Federated DyKnow, a Distributed Information Fusion
System for Collaborative UAVs

Fredrik Heintz and Patrick Doherty
Dept. of Computer and Information Science
Linkdping University, 581 83 Linkoping, Sweden
{frehe, patdo} @ida.liu.se

Abstract—As unmanned aerial vehicle (UAV) applications are
becoming more complex and covering larger physical areas there
is an increasing need for multiple UAVs to cooperatively solve
problems. To produce more complete and accurate information
about the environment we present the DyKnow Federation frame-
work for distributed fusion among collaborative UAVs. A feder-
ation is created and maintained using a multi-agent delegation
framework which allows high-level specification and reasoning
about resource bounded cooperative problem solving. When the
federation is set up, local information is transparently shared be-
tween the agents according to specification. The work is presented
in the context of a multi-UAV traffic monitoring scenario. !

Index Terms—Distributed information fusion, multi-agent sys-
tems, autonomous systems.

In many robotic applications, having one agent execute a
mission is not sufficient. In a UAV application for example,
there is sometimes no single UAV that has the capability or
the information to perform all required tasks. In many cases,
it is also more efficient to use multiple UAVs to complete a
mission. Therefore it would be beneficial for groups of UAVs
to accomplish complex missions in a cooperative manner. One
class of such applications is multi UAV surveillance missions,
where a team of UAVs creates and maintains situation
awareness by keeping track of important objects and events.

Our goal is to create a framework for distributed
information fusion where groups of UAVs collectively collect
and process information to achieve situation awareness.

Conventional approaches to fusing information have
focused on collecting information from distributed sources
and processing them at a central location. Our aim is to allow
each platform to be autonomous and do as much processing
as possible locally even when there is a need to cooperate to
solve a particular task. This will make the processing more
decentralized and remove the dependence on a central node
with global information.

As part of our ongoing research in unmanned aircraft
system technologies [1], [2] we have developed DyKnow, a
stream-based knowledge processing middleware framework
which provides design and software support for developing
applications integrating sensing and reasoning [3], [4]. We have
previously [5] shown how DyKnow can be used to implement

!"This work is partially supported by grants from the Swedish Foundation
for Strategic Research (SSF) Strategic Research Center MOVIIIL, the Swedish
Research Council (VR) Linnaeus Center CADICS, ELLIIT Excellence Center
at Linkoping-Lund for Information Technology, the Swedish Research Council
(VR) project 2009-3857, and the Center for Industrial Information Technology
CENIIT.

978-1-4244-7815-6/10/$26.00 (©2010 IEEE

the JDL Data Fusion Model, which is the de facto standard
functional fusion model [6], [7]. This shows that DyKnow
provides an appropriate basis for sharing and fusing high
level information. In this paper we extend DyKnow to support
federated information processing among collaborative UAVs.

I. A MULTI UAV TRAFFIC MONITORING SCENARIO

Assume that two or more UAVs are given the task of
monitoring an urban area for traffic violations. Each UAV
is equipped with the appropriate sensors and reasoning
mechanisms for detecting traffic violations. This means that
each UAV could monitor and detect traffic violations by itself,
if it sees the whole situation. We have previously shown how
this could be done [8].

To increase the size of the monitored area, to improve
the quality by reducing the uncertainty, or to monitor several
different potential traffic violations at the same time, several
UAVs can be used. However, cooperation, like dividing the
area between the UAVs, introduces issues related to sharing
and fusing information.

One issue is the possibility of a traffic violation beginning
in one sub-area and ending in another. In this situation, neither
of the UAVs will see the whole event. To handle this situation
the UAVs need to cooperate and share information in such
a way that they can detect the traffic violation together. One
approach is to let the UAV that detected the beginning of the
potential violation request the appropriate information from the
UAV responsible for the area where the vehicles are headed.
What is appropriate will depend on how traffic violations
are detected. One approach could be to share the position
information about the tracked vehicles. This information
would have to be seen as a stream since it is not a single
piece of information but rather an evolving description of the
development of a complex situation. Fusing such a stream
with local information would allow the first UAV to detect the
traffic violation even if it takes place in two different areas.

This traffic monitoring scenario is an instance of a class of
scenarios where multiple platforms must cooperate to complete
complex missions. To succeed they need to collect, share, and
fuse information. A solution which handles the issues intro-
duced in this scenario will also provide a solution for many
other interesting scenarios. For example, instead of having
homogeneous platforms covering different parts of an area
there could be heterogeneous platforms with complementing

ICARCV2010

sensors each providing different types of information. Another
example is to increase the accuracy in the monitoring by having
several homogeneous or heterogeneous platforms covering the
same area. It is also possible to replace traffic monitoring with
searching for injured people in a rescue mission or looking
for troops and equipment in a military surveillance mission.

II. DYKNOW

DyKnow is a fully implemented stream-based knowledge
processing middleware framework providing conceptual and
practical support for structuring knowledge processing systems
as sets of streams and computations on streams [3], [4]. Input
can be provided by a wide range of sources on many levels
of abstraction, while output consists of streams representing
for example objects, attributes, relations, and events.

Knowledge processing for a physical agent is fundamentally
incremental in nature. Each part and functionality in the
system, from sensing to deliberation, needs to receive relevant
information about the environment with minimal delay and
send processed information to interested parties as quickly
as possible. Rather than using polling, explicit requests,
or similar techniques, we have therefore chosen to model
and implement the required flow of data, information, and
knowledge in terms of streams, while computations are
modeled as active and sustained knowledge processes ranging
in complexity from simple adaptation of raw sensor data to
complex deliberative processes.

Streams lend themselves easily to a publish/subscribe
architecture. Information generated by a knowledge process
is published using one or more stream generators, each of
which has a (possibly structured) label serving as an identifier
within a knowledge processing application. Knowledge
processes interested in a particular stream of information
can subscribe to it using the label of the associated stream
generator, which creates a new stream without the need for
explicit knowledge of which process hosts the generator.
Information produced by a process is immediately provided to
the stream generator, which asynchronously delivers it to all
subscribers, leaving the knowledge process free to continue
its work. Using an asynchronous publish/subscribe pattern
of communication decouples knowledge processes in time,
space, and synchronization, [9], providing a solid foundation
for distributed knowledge processing applications.

Each stream is associated with a declarative policy, a
set of requirements on its contents. Such requirements may
include the fact that elements must arrive ordered by valid
time, that each value must constitute a significant change
relative to the previous value, that updates should be sent
with a specific sample frequency, or that there is a maximum
permitted delay. Policies can also give advice on how to
satisfy these requirements, for example by indicating how to
handle missing or excessively delayed values.

A knowledge processing application in DyKnow consists of
a set of knowledge processes connected by streams satisfying
policies. Each knowledge process is either an instantiation of
a source or a computational unit. In the first case, it makes

Chronicle
Recognition

Qualitative spatial relations
(close, behind, same_road, ...)

Qualitative Spatial
Reasoning

Car objects

Symbolic reasoning

[0, 20] [5, 10]
(A} (B}
[0, 10]
(D} . LE)

Temporal Logic
Progression

Geographical
Information
System

Vision|objects

proces
processing Color camera Prlor::g:ing Legend
Th |
] Source

Camera|state

Camera State
Estimation

Pan-tilt unit

Helicopter State
Estimation

() Computational
t

uni
——> Stream

Figure 1. An overview of how the incremental processing required for a
traffic surveillance task could be organized.

external information available through a stream generator, and
in the second it refines and processes streams. A formal lan-
guage called KPL is used to write declarative specifications of
DyKnow applications (see [4], [10] for details). KPL provides
a formal semantics for policies and streams. The DyKnow
service, which implements the DyKnow framework, sets up
the required processing and communication infrastructure for
a given set of KPL declarations. Through the use of CORBA,
knowledge processes are location-unaware supporting
distributed applications running on multiple computers.

Fig. 1 provides an overview of how part of the incremental
processing required for a traffic surveillance task can be
organized as a set of distinct DyKnow knowledge processes.

At the lowest level, a helicopter state estimation component
uses data from an inertial measurement unit (IMU) and a
global positioning system (GPS) to determine the current
position and attitude of the UAV. A camera state estimation
component uses this information, together with the current
state of the pan-tilt unit on which the cameras are mounted,
to generate information about the current camera state.
The image processing component uses the camera state to
determine where the camera is currently pointing. Video
streams from the color and thermal cameras can then be
analyzed in order to generate vision objects representing
hypotheses about moving and stationary physical entities,
including their approximate positions and velocities.

To describe a complex event such as a traffic violation, a
chronicle is used [11]. A chronicle is a description of a generic
scenario whose instances we would like to recognize. It is
defined by a set of events and a set of metric temporal con-
straints between the occurrence time of these events. Symbolic
formalisms such as chronicle recognition require a consistent
assignment of symbols, or identities, to the physical objects
being reasoned about and the sensor data received about those
objects. Image analysis may provide a partial solution, with
vision objects having symbolic identities that persist over
short intervals of time. However, objects temporarily being
out of view or changing visual conditions lead to problems
that image analysis cannot (and should not) handle. This is
the task of the anchoring system, which uses progression

of formulas in a metric temporal logic to evaluate potential
hypotheses about the observed objects. The anchoring system
also assists in object classification and in the extraction of
higher level attributes of an object. For example, a geographic
information system can be used to determine whether an object
is currently on a road or in a crossing. Such attributes can
in turn be used to derive relations between objects, including
qualitative spatial relations such as beside(cary,cars) and
close(cary, cary). Concrete events corresponding to changes
in such attributes and predicates finally provide sufficient
information for the chronicle recognition system to determine
when higher-level events such as traffic violations occur.

III. REQUIREMENTS

When designing a framework for distributed information
processing several important issues must be considered.

First, how to refer to a piece of information when
communicating with other nodes, i.e. how to handle naming
issues. This is the problem of how to agree on a common
ontology among a group of nodes. The ontology is required
for a node to be able to refer to a particular piece of
information when talking to other nodes.

Second, how to discover information among a group of
nodes. When a node needs a specific piece of information that
it does not have, then it needs to find another node which is
able to deliver it. Such a mechanism should be able both to
find a node who either has or can produce a particular piece
of information and to announce to interested nodes when a
particular piece of information is available.

Third, how to negotiate with other nodes to make them gen-
erate desired information. In its simplest form this mechanism
would request the production of a piece of information from
a node. In the general case a node could refuse to perform the
request due to limited resources or conflicting commitments.
There might also be several nodes that could produce the
same information but with different quality and costs. In
this case, a node would have to reason about the different
options and negotiate with the nodes to find one to produce the
information with good enough quality while reducing the cost.

Fourth, how to deliver information from one node to one or
more other nodes interested in the information. The mechanism
should allow for robust and efficient transfer of information be-
tween nodes while taking the properties of the communication
medium into account, such as the risk of losing or corrupting
messages, low bandwidth, or a single shared channel.

To make these requirements more explicit three use cases
are presented. Together they cover most of the functionality
required for the multi UAV traffic monitoring scenario. The
DyKnow Federation framework supports each of these.

1) Explicit Ask and Tell to Divide the Monitoring Area:
To divide an area to be monitored among a group of UAVs
they need to negotiate. One approach would be to appoint
one of them the leader. This leader then has to find out which
UAVs are available and collect information about them. The
information could for example be available sensors and the
maximum speed and flying altitude. Using this information

the leader can partition the area among the UAVs and inform
them about their responsibilities.

This use case gives an example where a node needs to
find which other nodes are available, ask for specific pieces
of information from each of the nodes, compute the result,
and then inform the other UAVs about the result.

2) Continuous Information Streaming to Detect Traffic
Violations: When monitoring a traffic violation occurring in
two adjacent areas covered by different UAVs there will be
an interval where none of the UAVs has a complete picture of
the situation. Therefore they have to cooperate to observe the
whole development. For example, when UAV A has detected
the beginning of a potential traffic violation involving two cars
and one of the cars moves from the view field of UAV A to the
view field of UAV B. Then, UAV A has to continuously get
updates from UAV B about the car to complete the detection.

The information provided by UAV B could be on many
levels of abstraction. A high abstraction level in this case could
be to send a stream of car states with the best current estimation
of the position of the car. UAV A can then fuse the information
received from UAV B with the information gathered by its
own sensors in order to monitor the potential traffic violation.
It is important to notice that this is an ongoing activity where
each new car state computed by UAV B should be transmitted
to UAV A to be merged with information produced locally.
Another example is to share and fuse information on a
lower level. The lowest possible level would be to send raw
sensor data, such as images. This will in most cases not be
appropriate since communication bandwidth is limited.

To find an appropriate abstraction level for the
communication many factors must be taken into account.
The most important ones are the processing capability of the
involved platforms, the available bandwidth, and the current
commitments of the involved platforms. Note that in this
example, both UAVs were assumed to have identical abilities.
In the general case, heterogeneous processing capabilities
may affect the appropriate abstraction level for sharing data.

3) Fusing Information to Get a Global Picture: A slightly
different use case is if an operator would like to have
information about all tracked vehicles in an area. In this case,
a number of UAVs are looking for and tracking vehicles. Each
UAV creates its own local identifiers for the vehicles it has
found. When a UAV detects a vehicle it has not seen before,
it should be reported to the operator. As long as the UAV
is tracking the car the operator should receive continuous
updates about the estimated car state.

One question is now whether the vehicle found by the
UAV is the same as one of the vehicles the operator already
has information about. To fuse the information from all the
available nodes it is therefore necessary to reason about the
identities of the tracked vehicles. Which are the same? If
two identifiers refer to the same vehicle then the information
related to these identifiers should be fused.

This use case can be extended by adding and removing
nodes. Each time a new node is added, then any vehicle which
is tracked by that node should be reported back to the operator.

If a node is removed then the operator should be notified that
the information from that UAV is no longer available.

IV. SHARING INFORMATION USING DYKNOW

From the point of view of DyKnow, multiple physical
platforms could be viewed as sharing a single instance of
DyKnow, since it is designed for a distributed environment and
does not differentiate between streams based on where they
are hosted or generated. However, much of the information
processed by DyKnow will be local to a single platform.
It would therefore incur an overhead to communicate with
a single central DyKnow instance. With multiple DyKnow
instances, one for each platform, this overhead is avoided. This
also reduces the coupling between the nodes which makes it
easier to add new nodes and to implement nodes independently.

Another benefit with having many DyKnow instances is
that only relevant information needs to be shared among the
instances. This is appropriate since the internal structures and
representations used by one node should not necessarily be
public to all other nodes. Most of it will be irrelevant and
some should even be kept secret. By only sharing relevant
information, communication overhead is further reduced and
the robustness is increased since the system does not require
reliable and stable communication all the time.

We have therefore extended DyKnow to allow different
DyKnow instances to be developed and used independently,
and then connected in a federation on demand. When nodes are
connected, parts of their local DyKnow instances are shared.

A. DyKnow Federation Overview

To fulfill the requirements introduced in Section III we
propose to connect nodes having local DyKnow instances in
a DyKnow Federation, similar to the concept of federated
databases [12], [13]. The federation is used to find other
DyKnow instances which can provide particular pieces of
information and to ask queries about information available
at other nodes. To support efficient continuous streaming
of information between nodes we propose to create direct
communication channels on-demand between pairs of nodes.
These channels are set up through the federation framework
but are then under the control of the participating nodes.
From the perspective of a local DyKnow instance information
from remote nodes is treated as if it were local.

The DyKnow Federation framework uses an existing multi-
agent framework [14], where each DyKnow instance becomes
a service on its platform. A DyKnow Federation is managed
through speech act-based interactions between these services.

B. The Multi-Agent Framework

An agent is a reactive, proactive, and social entity with its
own thread of control. Agents communicate with each other
using the standardized agent communication language FIPA
ACL [15], based on speech acts. An agent provides a set of ser-
vices. A service encapsulates a set of tasks that an agent can do.
A physical platform, such as a UAV, often hosts many different
agents. Each agent is FIPA compliant and is implemented
using the Java Agent Development framework JADE [16].

Platform

Agent level

Gateway
Platform

@c level

An overview of a platform in the delegation framework.

Figure 2.

To support cooperative goal achievement among a group
of agents a delegation framework has been developed [14]. It
provides a formal approach to describing and reasoning about
delegating goals and plans to other agents. The concept of
delegation allows for studying not only cooperation but also
mixed-initiative problem solving and adjustable autonomy.

Each UAV platform has an agent layer consisting of a
set of agents communicating using FIPA ACL and a layer
with platform specific functionalities (Figure 2). The interface
between the two layers is the Gateway Agent, which provides
a FIPA ACL interface to the platform specific level. In
our UAV platform, where the platform specific software is
implemented using CORBA, this involves invoking methods
on different CORBA objects.

All communication between a platform and agents external
to the platform goes through the Interface Agent. The Interface
Agent provides a single entry point which makes it possible
to keep track of communication, authenticate incoming
messages, and perform access control to the platform.

A service can either be public, protected, or private. A
public service can be used by any agent on any platform. A
protected service can be used directly within a platform but
only indirectly through the Interface Agent by an agent on
another platform. Private services can only be used by agents
on the same platform.

To find services in the agent framework a Directory
Facilitator (DF) is used. It is a database containing
information about available services and their providers.
There is a local Directory Facilitator on each platform which
keeps track of the protected and private services on the
platform and a global Directory Facilitator for keeping track
of all public services in the multi-agent system.

C. DyKnow Federation Components

A platform taking part in a DyKnow Federation should
have three components: A DyKnow Federation service, an
Export Proxy, and an Import Proxy. A DyKnow Federation
service is a protected service which allows a local DyKnow
instance to take part in a DyKnow Federation. The Export
and Import Proxies are used to mediate streams through
direct communication between two DyKnow instances. Apart
from these DyKnow Federation specific components, the
framework also uses the Interface and Gateway Agents. The
Interface Agent is used to communicate with other platforms

Platform 1 Platform 2

fD Kng.w fD Kn?_w
ederation ‘ederation
agent Interface) , FIPAACL agent

agent
Set up streaming
using speech acts

Agent level /—\,
Platform agent
specific level

Agent level
Platform|

specific levell

Direct
communication
Efficient streaming
with low latency

DyKnow
Instance

N

Figure 3.

DyKnow
Instance

Nl

An overview of the components of a DyKnow Federation.

and the Gateway Agent is used to access the local DyKnow
instance. Agents communicate using FIPA ACL while two
DyKnow instances communicate directly through the Export
and Import Proxies after setting up a stream through the
DyKnow Federation service (Figure 3).
A DyKnow instance is made available to other platforms
by integrating it in the agent framework in three steps:
1) By implementing the DyKnow Federation service,
2) by extending the Interface Agent to provide the DyKnow
Federation service, and
3) by extending the Gateway Agent to allow the DyKnow
Federation service to access the local DyKnow instance.

One important issue is how to refer to information among
platforms. A DyKnow instance will contain a set of labeled
stream generators. The easiest approach would be to use these
labels directly. One problem with this approach is that the agent
level must know what labels each of the other platforms use in
their local DyKnow instances. This is not a major issue if all
platforms are built by the same people, but in a more general
setting this would not be easily done. A more feasible approach
is to agree on a set of labels with a certain meaning among a
group of agents called semantic labels. These semantic labels
can then be translated by each agent to local DyKnow labels
using whatever procedure necessary. For example, a group of
UAVs could agree that the semantic label heli-position is used
to refer to their own position. This is a first step towards
introducing a common ontology. The benefits are that each
group can use their own set of semantic labels, with a meaning
they have agreed upon, while labels in the local DyKnow
instances are isolated from each other.

1) The DyKnow Federation Service: The DyKnow Fed-
eration service is responsible for supporting the finding and
sharing of information among local DyKnow instances. An
agent which implements the DyKnow Federation service on
a platform is called a DyKnow Federation Agent. The agent
is registered in the local Directory Facilitator to make the
platform available for federation. If an agent wishes to make
a request to a DyKnow Federation Agent on a particular
platform, it sends this request to the Interface Agent on
that platform, which forwards the request to the DyKnow
Federation Agent. The DyKnow Federation Agent is then
responsible for fulfilling the request by using the Gateway
Agent to access the local DyKnow instance.

The DyKnow Federation service supports the following:

1) Create a stream from a semantic label, a sample period,
a maximum delay, a start time, an end time, and a set
of receivers. This request should create a stream for the
semantic label satisfying the given sample, delay, and
duration constraint. This stream should then be exported
to the receiver. For example, UAV A could send a create
stream request for the semantic label heli-position to
UAV B with a sample period of 2 seconds and UAV C
as the receiver. If the request is accepted by UAV B,
then it will export a stream with its helicopter position
sampled every 2 seconds to UAV C.

2) Query the latest value, the value at a particular time-
point, or all the values between two time-points for the
stream associated with a semantic label. The answer
should be returned to the sender in an inform message.
For example, if a UAV would like to know the position
of another UAV then it could query the other UAV
about the latest value of the stream associated with the
semantic label heli-position. If the query is accepted then
the answer will be looked up in the local DyKnow
instance and returned in an inform message.

2) The DyKnow Gateway: The DyKnow Gateway interface
extends the Gateway Agent to allow the DyKnow Federation
service to access the local DyKnow instance.

On the platform specific level there will be four CORBA
servers, one for each of the interfaces (DyKnow Gateway,
Export Proxy, and Import Proxy) and one for the DyKnow
location making the imported streams available to the local
DyKnow instance. The DyKnow Gateway will be called by
the Gateway Agent, while the proxies are used on the platform
specific level.

The interface the DyKnow Gateway should implement is:

e create_stream(s, f,t,p,d,u), where s is a semantic

label, f,t,p, and d are the from, to, sample period, and
delay arguments used to create a policy, and u is a set of
receiving platforms.

The method should do the following:

1) Translate the semantic label s to a local label [;
2) create a policy p with the constraints from f, to ¢, sample
period p, and delay d;
3) use the policy p and the label [to create a new stream
in the DyKnow instance; and
4) export the stream by invoking the Export Proxy method
start_exporting(l, s, w) for each receiver w in w.
3) Export Proxy: A component used by a platform to
export one or more streams. To export a stream an internal
subscription is made by the proxy which then makes the stream
available to other platforms in an implementation specific way.
It is also possible for the Export Proxy to use the DyKnow
middleware to implement this functionality, but it might not
be the best choice in all situations.
The interface that the Export Proxy should implement is:
e start_exporting(l,s,w), where [is a label, s is a
semantic label, and w is a receiver.

The start_exporting(l,s,w) method creates a sub-
scription to the stream generator . Each time a new sample
v is pushed on the stream the push(m, s, v) method is called
on the Import Proxy object on the receiving unit w, where m
is the unit number of the sending platform. The unit number
of a platform is its unique identifier.

When implementing start_exporting, special care has
to be taken since the other platform might no longer be
available or it might be busy and not accept the call directly.
One approach is to make the export proxy multi-threaded with
one thread for each remote platform. In this way no other
platforms will be affected by a stop in the communication.

4) Import Proxy: A component used by a platform to
import one or more streams. Each imported stream will be
provided as a source in the local DyKnow instance. How the
stream is imported is an implementation detail which must be
coordinated with the Export Proxy. Different pairs of proxies
can use different methods to communicate.

The interface that an Import Proxy should implement is:

e push(m,s,v), where m is the sender, s is the semantic
label, and v the sample.

The push(m, s,v) method translates the semantic label s
to a label [and adds the sample v to the local stream generator
associated with the label [. If this is the first sample for this
semantic label then a new source is created and its stream
generator is associated with the label [.

D. DyKnow Federation Functionalities

1) Adding and Removing Nodes: To make a node available
for federation the Interface Agent of that node has to register its
DyKnow Federation service in the Directory Facilitator. After
this, the node is available, but no information is shared. To
leave a DyKnow Federation, the DyKnow Federation service
should be unregistered. Active streams to and from a node can
be kept even after leaving the federation since the proxies talk
directly to each other after the streaming has been set up.

2) Query for Information: If a platform needs a particular
piece of information, knows its semantic label, and knows
which platform can provide the information then a query
can be sent to the Interface Agent of that platform with the
semantic label as the argument. Using this method a platform
could ask for the latest value of a stream, the value at a
particular time-point, or all the values between two time-points.

If a platform knows the semantic label but not the platform
then a global request can be made. The DyKnow Federation
service will then query all platforms providing a DyKnow
Federation service for the semantic label and return the result.
If the service gets more than one answer then it has to either
select one of the values or fuse them together.

If a platform does not know the semantic label it can
make a request for all semantic labels which match an SL
formula. SL is a first order content language developed by
FIPA and used by JADE. To be able to write SL formulas an
ontology must be created for the DyKnow Federation. This
is done within the JADE framework by providing a concept
for each semantic label. For example, if the ontology contains

the concepts Car, Color and OnRoad, formulas using these
can be written. To find all semantic labels of blue cars on
road 7 the formula (all ?x (and (Car ?x) (Color
?x blue) (OnRoad ?x road7))) could be used. It is
then up to each DyKnow Agent to interpret the formula and
find all matching semantic labels. If a platform would like to
know if any other platform has found the same car it is tracking
then it could use this functionality to find potential matches.

To implement the first use case, explicit ask and tell to
divide the monitoring area, this functionality would be used.
The leader UAV would make a global request for the current
value of the streams associated with semantic labels such as
max-speed, fuel, and so on.

3) Streaming Information: Setting up a stream from one
platform to another is different from requesting a particular
piece of information directly. Instead of sending something
back, the agent receiving the request will set up an Export
Proxy which will start streaming the information to the Import
Proxy of the requesting agent.

When proxies are set up the platform that made the request
can access the stream through a local stream generator. From
the point of view of the local DyKnow instance, the Import
Proxy is another source of information, like a sensor.

This would be the main functionality required to implement
the second use case, to provide continuous information about
tracked vehicles from one UAV to another. The UAV receiving
the stream would then have to fuse this stream with its own
stream of car estimations in order to do the qualitative spatial
reasoning and chronicle recognition.

V. THE TRAFFIC MONITORING SCENARIO CONTINUED

We will now give some concrete examples of how the
multi UAV traffic monitoring scenario introduced earlier can
be implemented using the DyKnow Federation Framework.

The scenario starts with one of the UAVs, UAV A, being
delegated the goal of monitoring an area for traffic violations
from an operator. To collect information about available
UAVs, UAV A sends a global request for the current value of
the streams associated with the semantic labels heli-max-speed
and heli-altitude. The actual message is:

(get—-latest

semantic-labels: (seq heli-max-speed

heli-altitude)

to-units: (seq A))

Each UAV that receives the message through its DyKnow
Federation Agent will return the latest value in the streams
associated with the semantic labels. Assuming that only UAV B
replies, UAV A divides the area between them according
to their characteristics. UAV A then delegates the task of
monitoring UAV Bs part of the area to UAV B. This constitutes
a recursive delegation to UAV B of parts of the task delegated
to UAV A. The two UAVs will then independently patrol their
areas looking for traffic violations as described in [8].

Assume that UAV B detects the beginning of a potential
traffic violation, in this case a partial match of a traffic violation
chronicle. Further assume that one of the involved cars is

predicted to leave the area of UAV B before the end of the situ-
ation. To collect the information needed to determine whether
there is a violation or not, UAV B requests a stream of car
states for car5 sampled every 500 milliseconds from UAV A.

(create—-stream
semantic—labels: (
sample-period: 0.5
to-units: (seqgq B))

seq carb-state)

When UAV A receives the request it has to anchor the
symbol car5 internally. This can either be done by matching
the symbol to an existing internal symbol, if such a symbol
exists, or by collecting new sensor data from the object UAV B
denotes by car5. In either case, UAV A needs more information
about the symbol. This can for example be achieved by
requesting the last 2 minutes worth of car states related to
carb.
(get-trajectory

semantic-labels:

from: -120
to-units:

(seq carbS-state)

(seq A))

Using the received information UAV A can determine where
car5 currently is and its identifying characteristics. Based on
this UAV A can anchor the symbol to existing or new sensor
data. More information about our anchoring approach can be
found in [17]. As soon as UAV A is able to see an object
that is anchored to car5, car states associated with the symbol
will be exported to UAV B. This stream of car states will then
be fused with local car states produced by UAV B, preferring
local states if both are available. In this way, a continuous
stream of observations of car5 is available and UAV B can
correctly determine whether a traffic violation occurred or not,
even though it did not itself observe the whole situation. It
is important to note that nothing was changed in the local
DyKnow instances of UAV A or B.

The benefit over other approaches is that the DyKnow Fed-
eration framework allows selective streaming of information
with seamless integration in the local DyKnow application.
What is streamed, by whom, and how often can be decided
for each particular situation. The information can be on varying
levels of abstraction depending on the task and the capabilities
of the involved platforms. When the streaming has been set up,
the receiving agent can treat the new stream as any other stream
in its local processing providing seamless integration. Another
distinguishing feature is that the specification of the streaming
is negotiated within a high-level multi-agent framework while
the actually streaming is carried out using efficient low-level
protocols.

VI. CONCLUSIONS

A DyKnow Federation framework for collaborative infor-
mation processing among UAVs has been presented. This
type of framework is required to develop complex multi-agent
systems where agents have to cooperate to solve problems
which are beyond the capability of any individual agent. The
framework allows agents to share and fuse information to
provide more complete and accurate information.

The DyKnow Federation framework is an extension of
the knowledge processing middleware framework DyKnow,
integrating it with a FIPA compliant delegation framework. The
extension allows an agent to share parts of its local DyKnow
instance with other agents in a DyKnow Federation. The basic
interaction and sharing is made on an agent level using the
standardized FIPA ACL agent communication language. To
increase the efficiency, direct communication is supported for
continuous streaming of information between nodes. In both
cases, the federation is used to find information and to set up
the distribution.

Distributing and fusing information among multiple agents
has been widely studied in many respects. This work provides
a complete integrated system for knowledge processing both
on the agent level and the multi-agent level. It shows how
DyKnow can be extended to integrate not only sensing and
reasoning on a single platform, but also sharing and fusing of
information among multiple platforms.

In summary, we believe that the DyKnow Federation frame-
work provides appropriate support for dynamically sharing and
fusing information in a distributed network of platforms. Since
the federation approach is very general and builds on a formal
delegation framework it should be applicable to a wide range
of complex multiple platform scenarios.

REFERENCES

[1] P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T. Persson,
and B. Wingman, “A distributed architecture for autonomous unmanned
aerial vehicle experimentation,” in Proc. DARS, 2004.

[2] P. Doherty, “Advanced research with autonomous unmanned aerial
vehicles,” in Proc. KR, 2004.

[3] F. Heintz and P. Doherty, “DyKnow: An approach to middleware for
knowledge processing,” J. of Intelligent and Fuzzy Syst., vol. 15, no. 1,
2004.

[4] F. Heintz, “DyKnow: A stream-based knowledge processing middleware
framework,” Ph.D. dissertation, Linkopings universitet, 2009.

[5] F. Heintz and P. Doherty, “A knowledge processing middleware frame-
work and its relation to the JDL data fusion model,” J. of Intelligent and
Fuzzy Syst., vol. 17, no. 4, 2006.

[6] F. White, “A model for data fusion,” in Proc. of National Symposium
for Sensor Fusion, vol. 2, 1988.

[7] J. Llinas, C. Bowman, G. Rogova, A. Steinberg, E. Waltz, and F. White,
“Revisions and extensions to the JDL data fusion model II,” in Proc.
Fusion, 2004.

[8] F. Heintz, P. Rudol, and P. Doherty, “From images to traffic behavior —
a UAV tracking and monitoring application,” in Proc. of Fusion, 2007.

[9] P. Eugster, P. Felber, R. Guerraoui, and A.-M. Kermarrec, “The many
faces of publish/subscribe,” ACM Comput. Surv., vol. 35, no. 2, 2003.

[10] F. Heintz, J. Kvarnstrom, and P. Doherty, “Bridging the sense-reasoning
gap: DyKnow — stream-based middleware for knowledge processing,”
Journal of Advanced Engineering Informatics, vol. 24, no. 1, 2010.

[11] M. Ghallab, “On chronicles: Representation, on-line recognition and
learning,” in Proc. KR, 1996.

[12] D. Heimbigner and D. Mcleod, “A federated architecture for information
management,” ACM Trans. Inf. Syst., vol. 3, no. 3, 1985.

[13] A. Sheth and J. Larson, “Federated database systems for managing
distributed, heterogeneous, and autonomous databases,” ACM Comput.
Surv., vol. 22, no. 3, 1990.

[14] P. Doherty and J.-J. C. Meyer, “Towards a delagation framework for
aerial robotic mission scenarios,” in Proc. CIA, 2007.

[15] FIPA, “Foundation for intelligent physical agents (FIPA) ACL message
structure specification,” http://www.fipa.org/, 2002.

[16] E. Bellifemine, G. Caire, and D. Greenwood, Developing Multi-Agent
Systems with JADE. Wiley, 2007.

[17] F. Heintz, J. Kvarnstrom, and P. Doherty, “A stream-based hierarchical
anchoring framework,” in Proc. of IROS, 2009.

