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Abstract— In the context of stereovision SLAM, we propose
a way to enrich the landmark models. Vision-based SLAM
approaches usually rely on interest points associated to a point
in the Cartesian space: by adjoining oriented planar patches
(if they are present in the environment), we augment the
landmark description with an oriented frame. Thanks to this
additional information, the robot pose is fully observable with
the perception of a single landmark, and the knowledge of
the patches orientation helps the matching of landmarks. The
paper depicts the chosen landmark model, the way to extract
and match them, and presents some SLAM results obtained
with such landmarks.

I. INTRODUCTION

A. Motivation

Most of the many existing contributions to the SLAM
problem in the literature tackle the estimation process –
see [6], [1] for an up to date state of the art. Various
formalisms have been successfully introduced, and important
contributions propose structures of the landmarks maps in
order to both reduce the algorithmic complexity of the
estimation process, and the difficulties related to the non-
linearity of the problem.

But any solution to the SLAM problem also call for
perception processes. This is obvious for the detection of
landmarks and the observation of their position, which comes
from the processing of acquired data. And if the landmark
matching problem can be solved by the mere knowledge of
their estimated and observed positions, it is more robustly
solved by the landmarks identification and recognition, be-
cause it is independent of the current position estimate.

The choice of the landmarks model is naturally a critical
point: a good landmark must be salient in the data, and
should be easy to detect and match from different viewpoints.
The model of a landmark can be split in two parts: one
part dedicated to the estimation (geometric variables which
defines its position), and one part dedicated to the matching
process, which includes the information that identifies it. For
instance, most of the solutions to the Vision SLAM problem
are based on interest points (Harris points, or “SIFT” points,
either in stereovision [9], [15] or monocular vision [5]).
Interest points provide these two kinds of information: they
correspond to 3D points in the environment, and they carry
visual information useful to match them.

The environment model made of such landmarks is poor,
and is only useful to solve the SLAM problem. There is a
strong interest to rely on richer landmarks models: on the one
hand it can help the matching process, and on the other hand
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it can yield environment models more representative of the
environment structure, on the basis of which other functions
than localisation can be applied (e.g. computation of free
space, computation of visibility...). The recent contributions
to vision SLAM which use segments as landmarks are going
in this direction [7], [18], [10].

B. Approach and outline
In this paper, we propose a landmark model based on

planar facets detected using stereovision. Relying on interest
points, this model contains six geometric parameters and
texture information: this description gives a better observ-
ability of the robot position by the perception of a small
number of landmark1, and makes the matching process easier
when perceiving a landmark from different view points. Sec-
tion II presents this landmark model and the corresponding
detection process in a pair of stereoscopic images. Section
III describes tracking and matching algorithms, and SLAM
results using those landmarks are shown in section IV.

C. Related work
There has been various contributions that represent the

environment with small planar patches. For instance, [13]
presents a method to extract patchlets from stereo images in
order to model the perceived surfaces, but do not register
multiple views. The main approaches that consider planar
surfaces in a SLAM context are the following:

• In [8], the authors present a monocular SLAM approach
in which 3D points are augmented with normal information.
When points are found to be on the same plane, their state
vector in the EKF filter is “collapsed”, so as to reduce the
computational cost.

• In [4], the authors use SLAM with point landmarks,
and find the planes among the point cloud using a RANSAC
process, thus allowing to derive a map with higher level
structural information.

• [3] presents an approach that recognizes known planar
objects that have been previously modelled and stored in a
data base.

• In [17], the authors present a method to detect and track
larger planar patches in the environment using a monocular
camera.

It is worth to notice that besides [17], these contributions
deal with the problem in small confined environments.

II. PLANAR FACETS

Facets correspond to planar areas detected around interest
points, by checking whether an homography between their
two stereoscopic views can be fitted or not.

1As opposed to [12], in which facets are only used to ease the matching
process



Fig. 1. Left image of a stereoscopic image pair, and extracted facets.

A. Facet model

A facet is a set of geometric properties that represent its
position and orientation, completed by signal information.
Figure 1 shows an example of facets extracted from a pair
of stereoscopic images.

Two equivalent geometric models are defined:
• A matrix representation of the position and orientation

of the facet (12 parameters: the facet centre, plus the 3
vectors of the associated frame)

• A minimal representation (six Euler parameters)
The matrix representation is used to compute comparisons

and transformations during detection and matching, whereas
the Euler angles are used for the SLAM estimation.

To simplify the matching process, facets correspond to
a constant size of planar patches in the environment (we
typically use a size of 10×10 centimetres), and the associated
texture is stored in a fixed size image (25×25 pixels in our
implementation).

B. Facets extraction

a) Interest point detection: Interest points are image
pixels to which are associated numeric properties that are
stable with respect to viewpoint changes. A facet can be
associated to a Harris point or to scale invariants points –
the later offer a better repeatability, at the expense of a much
higher computation time.

b) Homography estimation: Dense pixel stereovision
could be used to estimate the normal vector of the surface
corresponding to an interest point, with a least square plane
fitting algorithm applied to the neighbouring 3D points. But

fast stereovision algorithms yields noisy coordinates of the
3D points, which make the estimation of the normal very
unstable.

An approach based on the homography estimation is more
robust and reliable. The two image projections I1 and I2 of a
plane P corresponding to different viewpoints are linked by
a homography s ∗H , where H is a 3x3 matrix, and s is an
unknown scale factor (often defined so that (s ∗H)(3, 3) =
1.0). So two image patches Ip

1 and Ip
2 extracted from I1 and

I2 correspond to a planar patch in the environment if there
is a matrix H that satisfies:

T (H, Ip
2 ) = Ip

1 (1)

Where T (H, I) is the image resulting from the transfor-
mation applied to the image I using the homography H .

Alignment algorithms which compute the value of H are
optimisation procedures whose goal is to minimise:

E = T (H, Ip
2 )− Ip

1 − (µ(T (H, Ip
2 ))− µ(Ip

1 )) (2)

Where µ(T (H, Ip
2 )) and µ(Ip

1 ) are the mean of the pixels
of T (H, Ip

2 ) and Ip
1 , which reduce the influence of lightning

change between two images.
[2] provides an analysis of various alignment algorithms,

and also introduce the “Inverse Compositional Estimation”
(ICE) method for homography estimation. [11] introduce
the “Efficient Second-order Minimisation” (ESM) used for
tracking planar areas using an homography estimation.

For small image areas, both methods are able to estimate
an homography which either precisely corresponds to the
associated plane or is totally erroneous. Experimental trials
show that when an erroneous homography is estimated,
the resulting normal is completely unpredictable and not
reproductible: those cases can therefore be identified by
analysing successive observations (see III-C). Figure 2 shows
some evaluations of the two algorithms on synthetic images.
It appears that ICE gives more facets but with a bigger error,
while ESM tracks less facets, but is more accurate.

Fig. 2. Comparison of the ICE (dash lines) and ESM (solid lines)
algorithms. A plane textured with a real image is rotated in front of the
camera: the plot shows the estimated normal error (left y-axis, blue lines)
and the number of detected facets (right y-axis, red line), as a function
of the plane orientation with respect to the camera. The collapse of the
facet numbers around 40◦ is due to the fact that the interest point matching
algorithm can hardly match points under large viewpoint changes.



c) Normal estimation: Once the homography is com-
puted, the normal of the facet is computed using the ge-
ometric parameters of the stereovision bench – e.g. by
computing the coordinates of three points of the plane using
the homography.

d) Completing the facet orientation information: The
facet orientation is defined by three vectors: it is only
necessary to compute two of them, the third one being the
result of their cross product. The first vector is the normal
vector, and the second vector is computed on the basis of
the texture of the facet, so as to represent its orientation: the
gradient is computed on each pixel P of a square window W
around the interest point IP , using Sobel masks. The facet
orientation is then defined as the following weighted sum:

Orientation =
∑

P∈W w(d(P, IP ) ∗ atan2(Gy(P ), Gx(P ))∑
P∈W w(d(P, IP ))

(3)
Where d(P, IP ) is the distance between the pixel P and the
interest point IP and w(x) is a Gaussian weighting function.

Unfortunately, despite the decrease of sensitivity to noise
and to viewpoint changes brought by the weighted sum,
the orientation is either very stable (in most cases) or very
unpredictable and not reproductible. As for the computation
of homography, facets whose orientation is not stable can be
eliminated by analysing successive observations (see III-C).
In our convention, this orientation is the third Euler angle of
the facet (“roll”, denoted w).

The orientation is a reliable information for the basis, since
the physical size (in real world coordinates) of the texture is
constant and the perspective of the texture of window W is
corrected using the normal.

C. Texture

The texture of a facet F is interpolated from the image of
the camera, using the geometric properties of the facet. Each
point pt of the texture correspond to a 3D point P ∈ F , this
point P is then projected on a pixel pc of the camera.

Let PCamera the projection matrix of a point in the
environment on the focal plane of the camera, OF the vector
from the origin of the world to the centre of the facet F , and
v and w, the orientation vectors parallel to the facet plane.
Assuming the texture pixels are indexed from the facet centre
by i and j, and given r the resolution of the texture, the
following equation gives the value for each pixel of texture
as shown figure 3 :

pt(i, j) = pc(PCamera(OF + i ∗ v ∗ r + j ∗ w ∗ r)) (4)

By applying this interpolation to memorise the facet tex-
ture, the texture of the facet is represented the way it would
have been perceived with the camera “aligned” to the facet,
i.e. with the optical axis parallel to the facet normal, and the
horizontal axis aligned to the facet orientation w. Thanks
to this representation, during matching, a pixel by pixel
comparison of the texture allows to get a similarity score
between the observed texture and the memorised texture.

Fig. 3. Interpolation of the texture of a facet. The blue line shows an
association of an image pixel to a pixel of the memorized texture.

Note that to avoid situations of undersampling, facets which
are too far from the robots are not used so that a 10x10cm
patch correspond to at least 25x25 pixels.

D. Error model

The error model for the minimal geometric representation
of facets is composed of covariances of its centre coordinates
and of its Euler angles. The centre coordinates and the
orientation angles being computed by independent processes,
the centre/orientation covariances are equal to 0. Similarly,
the facet normal estimate is provided by the homography
estimate, and its orientation by an analysis of the texture:
these parameters variances are therefore independent. This
yield a covariance matrix with the following form:

Mstereo
[3×3] 0[3×3]

σ2
u σ2

u/v 0
02
[3×3] σ2

v/u σ2
v 0

0 0 σ2
w

 (5)

Where Mstereo
[3×3] is the stereovision usual error model

[19]. The variance and covariance values for the angles are
empirically set as follows: σu = σv = σw = 0.01rad and
σu/v = 0.01rad.

III. FACETS MATCHING

A. General Algorithm

The method used for facets matching is an extension to
the third dimension of an interest point matching algorithm
described in [9]: the idea is to mix signal information with
geometric relations between neighbouring facets to assess
robust matches.

Let F1 and F2 two sets of facets within which we
are looking for matches. The algorithm is a hypothesise-
and-test procedure: it starts by establishing a first match
between a facet from F1 and one from F2 using only signal
information. This first match hypothesis gives a geometric
transformation T1→2(f), which is used to focus the search of
additional matches, the establishment of additional matches
reinforcing the initial hypothesis.

1) Given f1 ∈ F1, let f2 ∈ F2 the facet whose texture
is the closest to the one of f1 – in other words, the facet
f ∈ F2 which maximises CompareTexture(f1, f) where
CompareTexture is a texture comparison function (for
instance the ZNCC score)



Fig. 4. Two results of facets matching. Red “+” denote the detected facets,
and green numbered squares show the ones that have been matched.

2) This first match allows to compute the geometric
transformation T1→2(f) such that:

T1→2(f1) = f2 (6)

3) ∀f ′1 ∈ F1, if there is f ′2 ∈ F2 which satisfies the
following two conditions:

T1→2(f ′1) ≈ f ′2 (7)

CompareTexture(f ′1, f
′
2) > Ttexture (8)

Then the couple (f ′1, f
′
2) is a match.

Figure 4 shows two examples of facet matching results.

B. Facets tracking

One of the advantages of using planar facets is the
possibility to re-project them and to predict how a camera
will observe them from a different viewpoint. Especially,
if the transformation is precisely known, it is very easy to
compare the observation with the texture in memory. This is
of a limited interest for SLAM when the change of view point
is not very well known – typically when closing a loop. But
between t and t+ 1, the estimation of the viewpoint change
Tt→(t+1) provided by the prediction step is precise enough
to predict the position and orientation of the facets observed
at time t to track them.

Let Ip(I l
t+1) and Ip(Ir

t+1) the list of interest points
detected at time t+ 1 in the left and right images I l

t+1 and
Ir
t+1, and F(t) the set of facets detected at time t.

1) ∀f ∈ F(t), the projection P l
f of f on the image I l

t+1

is computed
2) Let C the list of interest points located close to the

predicted position of the facet on the image:

C = Ipl ∈ Ip(I l
2), |Ip− PF | < ε (9)

Using the motion estimate Tt→(t+1)(base), it is possible
to predict the facet parameters, and especially to use its

Fig. 5. Tracked facets in two consecutive images. The red “+” denote
detected facets, the blue points are Harris points, and green squares shows
tracked facets.

predicted normal to compute the texture for each points of
C as in section II-C. Let I l

p(F ) ∈ C the interest point whose
texture is the closet to the one of the facet.

3) The same method is used to find Ipr(F ) in the right
image, with the added constraint that the two interest points
must satisfy the epipolar constraint

4) using the couple (Ipl, Ipr), the parameters of the facet
ftrack are computed as in section II, this allow to check that
ftrack = Tt→(t+1)(f)

With respect to other tracking methods (such as [16]
or [11]), this approach offers the interest to get a direct
control on the facets parameters, the possibility to update
their models and to filter out the ones for which an er-
roneous homography has been estimated, as shown in the
following sections. For 200 facets, a tracking step takes
300 ms (including all processing: image rectification, interest
point detection and facets tracking), whereas an initial facet
detection requires 500ms, and the matching without any prior
motion estimate requires a second 2.

C. Unreliable facets elimination

After the application of the matching or tracking algo-
rithms, some facets remain unmatched, or their observation
is not consistent with the matched facets observation. Such
facets correspond either to an interest point with a too small
repeatability, or to an erroneous normal or rotation estimate
(see section II-B). This can be due to various causes: for
instance, if the neighbourhood of an interest point has a weak
texture, this can lead to a wrong homography (a black point
on a white wall is a strong interest point, but the resulting
homography is very likely to be erroneous).

Unmatchable, untrackable and inconsistent facets are con-
sidered to be weak facets, and are simply discarded.

IV. APPLICATION TO SLAM

Landmarks are defined as a group of facets: the interest
of grouping facets for the SLAM estimation process is to
reduce the size of the filter state, while keeping as much
as possible information on the environment. Groups are
usually composed of twenty to fifty facets, which increases
the chance of detecting and matching a landmark when the

2Time measured on a Intel core Duo @ 2GHz using only one thread, on
512× 392 images.



robot closes a loop. Indeed, using facet clusters as landmarks,
landmarks can be associated by a single facet match.

As a consequence, every matched facet provides an obser-
vation of the landmark. To update the filter state, a weighted
sums of these observation is used, which means that the state
of facets is updated independently (a better solution would
be to associate an EKF filter to each group of facet, so as to
refine the inner geometric description of the landmark).

A. Facets grouping

Facets are grouped by geometric proximity, and so that
the density of the group is higher close to the centre of the
landmark. The reason is that facets closer to the centre of
the landmark gives a better estimation of its position. Indeed,
an error on the observation of the facet angles basis yields
an higher error on the position of the landmark the farther
away the facet is (the error is δposition = δangle ∗ distance,
assuming δangle is small so that δangle ' tan(δangle)).

After the detection step, we have a set F of facets.
1) Given f i ∈ F , given Gi the set of facets close of f i :

Gi = f ∈ F , d(f, f i) < r (10)

where d(f1, f2) is the distance between two facets f1 and
f2 and r is the radius of a landmark

2) Using this first group of facets, the centre C of the
landmark is computed as the barycentre:

OC =

∑
f∈=Gi wf ∗ f∑

f∈=Gi wf
(11)

The weighting wf is used to favour facets which are
considered to be better observed, i.e. whose normal is parallel
to the camera. Thus, the weighting function is:

wi =< axecamera|nf > (12)

3) The group of facets that define the landmark is the set:

f ∈ F , d(f,OC) < r (13)

Steps 2 and 3 could be repeated in a loop until the group of
facets remain stable. But experiments show that the group of
facets does not change much during the following iterations.
Figure 6 shows the result of grouping facets.

B. Integration in SLAM

Let A the set of landmarks in the environment, Ftr the set
of facets tracked at a given time t (that is to say the set of
facets which have been tracked and the facets which couldn’t
be tracked but were possibly in the field of view of the
camera), and Mrobot the prediction of the robot displacement
(provided by e.g. odometry).

1) The set of tracked facets Ftr is determined using the
algorithm described in section III-B, the motion estimation
Mrobot, and Ft−1, which allows to deduce a set of landmark
observations O

2) if the ratio of tracked facets is below a given threshold:

Fig. 6. The top image shows the facets which have been extracted in the
environment, and the bottom one shows the two groups of facets which will
be used as landmarks for SLAM.

|Ftr|
|Ft−1|

< thTrackedFacets (14)

it is necessary to start a new detection step:
- the facet detection process described section II-B returns

the set Fdetect of detected facets
- the matching algorithm of section III-A is used to com-

pute whether one of the landmark of A has reappeared
in the field of view. Considering a landmark A ∈ A
and if the set Fmatched of matched facets between the
facets of A and Fdetect is not empty, Fmatched 6= �.
Then the set of observations O is completed with a new
observation of the landmark, and the facets which are
part of this landmark are removed from Fdetect

- the grouping algorithm of the facets in section IV-A
allows to create a new landmark newlandmarks

3) the sets O and newlandmarks are used to update the
Kalman filter and its state vector

4) the set Ft is computed by removing facets that can not
be tracked anymore (because they left the field of view), and
by adding the newly detected facets:

Ft = (Ft ∪ Fdetect) \ Funtrackable (15)

where Funtrackable is the subset of facets of Ft−1 which
are not in the field of view of the camera.

This process is summarised by figure 7, and figure 8
shows two trajectories, one with the loop detection and one
where the matching algorithm has been disabled. Naturally,
applying the loop detection algorithm yields a final position
estimate that is closer to the ground truth.



V. FUTURE WORK

This work has shown the interest of modeling the environ-
ment using facets for the SLAM. There are however some
limitations that should be overcome:
• while facets are observable from different view points,

as they are centred on interest points, their detection is
still very sensible to changes of viewing angle.

• without an heuristic to reduce the space of research, the
facets matching process is a costly one. The heuristic
we used in this paper is based on the estimation of
the robot position: it is be necessary to develop other
methods, especially when this position has become too
imprecise.

Furthermore, this representation of the environment, while
richer than models using until now in vision SLAM is far
to use all the available information that can be extracted
from a stereovision bench. To limit this loss of information,
we have decided to suppose that the transformation between
two facets observed at a given time was certain (see sec-
tion IV-B), and that the two facets could be inserted in a
single landmark without any problems. But it would be also
interesting to re-estimate the relative positions of the facets
that are grouped with respect to the local frame associated to
the group landmark. This could be achieved by associating a
Kalman filter to each group landmark, using a “Divide and
Conquer” method as in [14].
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