Self Organising Maps for Value Estimation to
Solve Reinforcement Learning Tasks

Alexander Kleiner, Bernadette Sharp and Oliver Bittel

Post Print

N.B.: When citing this work, cite the original article.

Original Publication:

Alexander Kleiner, Bernadette Sharp and Oliver Bittel, Self Organising Maps for Value
Estimation to Solve Reinforcement Learning Tasks, 2000, Proc. of the 2nd International
Conference on Enterprise Information Systems (ICEIS 2000), 74-83.

Postprint available at: Linkdping University Electronic Press
http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72563

http://urn.kb.se/resolve?urn=urn:nbn:se:liu:diva-72563

Self organising maps for value estimation to solve reinforcement
learning tasks

A. Kleiner,B. Sharp, O. Bittel
Staffordshire University

May 11, 2000

Abstract

Reinforcement learning has been applied recently more and more for the optimisation of
agent behaviours. This approach became popular due to its adaptive and unsupervised learning
process. One of the key ideas of this approach is to estimate the value of agent states. For
huge state spaces however, it is difficult to implement this approach. As a result, various
models were proposed which make use of function approximators, such as neural networks,
to solve this problem. This paper focuses on an implementation of value estimation with a
particular class of neural networks, known as self organising maps. Experiments with an agent
moving in a “gridworld” and the autonomous robot Khepera have been carried out to show
the benefit of our approach. The results clearly show that the conventional approach, done by
an implementation of a look-up table to represent the value function, can be out performed in
terms of memory usage and convergence speed.

Keywords: self organising maps, reinforcement learning, neural networks

1 INTRODUCTION

1 Introduction

In this paper we discuss the credit assignment
problem, and the reinforcement learning issue
associated with rewarding an agent upon suc-
cessful execution of a set of actions. Figure 1 il-
lustrates the interaction between an agent and
its environment. For every action, the agent
performs in any state s;, it receives an imme-
diate reinforcement r; and the percepts of the
successor state sy;1. This immediate reinforce-
ment depends on the performed action and on
the new state taken as well. For example, an
agent searching for an exit in a maze might
be rewarded only if this exit is reached. If
this state is found, it is obvious that all for-
mer states, which contributed to this success,
have to be rewarded as well.

Reinforcement learning is one solution for the
credit assignment problem. The idea of rein-
forcement learning grew up within two differ-
ent branches. One branch focused on learning
by trial and error, whereas the other branch
focused on the problem of optimal control. In
the late 1950s Richard Bellman introduced his
approach of a value function or a “optimal re-
turn function” to solve the problem of optimal
control (Bellman 1957). Methods to solve this
equation are nowadays known as dynamic pro-
gramming. This paper focuses on a generaliza-
tion of these methods, known as temporal dif-
ference methods, which has been introduced in
1988 by Richard Sutton (Sutton 1988). These
methods assign, during an iterative procedure,
a credit to every state in the state space, based
on a calculated difference between these states.
Roughly speaking this implies, that if a future
state is desirable, the present state is as well.
Sutton introduced the parameter \ to define,
how far in the future states have to be taken
into account, thus this generalisation is named
TD()). Within this paper, however, the sim-

1
AGENT
A
siate reward
S[I
t
4[Environment]47

Figure 1: The agent-environment interaction
in reinforcement learning

pler case TD(0)! is used, which only considers
one successor state during a temporal update.

Current methods for the “optimal return func-
tion” suffer, however, under what Bellman
called “the curse of dimensionality”, since
states from real world problems consist usually
of many elements in their vectors. Therefore
it makes sense to use function approximators,
such as neural networks, to learn the “optimal
return function”.

Successful applications of reinforcement learn-
ing with neural networks are testified by many
researchers. Barto and Crites (Barto & Crites
1996) describe a neural reinforcement learn-
ing approach for an elevator scheduling task.
Thrun (Thrun 1996) reports the successful
learning of basic control procedures of an au-
tonomous robot. This robot learned with a
neural Q learning implementation, supported
by a neural network. Another successful im-
plementation was done by Tesauro at IBM
(Tesauro 1992). He combined a feed-forward
network, trained by backpropagation, with
TD()\) for the popular backgammon game.
This architecture was able to find strategies
using less inducement and has even defeated

! Also known as the value iteration method

action

2 SELF ORGANIZING MAPS (SOM)

champions during an international competi-
tion.

Besides this successful examples, which are all
based on neural networks using backpropaga-
tion, there is more and more evidence, that ar-
chitectures based on backpropagation converge
slowly or not at all. Examples for such prob-
lematic tasks are given by (Boyan & Moore
1995) and (Gordon 1995). This difficulties
arise due to the fact that backpropagation net-
works store information implicit. This means
for the training that every new update affects
former stored information as well.
gence cannot be guaranteed anymore, since
the original approach of reinforcement learning
is supposed to be used with an explicit look-
up table. Therefore our approach makes use
of a neural network architecture with explicit
knowledge representation, known as self organ-
181Ng Maps.

A conver-

This paper will discuss the problems associated
with the use of self organising maps (SOMs) to
learn the value function and describe our modi-
fied approach to SOM applied to two problems.

2 Self organizing maps (SOM)

Self organizing maps were firstly introduced
by Teuvo Kohonen in 1982 (Kohonen 1982).
These kind of neural networks are a typical
representative of unsupervised learning algo-
rithms. During the learning process particular
neurons are trained to represent clusters of the
input data. The achieved arrangement of these
clusters is such, that similar clusters, in terms
of their Euclidean distance, are near to each
other and different clusters are far from each
other. Hence, the network builds up a topol-
ogy depending on the data given to it from the
input space. This topology is equal to the sta-
tistical distribution of the data. Areas of the

input space, which are supported by more sam-
ples in the data, are represented more detailed
than areas supported with less samples.

SOM architecture

A SOM usually consists of a two dimensional
grid of neurons.
via its weights to the input vector, where one
weight is spent for every element of this vec-
tor. Before the training process, values of these
weights are set arbitrary. During the train-
ing phase, however, the weights of each neuron
are modified to represent clusters of the input
space.

Every neuron is connected

Mapping of pattern

After a network has been trained, a cluster for
an input vector can be identified easily. To
find the neuron, representing this cluster, the
Euclidean distance between this vector and all
weight sets of the neurons on the SOM has to
be calculated. The neuron with the shortest
distance represents this vector most precisely
and is thus named as “winner” neuron. The
Euclidean distance is calculated after the fol-
lowing equation:

di = i(wzk —z)” (1)
k=1

Where w;;, denotes the ith neurons kth weight
and zj the kth element of the input vector.

Learning of clusters.

The learning process takes place in a so called
offline learning. During a fixed amount of repe-
titions, called epochs, all patterns of the train-
ing data are propagated through the network.
At the beginning of the learning process, val-
ues of the weights are arbitrary. Therefore for
every input vector z; a neuron u; is chosen to
be its representative by random as well. To
manifest the structure of the map, weights are
moved in direction to their corresponding in-
put vector. After a while the representation of

3 REINFORCEMENT LEARNING

input vectors becomes more stable, since the
Euclidean distance of each winner neuron de-
creases.

To build a topological map, it is important to
adjust the weights of neighbours around the
neuron as well. Therefore a special neighbour-
hood function has to be applied. This function
should return to the winner neuron a value of
1 and to neurons with increasing distance to it
a decreasing value down to zero. Usually the
“sombrero hat function” or the Gaussian func-
tion is used for that. By use of the Gaussian
function, the neighbourhood function is:

_ \"c*"ip

hC’i = e 2052

(2)

Where n. denotes the winner neuron and n;
any neuron on the Kohonen Layer. The stan-
dard deviation o denotes the neighbourhood
radius.

For every input vector the following update
rule will be applied to every neuron on the
SOM:

(3)

Awi, =1 hei - (T — wig)

Where 7 denotes the step size.

By this update rule, weights are updated in
discrete steps, defined by the step size 1. The
nearer neurons are to a chosen winner neu-
ron, the more they are affected by the update.
Thereby neighbouring neurons represent simi-
lar clusters, which leads to a topological map.

The advantage of SOMs is that they are able
to classify samples of an input space unsuper-
vised. During the learning process, the map
adapts its structure to the input data. De-
pending on the data, the SOM will build clus-
ters and order them in an appropriate manner.
One disadvantage of SOMs is, however, the ne-
cessity to define a representative subset of the

input space and train it over many epochs. Af-
ter the SOM is trained it is only possible to add
a new cluster to the representation by repeat-
ing the learning process with the old training
set and the new pattern.

3 Reinforcement Learning

Classical approaches for neural networks tend
to make use of specific knowledge about states
and their corresponding output. This given
knowledge is used for a training set and af-
ter the training it is expected to gain knowl-
edge about unknown situations by generaliza-
tion. However for many problems in the real
world an appropriate training set can’t be gen-
erated, since the “teacher” doesn’t know the
specific mapping. Nevertheless, it seems to be
easy for the teacher to assess this mapping for
every state. When learning to drive a car, for
example, one is not told how to operate the
car controls appropriately, the teacher, how-
ever, bridges the gap in learning using appro-
priate feedback, which improves the learning
process and leads finally to the desired map-
ping between states and actions.

The Reinforcement problem

The task of reinforcement learning is to use re-
wards to train an agent to perform successful
functions. Figure 1 illustrates the typical in-
teraction between agent and environment. The
agent performs actions in its environment and
receives a new state vector, caused by this ac-
tion. Furthermore the agent gets feedback of
whether the action was adequate. This feed-
back is expressed by immediate rewards, which
also depend on the new state taken by the
agent. A chess playing agent, for example,
would receive a maximum immediate reward
if it reaches a state where the opponent cannot
move the king any more. This example illus-
trates very clearly the credit assignment prob-

3 REINFORCEMENT LEARNING

lem. The reward achieved in the last board
position is achieved after a long chain of ac-
tions. Thus all actions, done in the past, are
responsible for the final success and therefore
also have to be rewarded. For this problem
several approaches have been proposed; a good
introduction to these is found in the book by
Barto and Sutton (Barto & Sutton 1998). This
paper, however, focuses on one of these ap-
proaches, which is the value iteration method,
also known as T'D(0).

Rewards 2

In reinforcement learning, the only hints given
to the successful task are immediate reinforce-
ment signals. These signals usually come di-
rectly from the environment or can be gener-
ated artificially by an assessment of the sit-
uation. If they are generated for a problem,
they should be chosen economically. Instead
of rewarding many sub-solutions of a problem,
only the main goal should be rewarded. For
example, for a chess player agent it would not
necessarily make sense to reward the taking of
the opponent’s pieces. The agent might find
a strategy which optimises the collection of
pieces of the opponent, but forgets about the
importance of the king. Reinforcement learn-
ing aims to maximise the achieved reinforce-
ment signals over a long period of time.

In some problems no terminal state can be
expected, as in the case of a robot driving
through a world of obstacles and learning not
to collide with them. An accumulation of re-
wards would lead to an infinite sum. For the
case where no terminal state is defined, we have
to make use of a discount factor to ensure that
the learning process will converge. This factor
discounts rewards which might be expected in
the future 3, and thus can be computed as fol-

2Rewards also include negative values which are
equal to punishments
3These expectations

are based on knowledge

lows:

Rr =11 + Y742 + 7ress + ...

T
= Z ’)’th+k+1 (4)
k=0

Where Rt denotes the rewards achieved during
many steps, v the discount factor and r; the
reward at time {. For T = oo it has to be

ensured that y < 1

The direct goal for reinforcement learning
methods is to maximise Rp. To achieve this
goal, however, a prediction for the expectation
of rewards in the future is necessary. Therefore
we need a mapping from states to their cor-
responding maximum expectation. As known
from utility theory, this mapping is defined by
the value function 4.

The value function V*(s)

In order to maximise rewards over time, it has
to be known for every state, what future re-
wards might be expected. The optimal value
function V*(s) provides this knowledge with a
value for every state. this return value is equal
to the accumulation of maximum rewards from
all successor states. Generally this function
can be represented by a look-up table, where
for every state an entry is necessary. This func-
tion is usually unknown and has to be learned
by a reinforcement learning algorithm. One
algorithm, which updates this function succes-
sive, is value iteration.

Value iteration

In contrast to other available methods, this
method updates the value function after ev-
ery seen state and thus is known as value it-
eration. This update can be imagined with an

achieved in the past
*In terms of the utility theory originally named util-
ity function

3 REINFORCEMENT LEARNING

agent performing actions and using received re-
wards, caused by this actions, to update values
of the former states. Since the optimal value
function returns for every state the accumula-
tion of future rewards, the update of a visited
state s; has to include the value of the succes-
sor state s;y1 as well. Thus the value function
is learned after the following iterative equation:

(5)

Where Vi1 and Vj denote the value func-
tion before and after the update and r(sy, a;)
refers to the immediate reinforcement achieved
for the transition from state s; to state sy
by the chosen action a;. While applying this
method, the value function approximates more
and more until it reaches its optimum. That
means that predictions of future rewards be-
come successively more precise and actions can
be chosen with maximum future rewards.

Vir1(se) == 1(s¢,a¢) + Vi(s¢41)

There is an underlying assumption that the
agent’s actions are chosen in an optimal man-
ner. In value iteration, the optimal choice of
an action can be done after the greedy-policy.
This policy is, simply after its name, to chose
actions which lead to maximum rewards. For
an agent this means, to chose from all possi-
ble action a € A that one, which returns after
equation (5) the maximum expectation. How-
ever we can see, that after equation (5) the
successor state sy;1, caused by action a;, must
be known. Thus a model of the environment
is necessary, which provides for state s; and
action a; the successor state s;y1:

(6)

sep1 = f(se,a4)

Exploration

If all actions are chosen after the greedy-policy,
it might happen that the learning process re-
sults in a sub-optimal solution. This is because
actions are always chosen by use of knowledge

gathered so far. This knowledge however can
lead to a local optimal solution in the search
space, where global optimal solutions never can
be found. Therefore it makes sense to chose
actions, with a defined likelihood, arbritary.
The policy to chose action by a propability of &
arbritrary, is called e-greedy policy. Certainly
there is a trade-off between exploration and ex-
ploitation of existing knowledge and the opti-
mal adjustment of this parameter depends on
the problem domain.

Implementation of Value Iteration
So far, the algorithm can be summarised in the
following steps:

e select the most promising action a; after
the e-greedy policy

a; = argminge a(,,)(r(s¢,a) + Vi (f(s1,a)))

e apply a; in the environment

St == St41

e adapt the value function for state s;

Vir1(se) :== 7(s¢,a¢) + Vi(s441)

In theory, this algorithm will definitely eval-
uate an optimal solution for problems, such
as defined at the beginning of this section. A
problem to reinforcement learning however, is
its application to real world situations. That
is because real world situations are usually in-
volved with huge state spaces. The value func-
tion should provide every state with an appro-
priate value. But most real world problems
come up with a multi-dimensional state vector.
The state of a robot, for example, whose task is
to find a strategy to avoid obstacles, can be de-
scribed by the state of its approximity sensors.

4 MODIFIED SOM TO LEARN THE VALUE FUNCTION 6

If every sensor would have a possible return
value of 10 Bit and the robot itself owns eight
of these sensors, the state space would consist
of 1.2 % 10?4 different states, emphasizing the
problem of tractability in inferencing.

On the other hand, it might happen, that dur-
ing a real experiment with a limited time, all
states can never be visited. Thus it is likely,
that even after a long training time, still un-
known states are visited. But unfortunately
the value function can’t provide a prediction
for them.

4 Modified SOM to learn the
value function

The two problems previously identified for re-
inforcement learning, can be solved using func-
tion approximators. Neural Networks, in par-
ticular, provide the benefit of compressing
the input space and furthermore the learned
knowledge can be generalised. This means for
the value function, that similar states will be
evaluated by one neuron. Hence also unknown
states can be generalized and evaluated by the
policy. For this purpose the previously intro-
duced model of self organising maps has been
taken and modified.

Modification to the architecture

Usually SOMs are used for classification of in-
put spaces, for which no output vector is nec-
essary. To make use of SOMs as function ap-
proximator, it is necessary to extend the model
by an output value. Such modifications have
been first introduced by Ritter and Schulten in
connection with reflex maps for complex robot
movements (Ritter & Schulten 1987). The
modification used here is, that every neuron of
the Kohonen layer is expanded by one weight,
which connects it to the scalar output. This
output is used for the value function. The goal

is to get a generalisation for similar situations.
To achieve this, the output weights have to be
trained with a neighbourhood function as well.
Therefore the output weights are adapted with
the following rule:

(7)

Where 75 is a second step size parameter and
h¢; the same neighbourhood function as used
for the input weights and y the desired output
of the network.

Sw; = Nahei(y — w;)

Modification to the algorithm

As remarked previously, the learning algorithm
for SOMs is supposed to be applied “offline”
with a specific training set. The application of
value iteration however, is an “online” process,
where the knowledge increases iteratively. To
solve this contradiction, the learning process of
the SOM has been divided into two steps:

e First step: pre-classification of the envi-
ronment

e Second step: execution of reinforcement
learning with improvement of classifica-
tion for visited states

For the first step a representative sample of the
whole state space is necessary, to build a appro-
priate map of the environment. This sample
will be trained, until the structure of the SOM
is adequate to classify states of the problems
state space. During the execution of the sec-
ond step the reinforcement learning algorithm
updates states with their appropriate values.
These states are classified by SOMs, where one
neuron is chosen as winner. The correspond-
ing output weights of this neuron are changed
to the value, calculated by the reinforcement
learning algorithm. Furthermore, the output
values of the neighbourhood of this neuron are

5 EXPERIMENTS AND RESULTS

modified as well to achieve the effect of gener-
alisation.

Usually the states, necessary to solve the prob-
lem, are a subset of the whole state space.
Thus the SOM has to classify only this sub-
set, using a pre-classification. During the ap-
plication of reinforcement learning, this classi-
fication will improve, since for every state vis-
ited, its representation is strengthen. States,
which are visited more frequently and thus are
more important for the solution of the prob-
lem, will achieve a better representation than
those unimportant states, which are visited
less.

5 Experiments and results

5.1 The path-planning problem

This section describes the application of our
modified SOM with reinforcement learning for
solving the path planning problem. The prob-
lem is to find the shortest path through a maze
or simply a path on a map. For the experi-
ment described here, a computer simulation of
a “girdworld” has been taken (see Figure 2).
The gridworld is represented by a two dimen-
sional arrangement of positions. Wall piece or
obstacles can occupy these positions and the
agent therefore can’t cross them. Other po-
sitions however, are free to its discovery. For
the experiment, the upper left corner is defined
as start position and the lower right corner
as end position. The agent’s task is to find
the shortest path between these two positions,
while avoiding obstacles on its way.

Due to the fact, that the agent is supposed to
learn the “cheapest” path, it is punished for
every move with -1 and rewarded with 0 if it
reaches the goal. Beside these reinforcement
signals, the agent gets no other information,
about where it can find the goal or which di-

B
o
el
o |
|
[retean |

i

Figure 2: The gridworld experiment

Value Iteration Method

Convergence of different implementations

-200
SOM 10x10

e { SOM 8x8
S -400 | L
g Look-up table
g 0 n
o
£ -600 |
‘T
14

-800 4

-1000 ; : .

50 100 150 200
Epochs

Figure 3: Achieved rewards, during learning of
a behaviour for the gridworld experiment

rection should be preferred. If it faces an ob-
stacle, the possible actions are reduced to that
actions, which lead to free positions around.

Two implementations of a modified SOM with
8x8 mneurons and 10x10 neurons have been
used. For comparison, the experiment has
been carried out with a look-up table, where
every entry represents a state, as well. This
look-up table consists of 289 entries, due to
the used grid size is 17x17 positions.

5 EXPERIMENTS AND RESULTS

Results

The result of this experiment is shown in fig-
ure 3. In this graph the achieved rewards for
each implementation after every episode can
be seen. The optimal path is found, if the ac-
cumulated reinforcement during one episode is
-53, since the agent needs at least 53 steps to
reach its goal. In the graph can be seen, that
the implementation of the modified SOM with
10x10 neurons leads to a faster result than the
look-up table. After 30 episodes the agent,
equipped with the modified SOM, found the
cheapest path.

5.2 Learning obstacle avoidance

with a robot

A common problem in robotics is the au-
tonomous drive of a robot. For such a drive
there are various processes. One process might
bring it to a far destination, lead by a path
finding algorithm. For simple movement, how-
ever, a process is necessary to avoid obstacles.
In this problem, it is very difficult to define ap-
propriate actions for particular situations. On
the other hand, we can easily assess the result-
ing actions. Therefore this problem seems to
be appropriate for the reinforcement learning
approach.

In this experiment the autonomous miniature
robot Khepera, which was developed at the
EPFL in Lausanne, has been used (see figure
4). This 5 cm huge robot is equipped with eight
approximity sensors, where two are mounted at
the front, two at the back, two at the side and
two in 45° to the front. These sensors give a re-
turn value between 0 and 1024, which is corre-
sponding to a range of about 5 cm. The robots
drive consists of two servo motors, which can
turn the two wheels with 2 m per second in neg-
ative and positive directions. By this configu-
ration, the robot is able to do 360° rotations
without moving in z or y direction. Therefore

1) 1111 L

w11

Figure 4: Autonomous robot Khepera

the robot is very manoeuvrable and should be
able to deal with most situations. Furthermore
the robot is equipped with two rechargeable
batteries, which enable it to drive for about 20
minutes autonomously. For execution of pro-
grams, there also exists a CPU from Motorola
and a RAM area of 512KB on the robot.

Experiment

Due to the fact, that for value iteration a model
of the environment is required, the robot has
been first trained using a computer simulation.
Afterwards the experiment continued on a nor-
mal office desk, where obstacles and walls were
built up with wooden blocks.

In the reinforcement learning algorithm, the
state of the robot was represented by the eight
sensor values. The allowed actions have been
reduced to the three actions: left turn, right
turn and straight forward. Also the reinforce-
ment signals were chosen in the most trivial
way. If the robot collides with an obstacle, it

6 CONCLUSION

i
lielp.

—]

=

D
D

F.ohorieti fiet view

L
Lo |
=

soresee [T375) bxsom[TSD
EaE [051C

Epesns i
B Em S 1

(D
O

Figure 5: A learned classification of the sensor
space

gets a punishment of -1, otherwise a reward of
0. The experiment has been carried out over
multiple episodes. One episode has been lim-
ited to 50 steps. Therefore the discount factor
~ has been set to 1.0. For exploration purposes
the factor £ has been adjusted to 0.01, which
is equal to the probability actions are chosen
arbitrary. Concerning to the state vector, the
input vector of the SOM consists of eight ele-
ments as well. For the Kohonen Layer an ar-
rangement of 30x30 neurons has been chosen.

Before the application of the reinforcement
learning algorithm, the SOM had to be pre-
classified. Therefore a training set of typi-
cal situations from an obstacle world has been
trained over 90 epochs. With the help of visu-
alisation tools it could be ensured that the sit-
uations are adequately classified, as illustrated
in figure 5.

During the episodes of the value iteration
method, identified situations were relearned
with a small neighbourhood of ¢ = 0.1 and
also small learning step rate of n = 0.3.

Results
The result of the learning process of the robot

Learning to avoid obstacles

Mo/
1
/

‘ Nw

Reinforcement

40 60 80 100

Episode

Figure 6: Collisions during the autonomous
learning of an obstacle avoidiance strategy

can be seen in figure 6. In this graph the accu-
mulated rewards for every episode are shown.
Hence for every collision the robot has been
punished with -1, the reinforcement for every
episode is equal to the caused collisions. After
45 episodes the number of collisions became
significantly less. During the early episodes,
the value of achieved reinforcement signals
sways strongly. This results from the fact, that
after the robot overcame a situation, it encoun-
tered a new situation again, where another be-
haviour had to be learned as well. As we see in
the graph, the robot learned to manage most
situations after a sufficient time of proceed-
ing. After the training the learned control has
been tested on the real robot. Although the
achieved behaviour was not elegant, it proved,
that the robot obviously learned the ability to
avoid obstacles.

6 Conclusion

The problem of a huge state space in real
world applications and the fact that mostly
some but unlikely all states of a state space

REFERENCES

can be encountered, have been tackled by use
of a modified SOM. The SOMs abilities to
compress the input space and generalize from
known situations to unknown made it possible
to achieve a reasonable solution. However, it
was necessary to split the standard algorithm
for SOMs into two parts. Once learning by
a pre-classification and twice learning during
value iteration. With this modification, the al-
gorithm can be applied to an online learning
process, which is given by the value iteration
method.

The applied modifications to the standard
SOM have been evaluated within the gridworld
example and the problem of obstacle avoidance
of an autonomous robot. These experiments
showed two main advantages of the modified
SOM to a standard implementation with a
look-up table. First, the example of obstacle
avoidance proved that even for enormous state
spaces, a strategy can be learned. Second, the
path finding example showed, that the use of a
modified SOM can lead to faster results, since
the agent is able to generalize situations in-
stead of learning a value for all of them.

For the Value Iteration algorithm, applied to
the experiments described here, a model of
the environment is necessary. For real world
problems, such as the problem of obstacle
avoidance, however, an appropriate model can
hardly be provided. Sensor signals are nor-
mally noisy or even it might be that a sensor
is damaged or don’t work properly. Thus it is
recommendable to use another reinforcement
learning implementation, which makes it not
any more necessary to provide a model of the
environment. One commonly used variant of
reinforcement learning is the Q-Learning. In
this algorithm states are represented by the
tuple of state and action, thus a model of the
environment is not required. We belief that a
combination of Q-Learning with the modified

10

SOM, proposed in this paper, yields better re-
sults.

One of the big disadvantages encountered how-
ever, is that the modification of the SOM dur-
ing the second step changes the generalisa-
tion behaviour of the network. If states are
relearned frequently with a small neighbour-
hood function, the learned knowledge becomes
too specific and generalisation is reduced. To
overcome this problem, it would be necessary
to relearn the complete structure of the SOM
with an offline algorithm. Unfortunately, expe-
rience in terms of training examples are lost af-
ter the online process. A possible solution and
probably subject of another work, is to store
“critical” pattern temporarily during the on-
line process by dynamic neurons. With “criti-
cal” pattern we mean those, which come with
a far Euclidean distance to all existing neurons
in the network and thus their classification by
this neurons would not be appropriate. Given
the set of these dynamically allocated neurons
and the set of neurons on the SOM, a new ar-
rangement with better topological representa-
tion can be trained by an offline algorithm®.
The execution of this offline algorithm can be
done during a phase of no input to the learner
and is motivated by a human post processing
of information, known as REM phase.

References

Barto, A. & Crites, R. (1996), Improving el-
evator performance using reinforcement
learning, in M. C. Hasselmo, M. C. Mozer
& D. S. Touretzky, eds, ‘Advances in
Neural Information Processing Systems’,
Vol. 8.

*For example the standard learning algorithm for
SOMs

REFERENCES

Barto, A. & Sutton, R. (1998), Reinfocement
Learning - An Introduction, MIT Press,
Cambridge.

Bellman, R. E. (1957), Dynamic Programming,
Princeton University Press, Princeton.

Boyan, A. J. & Moore, A. W. (1995), General-
ization in Renforcemen Learning: Savely
Approximating the Value Function, in
T. K. Leen, G. Tesauro & D. S. Touret-
zky, eds, ‘Information Processing Sys-
tems’, Vol. 7, MIT Press, Cambridge MA.

Gordon, G. (1995), Stable function approxi-
mation in dynamic programming, in ‘Pro-
ceedings of the 12th International Confer-
ence on Machine Learning’, Morgan Kauf-
mann, San Fransisco, Calif., pp. 261-268.

Kohonen, T. (1982), Self-Organized Formation
of Topologically Correct Feature Maps, in
‘Biol. Cybernetics’, Vol. 43, pp. 59-69.

Ritter, H. & Schulten, K. (1987), Extending
Kohonen’s Self-Organizing Mapping Al-
gorithm to Learn Ballistic Movements, in
‘Neural Computers’, Springer Verlag Hei-
delberg, pp. 393—-406.

Sutton, R. (1988), Learning to predict by the
methods of temporal differences, in ‘Ma-
chine Learning’, Vol. 3, pp. 9-44.

Tesauro, G. (1992), Practical issues in tempo-
ral difference learning, in ‘Machine Learn-
ing’, Vol. 8, pp. 257-277.

Thrun, S. (1996), Ezplanation-based neural
network learning: A lifelong learning
approach, Kluwer Academic Publishers,
Bosten.

11

	Self Organising Maps for Value Estimation to Solve Reinforcement Learning Tasks-TitlePage.pdf
	kleiner_et_al_iceis00

