
Case-Based Techniques Used for Dialogue Understanding and Planning in a
Human-Robot Dialogue System

Karolina Eliasson
Linköping University

Department of Computer and Information Science
SE - 581 83 Link̈oping

karel@ida.liu.se

Abstract

We describe an approach to the use of case-based
techniques for natural language understanding and
for action planning in a system for dialogue be-
tween a human and a robot, which in our case is a
UAV (unmanned aerial vehicle). A single case base
and case-based reasoning engine is used both for
understanding and for planning actions by the UAV.
This approach has been developed through the
work on an experimental dialogue system, called
CEDERIC. Dialogue experiments where a number
of users have solved tasks by dialogue with this sys-
tem showed very adequate success rates, while at
the same time they indicated a few weak points in
the system that could then easily be corrected.

1 Introduction
Artificial intelligence has always been associated with natural
language understanding, generation, and dialogue. However,
traditional dialogue systems do not incorporate any learning
abilities and very few memory abilities. The memories used
are often dedicated only to discourse modeling. Instead of
learning, most systems rely on a repertoire of manually writ-
ten phrases that are used to mimic intelligence and react cor-
rectly on the user’s input. There are two major disadvantages
with this design:

• It is very difficult to anticipate all the different phrases
the user may use to communicate with the system. This
approach requires substantial knowledge of dialogue
system development and domain knowledge and it is te-
dious and time consuming.

• The dialogue system can not adapt to a new situation
nor function well together with a learning artificial intel-
ligence back end system that evolves over time.

The first item can partly be solved by using Wizard-of-Oz
techniques. On the other hand, Wizard-of-Oz tests are time
consuming and it is difficult to know if the entire spectrum of
phrases is covered. Further more, even if the system is well
written and covers the current aspects of use, it is still static
and can not adapt to a new situation.

In this article, an approach to use machine learning tech-
niques for natural language understanding and for action

planning in a human-robot dialogue system is presented. This
approach has been developed through the work on an experi-
mental dialogue system called CEDERIC, which is an abbre-
viation for Case-base Enabled Dialogue Extension for Ro-
botic Interaction Control.

The machine learning algorithm selected is case-based rea-
soning (CBR)[Aamodt and Plaza, 1994]. CBR is chosen
partly because it mimics human learning[Schank, 1982] and
partly because it learns through its entire lifetime, unlike
many other machine learning algorithms that only learn dur-
ing an initial learning phase. CBR is used in our approach to
interpret utterances from the operator and messages from the
robot, and to find suitable responses to them, hence the dia-
logue system learns from experience and adapts to its current
operator’s use of language and the domain at hand. Further
more, CEDERIC uses case-based planning (CBP)[Spalazzi,
2001] to make effective use of the experiences gained and
combine it in different ways and in various contexts to solve
new, unseen problems.

2 An Overview of CEDERIC
CEDERIC is developed within the WITAS project whose
goal is to develop an autonomous unmanned aerial vehi-
cle (UAV) system that is able to make rational decisions
about the continued operation of the aircraft, based on var-
ious sources of knowledge including pre-stored geographi-
cal knowledge, knowledge obtained from vision sensors, and
knowledge communicated to it by data link[Dohertyet al.,
2000]. The UAV used in the project is a Yamaha RMAX heli-
copter which can be controlled by high level voice commands
or by written commands.

In a dialogue with such a robot, the dialogue manager must
be able both to interpret the utterance from the operator, re-
ceive additional information to be able to react correctly to
the utterance, compute data internally, and send commands
to the agent and results to the operator. To do this, it has to
distinguish betweendialogue acts, physical acts, andinternal
acts. A dialogue act can be to ask a clarifying question to the
operator, a physical act can be to ask the agent to perform a
high-level command such asland , and an internal act can
be to look up information in a database. These acts must be
executed in a correct order to solve the problem at hand. If
the information is not sufficient for the dialogue manager to
complete the task then it has to ask for complementary infor-

Operator: Show me the front facade of the main
building.

CEDERIC: I am taking off.
CEDERIC: Is this view ok?
Operator: Climb five meters.
CEDERIC: OK I have ascended five meters.
Operator: Fly to the red car.
CEDERIC: OK I am starting to fly now.
CEDERIC: I am at the car now.
Operator: Now please go to the school.
CEDERIC: I have several schools to choose between.

Which one do you mean?
Operator: The red one.
CEDERIC: OK I am starting to fly now.
CEDERIC: I am at the red school now.

Figure 1: An example dialog performed by CEDERIC.

mation from the operator. In such a case a discourse model is
needed to, e.g., resolve anaphoric references and to manage
sub-dialogue.

The various kinds of acts that are needed to perform a dia-
logue are stored as plans in CEDERIC. For example, for the
user utterancefly to the hospital , a plan can be to
look up the position of the hospital, make sure that the heli-
copter is in the air, create a command to be sent to the robot
that commands it to fly to the position of the hospital, wait
for the robot to announce that it has reached the position and
finally report to the operator that the robot has reached its
destination.

2.1 A Dialogue Example
Because of CBR, the operator is free to use synonyms in the
utterances and words can be added or deleted without reduc-
ing the performance of the system, hence the operator does
not have to learn and remember exact formulations.

Planning adds the functionality to combine cases to solve
new, unseen problems, hence the information already known
to the system can be used in new, creative ways. Planning also
makes CEDERIC understand implicit commands and solve
problems on its own. For example it is very useful when the
system realizes some of the preconditions for performing a
command from the operator, are missing. Using planning,
CEDERIC can automatically perform some actions to be in a
state that satisfies the preconditions.

Figure 1 gives an implemented and working example dia-
logue between an operator and CEDERIC. It is nontrivial in
several aspects and illustrates the benefits of the CBR/CBP
approach. The first command from the operator activates a
case in the case base that moves the on-board camera in the
right direction to be able to view the front facade of the men-
tioned building. As the helicopter is still on the ground at
the start of the dialogue, this command can not be directly
performed, hence the system has to search all its knowledge
and experiences to solve the problem and fulfill the precondi-
tions of being in a position where the front facade of the main
building can be viewed in the camera. The solution of taking

off before executing the command is found automatically by
the system using CBP.

The commandFly to the red car is not previously
stored in the case base, but the rather similar commandFly
to the hospital is stored. However, the solution to
the latter command does not solve the problem of the former
command because a vehicle and a building are not dealt with
uniformly. By using information from the commandWhat
is the position of the red car , which is stored
in the case base, a plan for solving the original command can
be found using CBP.

The fourth operator command in the dialogue is an exam-
ple where CBR is used but CBP is not. The commandNow
please go to the school is not previously stored
in the case base but the similar commandFly to the
hospital is. By using similarity measures and adaptation
techniques the solution of the latter command can be trans-
formed to solve the former command. This command also
exemplifies the use of sub-dialogue and anaphoric references.

2.2 System Architecture
The CEDERIC architecture is shown in Figure 2. The dia-

Robot

Simulator

Robotic Control
 System

Case-Base Manager

Lexicon

Case Base

Domain Knowledge

Discourse Model

CEDERIC

Graphical Interface

SGUI

Speech Recognition

Speech Generator

or

Figure 2: Architecture of CEDERIC.

logue manager is connected to a Speech and Graphics User
Interface (SGUI). SGUI contains a map of the area where the
UAV is situated and functionality for the operator to choose to
use either speech or text for the input to the dialogue system.
The system Nuance1 is used as the speech recognizer, and the
systems Festival2 and BrightSpeech3 are used for speech gen-
eration. Nuance and BrightSpeech are commercial products.
CEDERIC is also connected to the robotic control system of
the actual helicopter or to a simulator that simulates the robot
and the environment.

1http://www.nuance.com/
2http://www.cstr.ed.ac.uk/projects/festival/
3http://www.brightspeech.com/

CEDERIC consists of alexicon, a case base, domain
knowledge, adiscourse moduleand acase-base manager.

The lexicon is used to classify the words in the user ut-
terance according to some predetermined word classes. The
classified utterance is matched against cases in the case base
by the case-base manager. The discourse module is respon-
sible for maintaining a discourse model of the dialogue in
order to be able to interpret the operator’s sentences. The
discourse model helps the system to interpret references that
may refer to sentences earlier in the dialogue, to keep track of
different ongoing dialogues, and to decide if it is a good mo-
ment to send a phrase to the operator or not. The domain
knowledge contains an ontology of the world as the robot
knows it and a categorization of the world items. The purpose
is twofold. It serves as a world representation which gives
CEDERIC knowledge about which buildings there are in the
known world, what kinds of buildings they are, where they
are located, and their attributes such as color and facade ma-
terial. It also gives CEDERIC fundamental knowledge about
categorization, e.g., which items can be called buildings in
the dialogue and which can not.

Regardless of whether a speech recognizer is used or not,
a sentence from the operator arrives to CEDERIC in plain
text format. It is classified and processed in the CBR engine.
CEDERIC returns either a new phrase in text format to be
sent to the speech generator, or a request to the robotic control
system.

3 The Case Base
The actual dialogues are saved in the case base. The initial
functionality is hand crafted, but more functionality is added
automatically when the system is used. There are two basic
case structures in the case base:dialogue casesandact cases.
Figure 3 shows an example of a dialogue case for the utter-
anceFly to the hospital and an example of the first
act case in the plan.

Dialogue Case Example

Save "fly to the
hospital"
on the discourse.

Discourse

fly-command: fly
to-word: to
article-word: the
building: hospital

Problem

get-reference-id
get-building-position
altitude-question
altitude-response
altitude-result
fly-to-position
report-flight-result

Act Cases

Problem

Preconds: A unique
reference id

Effects: A position

Solution

A function that gets
the position given
the id

Act Case Example

Fly-to-plan

Get-reference-id

Figure 3: An example of a dialogue case and a close up on
the first act case in the plan.

3.1 Dialogue Case
A dialogue case contains the plan for solving a particular kind
of problem. It consists of three parts:

• A Problem Partthat describes what problem the case is
solving. The problem is usually described by the words
in the input phrase used by the operator.

• A Discourse Part that describes how the discourse
model should be updated according to the problem.

• A Plan Part containing a plan that solves the problem.
The plan consists of references to act cases that them-
selves are cases in the case base.

3.2 Act Case
An act case is either a dialogue act, a speech act or an internal
act. Arranged in plans, they build up the functionality of the
dialogue manager.

Act cases consist of the following parts:

• A Problem Partthat describes which preconditions that
have to be met to be able to execute the act case, and the
effects of the act case.

• A Solution Partcontaining a solution to the problem as
a higher order function and the parameter values used
when the solution was executed.

The preconditions and the effects of an act case are used for
planning and validation purposes. To be able to construct a
plan in advance that probably will hold when executed, some
knowledge of each act is necessary. The precondition part
holds information of what has to be known before the act can
be executed, and the effect part holds information of what
result the act can produce. The effects may then serve as pre-
conditions for other acts further on in the plan. Each act may
produce several different types of results depending on cir-
cumstances that are only known at execution time, therefore
the effects part must contain information about each possi-
ble result type so that the planner can take different possible
outcomes into account.

The solution function constructs the actual result, such as
a message to be sent to the helicopter control system, or per-
forms some internal computations.

4 Case-Base Manager
The case-base manager is the engine of CEDERIC. It man-
ages different ongoing dialogues and executes the best fitting
act case. If there are open and ongoing dialogues, the new
input is first seen as a continuation of one of the open dia-
logues. If it does not fit as a continuation, it is seen as the
start of a new dialogue, and a suitable, similar dialogue case
is searched for, and the plan is executed. The dialogue han-
dling allows dialogue topic switches, where the operator may
start a new dialogue before ending an old one, or return to an
old dialogue, without confusing the system.

4.1 Syntactic Categorization of Words
The utterance from the operator enters the system as a sen-
tence in text format. Each word in the utterance are cate-

gorized using a lexicon. An entry may for example look as
follows, in the KM4 notation[Clark and Porter, 2004]:

(school has
(instance-of (building))
(plural (schools))
(weight (2)))

whereschool is modeled to be an instance of the category
building . It also has the attributeplural which is set
to schools , and a weight which is set to 2. The weight is
used in the similarity function and is an indication of how im-
portant the word is for the comprehension of an utterance. A
word may be ambiguous and belong to several different cat-
egories depending on the semantics of the utterance. In that
case, the word is categorized with all the matching categories,
and the similarity function decides which meaning to use. A
word that is not present in the lexicon obtains the category
no category .

4.2 Case Retrieval
In the retrieval phase, the utterance is compared with the
problem part of each dialogue case, and a similarity value
is computed. The cases are then priority-ordered using the
similarity value. The similarity value is based on how well
each word in the utterance matches the words in the problem
formulation and the weight of each word according to the lex-
icon. The case retrieval phase is only executed if the input
utterance is a start of a new dialogue, i.e., there are no old or
ongoing dialogues where the utterance fits as a continuation.

To be more specific, the similarity value for each dia-
logue case is computed using the following formula, where
wc means the sequence of words in the problem part of the
case andwi means the sequence of words in the input from
the operator:

Similarity = points(wc, wi)− uncovering(wc, wi)

where
points(wc, wi) =

∑
wx∈wc

∑
wy∈wi

class− value(wx, wy)× word− weight(wy)

class− value(wx, wy) =





3 if the words are equal
2 if the words are

classification similar
0 otherwise

Two words,w1 andw2, areclassification similarif either
w1 is equal to the classification ofw2, the classification of
w1 is equal tow2, or the classification ofw1 is equal to the
classification ofw2.

When two cases have the same similarity-value they are
subprioritized using theuncoveringfunction which indicates

4The language KM (the Knowledge Machine) is a frame-based
knowledge representation language used in CEDERIC both for rep-
resenting the case base, the lexicon, the domain knowledge, and the
discourse model.

how much the sequences differ in length. A low value on the
uncoveringfunction is prioritized.

When the cases are ranked in order of priority, the case with
the highest priority is chosen unless it does not have lower
similarity value than a threshold. In that case, no similar case
was found.

If a similar case is found, the plan is validated before exe-
cution. In the validation phase, the preconditions of each act
case are checked. They can be fulfilled by words from the
input phrase or by effects from previously checked acts in the
plan.

5 Planning
Planning is used in two different phases in CEDERIC:

• When there is a plan fault in the plan validation process
of the most similar dialogue case, i.e., when the precon-
ditions of the act cases in the plan are not met.

• When there is a plan fault in the execution of a plan.

The same replanning routine, based on case-based planning
(CBP) methods, is used in both cases. In CBP, different plans
are combined to form a new plan that can serve as a solution
to a new problem. In CEDERIC, two plans can be combined
to form a new plan, where one of the original plans works
as the foundation on which the new plan is constructed. The
preconditions and effects in the act cases are used in the re-
planning process to make sure the newly constructed plan is
valid. Figure 4 shows a schematic illustration of a planning
problem and its solution. When a plan fault is encountered,

Plan fault

Fetch repair candidate plans

Select best repair plan

Append to construct new plan

Figure 4: A schematic view of replanning in CEDERIC.

the effects of the previous act cases in the plan, or the results
if it was an execution plan fault, are sent to the replanning
routine together with the rest of the plan, i.e., the plan where
the act case that caused the fault is the first item. Other plans
in the case base are searched to find a plan or part of a plan
that is valid to execute given the preconditions and results al-
ready obtained. All such repair candidate plans are examined
to find a plan sequence that can be merged with the original
plan to create a new valid plan, that is, to find a plan sequence
to execute that can produce the information needed to be able
to execute the item that caused the plan fault. If several such
plans are found, the shortest one is chosen.

If no valid plan is found, the first act in the original plan
is removed and the algorithm tries again to find new, partly
matching plans to be used to repair the original plan, but this
time the goal it to be able to satisfy the preconditions of the
next act case in turn in the original plan. In this manner, parts
of the original plan are replaced by parts of another plan. The
newly found plan sequence is then linked back to the origi-
nal plan. Together with the already checked or executed act
cases, the newly created plan consists of a sequence from the
foundation plan, a sequence from a repair candidate plan, and
then again a sequence from the foundation plan. If it was im-
possible to link back to the original plan, the planning routine
halts with a failure message. In this way, the goal of the plan-
ning routine is exchanged during the planning attempts and
the routine explores more ways of solving the problem.

The revised plan may again obtain a plan fault when exe-
cuted, and it is then repaired using the same replanning rou-
tine, but the system has to make sure it does not repair the plan
with a solution that has been tested and failed previously. To
avoid such cycles, the new plan is compared with the execu-
tion history, and the new plan has to be unique in some sense
to be a promising repair plan.

6 Case Retention
When a new problem is not identical to the problem part of
the plan case that was used for solving it, or the plan was not
identical with the plan of the similar case, and the execution
of the problem was successful, the problem and solution are
saved as a new case in the case base. The new cases increase
the case base and the new experiences can be used to solve
other problems in the future. A new problem and solution
can differ from the cases used to solve it if one or more of the
following has happened:
• One or more of the words in the input are not identical to

the words in the problem part of the dialogue case. They
are only classification similar.

• One or more of the words in the input are added or
deleted from the words in the dialogue case, but the
plans are identical to each other.

• The plan has been replanned in the plan check phase.

• The plan has been replanned in the plan execution phase.
In those cases, a new plan case with corresponding act cases
are created and stored in the case base.

7 Tests and Results
Using CBR, it is possible to solve similar problems as the
ones described in the case base, by adapting the solution to
the most similar problem stored in the case base. This ap-
proach is mainly used in CEDERIC to understand and react
correctly to utterances where some of the words in the utter-
ance are missing, where additional words are added, or where
some of the words are exchanged to synonyms that may be
unfamiliar to the system. In those cases where CBR methods
alone fail, CBP is used to combine experiences from several
different cases to find a solution to a new problem.

In a test performed manually, the performance of the sys-
tem has been tested with a case base that initially contained 22

different problems. Using only CBR, the system could solve
at least another 30 similar but not identical problems. Using
CBP, the system could solve 8 additional problems that could
not be solved with CBR techniques only.

7.1 User Tests
CEDERIC has been tested in user tests, together with the
SGUI user interface and simulator. In one test, five persons
without previous experience of CEDERIC were used. A sim-
ple scenario including five missions and a model of the world
where the helicopter is situated was given to each test person
before the test began. The missions were described in such a
manner that they did not reveal the actual phrases that should
be used to solve them. The goals of the missions were for
example to move the helicopter to a given position indicated
by a building or to move it to a certain altitude.

A reference test was also performed where five persons,
different from the ones that tested the original system, were
testing a stripped baseline version of CEDERIC. The test pro-
cedure, including the order in which the missions was per-
formed, was identical to the test procedure used in the test
of CEDERIC. In the baseline version, the similarity function
only accepted utterances where the word categories, the order
of the words in the utterance, and the length of the utterance
were identical to the matching case. The new experience was
not saved in the case base and the planning algorithm was
removed. To be able to use the same test scenario, some ad-
ditional cases that in the original version demanded planning
(e.g. sub-dialogue due to the need of clarifying questions)
had to be added to the case base.

Every test person that tested CEDERIC completed the mis-
sions successfully. No one out of the five test persons that
tested the baseline system succeeded with mission 4. The re-
sults of the tests are shown in Figure 5. The large difference

Mission 1 Mission 2 Mission 3 Mission 4 Mission 5
0

2,5

5

7,5

10

12,5

15

17,5

20

22,5

25

27,5

Baseline System

CEDERIC

Figure 5: The result of the user test where the y-axis is the
average number of turns used to complete each mission.

between the number of turns needed to complete each of the
five missions using CEDERIC compared to the number of
turns needed to complete (or fail due to the test person giving
up trying) the missions using the baseline system indicates
that CBR and CBP significantly improves the usability of a
dialogue system.

The suggested formulations, that was not understood by
CEDERIC at the time of testing, was easily implemented af-
ter the entire test for all test persons were performed. Hence,
the system could be improved using the dialogue collected
from the tests.

7.2 Related Work

Systems for dialogue with a UAV have been implemented ear-
lier, e.g., in the WITAS project[Dohertyet al., 2000]. Sev-
eral dialogue systems have been developed within the project.
The first WITAS Dialogue System[Lemonet al., 2002] was
a system for multi-threaded robot dialogue using spoken I/O.
The DOSAR-1 system[Sandewallet al., 2003] was a new
implementation using another architecture and a logic base.
Our work takes a rather different approach than their systems
due to the use of machine learning and planning.

Machine learning techniques in combination with dialogue
systems has mostly been used to learn dialogue strategies,
that is, to formalize a dialogue as an optimization prob-
lem [Levin et al., 2000], [Singhet al., 2002]. The method
is useful in a dialogue system where the information needed
can be asked for in several different ways and in different or-
der. Learning dialogue strategies differs from the approach
in CEDERIC both in the performance and in the achieved
goal, as CEDERIC attempts to learn entirely new problems
and their solutions.

Murao et al. present a dialogue system that uses CBR to
learn new dialogues from an example corpus[Murao et al.,
2003]. The cases are made up by an input from the user in
natural language and the solution to the input is a reply, also
in natural language. Longer dialogues are not captured in the
case base in the same manner as CEDERIC does, and no plan-
ning is performed to solve new unseen problems. In combi-
nation with the lack of discourse information, this makes the
dialogue rather strict and simple, compared to the dialogues
in CEDERIC.

CEDERIC has much in common with the interactive plan-
ning system TRIPS[Ferguson and Allen, 1998]. The goal
in both projects is to give an approach to integrated AI sys-
tems, where several AI components are integrated so solve
end-to-end problems. However, TRIPS makes a more pre-
cise distinction between dialogue and action planning than
CEDERIC. Our approach integrates planning with dialogue
understanding and generation more tightly. In addition it also
integrates machine learning.

7.3 Conclusion

We present a combined CBR and CBP approach to nat-
ural language understanding. Both the CBR/CBP application
to dialogue management, and features related to CBR/CBP
techniques, such as the similarity function, the construction
of the case base, and the planning algorithm, are novel con-
tributions. The approach has turned out to be fruitful. The
user of CEDERIC can be more relaxed in the dialogue with
the system, and she does not have to learn the exact phrases
to be used since the system can make a qualified guess out
of the information at hand. CEDERIC also makes effective
use of the knowledge gained from previous experiences, and
is able to solve problems that it has not encountered before,
without any help from a human operator. This functionality
gives a flexible dialogue manager that is able to understand a
larger number of phrases than are initially given, without the
need of a human developer adding the phrases by hand. User
tests shows that CEDERIC has a good success rate and that

the machine learning approach actually facilitates the use of
the system.

Acknowledgments
This research work was funded by the Wallenberg Founda-
tion and the Swedish National Graduate School of Computer
Science (CUGS).

References
[Aamodt and Plaza, 1994] Agnar Aamodt and Enric Plaza.

Case-based reasoning; Foundational Issues, Methodolog-
ical Variations, and System Approaches.AI Communica-
tions, 7(1):39–59, 1994.

[Clark and Porter, 2004] Peter Clark and Bruce Porter.KM -
The Knowledge Machine 2.0: Users Manual, 2004.

[Dohertyet al., 2000] Patrick Doherty, G̈osta Granlund,
Krzysztof Kuchinski, Erik Sandewall, Klas Nordberg, Erik
Skarman, and Johan Wiklund. The WITAS Unmanned
Aerial Vehicle Project. InProceedings of the 12th Euro-
pean Conference on Artificial Intelligence, pages 747–755,
2000.

[Ferguson and Allen, 1998] George Ferguson and James F.
Allen. TRIPS: An Integrated Intelligent Problem-Solving
Assistant. InAAAI ’98: Proceedings of the Fifteenth Na-
tional Conference on Artificial Intelligence, pages 567–
572, 1998.

[Lemonet al., 2002] Oliver Lemon, Alexander Gruenstein,
and Stanley Peters. Collaborative Activities and Multi-
tasking in Dialogue Systems.Traitement Automatique des
Langues (TAL), special issue in dialogue, 43(2):131–154,
2002.

[Levin et al., 2000] Ester Levin, Roberto Pieraccini, and
Wieland Eckert. A Stochastic Model of Human-Machine
Interaction for Learning Dialog Strategies.Journal of Ar-
tificial Intelligence Research, 8(1):105–133, 2000.

[Muraoet al., 2003] Hiroya Murao, Nobuo Kawaguchi,
Shigeki Matsubara, Yukiko Yamaguchi, and Yasuyoshi In-
agaki. Example-based Spoken Dialogue System using
WOZ System Log. InSIGdial Workshop on Discourse
and Dialogue, pages 140–148, 2003.

[Sandewallet al., 2003] Erik Sandewall, Patrick Doherty,
Oliver Lemon, and Stanley Peters. Words at the Right
Time: Real-Time Dialogues with the WITAS Unmanned
Aerial Vehicle. InProceedings of the 26th Annual Ger-
man Conference in AI, pages 52–63, 2003.

[Schank, 1982] Roger C. Schank.Dynamic Memory: A The-
ory of Reminding and Learning in Computers and People.
Cambridge University Press, 1982.

[Singhet al., 2002] Satinder Singh, Diane Litman, Michael
Kearns, and Marilyn Walker. Optimizing Dialogue Man-
agement with Reinforcement Learning: Experiments with
the NJFun System.Journal of Artificial Intelligence Re-
search, 16(1):105–133, 2002.

[Spalazzi, 2001] Luca Spalazzi. A Survey on Case-Based
Planning.Artificial Intelligence Review, 16(1):3–36, 2001.

