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Abstract

In real world applications robots and software agents often have to be equipped with higher level cognitive functions that enable
them to reason, act and perceive in changing, incompletely known and unpredictable environments. One of the major tasks in
such circumstances is to fuse information from various data sources. There are many levels of information fusion, ranging from
the fusing of low level sensor signals to the fusing of high level, complex knowledge structures. In a dynamically changing environ-
ment even a single agent may have varying abilities to perceive its environment which are dependent on particular conditions. The
situation becomes even more complex when different agents have different perceptual capabilities and need to communicate with
each other.

In this paper, we propose a framework that provides agents with the ability to fuse both low and high level approximate knowl-
edge in the context of dynamically changing environments while taking account of heterogeneous and contextually limited percep-
tual capabilities.

To model limitations on an agent’s perceptual capabilities we introduce the idea of partial tolerance spaces. We assume that each
agent has one or more approximate databases where approximate relations are represented using lower and upper approximations
on sets. Approximate relations are generalizations of rough sets.

It is shown how sensory and other limitations can be taken into account when constructing and querying approximate databases
for each respective agent. Complex relations inherit the approximativeness of primitive relations used in their definitions. Agents
then query these databases and receive answers through the filters of their perceptual limitations as represented by (partial) tolerance
spaces and approximate queries. The techniques used are all tractable.
© 2005 Elsevier B.V. All rights reserved.
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1. Introduction

In real world applications robots and software agents
often have to be equipped with higher level cognitive
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functions that enable them to reason, act and perceive
in changing, incompletely known and unpredictable
environments. One of the major tasks in such circum-
stances is to fuse information from various data sources.
There are many levels of information fusion, ranging
from the fusing of low level sensor signals to the fusing
of high level, complex knowledge structures. In a
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dynamically changing environment even a single agent
may have varying abilities to perceive its environment
which are dependent on particular conditions. The situ-
ation becomes even more complex when different agents
have different perceptual capabilities and need to com-
municate with each other.

Research in more traditional robotics has emphasized
low-level sensing, sensor processing and control tasks.
One of the open challenges in cognitive robotics is to de-
velop architectures which seamlessly combine low-level
sensing and sensor processing with the generation and
maintenance of higher level knowledge structures. This
implies signal-to-symbol transformations at many levels
of abstraction. One particularly difficult issue involves
the quantitative to qualitative transformations required
to support the use of qualitative knowledge structures
in high-level reasoning tasks. To add to the difficulty,
sensors, by their very nature, introduce uncertainty
and noise in the data. In order to provide an adequate
representation of a robotic environment, some of this
uncertainty, or lack of knowledge, should be reflected
in the higher-level knowledge structures. In other words,
some of the high-level knowledge structures should be
approximate in nature, having both quantitative and
qualitative characteristics.

The perceptual limitations of a robotic agent con-
strained by the peculiarities of its sensor suite should
be taken into account not only when the robotic agent
reasons about its external and internal environments,
interpreting its own measurements made in different
conditions, but also when one or more robotic agents
communicate with each other by asking questions con-
cerning each others’ knowledge about the world or
themselves. In this case, two robotic agents communi-
cating with each other can only ever ask queries of an
approximative nature and receive answers of an approx-
imative nature as seen through their respective filters of
perceptual limitation.

In this paper, we propose a technique that can pro-
vide agents with the ability to ask approximate questions
to each other in the context of heterogeneous perceptual
capabilities and approximate knowledge derived
through uncertain sensor data. Even though they may
have concepts in common, their ability to perceive indi-
viduals as having specific properties or relations can be
distinct. The concern then is how this affects the ques-
tions that can be asked and the replies that can be gen-
erated by agents with perception functions limited to
varying degrees. In particular, we address the following
problems related to information fusion:

e given various information sources' with heteroge-
neous perceptual capabilities, what facts based on

! For example, those provided by actual or virtual sensors.

those sources can be accepted by an agent to be cer-
tain, what facts are unknown and what surely do not
hold?

e given agents equipped with (approximate) knowl-
edge, what knowledge common to a group of agents
should be accepted as certain, unknown or surely not
holding?

The methodology developed in the current paper al-
lows one to deal with both problems in a uniform
fashion.

In order to set the proper context as to how this work
is specifically related to data or information fusion, it
should be emphasized that in the past several years,
attempts have been made to broaden the traditional def-
inition of data fusion as state estimation via aggregation
of multiple sensor streams. There is a perceived need to
broaden the definition to include the many additional
processes used in all aspects of data and information
fusion identified in large scale distributed systems. In
this case, the nodes in such systems may not only include
sensors in the traditional sense, but also complex sys-
tems where data and information are fused at many dif-
ferent levels of abstraction to meet the diverse situation
assessment needs associated with different applications.
It is at this level of abstraction the techniques in this
paper should be understood.

One of the more successful proposals for providing a
framework and model for this broadened notion of data
fusion is the JDL data fusion model [2] and its revisions
[3,4]. In [3] for example, data fusion is defined as “the
process of combining data or information to estimate
or predict entity states” and the data fusion problem
“becomes that of achieving a consistent, comprehensive
estimate and prediction of some relevant portion of the
world state”.

We are interested in nodes in such complex systems
which store relevant portions of the world state where
world state information is approximate in nature and
mechanisms for asking questions about nodes is in place
as part of the higher-level information fusion process. In
this case, some of these nodes may be viewed as contain-
ing tolerance agents which manage approximate infor-
mation in a node and may communicate across nodes
about such information and assist in further fusions of
information content in the larger system.

In order to provide the proper level of detail for the
framework considered here, the following set of abstrac-
tions is used in the article. Each agent will have access to
the following functionalities and representations:

e an abstraction called a (partial) tolerance space which
is used to represent similarity of data points for basic
domains in addition to complex data domains;

e a set of sensors and a sensor model for each sensor.
The sensor models take into account the contextual
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indiscernibility of signal data by using tolerance
spaces to represent that indiscernibility;

e one or more databases capable of holding relational
data. These databases may contain representations
of crisp relations or approximate relations.

Approximate relations are represented using lower
and upper approximations on sets. Approximate rela-
tions are generalizations of rough sets [5]. The inten-
tion is that sensor data is used in the generation of
some of these approximate relations stored in the dat-
abases. Tolerance spaces again play a role in the gen-
eration of approximate relations from specific
attributes in vectors or arrays of attributes represent-
ing sensors;

e a query mechanism which permits each agent to ask
questions about knowledge in its own databases or
in the databases of other agents. These queries are
approximate in nature due to the approximate nature
of the knowledge stored in the databases. They are
also contextualized by perceptual limitations repre-
sented as tolerance spaces on more complex data
domains.

Fig. 1 provides a high-level schematic of the ideas in-
volved in the proposed framework. Any agent (we refer
to ours as tolerance agents) is assumed to operate in an
embedding or external environment. The environment is
modeled using individuals, properties of individuals and
relations between individuals. The environment model
an agent has access to and from which it can reason about
is assumed to be limited by both inherent perceptual lim-
itations and contextual perceptual limitations. Both types
of limitations will be represented using tolerance spaces.
Tolerance spaces generate neighborhoods of indiscern-
ibility around individuals in any domain of discourse.
When applied to relations or properties, they function
as transformers which vary the degree of approximative-
ness associated with such relations and properties.

Inherent perceptual limitations are intended to repre-
sent those limitations built-in to the agent. These are as-
sumed to be static and non-contextual, rarely subject to
change. For example, color-blindness limits the ability
of certain agents to discern differences in certain colors.

Embedding

Environment

Properties
Relations
Individuals

Inherent
Perceptual
Limitations
color blindness

permanent limitations

Inherent limitations in the types of sensors used to dis-
cern the environment provide other examples. Tolerance
spaces (TS}, ..., TS;in Fig. 1) are used to represent such
limitations and result in a model of the environment rep-
resented as approximate relations, each consisting of an
upper and lower approximation derived through appli-
cation of tolerance spaces to data domains or relations
and properties. These base relations and properties are
stored in the agent’s approximate database.

If these were the only form of perceptual or other lim-
itations on the agent’s ability to discern, then the agent
could query the approximate database information
internally using techniques which will be introduced in
the paper. In this case, the agent has access to the exter-
nal environment only through the eyeglasses of the sum
of its inherent perceptual limitations.

Besides inherent perceptual limitations, it is often the
case that agents have other types of limitations of a con-
textual nature. For example, when a human agent is
tired, its ability to perceive is often impaired. In the case
where a human agent is hungry or angry, this can also
impair judgment or an ability to discern. In other cases,
the external environment may change due to weather or
other conditions and an agent may experience what we
call contextual perceptual limitations. These limitations
are modeled in the same way as inherent perceptual lim-
itations through the use of tolerance spaces (7.S;+q, .. .,
TS;,; in Fig. 1). Tolerance spaces may be applied itera-
tively to relations and properties resulting in a sequence
of approximations modeled using upper and lower
approximations. In this case, the agent when querying
its approximate database, does this through the eye-
glasses of the sum of not only its inherent perceptual
limitations, but also through the sum of its contextual
perceptual limitations.

Fig. 1 depicts a single agent scenario. When two or
more agents with different types of perceptual limita-
tions want to ask each other questions, the sum of per-
ceptual limitations have to be taken into account as
there is a give and take of information processing as
queries pass through the filters of tolerance spaces asso-
ciated with internal and external queries. This process
will also be considered in the paper.

Tolerance Agent

= |

<: (@, Q),TS)
Internal ::>
* | Queries
o External
A}]))}:g;;nsztc 'S+ Queries
Contextual
Perceptual

Limitations
object occlusion
temporally dependent limitations

Fig. 1. Tolerance agents.



P. Doherty et al. | Information Fusion 8 (2007) 56—69 59

The paper is structured as follows. In Section 2, rep-
resentations of approximate relations and queries are
introduced. In Section 3, the important concept of a
(partial) tolerance space is introduced. These spaces
are used to represent indiscernibility, uncertainty and
similarity between data elements or sets. In Sections 4—
6 three sensor models are presented, where uncertainty
in sensor data may be translated into (partial) tolerance
spaces. This convenient representation allows for the
possibility of relating sensor information to relational
definitions in a homogeneous manner since tolerance
spaces are also associated with approximate relations
in databases. This is considered in Section 7 where
approximate databases are introduced. At this point,
basic representational structures for approximate
knowledge derived through approximate sensor data
are defined and discussed. The main idea of agent com-
munication with heterogeneous perceptual capabilities is
then provided in Section 8 with examples. In Section 9, a
number of tractability results related to the techniques
are provided. Finally, Section 10 concludes with a
discussion.

This paper is an extended version of [1]. Compared to
[1], a number of new ideas have been introduced in addi-
tion to many more explanatory comments about the
motivations and techniques associated with this frame-
work. Partial tolerance spaces are introduced for the
first time as a generalization of the tolerance spaces used
in [1]. Partial tolerance spaces are then used as a basis
for integrating more traditional probabilistic sensor
models with approximate relations. Complexity results
for all techniques used are also provided.

2. Approximations of sets and relations

The methodology we propose in this paper uses a
generalization of a number of ideas associated with
rough set theory which was introduced by Pawlak (see
e.g., [5]). In many Al applications one faces the problem
of representing and processing incomplete, imprecise,
and approximate data. Many of these applications re-
quire the use of approximate reasoning techniques.
The assumption that objects can be observed only
through the information available about them (in this
case, sensors with limits on discernibility) leads to the
view that knowledge about objects in themselves, is
insufficient for characterizing sets or relations® precisely
since the knowledge about objects is incomplete. We
thus assume that any imprecise concept, say Z, is re-
placed by a pair of precise concepts called the lower

2 Sets and relations are dealt with uniformly, since a relation is
simply a set of tuples.

Zs Precise (crisp) concept Z

Z,

Ze

A 7
Fig. 2. Approximations of a concept.

and the upper approximation of the imprecise concept,
where (see also Fig. 2):

o the lower approximation, Z,, consists of all objects
which with certainty belong to the concept;

o the upper approximation, Z, consists of all objects
for which it is possible that they belong to the
concept;

e the complement of the upper approximation, Z_,
consists of all objects which with certainty do not
belong to the concept;

e the complement of the lower approximation, Z.,
consists of all objects for which it is possible that they
do not belong to the concept;

o the difference between the upper and the lower
approximation, Z., constitutes a boundary region of
an imprecise concept, i.e. the set of elements for which
it is unknown whether they belong to the concept.

More precise definitions follow.

Definition 2.1. By an approximate set we shall under-
stand a pair (X, Y), where X and Y are sets such that
X C Y. The set X is interpreted as the lower approxima-
tion of a set and Y as its upper approximation.

By lower and upper approximation operations, denoted
by indices + and @, we understand operations on sets
such that for any crisp set Z, Z, C Z C Z..

By Z_ and Z_ we denote the complement of Z,, and
of Z, respectively. The boundary region of Z, defined as
(Ze — Z.), is denoted by Z..

We will also need a notion of (relational) databases
and approximate queries.

Definition 2.2. By a (crisp) database we understand a
tuple D = (U,{r/|j € J}), where U'is a finite set, called the
domain of D, and {/|j€J} is a finite collection of
relations over U.

By an approximate database we understand a tuple
D=(UAr|[’ = (r,rs)}; c ;) where s and ris are
crisp relations of the same arity, satisfying ;. C r..

By the type of a (crisp or approximate) database D we
understand the sequence (aj|j € J), where for any j € J,
a; is the arity of v
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Observe that crisp relational databases are approxi-
mate relational databases with equal lower and upper
approximations of relations.

We will also require a definition of approximate que-
ries. In essence, an approximate query provides an upper
and lower approximation on an original crisp query.

Definition 2.3. By an approximate query we shall under-
stand a pair Q = (Q'(¥), 0"(x)), where Q' and Q" are
formulas of a given logic, where X are all free variables
(common to Q' and Q”), such that for any underlying
database® D, D = O'(x) — Q"(x). Formulas Q',Q" are
called the lower (respectively, upper) approximation part
of Q.

By O'(x), (respectively, (Q'(x),0"(x)),) we denote
the result of evaluating the query ' (x) (respectively, the
approximate query (Q'(x),0"(x))) in the database D.

Given a crisp query represented as a logical formula
in a first-order language, an approximate query can al-
ways be generated automatically.

3. Tolerance spaces

In this paper we generalize the notion of tolerance
spaces considered in [9]. Technically, tolerance spaces al-
low us to classify a universe of individuals into similarity
or tolerance neighborhoods based on a parameterized
tolerance relation. This is a generalization of the indis-
cernibility partitions used in rough set theory, where
instead of partitions, the neighborhoods provide a cov-
ering of the universe. Conceptually, these spaces are
quite versatile in terms of application. In this paper, they
are used for the representation of limitations on an
agent’s perceptual capabilities, sensor uncertainty, and
approximate databases.

In distinction to the work in [9], tolerance functions,
which are part of a tolerance space are generalized to be
partial. Thus, the similarity relation between individuals
in a domain can be partial. For some objects it might be
unknown whether they are similar or not. This is impor-
tant in applications where only partial knowledge about
the embedding environment is available. An example of
such an application might be a sonar model (see Section
5), where objects hidden behind other objects cannot be
reached by a sound wave. This results in the unavailabil-
ity of information about such objects.

Definition 3.1. By a partial tolerance function on a set U
we mean any function

7: U x U — [0,1] U {UNKNOWN}

such that for all x,y € U, t(x,x) = 1 and 1(x,y) = 1(, X).

3 We deal with relational databases, where queries are formulated as
first-order or fixpoint formulas (for textbooks on this approach see,

e.g., [6-8]).

A partial tolerance function is called a total tolerance
function if, for any x,y € U, t(x,y) € [0, 1].

Definition 3.2. For p € [0,1], by a tolerance relation to a
degree at least p, based on 1, we mean the relation 7*
given by ¥ & {{x,»)|t(x,y) = p}. The relation 7’ is
also called the parameterized tolerance relation. The
notation t(x,y) is used to denote the characteristic
function for the relation *.

Remark 3.3. Observe that 7(x,y) > p does not hold
when 7(x,y) = UNKNOWN.

A parameterized tolerance relation is used to con-
struct tolerance neighborhoods around individuals.

Definition 3.4. By a neighborhood function wrt ¥ we
mean a function given by

n® () € {u € U’ (u,u') holds}.

By a neighborhood of u wrt ¥ we mean the approxi-
mate set (n% (u),n% (u)), where n? (u) 1 (u) and
n? () L (" (u) U {y]1(u,y) = UNKNOWN}) are lower and
upper approximations of the neighborhood, respectively.

Remark 3.5

1. The lower approximation n? (u) consists of elements
which, in the context of available knowledge, are
surely similar enough to u, while the upper approxi-
mation n% (u) consists additionally of elements that
might be similar to u due to the unknown status of
the tolerance function.

2. It is important to note that the above choice of the
definition of n7 (u) results in non-monotonic behavior
of the induced reasoning mechanism at the symbolic
level. Namely, updating information about unknown
similarities can reduce the size of concept approxima-
tions and, in effect, reduce the number of derived
consequences. The choice made in Definition 3.4
reflects, in a sense, the open world assumption. In
more advanced applications one might want to
define n7 (u) using a more flexible formalism of
local closed world assumption, as defined, e.g., in
[10,11].

3. Note that in the case where 7 is a total tolerance func-
tion, n% (1) = nZ (u), and the neighborhood can be
considered as a single crisp set rather than a pair of
approximations. In this case, a neighborhood coin-
cides with that used previously in [9].

Partial and total tolerance spaces play a funda-
mental role in our approach to modeling perceptual
limitations of agents and approximate relations in
databases.
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Definition 3.6. A partial tolerance space is defined as
tuple TS = (U, 1, p), consisting of

e a non-empty set U, called the domain of TS;
e a partial tolerance function t;
® a tolerance parameter p € [0,1].

If 7 is a total tolerance function, then 7S is called a
total tolerance space.

Remark 3.7. In the sequel, total tolerance functions and
total tolerance spaces are often simply called tolerance
Sfunctions and tolerance spaces.

We will also require a definition of approximations of
a set (relation) in the context of partial tolerance spaces.

Definition 3.8. Let 7S = (U, 7,p) be a partial tolerance
space and let S C U. The lower and upper approximations
of S wrt TS, denoted respectively by Syg+ and Sy, are
defined by

S+ déf{ue U: n?(u) CS}
Spe L{ueU: n2u)nsS # 0}

As in the case using total tolerance spaces, the approxi-
mations defined above coincide with those given in [9].

Remark 3.9. In many applications, e.g., shape recogni-
tion, one has to consider tolerance spaces on sets. In
order to induce such tolerance spaces on the basis of
tolerance spaces on elements, we require tolerance
functions on sets. Similarity measures on sets that could
be adapted to the context of tolerance spaces, have been
intensively studied in the area of computer vision (see
e.g., [12]) and fuzzy sets (see e.g., [13]).

4. A generic sensor model

In this section, we provide a simple sensor model (see
also [9]), based on a generalization of that in [14], and a
method for modeling uncertainty in sensor data which
integrates well with tolerance spaces.

The point to this is an assumption that basic or prim-
itive properties and relations in many domains will be
derived through various aggregations of sensor data.
Sensor data involves individual readings of values with
uncertainty due to noise, etc. In essence, individual data
values have neighborhoods of indiscernibility. Tolerance
spaces can be used to represent such indiscernibility or
similarity. Using tolerance spaces on data readings as
building blocks, primitive approximate relations can
be defined which inherit the approximate readings of
data values. The following sections are intended to show
how this process may be set up in addition to how some
standard probabilistic approaches to modeling sensors

may be integrated. Work in the latter sections should
be considered tentative.

A sensor is used to measure one or more physical
attributes in an environment E. The value sets associ-
ated with a physical attribute might be the real numbers,
as in the case of measurement of the temperature or
velocity of an object; Boolean values, as in the measure-
ment of the presence or absence of an object such as a
red car; integer values, as in the case of measurement
of the number of vehicles in a particular intersection;
or scalar values, such as the specific color of a vehicle.

An environment E can be viewed as an abstract entity
containing a collection of physical attributes that are
measurable. Vectors or n-dimensional arrays of attri-
bute/value pairs could be used to represent a particular
environment. One may want to add a temporal argu-
ment to E, so that the current state of the environment
is dynamic and changes with time.

Any attribute a can be viewed as a function of the
environment £ and time point ¢, ie., a: EX
TIME — V,, where TIME is the set of considered time
points and V, is the set of possible values of a.

We consider a sensor S; as a pair of functions of the
environment E and time point ¢, S(E,f) = (V(E,1),
e{E,1)). Depending on the type of sensor being modeled,
V{E,t) can be a function that returns the values of the
physical attributes associated with the sensor, as sensed
at time ¢ in environment E. V; might return a single
value, as in the case of a single temperature sensor, or
a vector or array of values for more complex sensors.
For any physical attribute measured, explicit accuracy
bounds are supplied in the form of ¢, E, f). The temporal
and environment arguments are supplied since the accu-
racy of a sensor may vary with time and change of envi-
ronment. As in the case of V, ¢; might return a single
accuracy bound or a vector or array of accuracy bounds.

For example, suppose Sy, is a sensor measuring the
temperature of a PC104 box on an UAV.* Let Qromp
be the physical attribute associated with temperature
in the environment, where the actual temperature is
Aemp(E,t) and the value returned by the sensor is
Viemp(E, t). The following constraint holds:

atemp(Eat) € [Vtemp(Eat) - €t€mp(E7t)7 Vtemp(E,t) + 6temp(Ea t)]

By using tolerance spaces, accuracy bounds for a phys-
ical attribute can be represented equivalently as param-
eterized tolerance relations on the value set for the
attribute. In this manner, we can use neighborhood
functions to reason about the tolerance or accuracy
neighborhoods around individual sensor readings and
combine these into neighborhoods for more complex
virtual sensors.

4 Unmanned aerial vehicle.
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In the following, we will drop the environment and
temporal argument for e; and assume the accuracy
bounds for attributes do not change with environment
and time.

Let @, = (a1, ..., a;) be the tuple of attributes mea-
sured by sensor S; and let 7Sy = (Vix, Tir, Pir) be a toler-
ance space for the kth physical attribute, a;,, associated
with the sensor S;, where
o Iy &ef {x € Dy|lby < x < uby}, where Dy, is a value

domain such as the reals or integers. It is assumed

that the legal values for a physical attribute have a

lower and upper bound, /by, ub;. We associate the

same distance measurement J(x,y) o |x —y| with

all value sets Vi
e both the tolerance function 1, and the tolerance

parameter p;. are defined by

T (x, ) | —75()6’);) ef Gk
XV 5(lbjk,ub,'k)’ Pik 5(lbik7ubik) ’

The neighborhood function can be used to compute
the possible actual values of a physical attribute in the
environment, given a sensor reading, under the assump-
tion that the accuracy bounds have been generated cor-
rectly for a particular sensor and the sensor remains
calibrated. For example, if V,,,,(E, ) is the current va-
lue measured by the sensor S,.,,,, then we would know
that  am,(E, 1) € nplmp(V,emp(E ,t)). So, the tolerance
neighborhood around a sensor reading always contains
the actual value of the physical attribute in the environ-
ment E and it would be correct to reason with the neigh-
borhoods of sensor values, rather than the sensor values
themselves.

Example 4.1. Let Sg, S and Sp be sensors detecting
values of R, G, B color attributes.’ The universe of values
is restricted in those cases to integers in interval [0,255].
Assume that all sensors have the same accuracy, say 5.
Then the tolerance space for all three cases is
([0,255],7, p), where

x| 5
555 P= 1 755 ~ 0.9804.

In this case an agent using sensor data from Sz, Sg,
Sp is unable to distinguish between color values where
values of 1 on R, G,B attributes are greater than or
equal to 0.9804. These physical attributes and their asso-
ciated tolerance spaces can be used to construct more
complex attributes and knowledge structures in terms
of these. These new attributes and knowledge structures
would inherit the accuracy (inaccuracy) of the primitive

t(ry) =1~

5 Of course, there are many techniques for dealing with noise and
uncertainty associated with color, more sophisticated than R,G,B
attributes. On the other hand, this domain provides a simple and
intuitive vehicle to present our ideas.

sensor data used in their construction. We consider this
in Section 7.

5. Probabilistic sensor models

In many cases, a sensor model returns a (partial)
probability function p(e) meaning that a particular event
can correctly be classified as e with probability p. As an
example, we consider below a probabilistic sonar model
discussed, e.g., in [15]. Sonar refers to any sensor using
sound to measure range. The field of view of the sonar
is projected onto an occupancy grid (see Fig. 3).

The region marked as I is probably empty, region II
contains elements (rectangles of the occupancy grid)
probably occupied, and regions III and IV contain ele-
ments for which it is unknown whether they are occu-
pied or not.®

The size of grid elements (rectangles) depends on a
particular application.

Probabilistic models for sonars return functions
Pocde) meaning that grid element (rectangle) e is occu-
pied with probability p (assuming that po.[(e) can be
UnkNoOwN). Suitable formulas for calculating such prob-
abilities are provided, e.g., in [15]. Observe that proba-
bilities in regions III and IV are unknown, so partial
tolerance spaces should be useful for modeling these
kinds of situations.

In many applications we basically deal with shapes
that do not have to be unions of grid elements. Such
shapes can be considered as arbitrary sets of points.
The first tolerance space we define, TS, is then the
one that represents grid elements as neighborhoods.

We let T'Seria = (Vpoints> Tpoinis»1.0), Where

® Vi,oinss 1s the set of points in a given occupancy grid;

1 when points a, b are in the
same grid rectangular

0 otherwise.

def
L4 Tpuints(a7b) é

Observe that T.S,,, is total and the neighborhood of
a point is the rectangular the point belongs to. Any com-
plex 2-dimensional shape can now be represented by
lower and upper approximations wrt T'S,.;. In fact,
due to the sonar resolution, its measurements do not dis-
tinguish between points inside the same rectangle.

Now assume that the probabilities supplied by the so-
nar are themselves approximate. This might, at first
glance, seem a bit unusual. However, the calculated
probabilities are usually indeed approximate. It is then
reasonable to consider a range approximating the actual
probability, rather than its single value.

 The elements in region III are hidden behind elements probably
occupied and elements in region IV are outside of the sonar’s field of
view.
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Fig. 3. Sonar’s field of view projected into an occupancy grid.

To model this situation we first define a partial distance
function 6,,,, on probabilities (in [0,1]U UNKNOWN)
returned as sonar results,

def lpy —
prob(plaPZ) - {

UNKNOWN otherwise.

Pl when p,p, # UNKNOWN

Now we define the tolerance space on probabilities,
TSpr()h = <Vprabafpr()hsppr()b>a where

* Vipob & [0,1]uU UNKNOWN

prob(pl ap2)

when Opron (P15 P2) 7 UNKNOWN
UNKNOWN  otherwise.

def
* Tob(P1:12) =
hd DPprob S [Oa 1]

We are interested in approximating the relation
Occ(a), which denotes that a point ¢ in the occupancy
grid is occupied. Since Occ is a Boolean relation, we
have to transform the probabilistic measure provided
by the sonar model into a two-valued one. To do this,
we assume that a given grid element e is occupied when
Poede) 1s greater than or equal to a certain threshold.

We then first assume a probability threshold, say ¢,
such that,’

Oce(a) Elpoe. (")) = q] = [pou. (" (a)) € g, 1]].

Now the required approximations are given by:

Ocers. (@) = [poce (07 (a)) € [, 1ry: ]
Oc cTSp»ob (a) = &)Occ(nmgﬂd (a)) < [q7 1]7Sfmb ’

Example 5.1. Assume that the probability threshold
g=0.8 and the tolerance parameter in TS, is
Pprob = 0.95. Consider the situation presented in Fig. 4,
where the area of interest, reflected by the occupancy
grid, is restricted to the field of view of the sonar.

7 Recall that n™(a) is the grid element containing point a.

Fig. 4. Sonar’s field of view considered in Example 5.1.

Assume further that grid elements marked by + are
occupied with probability greater than 0.9, those
marked by + are occupied with probability 0.77 and
that unmarked elements are occupied with probability
less than 0.75. Probabilities associated with elements
marked by ‘? are unknown.

It is easily seen that OCCTS+ _(a) holds for points
belonging to grid elements marked by -+, whereas
Occm;mb( a) holds, in addition, for points belonging to

grid elements marked by + or by 7

6. Dempster—Shafer theory and tolerance spaces

The Dempster—Shafer theory of evidence provides an
alternative approach to sensor models (see, e.g., [15]). In
contrast to pure probabilistic approaches, the theory
deals with representation of partial evidence by means
of belief functions and belief mass. Each sensor contrib-
utes to a belief mass m(P), where P is any set of propo-
sitions. The set of all propositions in question is referred
to as a frame of discernment. It is assumed that the total
belief mass is 1.0, i.c., if the frame of discernment is @
then . pcom(P) = 1.0.

Consider the sonar model and property Occ, as des-
cribed in Section 5. Here we are interested in the frame
of discernment @ = {Occ, Empty}. In our case the
belief mass, for a given point «, is distributed between
{Occ(a)},{ Empty(a)},{Occ(a), Empty(a)}. The last set
represents the level of ignorance. Thus the distribution
of belief mass can be represented as triples (o,e,u),
meaning that m({Occ(a)}) = o, m({ Empty(a)}) = e and
m({Occ(a), Empty(a)}) = u.®

Let

Oce(a) Em({Oce(a)})
m({Empty(a)}) Am({Occ(a)}) — m({Empty(a)})
Am({Occ(a), Empty(a)}) < 1,

where ¢,r € [0,1] are fixed parameters.

=
=

8 In the general case we deal with tuples of arity equal to the number
of all non-empty subsets of ©.
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Consider a tolerance space on triples

7S & {{{o,e,u)|o,e,u € [0,1] and 0 + e+ u = 1.0}, 1, p),

where, for example, t({o,e,u), {0 e u')) ] — max
{lo = 0|, le — €|, |[u—u'|} and p € [0, 1] s a fixed param-
eter. Then,

Occrg+ (a) = Vo, e,ut({o,e,u), (m({Occ(a)}),
m({Empty(a)}),m({Occ(a),Empiy(a)})))

=p—fo>eN(o—e) = qgAhu<r]]

Occrgo (@) = [Fo,e,ut({o,e,u), (m({Occ(a)}),

m({Empty(a)}),m({Occ(a),Empty(a)}))
=pho>eN(o—e) = qghu<r].

Although these results are tentative in nature, one can
begin to see how standard probabilistic models of sen-
sors can be integrated with approximate relations using
tolerance spaces as a bridge. Assuming this is possible,
such sensor-data induced relations can be stored in
approximate databases and be queried by agents. This
is the topic for the following section.

7. Approximate databases and sensors

Standard relational databases store relations as tables
where each column represents an argument to the rela-
tion and a row represents the instantiation of each rela-
tional argument to a value in that argument’s value
space. Each row is a tuple of which the relation repre-
sented by the table holds. In the standard case, each
argument has a specific value in its value space, but if
a tolerance space is associated with an argument then
it has the effect of creating neighborhoods of uncer-
tainty, similarity, or indiscernibility around each argu-
ment value.

This should then induce a tolerance space for specific
tuple domains creating neighborhoods around tuples.
This should in turn affect the answers to any queries
to relations in the database since the question is not
whether a tuple holds for a relation, but whether the tu-
ple through the filter of its associated tolerance space
holds. In addition, the relations stored in the database
are approximate relations having both a lower and
upper approximation.

For instance, suppose we were to use the sensor attri-
butes for S, S and Sp from Example 4.1 in defining a
relation reddish or darkish in color where each of these
relations take Sy, Sg and Sp as arguments. Each argu-
ment has a tolerance space associated with it which is
determined by the specific characteristics of the sensors
used to measure these attributes or even takes into
account specific contexts of use. Since these tolerance
spaces are parameterized, parameters can be contextu-

alized and derived through machine learning techniques
or statistical and probabilistic methods.

The next step is to integrate the approximate nature
of arguments into the definitions of relations which
use these arguments. The net result is a tolerance space
for an approximate relation where any tuple in the rela-
tion has its own neighborhood induced by the tolerance
space for the relation. Rather than asking whether a
tuple is a member of a relation, we ask whether that
tuple’s neighborhood is included in the lower approxi-
mation of the relation or intersects with its upper
approximation as in rough set theory. In this case we
use tolerance spaces on tuples rather than the usual dis-
cernibility partitions for attributes.

Suppose TSx, TS and T'Sp are tolerance spaces for
the sensor attributes, as in Example 4.1. Then, in the
case of the relation darkish for example, we would like
to generate a tolerance space TSp = (U,1,p) where U
is the set of triples representing RGB values and where
TSp =f(TSg, TSG, TSp). The function f can be defined
in many ways or even machine learned. Its definition will
generally be dependent on the domain and application
in question.

In a similar manner, one can define additional
tolerance spaces for new relations in terms of the toler-
ance spaces associated with the relations used to define
those relations. In this manner one can recursively
construct complex knowledge representations at many
levels of abstraction which inherit the approximative-
ness of sensor output and more primitive defining
relations.

We also assume that each relation in the database has
a lower and upper approximation. In the case of the
relation darkish, both darkish, and darkish,, the lower
and upper approximations for darkish would be stored
or implicitly represented in the database. There are a
number of ways to generate approximate databases. A
direct method would be, for example, to use rough set
machine learning techniques (see, e.g., [16]) to automat-
ically generate lower and upper approximations for
approximate relations. An indirect method would start
with a relational database and tolerance spaces for each
of the relations. These tolerance spaces could then be
used to automatically generate lower and upper approx-
imations for each relation. This is demonstrated in
Example 7.3. Under these assumptions, we would have
an approximate relational database with tolerance
spaces associated with some or all of the approximate
relations.

Let us now assume that an agent wants to access
information in its internal database which is in fact
approximate and represents that agent’s perceptual lim-
itations as encoded through the tolerance spaces used to
generate the approximate database. The database would
then be queried in the following manner. Given a query
to the database represented as a logical formula in a
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first-order language, the query is automatically trans-
formed into an approximate query.” One can then gen-
erate all tuples satisfying the lower and upper
approximations of the query or simply ask whether a
specific tuple satisfies the query.

These techniques describe how approximate know-
ledge structures, which take both sensor and relational
uncertainty into account, can be generated and repre-
sented as approximate databases using tolerance
spaces. In Section 8, it is shown how tolerance spaces
representing perceptual limitations of agents themselves
can be used together with approximate queries to
take these limitations into account when asking and
receiving answers from other agents. In fact, one can
even model the fact that an agent may have contextual
perceptual limitations when asking questions of itself
since additional tolerance spaces can be applied in
asking questions to an approximate database as we will
see.

Definition 3.8 does the job. In this definition, U might
represent a primitive data set such as that used for a par-
ticular sensor, or a complex data set such as a set of tu-
ples. For example, consider a relational database with
one relation S of k-arity and with universe U consisting
of all k-tuples. In this case, the relation may represent
raw data about S. Suppose there is also a tolerance
space TS = (U,t,p). TS creates neighborhoods around
tuples. An agent, when asking whether a tuple x is a
member of the relation is really asking what is the rela-
tionship between the neighborhood around the tuple
and the relation. If the neighborhood is included in
the relation, the answer is ‘yes’, if their intersection is
non-empty, the answer is ‘maybe’, if the intersection is
empty, the answer is ‘no’.

In fact, this particular use of tolerance spaces can be
generalized to relational databases with an arbitrary
number of relations where the data in the database is as-
sumed to be raw data about the relations. Using toler-
ance spaces, the relational database can be turned into
an approximate database where each relation is viewed
as having an upper and lower approximation. Rather
than machine learn the approximate relations, one can
assume the tolerance spaces as given and apply them
to raw data to generate an approximate database. The
following definitions and example show how this is
done.

Definition 7.1. Let D = (U,{F|j € J}) be a relational
database. Then we say that a sequence of tolerance
spaces TS = (TS;|j € J) is compatible with D, provided
that for any j € J, TS; = (U, 7;,p;), where Uj is the set of
all tuples of arity the same as the arity of .

° Both the original and approximate query can be translated into an
SQL query in a straightforward manner.

Definition 7.2. Let D= (U,{r|j € J}) be a relational
database and 7S be a sequence of tolerance spaces
compatible with D. If D is crisp, then by an approxima-
tion of D wrt TS, we mean the structure

DS — <U,{<r§sl+7r;w> |j€J}>.
J J

If D is approximate, where for j€ J, »/ = (L),
then the approximation of D wrt TS is defined as

D = (U {15 sy Yl €T ).

Note that in the latter case, one can still apply additional
tolerance spaces to upper and lower approximations of a
relation since these are also represented as relations in
the database.

Example 7.3. Consider a situation where a ground
operator (agent Agg) is communicating with a UAV
(agent Agy), which is flying over a road segment.
Assume Agy can provide information about the follow-
ing relations, and that Ag; has these in common with
Ag(;i

e J(x,y)—there is a visible connection between objects
x and y;

® S(x,y)—the distance between objects x and y is small;

e E(x,y)—objects x and y have equal speed;

e ((x,z)—object x has color z, where we consider col-
ors b,r,dr, denoting ‘“brown”, ‘“red” and ‘“dark
red”, respectively.

Let the actual situation on a road segment be given
by the (crisp) relational database shown in Table 1,
where, e.g.,

e the first row means that there is a visible connection
between objects 1 and 2, the distance between object
1 and objects 2, 5 is small, object 1 has equal speed
with objects 2, 5 and that the color of object 1 is r;

o the third row means that there is no visible connec-
tion between object 3 and any other object, the dis-
tance between object 3 and object 2 is small, object
3 has equal speed with object 2 and that the color
of object 3 is dr.

Note that our UAV agent does not have direct access
to this information since it may have limited perceptual

Table 1
Database considered in Example 7.3 reflecting a situation on a road
segment

Object 14 S E C
1 2 2,5 2,5 r
2 1 1,3,4 1,3,4 b
3 - 2 2 dr
4 2 2 r
5 - 1 1 dr
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capabilities relative to some attributes such as color
which is modeled below.

Consider the approximation of the relational data-
base given in Table 1 wrt the tolerance space
Ty = (U,ty,py), where t}/ identifies equal elements
and additionally dr with b. This tolerance space is
intended to represent a perceptual limitation of the
UAV agent. The resulting approximation is presented in
Tables 2 and 3. Now, e.g.,

o the first row in Table 2 indicates that there surely is a
visible connection between objects 1 and 2, the dis-
tance between object 1 and objects 2, 5 is surely small,
object 1 has surely equal speed with objects 2, 5 and
that the color of object 1 is surely r;

e the third row in Table 3 indicates that there cannot be
any visible connection between object 3 and any other
object, the distance between object 3 and object 2
might be small, object 3 might have equal speed with
object 2 and that the color of object 3 might be b or dr.

Note that several tolerance spaces could be associated
with each type of data in a table if desired.

We now consider how to generate an approximate
query from a crisp query represented as a logical
formula.

Definition 7.4

e A relation symbol r occurs positively (respectively
negatively) in a formula if it appears under an even
(respectively odd) number of negations.'”

e For any formula o,

— by o, we understand the formula « in which any
positive occurrence of a relation symbol, say #/, is
replaced by . and any negative occurrence of
is replaced by 7/;

— by a; we understand the formula « in which any
positive occurrence of a relation symbol, say #/, is
replaced by . and any negative occurrence of »/
is replaced by /..

Example 7.5. Consider formula r!'(x) A —+?(¥). Then

LE) A

(xX) A= ()]
The two formulas on the right-hand side would repre-
sent an approximation of the original formula.

We allow for the possibility of providing a tolerance
space with an approximate query whose purpose is to

19 As usual, it is assumed here that all implications of the form p — ¢
are substituted by —p V ¢ and all equivalences of the form p = ¢ are
substituted by (=pV ¢q) A (=g V p).

Table 2
Approximation (lower approximations) of the relational database
given in Table 1 wrt the perception capabilities of agent Ag

Object V. S. E. Cy
1 2,5 2,5 r
2 1,3.4 1,34 N
3 - 2 2 -
4 2 2 r
5 - 1 1 -
Table 3

Approximation (upper approximations) of the relational database
given in Table 1 wrt the perception capabilities of agent Ag)

Object Va Sa Eg Cq
1 2 2,5 2,5 r

2 1 1,3,4 1,3,4 b, dr
3 - 2 2 b,dr
4 - 2 2 r

5 - 1 1 b,dr

represent a contextual perceptual limitation of the que-
rying agent. Such queries are called tolerance queries,
the definition of which follows.

Definition 7.6. Let D be a (crisp or approximate)
database. By a tolerance query we mean a pair (Q,TSy),
where

e 0= (0(x),0"(x)) is an approximate query;
e TSy is a tolerance space for tuples of arity the same
as the arity of x.

If 7S is a sequence of tolerance spaces compatible
with D, then the meaning of a tolerance query Q in a
database D wrt a context TS is given by

(@), QW) ).

0

8. Agent communication with heterogeneous
perceptual capabilities

Consider a multi-agent application in a complex envi-
ronment such as the Web where software agents reside,
or a natural disaster in an urban area where physical ro-
bots reside. Each agent will generally have its own view
of its environment due to a number of factors such as
the use of different sensor suites, knowledge structures,
reasoning processes, etc. (see Fig. 1). Agents may also
have different understandings of the underlying concepts
which are used in their respective representational struc-
tures and will measure objects and phenomena with dif-
ferent accuracy. How then can agents with different
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knowledge structures and perceptual accuracies under-
stand each other and effect meaningful communication
and how can this be modeled? In this section, we pro-
pose a framework to do this using tolerance spaces as
the main representational tool to model many of these
types of limitations and mismatches.

The approach may be summarized as follows. It is as-
sumed that each agent has its own database and that
agents have a common ontology. The database may be
crisp or approximate and generated in any number of
ways, some having been demonstrated already. The idea
is that some perceptual and other limitations have al-
ready been encoded in the respective databases of the
agents. For any tolerance agent, we also assume an addi-
tional context consisting of a sequence of tolerance
spaces. These may cover all, some or none of the rela-
tions in the database and are intended to represent addi-
tional limitations which are contextual in nature. The
agent need not be aware of these limitations, but will al-
ways view its knowledge through this filter when asking
questions internally and this context may be used when
generating a tolerance query to be asked of another
agent.

When an agent asks a question of another agent using
a tolerance query, the question is interpreted by the
other agent through its context and its database. Two
sets of tuples are returned, representing the lower and
upper approximation of the original query. The agent
who asked the question, will then apply the tolerance
space associated with its tolerance query to the result re-
turned by the questioned agent. The net result is an an-
swer which takes into account both the perceptual
limitations of the questioned agent and the current lim-
itation associated with the tolerance query. Initial work
with these ideas may be found in [9].

We begin with a general definition of a folerance
agent, specializing that provided in [9].

Definition 8.1. By a tolerance agent we shall understand
any tuple (4g, D, TS), where Ag is an agent, D is its (crisp
or approximate) database and TS, called the context of
agent Ag, is a sequence of tolerance spaces compatible
with D.

Here we do not define what an agent is specifically, as
the framework we propose is independent of the partic-
ular details. The assumption is that the Ag part of a tol-
erance agent consists of common functionalities
normally associated with agents such as planners, reac-
tive and other methods, knowledge bases or structures,
etc. The knowledge bases or structures are also assumed
to have a relational component consisting of a relational
database (D). When the agent introspects and queries its
own knowledge base its limited perceptual capabilities
are reflected in any answer to a query due to its context.

Suppose that two tolerance agents have different per-
ceptual capabilities and consequently different tolerance

spaces. It is then necessary to define the meaning of que-
ries and answers relative to the two tolerance agents. As
previously advocated, a tolerance agent, when asked
about a relation, answers by using the approximations
of the relation wrt its tolerance space. On the other
hand, the agent that asked the query has to understand
the answer provided by the other agent wrt to its own
tolerance space.
The dialog between two tolerance agents:

o query agent TA, = (Ag,, Dy, TS)),
o answer agent TAy = (Ag,,D,, TS),

then conforms to the following schema:

1. TA, asks TA, a question using a tolerance query
0={((0.,0"), Ty); in fact, it sends to TA, the
approximate query (Q’, Q") without T;

2. TA, computes the answer approximating its database
according to its current context 7S, and returns as an

answer the approximate relation (O, g)Dﬁz. In

2
order to simplify notation, we denote this relation
by R= (R, R");

3. TA, receives R as input and interprets it according to
the context T, indicated in the query. The resulting
interpretation, (R, R7.), provides the answer to

[ [

the query, as understood by T4, and takes into
account the perceptual limitations of both agents.

This schema will only work properly under the assump-
tion of a common vocabulary, but see [17] for additional
methods related to agent querying where agent vocabu-
laries are mismatched.!!

Remark 8.2. Observe that the context of agent Ag; is
not present in the schema directly. One can, h(lvever,
observe, that Ty usually strongly depends on 7S;. In

particular, if Q is of the form #/(x) then, in most cases,

Ty is the jth tolerance space in 7.

The definition describing this interaction now
follows.

Definition 8.3. Let 74, and TA, be as above. Let
0= {(Q',Q0"), TS)) be a tolerance query, which is asked
by TA, and answered by 7'4,. Then the result of query Q
is defined as the lower and upper approximation wrt 7.5,
of the meaning12 of Q in database D, wrt context 7S5.

Example 8.4. Consider first a tolerance agent
(Agy,D,Ty), where Agy and the tolerance space Ty
are as provided in Example 7.3 (i.e., Ag; does not recog-
nize the difference between colors dr and b).

"' The machinery of [17] provides in such cases answers to queries,
which are approximate in the sense of Definition 2.1.
12 As provided by Definition 7.6.
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Consider the following query which the agent asks
itself internally:"?

(V(x,y) AN[C(x,r) V C(y, b)), V(x,y)
AN[C(x,r)V C(x,dr)V C(y,b)], Ty).

To compute the answer we first consider (cf. Definition
7.6)

(Ve y) N[Cx,r) v C, D)L
[V (x,y) A[C(x,r) V Clx,dr) v C(»,b)]]..),

which, according to Definition 7.4, is
<V+(xay) A [C+(x7 I") \ C+( 1b)]7
V(x,) A[Co(x,7) V Co(x,dr) V Cq (v, b)]).

Using the approximations of V, S, E and C wrt Ty, from
Tables 2 and 3, the above query evaluates to
((1.2)).({1,2}).

One may interpret the result as stating that the tuple
(1,2) definitely satisfies the original query while the tuple
(2,1) may satisfy the original query, but more precision
would be required to state this with certainty.

Example 8.5. Consider the tolerance agents (Agy, Ty)
and (Agg, Tg) where

e Agy and Ty are as described in Example 8.4;

o Tg=(U,16,pG) such that ¢ identifies equal ele-
ments and additionally dr with r. (The database
approximation wrt 7 is shown in Tables 4 and 5.)

Suppose Ag; wants to ask Ag, for information about
colors of objects satisfying the following tolerance
query:'

<<3x’y' [V(x7y) A C(x,z)],
Elx?)/' [S(Xd/) /\E(X,y) A C(X’Z)Da TG>

Using Definition 8.3, agent Ag, then evaluates this tol-
erance query in the context of its perception capabilities,
i.e., according to the database approximation given in
Tables 2 and 3. The answer returned by Agy is

(T, y - [Vl ) A Cylx,2)],
I,y - [Sa(x,¥) AEs(x,) A Co(x,2)]).

Thus Agy returns to Agg answer ({r},{r,b,dr}). Agc

then computes the final answer by interpreting the above

one relative to its tolerance space 7' using Definition 8.3.
The final answer is then (@, {r,b,dr}).

13 For simplicity, we provide one tolerance space and assume that two
tuples are identified if the arguments representing color have values
within the same neighborhood and arguments not representing colors
have equal values.

4 Observe that ¥ (x,y) — (S(x,y) A E(x,y)) thus the lower approxi-
mation part of the query is indeed included in its upper approximation
part.

Table 4

Approximation (lower approximations) of the relational database
given in Table 1 wrt perception capabilities of agent Ag; as defined in
Example 8.5

Object V. Sy E. Cy
1 2 2,5 2,5 -
2 1, 3,4 1,3,4 b
3 - 2 2 -
4 2 2

5 - 1 1 -
Table 5

Approximation (upper approximations) of the relational database
given in Table 1 wrt perception capabilities of agent Ags as defined in
Example 8.5

Object Va Sa Es Cy
1 2 2,5 2,5 r,dr
2 1,3, 4 1,3, 4 b

3 — 2 2 r,dr
4 - 2 2 r,dr
5 - 1 1 r,dr

9. Some complexity issues

Let us assume that the query language used with crisp
relational databases (as defined in Definition 2.2) is trac-
table, i.e., all queries can be computed in deterministic
polynomial time. We have already suggested (see Defini-
tion 2.3) formulating queries using classical first-order
logic or fixpoint calculus. These choices are justified by
the following facts (see, e.g., [6]):

o first-order queries are PTiME-computable, i.e., com-
putable in deterministic polynomial time wrt the size
of the database domain; moreover such queries are
computable in deterministic logarithmic space;

e fixpoint queries are PTiME-computable (thus also in
deterministic polynomial space); moreover, fixpoint
queries capture the whole complexity class PTIME,
provided that the database domain is linearly
ordered.

Of course, use of SQL is also tractable. In fact, its
expressive power is equal to the expressive power of
first-order queries.

Let us consider a fixed crisp or approximate database
with domain U. Under the above assumptions, it is eas-
ily seen that approximate queries, in the sense of Defini-
tion 2.3, are PTiME-computable in the size of U.

Consider a tractable partial tolerance space 75, i.e., a
space with a PTIME-computable tolerance function. Then
parameterized tolerance relations and neighborhood
functions (see Definitions 3.2 and 3.4) are PTiME-com-
putable. In addition, for any set S C U, the lower and
upper approximations, Sy+ and Sy, (see Definition
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3.8) are PriME-computable. In consequence, approxima-
tions of databases, as defined in Definition 7.2, are
PrimE-computable.

Similarly, since o, and o of Definition 7.4 may in-
crease the size of a formula by a constant factor only,
tolerance queries (see Definitions 7.6 and 8.3) are
PriME-computable. Thus all tolerance-based notions
are tractable so the techniques we deal with are tractable
too, assuming that all necessary functions, such as prob-
abilities, etc., are tractable too.

The only methods considered in the paper, for which
tractability might be difficult to obtain, are those that
use sensor models incorporating the Dempster—Shafer
theory. The reason is that in this case all subsets of the
frame of discernment might have to be considered. Of
course, the set of all subsets of a set, say @, is exponen-
tial in the size of ®. However, the complexity here is not
caused by tolerance-based techniques, but by the Demp-
ster—Shafer theory itself.

10. Conclusions

In this paper, we have proposed a framework that
provides agents with the ability to fuse both low and
high level approximate knowledge in the context of
dynamically changing environments as well as heteroge-
neous and contextually limited perceptual capabilities.
We have shown how these limitations can be taken into
account when constructing and querying approximate
databases for each respective agent.

In order to model the discussed phenomena, we have
introduced the idea of partial tolerance spaces. This idea
can further be generalized to arbitrary similarity spaces
(see [18]) reflecting arbitrary similarity measures.

The techniques proposed in this paper are all tracta-
ble and are being implemented and tested in a UAV pro-
ject [19-21], where physical sensors and real-time
constraints must be taken into account. A book [16]
describing much of additional relevant work is
forthcoming.
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