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Self organising maps for value estimation to solve reinfor
ementlearning tasksA. Kleiner,B. Sharp, O. BittelSta�ordshire UniversityMay 11, 2000Abstra
tReinfor
ement learning has been applied re
ently more and more for the optimisation ofagent behaviours. This approa
h be
ame popular due to its adaptive and unsupervised learningpro
ess. One of the key ideas of this approa
h is to estimate the value of agent states. Forhuge state spa
es however, it is diÆ
ult to implement this approa
h. As a result, variousmodels were proposed whi
h make use of fun
tion approximators, su
h as neural networks,to solve this problem. This paper fo
uses on an implementation of value estimation with aparti
ular 
lass of neural networks, known as self organising maps. Experiments with an agentmoving in a \gridworld" and the autonomous robot Khepera have been 
arried out to showthe bene�t of our approa
h. The results 
learly show that the 
onventional approa
h, done byan implementation of a look-up table to represent the value fun
tion, 
an be out performed interms of memory usage and 
onvergen
e speed.Keywords: self organising maps, reinfor
ement learning, neural networks
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1 INTRODUCTION 11 Introdu
tionIn this paper we dis
uss the 
redit assignmentproblem, and the reinfor
ement learning issueasso
iated with rewarding an agent upon su
-
essful exe
ution of a set of a
tions. Figure 1 il-lustrates the intera
tion between an agent andits environment. For every a
tion, the agentperforms in any state st, it re
eives an imme-diate reinfor
ement rt and the per
epts of thesu

essor state st+1. This immediate reinfor
e-ment depends on the performed a
tion and onthe new state taken as well. For example, anagent sear
hing for an exit in a maze mightbe rewarded only if this exit is rea
hed. Ifthis state is found, it is obvious that all for-mer states, whi
h 
ontributed to this su

ess,have to be rewarded as well.Reinfor
ement learning is one solution for the
redit assignment problem. The idea of rein-for
ement learning grew up within two di�er-ent bran
hes. One bran
h fo
used on learningby trial and error, whereas the other bran
hfo
used on the problem of optimal 
ontrol. Inthe late 1950s Ri
hard Bellman introdu
ed hisapproa
h of a value fun
tion or a \optimal re-turn fun
tion" to solve the problem of optimal
ontrol (Bellman 1957). Methods to solve thisequation are nowadays known as dynami
 pro-gramming. This paper fo
uses on a generaliza-tion of these methods, known as temporal dif-feren
e methods, whi
h has been introdu
ed in1988 by Ri
hard Sutton (Sutton 1988). Thesemethods assign, during an iterative pro
edure,a 
redit to every state in the state spa
e, basedon a 
al
ulated di�eren
e between these states.Roughly speaking this implies, that if a futurestate is desirable, the present state is as well.Sutton introdu
ed the parameter � to de�ne,how far in the future states have to be takeninto a

ount, thus this generalisation is namedTD(�). Within this paper, however, the sim-
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Figure 1: The agent-environment intera
tionin reinfor
ement learningpler 
ase TD(0)1 is used, whi
h only 
onsidersone su

essor state during a temporal update.Current methods for the \optimal return fun
-tion" su�er, however, under what Bellman
alled \the 
urse of dimensionality", sin
estates from real world problems 
onsist usuallyof many elements in their ve
tors. Thereforeit makes sense to use fun
tion approximators,su
h as neural networks, to learn the \optimalreturn fun
tion".Su

essful appli
ations of reinfor
ement learn-ing with neural networks are testi�ed by manyresear
hers. Barto and Crites (Barto & Crites1996) des
ribe a neural reinfor
ement learn-ing approa
h for an elevator s
heduling task.Thrun (Thrun 1996) reports the su

essfullearning of basi
 
ontrol pro
edures of an au-tonomous robot. This robot learned with aneural Q learning implementation, supportedby a neural network. Another su

essful im-plementation was done by Tesauro at IBM(Tesauro 1992). He 
ombined a feed-forwardnetwork, trained by ba
kpropagation, withTD(�) for the popular ba
kgammon game.This ar
hite
ture was able to �nd strategiesusing less indu
ement and has even defeated1Also known as the value iteration method



2 SELF ORGANIZING MAPS (SOM) 2
hampions during an international 
ompeti-tion.Besides this su

essful examples, whi
h are allbased on neural networks using ba
kpropaga-tion, there is more and more eviden
e, that ar-
hite
tures based on ba
kpropagation 
onvergeslowly or not at all. Examples for su
h prob-lemati
 tasks are given by (Boyan & Moore1995) and (Gordon 1995). This diÆ
ultiesarise due to the fa
t that ba
kpropagation net-works store information impli
it. This meansfor the training that every new update a�e
tsformer stored information as well. A 
onver-gen
e 
annot be guaranteed anymore, sin
ethe original approa
h of reinfor
ement learningis supposed to be used with an expli
it look-up table. Therefore our approa
h makes useof a neural network ar
hite
ture with expli
itknowledge representation, known as self organ-ising maps.This paper will dis
uss the problems asso
iatedwith the use of self organising maps (SOMs) tolearn the value fun
tion and des
ribe our modi-�ed approa
h to SOM applied to two problems.2 Self organizing maps (SOM)Self organizing maps were �rstly introdu
edby Teuvo Kohonen in 1982 (Kohonen 1982).These kind of neural networks are a typi
alrepresentative of unsupervised learning algo-rithms. During the learning pro
ess parti
ularneurons are trained to represent 
lusters of theinput data. The a
hieved arrangement of these
lusters is su
h, that similar 
lusters, in termsof their Eu
lidean distan
e, are near to ea
hother and di�erent 
lusters are far from ea
hother. Hen
e, the network builds up a topol-ogy depending on the data given to it from theinput spa
e. This topology is equal to the sta-tisti
al distribution of the data. Areas of the

input spa
e, whi
h are supported by more sam-ples in the data, are represented more detailedthan areas supported with less samples.SOM ar
hite
tureA SOM usually 
onsists of a two dimensionalgrid of neurons. Every neuron is 
onne
tedvia its weights to the input ve
tor, where oneweight is spent for every element of this ve
-tor. Before the training pro
ess, values of theseweights are set arbitrary. During the train-ing phase, however, the weights of ea
h neuronare modi�ed to represent 
lusters of the inputspa
e.Mapping of patternAfter a network has been trained, a 
luster foran input ve
tor 
an be identi�ed easily. To�nd the neuron, representing this 
luster, theEu
lidean distan
e between this ve
tor and allweight sets of the neurons on the SOM has tobe 
al
ulated. The neuron with the shortestdistan
e represents this ve
tor most pre
iselyand is thus named as \winner" neuron. TheEu
lidean distan
e is 
al
ulated after the fol-lowing equation:di = nXk=1(wik � xk)2 (1)Where wik denotes the ith neurons kth weightand xk the kth element of the input ve
tor.Learning of 
lusters.The learning pro
ess takes pla
e in a so 
alledo�ine learning. During a �xed amount of repe-titions, 
alled epo
hs, all patterns of the train-ing data are propagated through the network.At the beginning of the learning pro
ess, val-ues of the weights are arbitrary. Therefore forevery input ve
tor xi a neuron ui is 
hosen tobe its representative by random as well. Tomanifest the stru
ture of the map, weights aremoved in dire
tion to their 
orresponding in-put ve
tor. After a while the representation of



3 REINFORCEMENT LEARNING 3input ve
tors be
omes more stable, sin
e theEu
lidean distan
e of ea
h winner neuron de-
reases.To build a topologi
al map, it is important toadjust the weights of neighbours around theneuron as well. Therefore a spe
ial neighbour-hood fun
tion has to be applied. This fun
tionshould return to the winner neuron a value of1 and to neurons with in
reasing distan
e to ita de
reasing value down to zero. Usually the\sombrero hat fun
tion" or the Gaussian fun
-tion is used for that. By use of the Gaussianfun
tion, the neighbourhood fun
tion is:h
i = e� jn
�nij22�2 (2)Where n
 denotes the winner neuron and niany neuron on the Kohonen Layer. The stan-dard deviation � denotes the neighbourhoodradius.For every input ve
tor the following updaterule will be applied to every neuron on theSOM: 4wik = � � h
i � (xk � wik) (3)Where � denotes the step size.By this update rule, weights are updated indis
rete steps, de�ned by the step size �. Thenearer neurons are to a 
hosen winner neu-ron, the more they are a�e
ted by the update.Thereby neighbouring neurons represent simi-lar 
lusters, whi
h leads to a topologi
al map.The advantage of SOMs is that they are ableto 
lassify samples of an input spa
e unsuper-vised. During the learning pro
ess, the mapadapts its stru
ture to the input data. De-pending on the data, the SOM will build 
lus-ters and order them in an appropriate manner.One disadvantage of SOMs is, however, the ne-
essity to de�ne a representative subset of the

input spa
e and train it over many epo
hs. Af-ter the SOM is trained it is only possible to adda new 
luster to the representation by repeat-ing the learning pro
ess with the old trainingset and the new pattern.3 Reinfor
ement LearningClassi
al approa
hes for neural networks tendto make use of spe
i�
 knowledge about statesand their 
orresponding output. This givenknowledge is used for a training set and af-ter the training it is expe
ted to gain knowl-edge about unknown situations by generaliza-tion. However for many problems in the realworld an appropriate training set 
an't be gen-erated, sin
e the \tea
her" doesn't know thespe
i�
 mapping. Nevertheless, it seems to beeasy for the tea
her to assess this mapping forevery state. When learning to drive a 
ar, forexample, one is not told how to operate the
ar 
ontrols appropriately, the tea
her, how-ever, bridges the gap in learning using appro-priate feedba
k, whi
h improves the learningpro
ess and leads �nally to the desired map-ping between states and a
tions.The Reinfor
ement problemThe task of reinfor
ement learning is to use re-wards to train an agent to perform su

essfulfun
tions. Figure 1 illustrates the typi
al in-tera
tion between agent and environment. Theagent performs a
tions in its environment andre
eives a new state ve
tor, 
aused by this a
-tion. Furthermore the agent gets feedba
k ofwhether the a
tion was adequate. This feed-ba
k is expressed by immediate rewards, whi
halso depend on the new state taken by theagent. A 
hess playing agent, for example,would re
eive a maximum immediate rewardif it rea
hes a state where the opponent 
annotmove the king any more. This example illus-trates very 
learly the 
redit assignment prob-



3 REINFORCEMENT LEARNING 4lem. The reward a
hieved in the last boardposition is a
hieved after a long 
hain of a
-tions. Thus all a
tions, done in the past, areresponsible for the �nal su

ess and thereforealso have to be rewarded. For this problemseveral approa
hes have been proposed; a goodintrodu
tion to these is found in the book byBarto and Sutton (Barto & Sutton 1998). Thispaper, however, fo
uses on one of these ap-proa
hes, whi
h is the value iteration method,also known as TD(0).Rewards 2In reinfor
ement learning, the only hints givento the su

essful task are immediate reinfor
e-ment signals. These signals usually 
ome di-re
tly from the environment or 
an be gener-ated arti�
ially by an assessment of the sit-uation. If they are generated for a problem,they should be 
hosen e
onomi
ally. Insteadof rewarding many sub-solutions of a problem,only the main goal should be rewarded. Forexample, for a 
hess player agent it would notne
essarily make sense to reward the taking ofthe opponent's pie
es. The agent might �nda strategy whi
h optimises the 
olle
tion ofpie
es of the opponent, but forgets about theimportan
e of the king. Reinfor
ement learn-ing aims to maximise the a
hieved reinfor
e-ment signals over a long period of time.In some problems no terminal state 
an beexpe
ted, as in the 
ase of a robot drivingthrough a world of obsta
les and learning notto 
ollide with them. An a

umulation of re-wards would lead to an in�nite sum. For the
ase where no terminal state is de�ned, we haveto make use of a dis
ount fa
tor to ensure thatthe learning pro
ess will 
onverge. This fa
tordis
ounts rewards whi
h might be expe
ted inthe future 3, and thus 
an be 
omputed as fol-2Rewards also in
lude negative values whi
h areequal to punishments3These expe
tations are based on knowledge

lows: RT = rt+1 + 
rt+2 + 
2rt+3 + :::= TXk=0 
krt+k+1 (4)Where RT denotes the rewards a
hieved duringmany steps, 
 the dis
ount fa
tor and rt thereward at time t. For T = 1 it has to beensured that 
 < 1The dire
t goal for reinfor
ement learningmethods is to maximise RT . To a
hieve thisgoal, however, a predi
tion for the expe
tationof rewards in the future is ne
essary. Thereforewe need a mapping from states to their 
or-responding maximum expe
tation. As knownfrom utility theory, this mapping is de�ned bythe value fun
tion 4.The value fun
tion V �(s)In order to maximise rewards over time, it hasto be known for every state, what future re-wards might be expe
ted. The optimal valuefun
tion V �(s) provides this knowledge with avalue for every state. this return value is equalto the a

umulation of maximum rewards fromall su

essor states. Generally this fun
tion
an be represented by a look-up table, wherefor every state an entry is ne
essary. This fun
-tion is usually unknown and has to be learnedby a reinfor
ement learning algorithm. Onealgorithm, whi
h updates this fun
tion su

es-sive, is value iteration.Value iterationIn 
ontrast to other available methods, thismethod updates the value fun
tion after ev-ery seen state and thus is known as value it-eration. This update 
an be imagined with ana
hieved in the past4In terms of the utility theory originally named util-ity fun
tion



3 REINFORCEMENT LEARNING 5agent performing a
tions and using re
eived re-wards, 
aused by this a
tions, to update valuesof the former states. Sin
e the optimal valuefun
tion returns for every state the a

umula-tion of future rewards, the update of a visitedstate st has to in
lude the value of the su

es-sor state st+1 as well. Thus the value fun
tionis learned after the following iterative equation:Vk+1(st) := r(st; at) + Vk(st+1) (5)Where Vk+1 and Vk denote the value fun
-tion before and after the update and r(st; at)refers to the immediate reinfor
ement a
hievedfor the transition from state st to state st+1by the 
hosen a
tion at. While applying thismethod, the value fun
tion approximates moreand more until it rea
hes its optimum. Thatmeans that predi
tions of future rewards be-
ome su

essively more pre
ise and a
tions 
anbe 
hosen with maximum future rewards.There is an underlying assumption that theagent's a
tions are 
hosen in an optimal man-ner. In value iteration, the optimal 
hoi
e ofan a
tion 
an be done after the greedy-poli
y.This poli
y is, simply after its name, to 
hosea
tions whi
h lead to maximum rewards. Foran agent this means, to 
hose from all possi-ble a
tion a 2 A that one, whi
h returns afterequation (5) the maximum expe
tation. How-ever we 
an see, that after equation (5) thesu

essor state st+1, 
aused by a
tion at, mustbe known. Thus a model of the environmentis ne
essary, whi
h provides for state st anda
tion at the su

essor state st+1:st+1 = f(st; at) (6)ExplorationIf all a
tions are 
hosen after the greedy-poli
y,it might happen that the learning pro
ess re-sults in a sub-optimal solution. This is be
ausea
tions are always 
hosen by use of knowledge

gathered so far. This knowledge however 
anlead to a lo
al optimal solution in the sear
hspa
e, where global optimal solutions never 
anbe found. Therefore it makes sense to 
hosea
tions, with a de�ned likelihood, arbritary.The poli
y to 
hose a
tion by a propability of "arbritrary, is 
alled "-greedy poli
y. Certainlythere is a trade-o� between exploration and ex-ploitation of existing knowledge and the opti-mal adjustment of this parameter depends onthe problem domain.Implementation of Value IterationSo far, the algorithm 
an be summarised in thefollowing steps:� sele
t the most promising a
tion at afterthe "-greedy poli
yat = argmina2A(st)(r(st; a) + Vk(f(st; a)))� apply at in the environmentst =) st+1� adapt the value fun
tion for state stVk+1(st) := r(st; at) + Vk(st+1)In theory, this algorithm will de�nitely eval-uate an optimal solution for problems, su
has de�ned at the beginning of this se
tion. Aproblem to reinfor
ement learning however, isits appli
ation to real world situations. Thatis be
ause real world situations are usually in-volved with huge state spa
es. The value fun
-tion should provide every state with an appro-priate value. But most real world problems
ome up with a multi-dimensional state ve
tor.The state of a robot, for example, whose task isto �nd a strategy to avoid obsta
les, 
an be de-s
ribed by the state of its approximity sensors.



4 MODIFIED SOM TO LEARN THE VALUE FUNCTION 6If every sensor would have a possible returnvalue of 10 Bit and the robot itself owns eightof these sensors, the state spa
e would 
onsistof 1:2 � 1024 di�erent states, emphasizing theproblem of tra
tability in inferen
ing.On the other hand, it might happen, that dur-ing a real experiment with a limited time, allstates 
an never be visited. Thus it is likely,that even after a long training time, still un-known states are visited. But unfortunatelythe value fun
tion 
an't provide a predi
tionfor them.4 Modi�ed SOM to learn thevalue fun
tionThe two problems previously identi�ed for re-infor
ement learning, 
an be solved using fun
-tion approximators. Neural Networks, in par-ti
ular, provide the bene�t of 
ompressingthe input spa
e and furthermore the learnedknowledge 
an be generalised. This means forthe value fun
tion, that similar states will beevaluated by one neuron. Hen
e also unknownstates 
an be generalized and evaluated by thepoli
y. For this purpose the previously intro-du
ed model of self organising maps has beentaken and modi�ed.Modi�
ation to the ar
hite
tureUsually SOMs are used for 
lassi�
ation of in-put spa
es, for whi
h no output ve
tor is ne
-essary. To make use of SOMs as fun
tion ap-proximator, it is ne
essary to extend the modelby an output value. Su
h modi�
ations havebeen �rst introdu
ed by Ritter and S
hulten in
onne
tion with re
ex maps for 
omplex robotmovements (Ritter & S
hulten 1987). Themodi�
ation used here is, that every neuron ofthe Kohonen layer is expanded by one weight,whi
h 
onne
ts it to the s
alar output. Thisoutput is used for the value fun
tion. The goal

is to get a generalisation for similar situations.To a
hieve this, the output weights have to betrained with a neighbourhood fun
tion as well.Therefore the output weights are adapted withthe following rule:Æwi = �2h
i(y � wi) (7)Where �2 is a se
ond step size parameter andh
i the same neighbourhood fun
tion as usedfor the input weights and y the desired outputof the network.Modi�
ation to the algorithmAs remarked previously, the learning algorithmfor SOMs is supposed to be applied \o�ine"with a spe
i�
 training set. The appli
ation ofvalue iteration however, is an \online" pro
ess,where the knowledge in
reases iteratively. Tosolve this 
ontradi
tion, the learning pro
ess ofthe SOM has been divided into two steps:� First step: pre-
lassi�
ation of the envi-ronment� Se
ond step: exe
ution of reinfor
ementlearning with improvement of 
lassi�
a-tion for visited statesFor the �rst step a representative sample of thewhole state spa
e is ne
essary, to build a appro-priate map of the environment. This samplewill be trained, until the stru
ture of the SOMis adequate to 
lassify states of the problemsstate spa
e. During the exe
ution of the se
-ond step the reinfor
ement learning algorithmupdates states with their appropriate values.These states are 
lassi�ed by SOMs, where oneneuron is 
hosen as winner. The 
orrespond-ing output weights of this neuron are 
hangedto the value, 
al
ulated by the reinfor
ementlearning algorithm. Furthermore, the outputvalues of the neighbourhood of this neuron are



5 EXPERIMENTS AND RESULTS 7modi�ed as well to a
hieve the e�e
t of gener-alisation.Usually the states, ne
essary to solve the prob-lem, are a subset of the whole state spa
e.Thus the SOM has to 
lassify only this sub-set, using a pre-
lassi�
ation. During the ap-pli
ation of reinfor
ement learning, this 
lassi-�
ation will improve, sin
e for every state vis-ited, its representation is strengthen. States,whi
h are visited more frequently and thus aremore important for the solution of the prob-lem, will a
hieve a better representation thanthose unimportant states, whi
h are visitedless.5 Experiments and results5.1 The path-planning problemThis se
tion des
ribes the appli
ation of ourmodi�ed SOM with reinfor
ement learning forsolving the path planning problem. The prob-lem is to �nd the shortest path through a mazeor simply a path on a map. For the experi-ment des
ribed here, a 
omputer simulation ofa \girdworld" has been taken (see Figure 2).The gridworld is represented by a two dimen-sional arrangement of positions. Wall pie
e orobsta
les 
an o

upy these positions and theagent therefore 
an't 
ross them. Other po-sitions however, are free to its dis
overy. Forthe experiment, the upper left 
orner is de�nedas start position and the lower right 
orneras end position. The agent's task is to �ndthe shortest path between these two positions,while avoiding obsta
les on its way.Due to the fa
t, that the agent is supposed tolearn the \
heapest" path, it is punished forevery move with -1 and rewarded with 0 if itrea
hes the goal. Beside these reinfor
ementsignals, the agent gets no other information,about where it 
an �nd the goal or whi
h di-

Figure 2: The gridworld experiment
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Figure 3: A
hieved rewards, during learning ofa behaviour for the gridworld experimentre
tion should be preferred. If it fa
es an ob-sta
le, the possible a
tions are redu
ed to thata
tions, whi
h lead to free positions around.Two implementations of a modi�ed SOM with8x8 neurons and 10x10 neurons have beenused. For 
omparison, the experiment hasbeen 
arried out with a look-up table, whereevery entry represents a state, as well. Thislook-up table 
onsists of 289 entries, due tothe used grid size is 17x17 positions.



5 EXPERIMENTS AND RESULTS 8ResultsThe result of this experiment is shown in �g-ure 3. In this graph the a
hieved rewards forea
h implementation after every episode 
anbe seen. The optimal path is found, if the a
-
umulated reinfor
ement during one episode is-53, sin
e the agent needs at least 53 steps torea
h its goal. In the graph 
an be seen, thatthe implementation of the modi�ed SOM with10x10 neurons leads to a faster result than thelook-up table. After 30 episodes the agent,equipped with the modi�ed SOM, found the
heapest path.5.2 Learning obsta
le avoidan
ewith a robotA 
ommon problem in roboti
s is the au-tonomous drive of a robot. For su
h a drivethere are various pro
esses. One pro
ess mightbring it to a far destination, lead by a path�nding algorithm. For simple movement, how-ever, a pro
ess is ne
essary to avoid obsta
les.In this problem, it is very diÆ
ult to de�ne ap-propriate a
tions for parti
ular situations. Onthe other hand, we 
an easily assess the result-ing a
tions. Therefore this problem seems tobe appropriate for the reinfor
ement learningapproa
h.In this experiment the autonomous miniaturerobot Khepera, whi
h was developed at theEPFL in Lausanne, has been used (see �gure4). This 5 
m huge robot is equipped with eightapproximity sensors, where two are mounted atthe front, two at the ba
k, two at the side andtwo in 45Æ to the front. These sensors give a re-turn value between 0 and 1024, whi
h is 
orre-sponding to a range of about 5 
m. The robotsdrive 
onsists of two servo motors, whi
h 
anturn the two wheels with 2 m per se
ond in neg-ative and positive dire
tions. By this 
on�gu-ration, the robot is able to do 360Æ rotationswithout moving in x or y dire
tion. Therefore

Figure 4: Autonomous robot Kheperathe robot is very manoeuvrable and should beable to deal with most situations. Furthermorethe robot is equipped with two re
hargeablebatteries, whi
h enable it to drive for about 20minutes autonomously. For exe
ution of pro-grams, there also exists a CPU from Motorolaand a RAM area of 512KB on the robot.ExperimentDue to the fa
t, that for value iteration a modelof the environment is required, the robot hasbeen �rst trained using a 
omputer simulation.Afterwards the experiment 
ontinued on a nor-mal oÆ
e desk, where obsta
les and walls werebuilt up with wooden blo
ks.In the reinfor
ement learning algorithm, thestate of the robot was represented by the eightsensor values. The allowed a
tions have beenredu
ed to the three a
tions: left turn, rightturn and straight forward. Also the reinfor
e-ment signals were 
hosen in the most trivialway. If the robot 
ollides with an obsta
le, it
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Figure 5: A learned 
lassi�
ation of the sensorspa
egets a punishment of -1, otherwise a reward of0. The experiment has been 
arried out overmultiple episodes. One episode has been lim-ited to 50 steps. Therefore the dis
ount fa
tor
 has been set to 1.0. For exploration purposesthe fa
tor " has been adjusted to 0.01, whi
his equal to the probability a
tions are 
hosenarbitrary. Con
erning to the state ve
tor, theinput ve
tor of the SOM 
onsists of eight ele-ments as well. For the Kohonen Layer an ar-rangement of 30x30 neurons has been 
hosen.Before the appli
ation of the reinfor
ementlearning algorithm, the SOM had to be pre-
lassi�ed. Therefore a training set of typi-
al situations from an obsta
le world has beentrained over 90 epo
hs. With the help of visu-alisation tools it 
ould be ensured that the sit-uations are adequately 
lassi�ed, as illustratedin �gure 5.During the episodes of the value iterationmethod, identi�ed situations were relearnedwith a small neighbourhood of � = 0:1 andalso small learning step rate of � = 0:3.ResultsThe result of the learning pro
ess of the robot
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Figure 6: Collisions during the autonomouslearning of an obsta
le avoidian
e strategy
an be seen in �gure 6. In this graph the a

u-mulated rewards for every episode are shown.Hen
e for every 
ollision the robot has beenpunished with -1, the reinfor
ement for everyepisode is equal to the 
aused 
ollisions. After45 episodes the number of 
ollisions be
amesigni�
antly less. During the early episodes,the value of a
hieved reinfor
ement signalssways strongly. This results from the fa
t, thatafter the robot over
ame a situation, it en
oun-tered a new situation again, where another be-haviour had to be learned as well. As we see inthe graph, the robot learned to manage mostsituations after a suÆ
ient time of pro
eed-ing. After the training the learned 
ontrol hasbeen tested on the real robot. Although thea
hieved behaviour was not elegant, it proved,that the robot obviously learned the ability toavoid obsta
les.6 Con
lusionThe problem of a huge state spa
e in realworld appli
ations and the fa
t that mostlysome but unlikely all states of a state spa
e
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an be en
ountered, have been ta
kled by useof a modi�ed SOM. The SOMs abilities to
ompress the input spa
e and generalize fromknown situations to unknown made it possibleto a
hieve a reasonable solution. However, itwas ne
essary to split the standard algorithmfor SOMs into two parts. On
e learning bya pre-
lassi�
ation and twi
e learning duringvalue iteration. With this modi�
ation, the al-gorithm 
an be applied to an online learningpro
ess, whi
h is given by the value iterationmethod.The applied modi�
ations to the standardSOM have been evaluated within the gridworldexample and the problem of obsta
le avoidan
eof an autonomous robot. These experimentsshowed two main advantages of the modi�edSOM to a standard implementation with alook-up table. First, the example of obsta
leavoidan
e proved that even for enormous statespa
es, a strategy 
an be learned. Se
ond, thepath �nding example showed, that the use of amodi�ed SOM 
an lead to faster results, sin
ethe agent is able to generalize situations in-stead of learning a value for all of them.For the Value Iteration algorithm, applied tothe experiments des
ribed here, a model ofthe environment is ne
essary. For real worldproblems, su
h as the problem of obsta
leavoidan
e, however, an appropriate model 
anhardly be provided. Sensor signals are nor-mally noisy or even it might be that a sensoris damaged or don't work properly. Thus it isre
ommendable to use another reinfor
ementlearning implementation, whi
h makes it notany more ne
essary to provide a model of theenvironment. One 
ommonly used variant ofreinfor
ement learning is the Q-Learning. Inthis algorithm states are represented by thetuple of state and a
tion, thus a model of theenvironment is not required. We belief that a
ombination of Q-Learning with the modi�ed

SOM, proposed in this paper, yields better re-sults.One of the big disadvantages en
ountered how-ever, is that the modi�
ation of the SOM dur-ing the se
ond step 
hanges the generalisa-tion behaviour of the network. If states arerelearned frequently with a small neighbour-hood fun
tion, the learned knowledge be
omestoo spe
i�
 and generalisation is redu
ed. Toover
ome this problem, it would be ne
essaryto relearn the 
omplete stru
ture of the SOMwith an o�ine algorithm. Unfortunately, expe-rien
e in terms of training examples are lost af-ter the online pro
ess. A possible solution andprobably subje
t of another work, is to store\
riti
al" pattern temporarily during the on-line pro
ess by dynami
 neurons. With \
riti-
al" pattern we mean those, whi
h 
ome witha far Eu
lidean distan
e to all existing neuronsin the network and thus their 
lassi�
ation bythis neurons would not be appropriate. Giventhe set of these dynami
ally allo
ated neuronsand the set of neurons on the SOM, a new ar-rangement with better topologi
al representa-tion 
an be trained by an o�ine algorithm5.The exe
ution of this o�ine algorithm 
an bedone during a phase of no input to the learnerand is motivated by a human post pro
essingof information, known as REM phase.Referen
esBarto, A. & Crites, R. (1996), Improving el-evator performan
e using reinfor
ementlearning, in M. C. Hasselmo, M. C. Mozer& D. S. Touretzky, eds, `Advan
es inNeural Information Pro
essing Systems',Vol. 8.5For example the standard learning algorithm forSOMs
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