
A Stream-Based Hierarchical Anchoring Framework

Fredrik Heintz, Jonas Kvarnström and Patrick Doherty
Department of Computer and Information Science, Linköpings universitet,

SE-581 83 Linköping, Sweden
{frehe, jonkv, patdo}@ida.liu.se

Abstract— Autonomous systems situated in the real world
often need to recognize, track, and reason about various types
of physical objects. In order to allow reasoning at a symbolic
level, one must create and continuously maintain a correlation
between symbols labeling physical objects and the sensor data
being collected about them, a process called anchoring.

In this paper we present a stream-based hierarchical an-
choring framework extending the DyKnow knowledge process-
ing middleware. A classification hierarchy is associated with
expressive conditions for hypothesizing the type and identity
of an object given streams of temporally tagged sensor data.
The anchoring process constructs and maintains a set of object
linkage structures representing the best possible hypotheses at
any time. Each hypothesis can be incrementally generalized or
narrowed down as new sensor data arrives. Symbols can be
associated with an object at any level of classification, permit-
ting symbolic reasoning on different levels of abstraction. The
approach has been applied to a traffic monitoring application
where an unmanned aerial vehicle collects information about a
small urban area in order to detect traffic violations.

I. INTRODUCTION

The ability to recognize, track, and reason about various
types of physical objects is essential for many autonomous
systems situated in the real world. One difficult issue is
how to create and maintain a consistent correlation between
symbolic representations of these objects and sensor data
that is being continually collected about them. This process
is called anchoring [3].

As a motivating example, consider an unmanned aerial
vehicle (UAV) using color and thermal cameras to monitor a
small urban area for potential or ongoing criminal activities.
In the case of traffic violations, the UAV must be able to
use the available video feeds to recognize and track cars and
other vehicles. Initial recognition involves taking a picture of
an area and correctly identifying any vehicles in that area.
To track the vehicles, the UAV must continually analyze
the video feed and keep its information up to date. This
requires the ability to determine if a car found in a frame is
a previously unseen car or if it has been seen before.

Tracking an object, such as a car, through a series of
images is a classical problem. There are many effective
solutions for the case where the object is easily distinguish-
able and can be tracked without interruptions. However, we
must also consider the case where an object is temporarily

This work is partially supported by grants from the Swedish Founda-
tion for Strategic Research (SSF) Strategic Research Center MOVIII, the
Swedish Research Council (VR) Linnaeus Center CADICS, and the Center
for Industrial Information Technology CENIIT (06.09).

hidden by obstacles (or tunnels in the case of traffic), and
where many similar objects may be present in the world.
In this case, pure image-based tracking does not provide
a complete solution, since it usually only considers the
information available in the image itself. A more suitable
approach would be to also include knowledge about the
world at higher abstraction levels, such as the normative
characteristics of specific classes of physical objects. In the
case of traffic, this would include the layout of the road
network and the typical size, speed, and driving behavior of
cars. It has been argued that anchoring is an extension to
classical tracking approaches which handles missing data in
a principled manner [7].

In this paper we propose a general stream-based hierar-
chical anchoring framework as an extension of our existing
knowledge processing middleware framework DyKnow [10–
12]. The proposed solution uses object linkage structures
to incrementally classify and track objects found by image
processing, radar sensors, or similar techniques, and to
anchor these objects to symbolic identifiers.

II. DYKNOW

DyKnow is a stream-based knowledge processing mid-
dleware service that helps organize the many levels of
information and knowledge processing in a robotic system as
a coherent network of processes connected by streams. The
streams contain time-stamped information and can be viewed
as continually evolving time-series. In addition to providing
conceptual support, DyKnow is fully implemented and serves
as a central component in the UASTech UAV architecture [5].

A knowledge processing application in DyKnow consists
of a set of knowledge processes connected by streams
satisfying policies. A policy is a declarative specification
of the desired properties of a stream. Each knowledge
process is an instantiation of a source or computational
unit providing stream generators that generate streams. A
source makes external information available in the form of
streams while a computational unit refines and processes
streams. A formal language called KPL is used to write
declarative specifications of DyKnow applications (see [10,
11] for details). The DyKnow service, which implements
the DyKnow framework, takes a set of KPL declarations
and sets up the required processing and communication
infrastructure. Due to the use of CORBA [18] for communi-
cation, knowledge processes are location-agnostic, providing



support for distributed architectures running on multiple
networked computers.

III. A TRAFFIC MONITORING SCENARIO

Examples in this paper will be taken from a specific
scenario involving UAV-based traffic monitoring. However,
we emphasize that this approach to anchoring is general and
can be applied in a wide variety of robotic applications where
there is a need to reason symbolically over extended periods
of time about objects perceived by sensors.

Suppose a human operator is trying to maintain situational
awareness about traffic in an area using static and mobile sen-
sors such as surveillance cameras and unmanned helicopters.
Reducing the amount of information sent to the operator also
reduces her cognitive load, helping her to focus her attention
on salient events. Therefore, each sensor platform should
monitor traffic situations and only report back relevant high-
level events, such as reckless overtakes and probable drunk
driving.

Traffic violations, or other events to be detected, should
be represented formally and declaratively. This can be done
using chronicle recognition [8], where each chronicle defines
a parameterized class of complex events as a simple tem-
poral network [4] whose nodes correspond to occurrences
of high-level qualitative events and edges correspond to
metric temporal constraints between event occurrences. For
example, events representing changes in qualitative spatial
relations such as beside(car1, car2), close(car1, car2), and
on(car1, road7) might be used to detect a reckless over-
take. Creating these high-level representations from low-level
sensor data, such as video streams from color and thermal
cameras, involves extensive information and knowledge pro-
cessing within each sensor platform.

Fig. 1 provides an overview of how part of the incremental
processing required for the traffic surveillance task could be
organized as a set of distinct DyKnow knowledge processes.
At the lowest level, a helicopter state estimation component
uses data from an inertial measurement unit (IMU) and a
global positioning system (GPS) to determine the current
position and attitude of the UAV. A camera state estimation
component uses this information, together with the current
state of the pan-tilt unit on which the cameras are mounted,
to generate information about the current camera state.
The image processing component uses the camera state to
determine where the camera is currently pointing. Video
streams from the color and thermal cameras can then be
analyzed in order to generate vision percepts representing
hypotheses about moving and stationary physical entities,
including their approximate positions and velocities.

Symbolic formalisms such as chronicle recognition require
a consistent assignment of symbols, or identities, to the
physical objects being reasoned about and the sensor data
received about those objects. Image analysis may provide
a partial solution, with vision percepts having symbolic
identities that persist over short intervals of time. However,
changing visual conditions or objects temporarily being out
of view lead to problems that image analysis cannot (and

Chronicle 

Recognition

Qualitative spatial relations

Recognition

Qualitative Spatial 

Reasoning

Car objectsCar objects

Road objects
Geographic 

Information 

System

Anchoring

Formula events

Formula states
Temporal Logic 

Progression

Vision objects

Formula events

Color camera
Image Processing

Camera state
Legend

Color camera

Thermal camera

Image Processing

Helicopter state

Legend

Sensor

Process

Helicopter State 

Estimation

Camera State 

Estimation

IMU GPS Pan-tilt unit

Process

Data flow

Fig. 1. An overview of how the incremental processing required for the
traffic surveillance task could be organized.

should not) handle. This is the task of the anchoring system
to be described in the next section, which uses progression
of formulas in a metric temporal logic to evaluate potential
hypotheses about the observed objects. The anchoring system
also assists in object classification and in the extraction
of higher level attributes of an object. For example, a
geographic information system can be used to determine
whether an object is currently on a road or in a crossing.
Such attributes can in turn be used to derive relations
between objects, including qualitative spatial relations such
as beside(car1, car2) and close(car1, car2). Concrete events
corresponding to changes in such attributes and predicates
finally provide sufficient information for the chronicle recog-
nition system to determine when higher-level events such as
reckless overtakes occur.

Details about the image processing and the recognition of
traffic violations can be found in [13].

IV. ANCHORING USING OBJECT LINKAGE STRUCTURES

The objective of the anchoring process is to connect
symbols to sensor data originating in the physical world. This
requires processing on many abstraction levels, including
specialized techniques adapted to a particular type of sensor.
Such techniques are often well suited to determining which
parts of the raw sensor input pertain to a single physical
object, and may even track such objects and give them
persistent identities over shorter periods of time. For exam-
ple, image processing can extract “blobs” within a frame,
each corresponding to a single physical object. Image-based
tracking might then track blobs over multiple frames, until
losing track due to for example obstacles or changing visual
conditions.

Clearly, anchoring should be able to make use of all
information such techniques can provide. We therefore rep-
resent the sensor input to the anchoring process as a stream
of percepts, each of which is an object whose attributes



change but whose identity persist. A vision percept, for
example, could include color and size information for a
moving or stationary blob. We may also have radar percepts
or laser range finder percepts, which might refer to the
same physical objects. Anchoring then consists of the more
difficult task of consistently associating symbolic identities
with percepts for specific physical objects over the long
term, even when no information arrives about a particular
object for extended periods of time. This allows for grounded
high-level symbolic reasoning, where attributes of objects
may be computed from sensor data even though no sensor
completely tracks the object through its lifetime.

Rather than doing anchoring in a single step, as in most
current approaches (for some exceptions see the related
work section), we define an incremental process of object
classification and (re-)identification. This process builds on
a hierarchy of percept / object types.

An example hierarchy for the traffic monitoring scenario
can be seen in Fig. 2. A world object represents a physical
object in the world. Its attributes are based on information
from one or more linked percepts and include the absolute
coordinates of the object in the physical world. World objects
could either be on-road objects moving along roads or off-
road objects not following roads. An on-road object has
attributes representing the road segment or crossing the
object occupies, making more qualitative forms of reasoning
possible, and an improved position estimation which is
snapped to the road. Finally, an on-road object could be a
car, a motorcycle, or a truck. Each level in the hierarchy
adds more abstract and qualitative information while still
maintaining a copy of the attributes of the object it was
derived from. Thus, an on-road object contains both the
original position from the world object and the position
projected onto the road network.

Hypotheses about object types and identities must be
able to evolve over time. For example, while it might be
determined quickly that a world object is an on-road object,
more time may be required to determine that it is in fact
a car. Also, what initially appeared to be a car might
later turn out to be better classified as a truck. To support
incremental addition of information and incremental revision
of hypotheses, a single physical object is not represented
as an indivisible object structure but as an object linkage
structure.

An object linkage structure consists of a set of objects
which are linked together (note that percepts are also consid-
ered to be objects). Each object has a type and is associated
with a symbol, and represents information about a particular
physical object at a given level of abstraction. A symbol is
anchored if its object is part of an object linkage structure
that is grounded in at least one percept. An example is shown
in Fig. 3, representing the hypothesis that vision percept vp8,
world object wo5, on-road object oo3, and car object co2 all
correspond to the same physical object.

Vision Percept
Laser Range 

Finder Percept
Radar Percept

World ObjectWorld Object

Off-Road 

Object

On-Road 

Object

Car Object
Motorcycle 

Object
Truck ObjectCar Object

Object
Truck Object

Fig. 2. The example percept (white) / object (gray) hierarchy used in the
traffic monitoring scenario.

Vision Percept 

#8

World Object 

#5

Car Object

#2

On-Road Object 

#3#8 #5 #2#3

vp8 wo5 co2oo3

Vision Percept 

vp8

World Object 

wo5

Car Object

co2

On-Road Object 

oo3vp8 wo5 co2oo3

Fig. 3. An example object linkage structure.

A. Incremental Generation of Object Linkage Structures

Whenever a new object of a given type is generated, it
must be determined whether it also belongs to a particular
subtype in the hierarchy. For example, a new vision percept
originating in image processing may be classified as corre-
sponding to a world object. In this case, it must also be linked
to a world object structure, thereby generating an object
linkage structure. However, it is essential for anchoring that
sensor data can be anchored even to symbols / objects for
which no percepts have arrived for a period of time. Thus,
objects and their symbols are not immediately removed when
their associated percepts disappear, and any new object at one
level might correspond to either a new object or an existing
object at the next level. To reduce the computational cost,
objects which are not likely to be found again are removed.
Currently we discard objects which have not been observed
or anchored for a certain application-dependent time.

Three conditions are used to determine when to add and
remove links between objects belonging to types A and B.
These conditions are written in an expressive temporal logic,
similar to the well known Metric Temporal Logic [15], and
incrementally evaluated by DyKnow using progression over
a timed state sequence.1 Informally, 3[τ1,τ2] φ (“eventually”)
holds at τ iff φ holds at some τ ′ ∈ [τ + τ1, τ + τ2], while
2[τ1,τ2] φ (“always”) holds at τ iff φ holds at all τ ′ ∈ [τ +
τ1, τ+τ2]. Finally, φU[τ1,τ2] ψ (“until”) holds at τ iff ψ holds
at some τ ′ ∈ [τ + τ1, τ + τ2] such that φ holds in all states
in (τ, τ ′). See [6] for formal details.

The unary establish condition expresses when an object
of type A, which may be a percept or a higher level object,
should be linked to a new object of type B. When a new ob-

1Progression incrementally evaluates formulas in a state sequence. The
result of progressing a formula through the first state in a sequence is a new
formula that holds in the remainder of the state sequence iff the original
formula holds in the complete state sequence. If progression returns true
(false), the entire formula must be true (false), regardless of future states.



ject of type A is created, the anchoring system immediately
begins evaluating this condition. If and when the condition
becomes true, a link to a new object of type B is created.
Concrete examples will be given below. This corresponds to
the Find functionality suggested by Coradeschi and Saffiotti
[3], which takes a symbolic description of an object and tries
to anchor it in sensor data.

The binary reestablish condition expresses the condition
for an object of type A to be linked to a known object of
type B, as in the case where a new world object corresponds
to an existing on-road object that had temporarily been
hidden by a bridge. When a new object of type A is created,
the anchoring system immediately begins to evaluate the re-
establish condition for every known object of type B that
is not linked to an object of type A. If and when one of
these conditions becomes true, a link is created between
the associated objects. This corresponds to the Reacquire
functionality [3].

While two objects are linked, the attributes of the more
specific object are computed using a DyKnow computational
unit from the attributes of the less specific object, possibly
together with information from other sources.

Finally, since observations are uncertain and classification
is imperfect, any link created between two objects is con-
sidered a hypothesis and is continually validated through
a maintain condition. Such conditions can compare the
observed behavior of an object with behavior that is nor-
mative for its type, and possibly with behavior predicted in
other ways. For example, one might state that an on-road
object should remain continually on the road, maybe with
occasional shorter periods being observed off the road due
to sensor error.

If a maintain condition is violated, the corresponding link
is removed. However, all objects involved remain, enabling
re-classification and re-identification at a later time. This
corresponds to the Track functionality [3].

The state of an object having no incoming links will
be predicted based on a general model of how objects of
this type normally behave. In future work, we may extend
this ability by estimating a special model for this particular
individual using system identification techniques [16] on the
data collected while tracking it.

Example IV.1 Assume that the image processing system is
currently tracking a potential car represented by the vision
percept vp1 and that no other objects have been created.
Since there is a vision percept but no known world objects
it is enough to evaluate the establish condition on vp1.

vp1
establish?

wo1vp1
maintain? establish?

wo1vp1 oo1
maintain?

wo1vp1 oo1
maintain?

vp2 wo1
reestablish?

oo1
maintain?

establish?

vp2 wo1
maintain?

oo1
maintain?

wo1vp1
maintain?

oo1
maintain?

If the establish condition is eventually satisfied, a new
world object wo1 is created which is associated with vp1. As
long as wo1 is associated with vp1 its state will be computed
from the state of the vision percept vp1. It is also possible to
estimate a model of the behavior of wo1 using the collected
information. This model can later be used to predict the

behavior of wo1 if it is no longer tracked. The maintain
condition is monitored to continually verify the hypothesis
that wo1 is a world object.

vp1
establish?

wo1vp1
maintain? establish?

wo1vp1 oo1
maintain?

wo1vp1 oo1
maintain?

vp2 wo1
reestablish?

oo1
maintain?

establish?

vp2 wo1
maintain?

oo1
maintain?

wo1vp1
maintain?

oo1
maintain?

Further, assume that after a while wo1 has been hypothe-
sized as being an on-road object represented by oo1 and an
object linkage structure has been created containing all three
objects. For example, one could assume that an object is an
on-road object after it has been observed on a road for at
least 30 seconds.

vp1
establish?

wo1vp1
maintain? establish?

wo1vp1 oo1
maintain?

wo1vp1 oo1
maintain?

vp2 wo1
reestablish?

oo1
maintain?

establish?

vp2 wo1
maintain?

oo1
maintain?

wo1vp1
maintain?

oo1
maintain?

Assume the image processing system loses track of the
potential car after a while. Then vp1 is removed together with
the link to wo1. Even though the link is removed the world
object wo1 remains as well as the on-road object oo1 and its
link to wo1. While wo1 is not linked to any vision percept
its state will be predicted using either a general model of
physical objects or an individually adapted model of this
particular object. Since wo1 is linked to an on-road object
it is also possible to use this hypothesis to further restrict
the predicted movements of the object as it can be assumed
to only move along roads. This greatly reduces the possible
positions of the object and makes it much easier to reestablish
a link to it.

vp1
establish?

wo1vp1
maintain? establish?

wo1vp1 oo1
maintain?

wo1vp1 oo1
maintain?

vp2 wo1
reestablish?

oo1
maintain?

establish?

vp2 wo1
maintain?

oo1
maintain?

wo1vp1
maintain?

oo1
maintain?

Assume further that the image processing system later
recognizes a new potential car represented by the vision
percept vp2. Since there exists a known world object, wo1,
the knowledge process has to evaluate whether vp2 is a
new world object, the known world object wo1, or not a
world object at all. This is done by evaluating the establish
condition on vp2 and the reestablish condition between vp2
and wo1.

vp1
establish?

wo1vp1
maintain? establish?

wo1vp1 oo1
maintain?

wo1vp1 oo1
maintain?

vp2 wo1
reestablish?

oo1
maintain?

establish?

vp2 wo1
maintain?

oo1
maintain?

wo1vp1
maintain?

oo1
maintain?

Assume that after a while the establish condition is pro-
gressed to false and the (in this case unique) reestablish
condition is progressed to true. Then a new link is created
from vp2 to wo1 and the attributes of wo1 can be computed
from the attributes of vp2. This also means that oo1 is once
again anchored. To verify the new hypothesis a maintain
condition between wo1 and vp2 is monitored.

vp1
establish?

wo1vp1
maintain? establish?

wo1vp1 oo1
maintain?

wo1vp1 oo1
maintain?

vp2 wo1
reestablish?

oo1
maintain?

establish?

vp2 wo1
maintain?

oo1
maintain?

wo1vp1
maintain?

oo1
maintain?

�

Top-down Identification. As shown above, object linkage
structures can be created bottom-up by processing streams of
incoming percepts, creating a new symbol for each hypothe-
sized object found in the stream. A similar approach can be
used for top-down object identification by adding partially



Link ProcessLink Process

car objects

compute car object

from vision percept

vision car objectsStream 

Generator
compute car object

from vision percept

partition on

vision percept id

vision 

percepts

for each link (v,c)

compute the car object c

from the vision percept v

from vision percept

from the vision percept v

for each 

vision percept 

keep track of keep track of 

its linkage state

Progression EngineProgression Engine

Fig. 4. A link process creating car objects from vision percepts.

instantiated object linkage structures containing information
about a symbol that the user would like to have anchored.
The anchoring process will then try to identify these objects
by processing incoming percepts in an attempt to satisfy the
reestablish condition and extend the partial structures until
they are anchored. However, more work is needed and this
will be an interesting topic for future work.

B. Link Specifications and Link Processes

Though the ideas used in this anchoring framework can be
used in other settings, the particular instance described here
is adapted to the use of knowledge processes and streams in
the DyKnow framework.

Thus, every type of percept originates in a particular
knowledge process, such as an image processing knowledge
process for vision percepts. Subscribing to the output of this
process generates a stream of vision percepts, where new
percepts are sent as soon as they are available.

Similarly, the task of classifying objects of type A as
being objects of subtype B is modeled and implemented
as a link process. This process subscribes to a stream
containing information about all objects of type A. It then
uses DyKnow’s support for formula progression [6, 11] to
evaluate the associated establish, reestablish, and maintain
conditions over the temporal evolution of each of these ob-
jects, thereby determining when to create and remove links.
Concurrently, the process uses a DyKnow computational unit
to calculate the state of each object of type B from the state
of the corresponding object of type A, possibly together
with additional information from other sources such as a
geographic information system. It is possible to subscribe to
the output of the process to find information about all objects
currently hypothesized as being of type B. An example link
process is shown in Fig. 4 where vision percepts are linked
to car objects. Which car object a vision percept is linked to
depends on the three link conditions.

The DyKnow knowledge processing language KPL has
been extended to allow the declaration of link processes.
A link specification 〈a, b, cu, e, r,m〉 describes a knowledge
process that subscribes to a process (strictly speaking, a

stream generator) labeled a and links the objects received
from a according to the establish condition e, the reestablish
condition r, and the maintain condition m. These formulas
may use the special variables from and to, which refer to the
object of type A being linked from and the object of type B
being linked to, respectively. Instances of the computational
unit cu are used to compute the new object states. All the
generated object states will be made available from a stream
generator labeled b.

Conceptually, for each object p found in the input stream
a of a link specification 〈a, b, cu, e, r,m〉, a new process
within the link process is created and executed throughout
the lifetime of p. This process does the following:

state = unlinked
add establish(p) to progressor
for each object o of type B { add reestablish(p,o) to progressor }
while true {

wait for event e
if (state == unlinked) {

if (e == addition of unlinked object o of type B) {
// Another potential candidate
add reestablish(p,o) to progressor

} else if (e == removal of existing object o of type B) {
// Candidate disappeared
remove reestablish(p,o) from progressor

} else if (e == linkage of o to p’ != p) {
// Candidate linked to something else
remove reestablish(p,o) from progressor

} else if (e == signal from progressor: establish(p) became true) {
// We believe p is a new object
create new object o of type B
link p to o using cu to calculate states
add maintain(p,o) to progressor
state = linked

} else if (e == signal from progressor: reestablish(p,o) became true) {
// We believe p corresponds to an existing object o
link p to o using cu to calculate states
add maintain(p,o) to progressor
state = linked

}
} else { // state == linked

if (e == signal from progressor: maintain(p,o) became false) {
// The hypothesis that p corresponds to o is invalid
remove link from p to o
state = unlinked
// Must evaluate other hypotheses
add establish(p) to progressor
for each object o { add reestablish(p,o) to progressor }

}
}

}

V. IMPLEMENTATION

The proposed approach to anchoring has been tested in
a UAV traffic monitoring application, where vision percepts
from a simulated object tracker are linked to world objects,
which in turn are linked to on-road objects. Link conditions
are intended to demonstrate key concepts and could be
elaborated to take more complex conditions into account.
The temporal unit is 1 millisecond.

We used the formula 3[0,1000] xydist(from, to) < thresh
as a reestablish condition from vision percepts to existing
world objects: The distance to the (predicted or simulated)
world object in the x/y plane must be within a given threshold
within one second. Since we believe all vision percepts
do correspond to world objects, the corresponding establish



Fig. 5. One run of the car tracking simulation.

condition is simply 3[1000,∞] true, which unconditionally
triggers to generate a new world object if after one second no
reestablish condition has been satisfied. Finally, the maintain
condition is true: As long as the vision percept persists, we
do not doubt its identity as a world object.

A link from a world object to an existing on-road ob-
ject is reestablished if 3[0,1000] xydist(from, to) < thresh.
Not all world objects are on-road objects, so a new
on-road object is only created from a world ob-
ject if 3[1000,∞] 2[0,1000] on road(from), that is, if af-
ter one second, the object is detected on a road for
at least one second. Finally, the maintain condition is
2 3[0,10000] 2[0,1000] on road(from). In other words, it must
always be the case that within 10 seconds, the object is
detected as being on a road for at least 1 second. These
temporal intervals are adjusted to suit the specific noise
profile of our simulated sensors with a minimum of false
positives or negatives.

Straight-forward simulations were used for temporarily
unanchored world and on-road objects. World objects are
assumed to continue traveling in the same direction, and with
the same speed, as when they were last anchored. On-road
objects are also assumed to retain their speed, but travel along
the road network, splitting into multiple objects at crossings.
This greatly improves the chance of reacquiring an anchor
when the roads are not straight or contain crossings.

Fig. 5 shows the results from running a car tracking
simulation with noisy sensors with four tracks, each about
3 seconds long and then roughly 2 seconds without any
tracking. Red circles indicate position estimates taken di-
rectly from vision percepts and are missing where image
processing fails to detect a vehicle. The computational unit
that continually updates an on-road object from its associated
vision percept knows that an on-road object tends to travel
in the center of a specific lane, and adjusts positions ac-
cordingly (blue squares). Additionally, when vision percepts
are missing, position estimates for an on-road object are
provided by a simulation of its most likely path. There are
three examples of this, twice before the crossing and once
inside the crossing.

The example scenario provides evidence that the frame-

work can be used to anchor symbols in the traffic domain.
A more thorough evaluation of the scalability and the range
of applicability of the approach is part of our ongoing work.

VI. RELATED WORK

In recent research, anchoring has been considered as a
separate problem, which has generated a series of interesting
approaches [1–3, 7, 9, 19, 20].

One well-known framework was proposed by Coradeschi
and Saffiotti [3]. Their approach converts the quantitative
attributes of a percept to a set of symbolic predicates using
a predicate grounding relation. An object described by a
set of predicates can be found by finding a percept whose
attributes match the predicates of the object according to
the predicate grounding relation. Objects are tracked using a
single step prediction function computing the next state of the
object which can then be compared with the next percept. As
long as the predictions and the observations match, the object
is tracked. Reacquiring an anchor is similar to acquiring it,
but the information collected about the object while it was
tracked can be used to improve the re-identification.

In more recent work this approach has been extended to
allow multiple percepts to be anchored to a single symbol
[17], to support the anchoring of not only unary predicates
but also binary relations [17], and to actively control a robot
with the goal of anchoring particular symbols [14].

In our framework, predicate grounding relations can be
encoded in link specifications. Due to the use of a metric
temporal logic, we can also use anchoring conditions that
range over several observations. This can be use to model
arbitrary tradeoffs between false positives and false negatives
in the case where a percept may temporarily fail to satisfy a
condition. Another extension is the possibility to do anchor-
ing in several smaller steps. Instead of describing how to
directly identify a particular percept as a specific car we can
connect a percept to a world object, which can be connected
to an on road object, which can finally be connected to a car
object. This also allows the predicate grounding relation to
be contextual, based on the types of objects being linked.

A similar approach is used by the GLAIR grounded
layered architecture with integrated reasoning [19]. GLAIR
is a three-layered architecture consisting of a knowledge
level (KL), a perceptuo-motor level (PML), and a sensori-
actuator level (SAL). Anchoring is done by aligning KL
terms representing mental entities with PML descriptions
representing perceived objects. A PML description is an n-
tuple where each component is a value from some perceptual
feature domain. This alignment is made by hand. If the
SAL finds an object with a particular PML description and
there is only one KL term aligned with it, then the term
is anchored to the PML description and indirectly to the
external physical object. With the exception that GLAIR has
two clearly distinct levels and an anchor does not belong
to either of them, this approach is similar to the one by
Coradeschi and Saffiotti.

An approach similar to ours is used by Steels and Baillie
[20] to achieve shared grounding among agents. In their



experiment, two robots watch the same scene using cameras
and try to agree what is happening through the use of natural
language. To interpret the scene and to ground the natural
language utterances they use several image processing and
pattern matching techniques. Image processing is used to
classify objects found in video sequences and to collect
qualitative information about the objects such as their shape
and color in the form of predicate logical statements. Then
they use pattern matching techniques to detect first changes
in the properties of objects and then events as sequences of
such changes. The main difference to our approach is the way
the identity of individual objects are determined. They use
predefined histograms while we describe the conditions for
when two objects should be assumed to be identical using
a metric temporal logic, an approach we believe is more
flexible and general.

A fourth related approach is [7], which proposes a method
for anchoring symbols denoting composite objects through
anchoring the symbols of their corresponding component
objects. This extends the framework presented by [3] with
the concept of a composite anchor, which is an anchor with-
out a direct perceptual counterpart. The composite anchor
computes its own perceptual signature from the perceptual
signatures of its component objects. The benefit is that each
sensor can anchor its sensor data to symbols which can
be used to build composite objects fusing information from
several sensors. The same functionality can be provided by
DyKnow, since objects do not have to have direct perceptual
counterparts but can be computed from other objects which
may or may not acquire their input directly from sensors.

This particular functionality is important to emphasize
since in complex hybrid robotic architectures, different com-
ponents and functionalities in the architecture require access
to representations of dynamic objects in the external envi-
ronment at different levels of abstraction and with different
guaranteed upper bounds on latencies in data. By modeling
dynamic objects as structured objects with different types
of features, any functionality in the architecture can access
an object at the proper level of abstraction and acquire data
from the object in a timely manner.

VII. CONCLUSIONS

We have presented a stream-based hierarchical anchoring
framework which is an extension of the DyKnow knowledge
processing middleware. The framework dynamically creates
object linkage structures representing the current hypothesis
about the identity and classification of an object. As more in-
formation becomes available the structures are updated either
by narrowing down the classification or by removing violated
hypotheses. The result is that each object linkage structure
maintains the best possible hypothesis about the identity
and classification of a single physical object. The symbol
associated with an object in the object linkage structure can
then be used to further reason about the object. The approach
has been applied to a traffic monitoring application where a
UAV collects information about a small urban area in order
to detect traffic violations.

Compared to existing approaches we support hierarchical
anchoring where an object is incrementally anchored to
more and more abstract objects. For example, in the traffic
monitoring scenario we start by linking blobs found by
an image processing system, representing potential cars, to
world objects. These world objects can then be linked to
on-road objects, which can finally be linked to car objects.
Each step in this chain adds more abstract attributes to the
object and allows for more specific assumptions to be made
about how such an object behaves. These assumptions can
be used when trying to reacquire an anchor by predicting
where the object is. Another improvement is that we use a
metric temporal logic to represent the conditions for when
to anchor symbols to objects.

REFERENCES

[1] A. Bonarini, M. Matteucci, and M. Restelli. Anchoring: do we need
new solutions to an old problem or do we have old solutions for a
new problem? In Anchoring Symbols to Sensor Data in Single and
Multiple Robot Systems: Papers from the AAAI Fall Symposium, 2001.

[2] A. Chella, M. Frixione, and S. Gaglio. Anchoring symbols to
conceptual spaces: the case of dynamic scenarios. Robotics and
Autonomous Systems, 43(2–3):175–188, 2003.

[3] S. Coradeschi and A. Saffiotti. An introduction to the anchoring
problem. Robotics and Autonomous Systems, 43(2–3):85–96, 2003.

[4] Rina Dechter, Itay Meiri, and Judea Pearl. Temporal constraint
networks. Artificial Intelligence, 49:61–95, 1991.

[5] P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T. Persson, and
B. Wingman. A distributed architecture for autonomous unmanned
aerial vehicle experimentation. In Proc. DARS, pages 221–230, 2004.

[6] Patrick Doherty, Jonas Kvarnström, and Fredrik Heintz. A temporal
logic-based planning and execution monitoring framework for un-
manned aircraft systems. Journal of Autonomous Agents and Multi-
Agent Systems, 2009.

[7] J. Fritsch, M. Kleinehagenbrock, S. Lang, T. Plötz, G. A. Fink,
and G. Sagerer. Multi-modal anchoring for human-robot interaction.
Robotics and Autonomous Systems, 43(2–3):133–147, 2003.

[8] Malik Ghallab. On chronicles: Representation, on-line recognition and
learning. In Proc. KR, pages 597–607, 1996.

[9] J. P. Gunderson and L. F. Gunderson. Reification: What is it, and why
should I care? In Proc. PerMIS, pages 39–46, 2006.

[10] F. Heintz, J. Kvarnström, and P. Doherty. Bridging the sense-reasoning
gap: DyKnow – stream-based middleware for knowledge processing.
J. of Advanced Engineering Informatics, accepted for publication.

[11] Fredrik Heintz. DyKnow: A Stream-Based Knowledge Processing
Middleware Framework. PhD thesis, Linköpings universitet, 2009.
Linköping Studies in Science and Technology, Dissertation No 1240.

[12] Fredrik Heintz, Jonas Kvarnström, and Patrick Doherty. Knowledge
processing middleware. In Proc. SIMPAR, pages 147–158, 2008.

[13] Fredrik Heintz, Piotr Rudol, and Patrick Doherty. From images to
traffic behavior – a UAV tracking and monitoring application. In Proc.
Fusion, 2007.

[14] L. Karlsson, A. Bouguerra, M. Broxvall, S. Coradeschi, and A. Saf-
fiotti. To secure an anchor - a recovery planning approach to ambiguity
in perceptual anchoring. AI Communications, 21(1):1–14, 2008.

[15] R. Koymans. Specifying real-time properties with metric temporal
logic. Real-Time Systems, 2(4):255–299, 1990.

[16] Lennart Ljung. System Identification: Theory for the User, 2nd ed.
PTR Prentice Hall, 1999.

[17] Amy Loutfi, Silvia Coradeschi, Marios Daoutis, and Jonas Melchert.
Using knowledge representation for perceptual anchoring in a robotic
system. Int’l J. Artificial Intelligence Tools, 17(5):925–944, 2008.

[18] Object Management Group. The CORBA specification v3.1.
[19] Stuart C. Shapiro and Haythem O. Ismail. Anchoring in a grounded

layered architecture with integrated reasoning. Robotics and Au-
tonomous Systems, 43(2–3):97–108, 2003.

[20] L. Steels. Shared grounding of event descriptions by autonomous
robots. Robotics and Autonomous Systems, 43(2–3):163–173, 2003.


