensing range and robot height that leads

to strategies that requires less robots for a particular
map. Despite the fact that the presented approach is
based on heuristics we have demonstrated that it already
performs reasonably well in complex environments with
loops and many occlusions and height differences. Its
simplicity also makes it readily applicable to a variety of
environments, even those with structures that resemble
urban environments, such as streets and building walls.
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