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Abstract

Car pollution is one of the major causes of green-
house emissions, and traffic congestion is rapidly
becoming a social plague. Dynamic Ride Sharing
(DRS) systems have the potential to mitigate this
problem by computing plans for car drivers, e.g.
commuters, allowing them to share their rides. Ex-
isting efforts in DRS are suffering from the problem
that participants are abandoning the system after re-
peatedly failing to get a shared ride. In this paper
we present an incentive compatible DRS solution
based on auctions. While existing DRS systems
are mainly focusing on fixed assignments that min-
imize the totally travelled distance, the presented
approach is adaptive to individual preferences of
the participants. Furthermore, our system allows
to tradeoff the minimization of Vehicle Kilome-
ters Travelled (VKT) with the overall probability of
successful ride-shares, which is an important fea-
ture when bootstrapping the system. To the best of
our knowledge, we are the first to present a DRS so-
lution based on auctions using a sealed-bid second
price scheme.

1 Introduction

Road transportation is one of the major challenges for the new
millennium, as the current transportation models are both not
environmentally and socially sustainable. On the one hand,
car pollution is a major source of greenhouse emissions (see
for example [European Commission, 2010]) that, in turn, is
a cause of global climate change. On the other hand, traf-
fic congestions are a world-wide problem and are believed to
yield to a reduction of people’s quality of life [European Con-
ference of Ministers of Transport, 1999]. Apparently, there is
plenty of room for improvements, for example, when con-
sidering the fact that on average cars carry 1.6 passengers,
i.e., only an estimated 25% of emissions are caused by peo-
ple traveling, and the rest by moving “empty seats” [Jeanes,
2010]. Many researchers, spanning over multiple disciplines

*The authors are grateful to Robert Mattmiiller for the extensive
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such as transportation [Morency, 2007], economics [Brown-
stone and Golob, 1992], and behavioral, social and environ-
mental psychology [Nordlund and Garvill, 2003], have iden-
tified ride sharing as a solution to the inefficiency of current
transportation models.

To date, DRS systems (e.g., www . avego . com and www .
carticipate.com) are not capable of retaining a criti-
cal mass of users. The experience from previous projects
(see dynamicridesharing.org for a discussion on the
topic) highlights that major drawbacks of existing systems are
related to flexibility in usage, e.g., allowing people to decide
with whom they share a ride, and to high availability, as, on
average, if users do not get a ride within the first three at-
tempts, they will not return. In order to provide high avail-
ability of service, a DRS system must be able to provide ade-
quate incentives to users and, in particular, to drivers. Kamar
and Horvitz [Kamar and Horvitz, 2009] recently proposed the
ABC DRS system that dynamically generates shared plans
and computes fair payments using a VCG mechanism [Nisan
et al., 2007] as incentives for the users. However, besides
fair payments (which are not incentive compatible) their sys-
tem does not provide the required flexibility, as users have no
influence on their assignments.

In this paper we present a DRS solution based on auctions
with a second-price scheme. In contrary to existing solu-
tions, the proposed mechanism facilites both individual user
preferences for ride sharing partners and personal valuations
for specific rides. In colloquial terms, passengers are bid-
ding for increasing their ranking, and thus visibility to drivers,
whereas drivers can select passengers according to their pref-
erences. From the perspective of a single driver, potential
passengers can require different detours for being picked-up.

One important feature of our system is that it allows to
tradeoff the minimization of Vehicle Kilometers Travelled
(VKT), i.e. greenhouse emissions, with the overall probabil-
ity of successful ride-shares. On the one hand side, the auc-
tion mechanism automatically increases the chances of pas-
sengers bidding with higher valuation since their bid might
cover the detour costs of several drivers. On the other hand
side, longer detours are increasing the overall VKTs. We
show empirically that the variance in valuation and thus the
potential detour distances impacts both the probability for
ride-shares and the amont of saved VKTs. In fact, we show
that the lower the variance the closer the system performs to-



wards the optimal assignment in terms of VKT savings. This
opens the door for regulating the tradeoff, which is an im-
portant feature particularly for bootstrapping the system. For
example, permitted detour distances can be kept unbounded
at the beginning and then stepwise be decreased during the
life-time of the system in order to minimize VKTs.

The presented approach is related to the generalized
second-prize auctions (GSP) [Edelman er al., 2007] (also
known as Position Auctions [Varian, 2007]), used by Yahoo!
and Google to assign advertisement slots within web search
results [Battelle, 2005]. In general, it is very difficult to ob-
tain both efficiency and incentive compatibility in a GSP, as
for example the aforementioned ad auctions are not incentive
compatible. We show that our approach is incentive compat-
ible for passenger bids.

The paper is structured as follows. First, in Section 2, we
provide a brief overview of our DRS system. Then, in Section
3, we provide a formal characterization of our system and
we show that it is incentive compatible. In Section 3.3, we
describe our approach on dealing with the dynamic nature
of the problem. In Section 4, we describe an optimal, yet
strict, assignment method that we use as a baseline for the
evaluation of our system. In Section 5, we provide empirical
results, and in Section 6, we conclude with some discussion.

2 System Overview

The target system of our DRS approach is a smartphone ap-
plication for dynamic ride-sharing that operates in real-time,
does not require pre-declared paths or pickup points, and can
be used from virtually any location at any time. The system
promotes ride-shares among people with connections within
social networks (e.g., Facebook) in order to favor ride-shares
among users that trust each other. From a passenger’s per-
spective, the DRS system is like an “eBay of rides”. When
the application is launched on a smartphone, the user is asked
to enter a goal location, a deadline, and to place a bid. Then,
the system determines drivers that are online and compati-
ble for this ride based on the length of the detour to be per-
formed, and whether deadlines will comply. The passenger
can then select from the list of compatible drivers, which are
presented with additional information such as user ratings and
social network status. Finally, these drivers will receive the
bid, which is considered as a binding commitment of the pas-
senger, i.e., to accept the first driver that accepts. After the
ride, the passenger has the possibility to review the driver,
for example, by a rating (zero to five stars), and optionally a
comment.

From a driver’s perspective, the DRS system may be
thought as a GPS car navigation system connected to a social
network. The driver, just before starting to drive, declares a
goal location, and a deadline. Then, the system computes the
shortest path and gives directions to the driver for reaching
the goal. During the ride the driver may be informed, e.g.
vocally, about ride sharing offers from passengers nearby to
his route. For example, the system might announce that there
are three bids and the best one offers a profit of €10 for a
detour of 15 minutes (computed by the system). The sys-
tem may also announce that there is a bidding passenger that

is a remote friend according to a social network graph, e.g.
Facebook, and that other drivers rated him on average with
four stars out of five. The driver may accept the first bid
or request information on the next bid. Note that the cog-
nitive load of the driver can be reduced by a set of individu-
ally adjustable preferences that filter-out uninteresting offers
beforehand. When the driver accepts an offer, the application
changes the route according to the optimal joint route of both.
At the end of the trip, the system automatically performs the
payment and the driver has also the possibility to review the
passenger.

The implementation of the system is still ongoing work.
For our feasibility study we implemented a server platform
than can simulate offers and demands from drivers and pas-
sengers based on the road network of any city in the world.
Furthermore, we implemented a client application running on
the Android mobile phone architecture for accessing this data
from the road.

3 Multi-Agent DRS System

The DRS system may be thought of as a multi-agent system
composed of selfish agents that dynamically enter and exit the
system. Agents can enter the system either as passengers or
as drivers, and exit when they share a ride, reach their goal lo-
cations, or meet their deadline. For the purpose of this paper,
we assume that only one passenger can be assigned to (i.e.,
share a ride with) one driver. The proposed system can gener-
ally be extended for assigning multiple passengers to a single
driver. However, then the computational complexity for com-
puting all possible roundtrips (in the worst case (n—1)!/2) in-
creases, which necessitates the deployment of heuristic algo-
rithms, such as for example ant colony optimization [Dorigo
and Gambardella, 1997].

The goal of our system is twofold. On the one hand, to
minimize the greenhouse emissions by minimizing VKTs and
on the other hand, to increase the number of ride-matches by
providing an incentive compatible mechanism.

3.1 Agents

We denote by A, the set of agents that are in the sys-
tem at time ¢. Each agent a € A; has associated a type
(8(a,t)» 9(at)> A(a,t))> Where S(q 1), G,y and dlq 4 are, re-
spectively, the current position, the goal position and the
deadline for reaching the goal of a at time ¢.

The set A; of agents in the system at time ¢ is partitioned
in two sets:

o the set of drivers D; at time ¢, i.e. the set of people that
have a car and are willing to drive it;

o the set of passengers P at time ¢, i.e. the set of people
that either do not have a car, or they have it, but are not
willing to drive it.

Figure 1 shows the single paths of the driver and passenger if
driving alone (left side) and the path required if they decide to
share a ride (right side). It can easily be shown that in some
cases the joint route is significantly shorter than the sum of
both. For example, in case that both have the same goal at
a far distance and their starting locations are located in the
same neighborhood.
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Figure 1: Single routes of passenger (green) and driver (blue),
overall path required for ride share (orange).

The estimated duration of a ride share is, in general, differ-
ent for the passenger and the driver as the driver has to travel
an extra path. We define these durations as follows:

o duration,(d, p), i.e., the time required to drive by car
the shortest path going through sq,4), 8(p,+) and g 1)

e durationg(d,p), i.e., the time required to drive by car
the shortest path going through s(q,4), 8(p,t)> 9(p,+) and
9d,t)-

In order for a passenger and a driver to share a ride, their
deadlines must be compatible with respect to the time re-
quired to drive to their goal locations. For each point in time
¢ and for each passenger p € Py, we define the set C, 1
composed of all drivers d; € D, that are compatible with p,
ie. (duration,(d,p) < dl s —t) A (durationg(d,p) <
dl(d’t) — ).

Let us define ¢, as the cost per km of a driver. More-
over, we define len(p, p’) as the length of the shortest path
that leads from position p to position p’ by car in km. For
convenience of notation, we define the length of the path for
the passenger Ip(p) = len(s(p.e), 9(p,t)). the length of the
original path of the driver ld(d) = len(s4,), 9(a,)), and the
overall path of the ride share It(d,p) = len(s(az), S(pt)) +
len(s(p,0), 9p,0)) + len(9ep.,0) 9eae))-

A ride share (d, p); is the assignment to a passenger p € P,
of adriver d € C(, ) at time t. The valuation of the ride share

<da p>t is
va({d, pe) = (d(d) — 1t(d, p)) * ¢,

for driver d, while the passenger p values a ride from s, ) to
9(p,t) with

vp((d, p)e) > Ip(p) * cihyy-

Notice that the valuation of the ride share for a driver is al-
ways not positive, as he may usually have to drive a longer
distance to fetch the passenger and deliver him to his goal
location.

3.2 Auction Mechanism

The auction mechanism is used to provide a ranking for each
driver of the bids received from passengers. Agents when en-
tering the system announce their types. Additionally, passen-
gers announce a bid b, for their rides, which they are willing
to pay. In the end, the mechanism ensures that passenger p
will pay an amount pay, < b,. From specific user prefer-
ences and a social distance measure derivable from Facebook
or similar means, we assume a function valy(p) returning the

value driver d assigns to passenger p. Based on that, the util-
ity for a ride share (d, p); for the passenger is

up((d, p)e, bp) = v, ((d, p)i) — payy

and for the driver is

Ud(<d;p>t, bp) = vd(<d7p>t) +payp + vald(p)'

For each passenger p, the system computes the target drivers
to whom the bid of p is forwarded:

7—(p,t) = {di S C(p’t) s.t. ud(<d,p>t, bp) > O}.

The bids are ranked for each driver based on the utility
functions uq((d, p)¢,b,). If the value valq(p) has captured
all non-monetary preferences of the driver, the system could
just select the passenger on the first rank as the winner of
the auction. Notice that translating preferences into a single-
dimension utility value is quite common in economics. Of
course, one could also use multi-criteria preferences with the
effect that outcomes are not comparable.

Alternatively, we consider the case that the final decision
on who gets the ride is made by the driver by selecting a pas-
senger from the list. In an auction, the bids of the passenger
are ordered by the utility of the driver, provided the passen-
gers would actually pay their bid: by, , bp,, ..., by, . The pas-
senger that wins an auction, has to pay according to a second
price scheme. The winner p; with bid b, has to pay to the
driver pay,,,, which is the sum of

o —uy((d, pi)¢) i.e., the detour cost;

o va((d,pit1)t) + bp,,, + valg(pis1) ie., the utility of
the ride share with passenger p;1, provided that p; 4 is
the next passenger in the ranking of the auction and that
pi+1 would have paid the bid b, 1;

e —valy(p;) i.e, the negative valuation of the presence of
p; for the driver.

Notice that negative payments are not possible. In order to
be an eligible passenger (see the definition of the set 7 (p, t)),
the utility has to be positive. In particular, even if we would
have only the one eligible passenger, he would have to pay the
price the he bid - as is the usual way in 2-nd price auctions
when there is only one bidder.

3.3 Computation of Dynamic Assignments

In the dynamic ride sharing setting, announcements of pas-
sengers (e.g. bids) and drivers are arriving continuously at
arbitrary times. Hence, matches between passengers and
drivers have to be computed many times during the day which
implies that future requests are unknown during each plan-
ning cycle. Figure 2 depicts this problem from the perspective
of a single driver that receives announcements (circles in the
figure) with deadlines (diamonds in the figure) from passen-
gers {p1,...,ps}. Regardless of the assignment mechanism,
the problem is to decide an appropriate point in time for com-
puting and committing the assignment between drivers and
passengers. By computing we specifically mean to decide the
best assignment given the current knowledge, e.g., to com-
pute the current ranking of bids for each driver. By commit-
ting we mean to let the assignment come into effect, either



Time

Computation Decision

ODeadline O Announcement

Figure 2: Solving the dynamic ride sharing problem by a
rolling horizon decision making approach.

automatically or by presenting a ranked list of potential pas-
sengers to the drivers, which then finally commit a decision
by selecting one or none of the passengers on the list.

A common method to solve problems of this kind is the de-
terministic rolling horizon approach [Sethi and Sorger, 19911,
by which assignments are computed using all known infor-
mation within a planning horizon, but decisions are only
committed when necessitated by a deadline. As depicted by
the dotted vertical lines in Figure 2, computations are trig-
gered when the planning horizon grows due to deadlines from
new passenger announcements. As shown by the bold verti-
cal line in Figure 2, a decision is made shortly before the
deadline of passenger 3 expires. Notice that deadlines al-
ways expire before passengers and drivers change from being
compatible to being incompatible due to (duration,(d, p) >
dl, —t) V (durationg(d,p) > dlqg — t).

3.4 Incentive Compatibility

One desirable property of such a system is that it is incentive
compatible, i.e. that it is rational for each user to state his
type and preferences truthfully. Let us consider the driver’s
type first.

The starting position s, ;) is something the driver hardly
can cheat about because it is known by the system. The dead-
line and the goal location may be something the driver could
lie about. However, stating an earlier deadline only limits the
number of possible passengers and stating a later deadline
might lead to a late arrival. Lying about the goal could poten-
tially change the payment to the driver. However, since the
payment is computed automatically, this computation could
be done when the driver has finished his trip. If his goal loca-
tion has changed, the auction payment could be re-evaluated.
So, lying about the goal would not help.

Using the perspective of the passenger, the type is again
something one hardly would be untruthful about. It does not
make sense to lie about starting and goal location. Similarly,
the deadline should be stated truthfully because otherwise one
might limit the number of drivers or risks of being too late.
This is true, at least, if we consider one such auction. How-
ever, if we look at the entire system taking time into account,
then stating an earlier deadline could help because the end of
the auction is determined by the deadline (see Section 3.3).

If stating an earlier deadline causes a passenger who comes
later to be excluded, one could win an auction by lying. Of
course, this seems to be unavoidable. However, one could at
least punish the untruthful statement in cases when a passen-
ger looses an auction by disallowing a similar ride with a later
deadline in the next hour by the system.

Concerning the bid, the modified second-prize scheme
guarantees incentive compatibility in case of the automatic
assignment. Neither a higher nor a lower bid would change
the payment in case of winning the auction - provided one
bids more than the second bidder. For all losing bidders, a
lower bid would not help and a higher bid could hurt. So the
statement of the true valuation is a dominant strategy.

Now let us consider the case that the driver selects one pas-
senger from the list. Assuming that with lower ranks there is
a strictly decreasing probability that the driver selects a pas-
senger, the expected utility could be defined as the probability
of being chosen times the associated utility. Then it looks as
if we end up with the generalized second-prize auction (GSP)
[Edelman et al., 2007]. Note, however, that in our kind of
auction there is only one winner who has to pay the full price,
while in a GSP everybody wins something and also has to
pay something. So, the process of choosing somebody not
on the first rank must either be viewed as a non-rational ac-
tion or as a process where non-stated preferences play a role.
Here a passenger, who has all information, could clearly gain
something from placing bids that are below his true valuation.

4 Optimal Assignment

In this paper, the optimal assignment will be used as a base-
line for evaluating the proposed auction mechanism. When
computing the optimal assignment, the goal is to maximize
the total amount of VKT savings in order to reduce the over-
all travel costs and greenhouse emission. This is a common
approach in existing ride sharing systems, e.g., for the ride
sharing of commuters [Kamar and Horvitz, 2009].

The optimal assignment between passengers and drivers
can be computed by finding the maximum weighted bipar-
tite matching. We consider a matching as feasible only when
the travel distance of the joint path of passenger and driver is
smaller than the sum of the travel distances of both individual
paths, i.e., when the matching yields a reduction of the total
travel distance. Therefore, we have to extend the cost matrix
by the cases where passengers and drivers travel on their own
(assuming they can use a Taxi or their own car).

Equation 1 shows the extended cost matrix where
c(d;i,p;) = lt(d;,p;)/2 denotes the half joint cost for the
matching of driver d; and passenger p;, c(d;) = ld(d;) the
single cost of driver d;, and c(p;) = Ip(p;) the single cost of
passenger p;.

d; R dm P1 e Pn
P1 c(d1,p1) c(dm,p1) c(p1) s 0
: : : : : i~
Pn | c(di,pn) -+ c(dm,pn) 00 c(pn) o
dq c(dy) 0o S

c(d1,p1) c(d1, pn)

dm oo oo c(dm)  c(dm,p1) - c(dm,pn)



From the cost matrix in Equation 1 the optimal assignment
can efficiently be computed in O(N?) by a modified version
of the Hungarian algorithm [Kuhn, 1955], where N is the
maximal number of rows and columns of the cost matrix.

5 Experimental Results

We developed an experimental platform to validate the hy-
pothesis that an auction based system leads to a higher prob-
ability of ride-shares between passengers and drivers when
compared to methods optimizing on the VKTs only. We im-
plemented the optimal assignment by using the Hungarian
method with the cost matrix shown in Section 4 and the auc-
tion approach according to the description in Section 3.2.

5.1 Test Platform

The experimental platform simulates the behavior of drivers
and passengers, each having his own (randomly generated)
preference over closing a deal. Planned routes of passenger
and drivers are randomly sampled from a uniform distribu-
tion over city maps by generating for each passenger p € P,
and driver d € D the tuples (5(,.¢), G(p,t)) and (S(q,1), 9(d,) )
respectively. Uniform sampling can be considered as a con-
servative approach since in a real setting the locations would
be much more correlated, e.g., clustered due to commercial
areas, industrial areas, and shopping centers.

For sake of simplicity we assume that all drivers and pas-
sengers have compatible deadlines, i.e., that any driver can
deliver any passenger in time. Note that for both the opti-
mal approach and the auction approach the incompatibility
between a driver d; and passenger p; can easily be expressed
by setting the joint costs l¢(d;, p;) = oo.

We utilized OpenStreetMaps (openstreetmap.org)
data together with the MoNav planner that offers exact rout-
ing without heuristic assumptions at very little computational
demand due to a routing core based on contraction hierar-
chies [Vetter, 2010]. The planner is used at each time step
to compute the joint cost [t(d;, p,) for the matching of driver
d; and passenger p;, and the single costs Id(p;) and ld(d;)
of driver d; and passenger p;, respectively, for each p; € P
and d; € D. As a testbed for our experiments we used the
German cities of Freiburg and Berlin with a size for sampling
locations of 22km? and 170km?, respectively. Figure 3 de-
picts an example output of our system.

As performance metrics we counted during each run the
frequencies of successful ride agreements and the savings of
VKTs by comparing the joint kilometers against the kilome-
ters driven when driver and passenger are traveling on their
own. Experiments were conducted with varying ratios among
drivers and passengers. Results are averaged over 100 runs
for each combination of number of drivers (1-50) and num-
ber of passengers (1-50).

5.2 Optimal Assignment

In this experiment we evaluated the probability of matches
between drivers and passengers when applying the optimal
assignment on the map of Freiburg. In the optimal assignment
matches are only possible when the cost of the joint route of
driver and passenger is below or equal to the sum of both
routes travelled individually.

Hinterhew
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Figure 3: Output of our experimental platform displayed on
Google maps: (a) the single trips of two passengers and
drivers, (b) their shared rides computed by the auction mech-
anism.

A commercial DRS based on the optimal assignment could
be implemented so that each participant pays a monthly base
fee in advance. Then, these fees could be used for support-
ing individual ride matches, i.e., lowering the joint cost artifi-
cially by covering extra detour costs of the drivers. Figure 4
summarizes the matching probability from conducted exper-
iments with varying ratios between the number of passen-
gers and the number of drivers. Mean and variance are pre-
sented at different degrees of system support, i.e., the maxi-
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Figure 4: Average probability of ride matches during optimal
assignment with increasing system support tested on the city
map of Freiburg, Germany.

mal amount of detour kilometers that would be payed by the
system for enabling the match.

These results show clearly that without financial support
from the outside no satisfying matching probability can be
achieved which in turn can increase the number of people
abandoning the system. Adding system support increases the
number of matchings, however, it is unclear in a practical set-
ting how to weight it for specific driver-passenger pairings,
and how to define the base fee. Results presented in the fol-
lowing section are related to the auction system that in con-
trary automatically adjusts to individual user valuations.

5.3 Optimal vs Auction Based Assignment

In this section we compare the auction-based mechanism
with the optimal assignment. In the auction setting we sim-
ulated the individual valuations of passengers by random
sampling from a half-Gaussian distribution over the interval
Ip(p) * 2% > va((d, p)¢) > Ip(p) * Ckm, Where cl2% de-
notes the taxi price per km (€3.1) and cg,, the base cost per
km for a private driver (€0.3). The half-Gaussian distribution
was chosen to model that with high probability passengers are
willing to pay an amount close to the minimal costs for a sin-
gle ride and with low probability an amount that is close to the
price of the same ride with a taxi. For each randomly gener-
ated set D; and P; a sequence of auctions was initiated with
one for each driver d € D,. Passengers p € P, participated
in every compatible auction and the results of the auctions
were computed sequentially. Figure 5 and Figure 6 depict
the VKT savings and the probabilities for matching rides on
the Freiburg and Berlin map, respectively. We compared the
optimal assignment and the auction method using different
variances o for the half-Gaussian distribution.

The results clearly show that with increasing variance, i.e.
higher willingness of the passengers to pay more than the
base costs, the probability of matchings increases. This is ob-
vious since higher investments have more potential for cov-
ering longer detours. However, with increasing variance also
the amount of VKTs savings decreases since longer detours
are taken by the drivers. Interestingly, when limiting the max-
imal valuation of passengers to zero, i.e. bids are exclusively
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Figure 5: Experiments on the Freiburg city map with increas-
ing number of drivers and passengers: (a) The percentage of
matchings. (b) the savings of total VKT (Vehicle Kilometers
Travelled).

the base costs (denoted by auction base in the figures), nearly
the same amount of VKT savings are reached as with the op-
timal assignment. Therefore, our approach allows to trade-off
near to optimal VKT savings for higher system availability by
limiting the amount of allowed detour costs, as needed. This
can easily be implemented by removing drivers from the set
of compatible drivers in Section 3.2 if their detours are above
the limit.

6 Discussion

In this paper we have presented a novel DRS system that:
1) allows more flexibility than state of the art systems, as it
gives more freedom to users in the choice of their ride-sharing
partner; 2) is robust in the sense that it promotes truth-telling
about most aspects and fairness in payments; and 3) allows to
trade-off VKT savings with the probability in finding matches
between drivers and passengers.

Moreover, despite giving freedom to users to deviate from
the optimal solution, experimental results show that the per-
formance of our system is very close to optimal. In partic-
ular, it emerges that, depending on the maximum detour we
allow in the system, we can tradeoff the probability of having
a matching (i.e. a ride-share) versus minimization of VKT.
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Figure 6: Experiments on the Berlin city map with increas-
ing number of drivers and passengers: (a) The percentage of
matchings. (b) the savings of total VKT (Vehicle Kilometers
Travelled).

This result can be exploited to tune the system in order to
achieve a critical mass, and thus high availability of service.
For example, when the system is first launched one could al-
low for higher detours in order to maximize the matches and,
thus, promote the creation of a critical mass of users. Then,
detours would be limited as a long term solution in order to
minimize VKT.

Current limitations of our system are the restriction to dual
ride shares, i.e., one passenger and one driver, as well as the
lack of a large-scale experiment proving the performance of
our system in practice. In the near future, we plan to develop
realistic simulations based on existing traces of user behav-
iors and field experiments with real users, in order to better
understand the impact of limiting detours with respect to the
achievement of critical mass. Moreover, we plan to address
the issues related to the creation of ride-shares composed of
more than two users and the impact of heuristic methods for
computing the round-trips.
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