
Exploiting Fully Observable and Deterministic Structures in Goal POMDPs

Håkan Warnquist∗ and Jonas Kvarnström and Patrick Doherty
Department of Computer and Information Science

Linköping University, Linköping

Abstract

When parts of the states in a goal POMDP are fully ob-
servable and some actions are deterministic it is possi-
ble to take advantage of these properties to efficiently
generate approximate solutions. Actions that determin-
istically affect the fully observable component of the
world state can be abstracted away and combined into
macro actions, permitting a planner to converge more
quickly. This processing can be separated from the
main search procedure, allowing us to leverage exist-
ing POMDP solvers. Theoretical results show how a
POMDP can be analyzed to identify the exploitable
properties and formal guarantees are provided showing
that the use of macro actions preserves solvability. The
efficiency of the method is demonstrated with exam-
ples when used in combination with existing POMDP
solvers.

Introduction
Finding optimal solutions to general POMDPs is computa-
tionally difficult except for very small problem instances,
which has led to the common use of approximate meth-
ods. For example, a variety of point-based POMDP al-
gorithms has allowed near-optimal solutions to be found
for much larger problems than previously possible (Pineau,
Gordon, and Thrun 2003; Spaan and Vlassis 2005; Smith
and Simmons 2005; Shani, Brafman, and Shimony 2007;
Kurniawati, Hsu, and Lee 2008).

We are interested in finding new techniques for tak-
ing advantage of specific properties of POMDPs to effi-
ciently generate approximate solutions. We consider the
case where parts of the state are fully observable, as in
Mixed Observability MDPs, MOMDPs (Ong et al. 2010;
Araya-Lòpez et al. 2010), and where some actions are de-
terministic. Furthermore, we operate on problems modeled
as goal POMDPs (Bonet and Geffner 2009).

While these problems as a whole remain only partially
observable, we show that local deterministic structures can
be automatically discovered and exploited in order to take
shortcuts in the search space. Specifically, deterministic ac-
tions affecting only the fully observable component of the

∗Scania CV AB, Södertälje, Sweden
Copyright c© 2013, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

world state can be abstracted away and combined into macro
actions, permitting a planner to converge more quickly. This
processing can be separated from the main search procedure,
allowing us to leverage existing POMDP algorithms.

We provide formal completeness guarantees showing that
the use of macro actions preserves solvability, i.e. if a prob-
lem in the targeted class of POMDPs is solvable without us-
ing macro actions, it can still be solved with them. We also
demonstrate the efficiency of our method combined with the
solvers HSVI2 (Smith and Simmons 2005) and FSVI (Shani,
Brafman, and Shimony 2007).

Problem Formulation
We want to make a plan for achieving some goal in an en-
vironment modeled by a goal POMDP. Goal POMDPs are
undiscounted POMDPs where actions only have costs (non-
positive rewards) Bonet and Geffner (2009). A goal POMDP
can be described by a tuple 〈S,A,Z, t, o, c,Sgoal〉 where:
• S is the state space, a finite set of states.
• A is the action space, a finite set of actions.
• Z is the observation space, a finite set of observations.
• t : S × A × S 7→ [0, 1] is the transition function, where
t(s, a, s′) is the probability that state s′ is reached if action
a is performed in state s, and

∑
s′∈S t(s, a, s

′) = 1.

• o : S × A × S × Z 7→ [0, 1] is the observation func-
tion, where o(s, a, s′, z) is the probability of observing z
when s′ is reached by performing action a in state s, and∑
z∈Z o(s, a, s

′, z) = 1,

• c : S × A 7→ [0,∞) is the cost function, where c(s, a) is
the cost of performing action a in state s,
• Sgoal ⊆ S is the goal state space consisting of states

where the goal is achieved.
The model is restricted such that the goal states are cost-free
and absorbing, i.e. for all s ∈ Sgoal , a ∈ A, c(a, s) = 0 and
t(s, a, s) = 1. In all other states actions have non-zero cost,
i.e for all s ∈ S \ Sgoal , a ∈ A, c(a, s) > 0.

In a POMDP the true state is not known. Instead our be-
liefs regarding the current state are represented by a belief
state b where b(s) is the probability that we are in state s.
A goal belief state is any belief state where all probability
mass is distributed on the goal states, i.e.

∑
s∈Sgoal b(s) = 1.

Proceedings of the Twenty-Third International Conference on Automated Planning and Scheduling

242

When an action a is performed in a belief state b and the
observation z is made, a new belief state b′ is reached where

b′(s′) =

∑
s∈S

o(s, a, s′, z)t(s, a, s′)b(s)∑
s,s′′∈S

o(s, a, s′′, z)t(s, a, s′′)b(s)
(1)

for all s′ ∈ S. Let f : B × A × Z 7→ B such that f(b, a, z)
is the new belief state obtained by applying (1) with b, a, z.

A solution to a goal POMDP is a policy, a function π :
B 7→ A, that guarantees that a goal state is reached. The
expected cost of π is given by the function Vπ : B 7→ [0,∞):

Vπ(b) = c̄(b, a) +
∑
z∈Z

τ(b, a, z)Vπ(f(b, a, z)) (2)

where a = π(b), c̄(b, a) =
∑
s∈S b(s)c(s, a) is the expected

cost of executing a in b and,

τ(b, a, z) =
∑
s,s′∈S

o(s, a, s′, z)t(s, a, s′)b(s) (3)

is the probability of observing z after performing a in b. Be-
cause only the goal states are cost-free, all policies with fi-
nite expected cost are solutions. Ideally we would find an
optimal policy π∗, where the expected cost is minimal. For
a belief state b, the minimal expected cost is

V ∗(b) = min
a∈A

(
c̄(b, a)+

∑
z∈Z

τ(b, a, z)V ∗(f(b, a, z))
)
. (4)

Representation. Many algorithms for solving POMDPs,
such as the point-based algorithms, exploit the fact that
the value function is convex and can be approximated
with arbitrary precision by taking the minimum of a set
of |S|-dimensional hyperplanes (Sondik 1971). They there-
fore represent a policy πΓ and its value function with
a set of real-valued |S|-sized vectors Γ called α-vectors.
Each α-vector is associated with an action, and for all
b ∈ B, πΓ(b) is the action associated to the vector α∗ =
arg minα∈Γ

∑
s∈S b(s)α(s). The value function of πΓ is ap-

proximated by VΓ(b)=
∑
s∈S b(s)α

∗(s). Initially Γ consists
of |A| α-vectors corresponding to policies where the same
action is performed in every state. A non-optimal policy can
be incrementally improved by performing a backup on se-
lected belief states (Pineau, Gordon, and Thrun 2003). When
a belief state b is backed up, a new vector is added to Γ:

Γ← Γ ∪
{

arg min
βa:a∈A

∑
s∈S

b(s)βa(s)
}

(5)

where each βa is an α-vector with the action a associated to
it and for all s ∈ S:

βa(s) = c(s, a) +
∑
z∈Z

arg min
βz,α:α∈Γ

∑
s′∈S

b(s′)βz,α(s′)

where βz,α(s) =
∑
s′∈S o(s, a, s

′, z)t(s, a, s′)α(s′). The
backup operation is central to all point-based POMDP
solvers. The belief states to be backed up are selected by
traversing the reachable belief space from the initial be-
lief state. The reachable belief space consists of those be-
lief states that can be obtained from the initial belief state
by multiple applications of (1) without having zero in the

divisor. If the belief states are selected appropriately VΓ(b0)
converges toward V ∗(b0) as the number of backups goes to
infinity (Smith and Simmons 2004).

For our purposes we use a factored representation of
the POMDP model (Boutilier and Poole 1996), which is
both more information-rich and allows for a more compact
model representation. The state space is then represented by
a set of state variables X = {X1, . . . , Xn} and a state
is an assignment to those variables. Similarly, the obser-
vation space is represented by a set of observation vari-
ables Y = {Y1, . . . , Ym}. The transition and observation
functions are represented separately for each action by a
Bayesian network containing X, Y, and another set of post-
state variables X′ = {X ′1, . . . , X ′n} that represent the state
after an action is performed, the post-state. The structure of
each network is such that the variables in X have no parents,
the variables in X′ may only have parents in X and X′, and
the variables in Y may have parents among all variables.

We use ΩV and ΩV to denote the outcome spaces of a
variable V and a set of variables V respectively. We use
Xi(s), X ′i(s

′), and Yi(z) to denote the values of Xi, X ′i ,
and Yi given the state s, the post-state s′ and the observation
z respectively. We use b(X = x) to denote the combined
probability of all s∈S where X(s) =x. We may condition
a probability with a state, a post-state, an observation and/or
an action, e.g. P (V =v|s, s′, z, a) is the probability that the
variable V has the value v in the network for action a given
that X=X(s), X′=X′(s′), and Y=Y(z). When it is clear
from context that v∈ΩV , we may substitute V =v with v.

Using the factored representation the transition and obser-
vation functions can be expressed as follows:

t(s, a, s′) =

|X|∏
i=1

P (X ′i(s
′)|X ′1(s′), ..., X ′i−1(s′), s, a) (6)

o(s, a, s′, z) =

|Y|∏
i=1

P (Yi(z)|Y1(z), ..., Yi−1(z), s, s′, a) (7)

where the variables in X′ and Y are ordered so that parent
variables within the same set have lower indexes.

Exploiting Deterministic Structures
We want to reduce the size of the reachable belief space by
abstracting away actions that deterministically affect fully
observable variables. First we need to identify the determin-
istic structures that we intend to exploit. These are variables
that are fully observable, actions that deterministically af-
fect the fully observable variables, and actions whose effects
given the state of the fully observable variables are similar as
defined by a special similarity measure. Then we show how
several actions can be combined into macro actions such that
a goal POMDP can be solved considering only actions that
affect partially observable variables.
Definition 1 (Fully Observable Variable). The state vari-
able Xi ∈ X is fully observable if for every reachable belief
state b, b(x) = 1 for exactly one value x ∈ ΩXi .
Variables that are not fully observable are said to be partially
observable. Let Xfo ⊆ X be the set of all fully observable

243

variables and Xpo = X \Xfo be the set of all partially ob-
servable variables. We do a similar separation of the post-
state variables: X′=X′fo∪X′po . For a belief state b, we use
xb to denote the values of the fully observable variables in b.
This is referred to as the fully observable partial state of b.
It is possible to identify some fully observable variables di-
rectly from the factored model using the following theorem:
Theorem 1 (Fully Observable Variable). The variable Xi

belongs to Xfo if b0(x) = 1 for exactly one value x ∈ ΩXi
and any of the following sufficient conditions are true:

1. The value of Xi can always be determined from the ob-
servation gained by any action: For all actions a ∈ A and
all values x, x′ ∈ ΩX′i where x 6= x′, Zx,a ∩ Zx′,a = ∅
where Zx,a = {z ∈ Z : P (z|x, a) > 0} and Zx′,a =
{z ∈ Z : P (z|x′, a) > 0}.

2. The value of Xi always changes deterministically: For all
actions a ∈ A and all states s ∈ S, P (x|s, a) = 1 for
exactly one value x ∈ ΩX′i , and in the networks for all
actions a ∈ A the ancestors of X ′i are also fully observ-
able variables.

Proof. By induction over the reachable belief states. The
condition in Definition 1 holds for b0. Assume that the
condition holds for an arbitrary reachable belief state b.
Then we must show for arbitrary a ∈ A and z ∈ Z such
that τ(b, a, z) > 0 that it holds for the next belief state
b′ = f(b, a, z). Assume the first condition of Theorem 1
is true. If z ∈ Zx,a then b′(s′) = 0 for all s′ ∈ S where
Xi(s

′) = x′ 6= x because P (z|x′, a) = 0 and thereby
o(s, a, s′, z) = 0 for all s ∈ S. Assume the second condition
of Theorem 1 is true. Then all ancestors Xi of X ′i are fully
observable variables. For every sj , sk ∈ S where b(sj) > 0
and b(sk) > 0 we have Xi(sj) = Xi(sk) because Xi are
fully observable variables. Therefore, for every x ∈ ΩX′i ,
P (x|sj , a) = P (x|sk, a). Let x ∈ ΩX′i be the value for
which P (x|sj , a) = 1, then b′(s′) = 0 for all s′ ∈ S where
Xi(s

′) = x′ 6= x because P (x′|s, a) = 0 for all s ∈ S and
thereby t(s′, a, s) = 0.

The first condition of Theorem 1 can be checked by evalu-
ating P (z|x, a) for all a ∈ A, z ∈ Z , X ′i ∈ X′, x ∈ ΩX′ .
The second condition can be checked by iterating through
all a ∈ A, s ∈ S , X ′i ∈ X′, x ∈ ΩX′ . Unless P (x|s, a) = 1
for exactly one value x ∈ ΩX′i , the variableXi and all its de-
scendants that are not already fully observable variables by
the first condition are flagged as partially observable. The
remaining variables are then fully observable.

An action with non-zero cost that does not affect the belief
state cannot be assigned to a reachable belief state in a policy
with finite expected cost, and is considered inapplicable.
Definition 2 (Applicable Action). An action a is said to be
applicable in a belief state b iff its expected cost c̄(b, a) = 0
or there is z ∈ Z such that τ(b, a, z) > 0 and f(b, a, z) 6= b.
An action precondition is a boolean function of the state
variables that must evaluate to true for the action to
be applicable. We will define special preconditions, FO-
preconditions, as a function of only the fully observable vari-
ables such that an action’s behavior and cost are similar with

regard to the values of the fully observable variables in all
belief states satisfying the FO-precondition.
Definition 3 (FO-Precondition). A FO-precondition of an
action a is a boolean function of the fully observable vari-
ables pa : ΩXfo

7→ {⊥,>} such that:

• for all b ∈ B, if pa(x) = ⊥, then a is not applicable in b,
• for all si, sj ∈S such that pa(Xfo(si)) =pa(Xfo(sj)) =>

and Xpo(si) = Xpo(sj):

c(a, si) = 0 iff c(a, sj) = 0, (8)

and for all v ∈ ΩV where V ∈ X′ ∪Y:

P (v|si, a)


= 0 if P (v|sj , a) = 0,
∈ (0, 1) if P (v|sj , a) ∈ (0, 1),
= 1 if P (v|sj , a) = 1.

(9)

The conditions (8) and (9) describe how similarly an action
must behave in different states where its FO-preconditions
are satisfied. The definition of similar actions in Definition 3
is very generous. However, the theoretical results still hold
with a more narrow definition by specifying threshold pa-
rameters p1, . . . , pn and substituting (9) with:

P (v|si, a)



= 0 if P (v|sj , a) = 0,
∈ (0, p1) if P (v|sj , a) ∈ (0, p1),
∈ [pk−1, pk) if P (v|sj , a) ∈ [pk−1, pk)

for k = 2, . . . , n,
∈ [pn, 1) if P (v|sj , a) ∈ [pn, 1),
= 1 if P (v|sj , a) = 1.

(10)

In general, not every action in A has a FO-precondition.
However, an action can be partitioned into multiple actions
that are applicable for non-overlapping subsets of the state
space where the original action is applicable and that do have
FO-preconditions. Let A′ be some set of actions with FO-
preconditions created from A this way. Given a belief state
there is a one-to-one correspondence between applicable ac-
tions in A and A′. Thus for every policy of applicable ac-
tions π : B 7→ A there is an equivalent policy of applicable
actions π′ : B 7→ A′ such that Vπ = Vπ′ and vice versa.

Actions that deterministically manipulate the fully ob-
servable variables we call support actions because they can
be used to form a deterministic plan to satisfy the FO-
preconditions of another action.
Definition 4 (Support Action). An action a ∈ A′ is a sup-
port action if for every fully observable variable X ′i ∈ X′fo
there is a value x ∈ ΩX′i such that for all states s ∈ S where
b(s) > 0, P (X ′i = x|s, a) = 1 .
We say that two belief states bi and bj are similar if they
have non-zero probability in the same partially observable
states, i.e. for all sk, sl ∈ S such that Xpo(sk) = Xpo(sl),
bi(sk) > 0 iff bj(sl) > 0. In a belief state b, an action a
will be considered relevant for a policy if, when applied in
some belief state similar to b where it is applicable, it can
gain information about the state or affect the state in some
way a support action cannot. When making a backup (5) in
b we can ignore all support actions and consider instead the
actions that are relevant in b. However these actions need not

244

be applicable in b. The solution is to create macro actions
where a non-applicable relevant action is made applicable
by placing it after a sequence of support actions that satisfy
its FO-preconditions. The solver can then focus on relevant
actions in a more shallow search space.

Definition 5 (Relevant Action). An action a ∈ A′ is rele-
vant for a belief state b if there exists a belief state ba similar
to b where a is applicable and at least one of the following
conditions is true:

1. The action may result in an observation that changes our
belief in si: There is an observation variable Y ∈ Y, a
value y ∈ ΩY , and states si, sj ∈ S such that ba(si) > 0,
ba(sj) > 0 and P (y|si, a) 6= P (y|sj , a).

2. The action may change the value of a partially observable
state variable: There is a partially observable state variable
Xi ∈ Xpo and a state s ∈ S such that ba(s) > 0 and
P (X ′i = Xi(s)|s, a) < 1.

3. The action may change the value of a fully observable
state variable but fails to qualify as a support action: There
is a fully observable state variable Xi ∈ Xfo and a state
s ∈ S such that ba(s) > 0 and P (X ′i = Xi(s)|s, a) < 1
and a is not a support action in ba.

4. the action is a zero-cost action that lets us remain among
the goal states: The belief state ba is a goal belief state,
the cost c̄(a, ba) = 0, and for all z ∈ Z , the next belief
state f(ba, a, z) is also a goal belief state.

Let Arel(b) ⊆ A′ be the set of all actions that are relevant
for the belief state b. An action a ∈ A′ can be tested for
membership in Arel(b) by evaluating the conditions of Def-
inition 5 in an arbitrary belief state ba that is selected so
that a has its FO-preconditions satisfied in ba and ba has
the same probability distribution over the partially observ-
able variables as b. A support action may be relevant in cer-
tain belief states. However, we do not want to consider those
support actions that are relevant for the current belief state
b, because these can be found in Arel(b) if they are needed
for a solution. Let Asupp(b) ⊆ A′ \ Arel(b) be the set of
all support actions that are not relevant in b. Since every ac-
tion in Asupp(b) is irrelevant in b, the next belief state after
executing such an action will have the same probability dis-
tribution over the partially observable variables, and thereby
also have the same set of relevant actions. The relevant ac-
tions will be the same for all belief states that are similar.

Lemma 1. Let bi, bj be two similar belief states. Then
Arel(bi) = Arel(bj) .

Proof. For all actions with valid FO-preconditions, each
condition in Definition 5 evaluates to the same when bi and
bj are similar.

If we apply an action to a pair of similar belief states the next
belief states will be similar to each other.

Lemma 2. Let bi, bj be two similar belief states where the
action a ∈ A′ has its FO-precondition satisfied. Then for ar-
bitrary z ∈ Z f(bi, a, z), f(bj , a, z) are similar belief states,

c̄(a, bi) = 0 iff c̄(a, bj) = 0, and the observation probabili-
ties:

τ(bi, a, z)


= 0 if τ(bj , a, z) = 0,
∈ (0, 1) if τ(bj , a, z) ∈ (0, 1),
= 1 if τ(bj , a, z) = 1.

Proof. The result follows from Definition 3, (3), and (1).

Definition 6 (Macro Action). Given a belief state b and
an action a ∈ Arel(b), a macro action of a in b, āb,a, is
a sequence of actions (a1, . . . , an, a) where a1, . . . , an ∈
Asupp(b) such that if the actions a1, . . . , an are performed
in order starting from belief state b, a belief state is reached
where the FO-precondition of action a is satisfied. The ex-
pected cost of the macro action is

c̄(āb,a, b) = c̄(a, bn+1) +
n∑
i=1

c̄(ai, bi)

where b1, . . . , bn+1 are belief states such that b1 = b and
bi+1(s′) =

∑
s∈S t(s, ai, s

′)bi(s) for all states s′ ∈ S. An
action that is not a macro action is a primitive action.

To efficiently generate macro actions, we use two directed
multigraphs Gfo and Gsupp,b to represent how the fully ob-
servable partial states are connected by actions in A′ and
Asupp(b) respectively. In Gfo = (ΩXfo

, Efo) the nodes are la-
beled with fully observable partial states and each edge is as-
sociated with an action and an observation. There is an edge
from node x to node x′ associated with the action a ∈ A′
and the observation z ∈ Z if pa(x) = > and a changes x to
x′ when z is observed, i.e. P (X′fo = x′|Xfo = x, z, a) = 1.
The graph Gsupp,b = (ΩXfo

, Esupp,b) has the same set of
nodes as Gfo , but the edges are only those of Gfo which are
associated with a support action in Asupp(b) which can eas-
ily be filtered out. Since none of the actions in Asupp(b)
are relevant, every edge from a node x associated with an
a ∈ Asupp(b) will be directed to the same node.

When exploring the reachable belief state space or per-
forming a backup of the α-vectors we want to know which
actions are available in a given belief state b. Then we gen-
erate a macro action for every relevant action a ∈ Arel(b)
where there exists a directed path in Gsupp,b from the unique
node xb corresponding to the fully observable part of b to
any other node x such that pa(x) = >. The actions on this
path, if any, will be inserted before a in the macro action that
is generated. Several such paths may exist, and which one is
chosen will depend on the selection strategy used (e.g. we
use the A* algorithm (Hart, Nilsson, and Raphael 1968) for
path selection). Let AT (b) be the set of macro actions that
are generated in the belief state b with strategy T .

In order to safely use macro actions, we need to know
that if a goal-satisfying solution can be found without macro
actions, i.e. V ∗(b0) < ∞, then we can also find a goal-
satisfying solution with macro actions. This is guaranteed
if we can replace each relevant action and its leading irrel-
evant support actions in an optimal policy with a macro ac-
tion. To do this we must be able to find a path to satisfy
the FO-precondition of the next relevant action of the op-
timal policy, regardless where in Gfo we may end up after

245

performing the previous macro actions corresponding to the
previous relevant actions of the optimal policy. To show this
we will need the following constructs. Let π : B 7→ A′
be a policy of FO-preconditioned primitive actions corre-
sponding to an optimal policy π∗. Let z = (z0, z1, . . . ,)
be an arbitrary sequence of observations with infinite length
such that the subsequence of the first n + 1 elements, zn,
are observations that could potentially result from apply-
ing π from the initial belief state n + 1 times. Let b =
(b0, b1, . . .) and bn = (b0, . . . , bn) be the corresponding
sequence of belief states, where bi+1 = f(π(bi), zi, bi).
Now we are interested in those actions in the sequence
an = (a0, . . . , an) = (π(b0), . . . , π(bn)) that are relevant
when executed. Let rn = (r1, r2, . . .) be a sequence of in-
dexes such that ri = j iff aj is the ith action in an such
that aj ∈ Arel(bj). Let N1, . . . ,N|rn| be sets of fully ob-
servable partial states where there exists a traversable path
in Gfo passing through x1, . . . ,x|rn| in that order for every
possible selection of xi ∈ Ni. These paths can be seen as
every possible path that we can take in Gfo when we replace
the relevant actions of π with macro actions. Formally, let
N1 = {x ∈ ΩXfo

: par1 (x) = >}, and for i > 1 let Ni
be the largest set such that for all xi−1 ∈ Ni−1, xi ∈ Ni:
pari(xi)=>, and there is a traversable path in Gfo from xi−1

to xi where the first edge is associated with ari−1 and zri−1 .
Theorem 2 (Completeness). If V ∗(b0) <∞ and

N|rn| 6= ∅ for all n > 0, (11)

then there is a policy consisting of macro actions, π′ : B 7→⋃
b∈BAT (b) such that Vπ′(b0) <∞.

Proof. We know that V ∗(b0) < ∞, so the policy π of FO-
preconditioned primitive actions corresponding to an opti-
mal policy also has finite cost: Vπ(b0) <∞. Then there ex-
ists g <∞ such that for i ≥ g, bi in b is a goal belief state.
We now show that we can generate a policy of macro ac-
tions π′ from π such that Vπ′(b0) <∞. Let ā1, . . . , ā|rn| be
actions such that each āi is a macro action of ari in a belief
state b̄i that is similar to bri . Then we can show that there ex-
ists π′ : B 7→

⋃
b∈BAT (b) such that Vπ′(b0) <∞ by show-

ing that every composite action used in π′, ā1, . . . , ā|rn|, can
be generated using an arbitrary path selection strategy T and
that every b̄i is a goal belief state iff bri is a goal belief state.
We do this by induction.

The belief state b̄1 is the initial state b0 and it must be sim-
ilar to br1 which results from the actions a0, . . . , ar1−1 that
are in Asupp(b0) and preserve similarity. By Lemma 1 we
get that Arel(b̄1) = Arel(br1). Now assume that bri and b̄i
are similar. Then Arel(b̄i) = Arel(bri) and by Lemma 2 we
get that bri+1 and b̄i+1 are similar because the action ari is
the only relevant primitive action in the macro action āi. The
actions ari+1, . . . , ari+1−1 are in Asupp(bri+1) and there-
fore bri+1 is similar to bri+1 . Because Ni 6= ∅ the macro
action āi can be generated. We have now showed that for all
i = 1, . . . , n bi is similar to b̄i.

If bri is a goal belief state, then ari is a relevant action
by Condition 4 in Definition 5 which means that it has zero
cost and bri+1 is also a goal belief state. The belief states bri
and bri+1 will be similar to b̄i and b̄i+1 respectively. The last

action in āi is ari so b̄i+1 is a goal belief state. Thus there
exists g <∞ such that for i ≥ g, b̄i is a goal belief state.

To verify whether (11) is true, we can analyze the strongly
connected components of Gfo . A strongly connected com-
ponent of a directed graph G is a largest subgraph G′ such
that from every node in G′ there is a directed path to every
other node in G′. The strongly connected components can
be extracted in time linear in the graph size (Tarjan 1971).
In the trivial case that we have only one strongly connected
component, (11) is true because for every node in Gfo we
can always find a path to every other node where the FO-
precondition of the next action is true. When there are many
strongly connected components we may risk dead ends by
reaching a belief state b̄i similar to bri for which no reach-
able belief state b exists such that b is similar to bri+1

and
the FO-precondition of the next relevant action ari+1

is sat-
isfied. This problem cannot occur if no action has its FO-
precondition satisfied in more than one strongly connected
component and transitions between strongly connected com-
ponents are the same regardless which fully observable par-
tial state satisfies the FO-precondition of the action.

Corollary 1. Let C1, ..., Cscc be the strongly connected com-
ponents of Gfo . Let A′1, ...,A′scc ⊆ A′ such that a ∈ A′i if
there exists x ∈ C such that pa(x) = >. Then the condition
(11) of Theorem 2 is true if all of the following is true:

• The sets A′1, . . . ,A′scc are disjoint.
• For all a ∈ A′i, xj ,xk ∈ C, and z ∈ Z , there exists an

edge in Gfo from xj to x′j associated with a and z iff there
also exists an edge in Gfo associated with a and z directed
from xk to x′k, and both x′j and x′k belong to the same
strongly connected component.

Proof. By induction. In the base case N1 6= ∅ because it
consists of all x ∈ ΩXfo

where par1 (x) = > and all nodes
inN1 belong to the same strongly connected component be-
cause A′1, . . . ,A′scc are disjoint. Assume that Ni 6= ∅ and
that Ni is a subset of the strongly connected component Cj .
Let Ck be the strongly connected component that the fully
observable partial state of bri belongs to, and let Cl be the
strongly connected component that is reached by ari and
zri . Since Ni ⊆ Cj there exists a path in Gfo from every
node in Ni to every node in Ck, thus the macro action āi
can be generated and, with the observation zri it will reach
a node in Cl. Thereby Ni+1 6= ∅ and Ni+1 ⊆ Cl.

After identifying the strongly connected components, we
can check if a POMDP fulfills the conditions of Corollary 1
in a single iteration over all actions. A model that does not
satisfy the conditions of Corollary 1 can be altered by adding
to the model a fully observable variable Xscc indicating the
index of the strongly connected component that the system
is in and an observation variable Yscc that detects all transi-
tions such that P (Yscc = i|X ′scc = i, a) = 1. If we split ac-
tions on distinct values ofXscc the first part of Corollary 1 is
satisfied. The additional observation variable causes all ac-
tions that do not satisfy the second condition of Corollary 1
to have illegal FO-preconditions.

246

Experimental Results
We have implemented algorithms for identifying the fully
observable variables satisfying Theorem 1, creating pre-
conditioned actions following Definition 3, and generating
macro actions on top of POMDPSolver, a Java implemen-
tation of several point-based algorithms made available by
Shani (2012). The selection strategy for generating macro
actions is A* (Hart, Nilsson, and Raphael 1968) and the
threshold values for splitting similar actions as in (10) are
0.2, 0.4, 0.6, and 0.8.

We will demonstrate the method on instances of two toy
examples and a third real-world example where a mechanic
troubleshoots and repairs a hydraulic braking system on a
truck, described in (Pernestål, Warnquist, and Nyberg 2009;
2012). This last example is chosen to show industrially rele-
vant problems where the method is useful.
Avalanche. The first example is a new domain where an un-
manned aerial vehicle (UAV) is searching for avalanche vic-
tims in an open terrain represented by a two-dimensional
grid. Prior to the search, a radar scan capable of detecting
debris under the snow has narrowed down the possible loca-
tions where victims may be buried to a subset of the cells.
The UAV is equipped with a long range sensor that can de-
tect the signal from avalanche transceivers worn by the vic-
tims. This sensor is noisy and has a larger detection proba-
bility if the UAV is oriented in the direction of the victim
±45 degrees. At a suspected location it may use another
short range sensor capable of verifying the existence of the
victim. The goal is achieved when the locations of all vic-
tims are verified. The starting position and orientation of the
UAV is known. The UAV moves deterministically by either
moving forward or turning 45 degrees in any direction in the
horizontal plane. An instance Av-n-v-l of the problem con-
sists of an n by n grid with v victims distributed uniformly
among l locations.
GoalRockSample. In the RockSample benchmark problem
a robot is navigating a grid in search of rock samples to
collect that can be either good or bad (Smith and Simmons
2004). The robot has a sensor that can sense whether a spe-
cific rock is good or bad. The sensor noise depends on the
distance to the rock. Because the original problem is stated
for discounted POMDPs we will use an adaption of this
problem for goal POMDPs instead. The adaption is done by
increasing all action costs by one and removing the positive
reward for collecting good samples and replacing it with a
negative reward of equal size that is gained if the good sam-
ple is uncollected when the robot leaves the map. Leaving
the map causes the robot to reach a goal state.
Results. We used the algorithms HSVI2 (Smith and Sim-
mons 2005) and FSVI (Shani, Brafman, and Shimony 2007)
with and without macro actions on two instances of the
avalanche rescue problem, Av-6-2-4 and Av-9-2-4, and two
instances of the GoalRockSample problem, GRS-5-5, a 5 by
5 grid with 5 rocks, and GRS-7-8, a 7 by 7 grid with 8 rocks.
A summary of the instances is shown in Table 1 where we
have listed the size of the state space |S|, the number of fully
observable partial states |ΩXfo

|, the number of actions |A|,
the number of support actions |Asupp | = |

⋂
b∈BAsupp(b)|,

Instance |S| |ΩXfo | |A| |Asupp | |Arel |
Av-6-2-4 3168 288 10 128 19
Av-9-2-4 7128 648 10 296 19
GRS-5-5 960 30 10 17 11
GRS-7-8 14336 56 13 25 17

Table 1: Summary of the Avalanche and GoalRockSample.

Instance HSVI2 FSVI
Av-6-2-4 V ∗(b0) 58.0∗ 58.0∗ 58.0 59.8
4 s 10 % 10 s 96 s 5 s 241 s
2 s 1 % 30 s 373 s 78 s 10000 s

0.1 % 115 s 1783 s 6310 s 10000 s
Av-9-2-4 V ∗(b0) 64.1∗ 64.0∗ 64.4 69.3
8 s 10 % 11 s 134 s 4 s 113 s
3 s 1 % 54 s 1454 57 s 2368 s

0.1 % 440 s 4255 s 3568 s 3237 s
GRS-5-5 V ∗(b0) 17.3∗ 17.0 17.3 17.1
<1 s 10 % <1 s 2 s <1 s 5 s
<1 s 1 % 5 s 31 s 7 s 16 s

0.1 % 25 s 1361 s 7 s 27 s
GRS-7-8 V ∗(b0) 31.2 30.6 31.2 30.6
4 s 10 % 32 s 251 s 121 s 187 s
8 s 1 % 5425 s 4192 s 319 s 2996 s

0.1 % 6143 s 7934 s 5171 s 6152 s

Table 2: Results for Avalanche and GoalRockSample. The
value with macro actions is listed to the left for each algo-
rithm. The precompilation times are listed in the instance
column with macro actions first.

and the number of relevant actions |Arel | = |
⋃
b∈BArel(b)|.

We see that when we identify FO-preconditions the total
number of actions increases. However, most are support ac-
tions which are abstracted away into the macro actions.

For the experiments we measured the expected cost of the
currently best policy over time. We let all algorithms im-
prove the policy until 10000 seconds had passed. In order
to study the convergence rate of the algorithms, we sampled
the current expected cost during execution. The time needed
to compute the expected cost was not credited to the exe-
cution time. The results are presented in Table 2 where for
each problem and algorithm we report the expected cost of
the policy at 10000 seconds, Vπ(b0), and the time in sec-
onds when a policy was found with an expected cost within
10 %, 1 %, and 0.1 % of that of the best policy. These per-
centage levels are chosen to illustrate convergence. HSVI2
also provides upper and lower bounds of the optimal pol-
icy. Problems for which HSVI2 managed to converge within
the time limit so that the difference between these bounds
was smaller than 0.1 cost units are indicated with an aster-
isk at the expected cost. In Table 2 we have also listed for
each problem instance the precompilation time necessary for
parsing the model, computing macro actions if used, and ini-
tialize the value functions.

The results show an overall improvement with macro ac-
tions, in many cases by more than a factor of ten. The im-
provement is especially prominent for convergence up to the
10 % and 1 % levels. For Av-9-2-4 and GRS-5-5, the ex-
pected cost after 10000 seconds is higher when macro ac-

247

tions are used despite that the value is fully converged. This
means that the optimal policy is missed because of the macro
actions. For example, in the avalanche rescue problems, ac-
tions using the long range sensor will be executed in the
closest cell where it is applicable, but with regard to the next
action it may be better to execute it in another cell. How-
ever, the expected cost of the policies with macro actions at
10000 seconds is overall close to the expected cost without
macro actions. Sometimes the expected cost is even better
because the policy without macro actions still was not close
to the optimal policy at 10000 seconds. In GRS-7-8, HSVI2
appears to perform worse with macro actions than without.
This can be explained by that it converges toward a subopti-
mal policy for which after 10000 seconds it is actually more
converged even though the expected cost is higher.

The macro actions cause an increase in the branching fac-
tor, but this is compensated by smaller number of steps to
reach the goal. For example in the problem GRS-7-8, the fi-
nal polices of HSVI2 and FSVI both need in average 26 ac-
tions to reach the goal without macro actions, but with macro
actions the average distance to the goal is 12 macro actions
for HSVI2 and 13 for FSVI. The average of the branching
factor without macro actions taken over all belief states vis-
ited by the algorithms is 7.6 for HSVI2 and 7.9 for FSVI.
With macro actions the average branching factor is 17.0 for
HSVI2 and 12.0 for FSVI.
Truck Braking System. In the second example a mechanic
must troubleshoot and repair a malfunctioning hydraulic
braking system of a truck. A POMDP-controller aids the me-
chanic by recommending actions so that the expected cost of
repair is minimized. The actions are replacements of com-
ponents, inspections, tests, and the removing and fitting of
parts on the vehicle. The braking system consists of 20 com-
ponents that can be faulty in one or more ways. The health
state of the components can only be observed indirectly by
inspecting or performing tests. To gain access to an area of
the system where an action is applicable it may be necessary
to remove or fit parts on the vehicle. Replacing components
and removing and fitting parts is modeled with deterministic
actions. It may be costly to become absolutely certain that
a possible fault, which currently is not manifesting itself, is
not present. Therefore, instead of replacing a component, it
is possible to choose to ignore it against a penalty cost pro-
portional to the fault probability. This penalty embodies the
cost and badwill incurred by having to revisit the workshop.

Initially it is known that all parts are fitted and that certain
fault codes have triggered. A fault code is an alarm gener-
ated when suspicious behavior is detected. This system has
ten fault codes. For each combination of the triggered fault
codes, it is possible to derive from the model an initial proba-
bility distribution of which components are faulty1. We have
restricted the initial distribution so that at most two faults
may be present at the same time.
Results. After analyzing the model we get that the num-
ber of reachable fully observable partial states |Gfo | = 73.
The model has 69 actions, all of which can be given FO-

1A Bayesian network model for this system is specified in full
detail in (Warnquist 2011)

Instance HSVI2 FSVI |S|
1 V ∗(b0) 347.7∗ 347.7∗ 349.6 350.4 16374

10 % 44 s 610 s 46 s 795 s 20 s
1 % 44 s 610 s 656 s 5158 s 13 s

0.1 % 124 s 1058 s 656 s 5158 s
2 V ∗(b0) 292.6∗ 292.6∗ 293.7 294.2 14622

10 % 10 s 78 s <1 s 2 s 17 s
1 % 19 s 146 s 58 s 1746 s 10 s

0.1 % 99 s 527 s 1036 s 1746 s
3 V ∗(b0) 1579.2 1590.5 1548.3 1548.3 14184

10 % 29 s 44 s <1 s 15 s 16 s
1 % 4444 s 44 s 339 s 3892 s 10 s

0.1 % 7153 s 4600 s 492 s 5452 s
4 V ∗(b0) 299.7∗ 299.7∗ 299.7 299.7 10860

10 % 13 s 327 s <1 7 s 13 s
1 % 13 s 327 s <1 7 s 7 s

0.1 % 177 s 327 s 7 s 7 s
5 V ∗(b0) 798.9∗ 798.9∗ 798.9 798.9 6317

10 % 4 s 19 s <1 s 2 s 7 s
1 % 25 s 303 s 329 s 4332 s 4 s

0.1 % 31 s 305 s 725 s 4332 s
6 V ∗(b0) 1734.4∗ 1741.5 1742.0 1741.5 24027

10 % 96 s 569 s 7 s 25 s 28 s
1 % 957 s 618 s 49 s 1875 s 20 s

0.1 % 990 s 3576 s 180 s 1875 s
7 V ∗(b0) 1797.2∗ 1797.2 1799.3 1799.3 17766

10 % 20 s 14 s <1 s <1 s 21 s
1 % 20 s 14 s <1 s <1 s 14 s

0.1 % 77 s 3305 s 279 s 16 s
8 V ∗(b0) 884.7∗ 884.7∗ 884.7 885.6 11281

10 % 8 s 7 s <1 s 2 s 13 s
1 % 8 s 7 s <1 s 2 s 7 s

0.1 % 22 s 232 s 3322 s 2 s
9 V ∗(b0) 352.0∗ 352.0∗ 352.4 352.6 16374

10 % 19 s 130 s <1 s 15 s 19 s
1 % 37 s 301 s 62 s 1479 s 12 s

0.1 % 37 s 301 s 489 s 1479 s
10 V ∗(b0) 326.9∗ 326.9∗ 327.0 328.4 14622

10 % 16 s 74 s <1 s 3 s 17 s
1 % 170 s 1078 s 120 s 254 s 10 s

0.1 % 284 s 2655 s 2781 s 254 s

Table 3: Results for the truck braking system. The value with
macro actions is listed to the left for each algorithm. The
precompilation times in the rightmost column are listed with
macro actions first.

preconditions without the need for splitting actions. Of these
actions, 26 are support actions and the maximum number of
relevant actions for any belief state is 47.

To explore the behavior of the proposed method on this
model, we have randomly drawn 10 out of the 1024 possible
initial observations from which we derive 10 different initial
belief states. The setup for the experiment is the same as be-
fore. In Table 3 we report the expected cost of the best policy
V (b0) achieved after 10000 seconds of computing and the
time in seconds needed to achieve policies with an expected
cost that is within 10 %, 1%, and 0.1 % of the best policy
for each problem instance and each algorithm. Also listed is
the size of the reachable state space |S| for each instance as
well as precompilation times.

The results again show an overall improvement in the con-
vergence for both HSVI2 and FSVI when using macro ac-

248

tions. For the instances where HSVI2 managed to converge
to a difference between the upper and lower bounds that is
smaller than 0.1 cost units, the expected cost is the same with
and without macro actions. This indicates that the macro ac-
tions do not result in suboptimal solutions for these prob-
lems. For instance 3 with HSVI2 and instances 8 and 10
with FSVI, the convergence times are worse with macro ac-
tions. However, for these instances the expected cost is lower
with macro actions which means that the policy actually has
converged further toward an optimal policy.

Related Work
In contrast to other methods that also exploit determinis-
tic actions (Bonet 2009; Besse and Chaib-draa 2009), the
proposed method does not require that all actions in the
POMDP affect the states deterministically. Instead it targets
models where some actions affect the fully observable par-
tial state deterministically.

Ong et al. (2010) showed that the convergence of point-
based algorithms can be sped up for MOMDPs by reducing
the number of α-vectors to consider when backing up a sin-
gle belief state to be only those that share the same fully
observable partial state. This is not in conflict with the pro-
posed method and instead macro actions could be used as
a complement since this reduces the number of belief states
needed to be backed up after each exploration phase (which
is proportional to the search depth).

There are various methods for speeding up POMDP-
solving by decomposing the planning problem into a hier-
archy of subproblems where the solutions to the subprob-
lems can be incorporated into solving the larger POMDP
using macro actions. Many of these methods require that
a hierarchy is given together with the POMDP model, see
e.g. (Pineau, Roy, and Thrun 2001; Theocharous, Mahade-
van, and Kaelbling 2005; Hansen and Zhou 2003). Charlin,
Poupart, and Shioda (2007) discover hierarchies represented
as finite state controllers that can be used by solvers based
on policy iteration (Hansen 1997). The method is applicable
only for discounted POMDPs and is slower in comparison
with HSVI2. He, Brunskill, and Roy (2010) create macro
actions by generating a short sequential plan to a randomly
sampled state with good properties. The method does not
create a policy. Instead it depends on a planning algorithm
that interleaves planning with execution and is therefore not
comparable with the proposed method.

Another approach using automatically generated macro-
actions is Milestone Guided Sampling (Kurniawati et al.
2011). This approach targets motion-planning problems
with long planning horizons modeled with discounted
POMDPs. A set of milestones are sampled from the state
space which are connected by sequences of actions form-
ing macro actions. The assumption from robotics is that
states that are close in the reachability graph also have sim-
ilar properties. It is a point-based algorithm similar to SAR-
SOP (Kurniawati, Hsu, and Lee 2008) where the macro ac-
tions are used to select belief states to back up, but the
primitive actions are used during the backup. Because Mile-
stone Guided Sampling is only applicable for discounted
POMDPs it cannot be compared with the proposed method.

Discussion
The method we propose can be applied on any undiscounted
POMDP with non-positive rewards and identifiable goal
states. However, for the method to be efficient, it must be
possible to identify a number of fully observable state vari-
ables and support actions, otherwise the set of relevant pos-
sible macro actions will be the same as the applicable prim-
itive actions. (Ong et al. 2010) showed that it is possible to
treat a POMDP that has some almost fully observable vari-
ables as a MOMDP and then use the MOMDP solution as
an approximate solution to the original POMDP. This result
is also applicable for the method presented here.

We saw in the examples that using macro actions caused
the branching factor to increase. This is because the split-
ting of actions necessary to give all actions valid FO-
preconditions increases the total number of available ac-
tions. On the other hand, actions that previously could not be
performed in a belief state now become reachable in one step
because of the macro actions. When the increased branch-
ing factor becomes too large relative to the decreased goal
depth, the benefit of being able to reach goal states in fewer
steps diminishes and the performance may actually worsen.
However, when many support actions only affect the fully
observable variables and the non-deterministic actions be-
have similarly when they are applicable, the branching fac-
tor may instead decrease because the support actions can be
abstracted away.

Conclusion
We have presented a novel method for identifying and ex-
ploiting deterministic structures in goal POMDPs. Actions
that deterministically affect the fully observable component
of the world state can be abstracted away and combined into
macro actions that reach further in the search space. We have
shown how the model can be analyzed to identify the nec-
essary structures and we have provided theoretical results
showing that the use of macro actions preserves solvability.
The method here is used together with the POMDP solvers
HSVI2 and FSVI, but there are no limits for using it together
with other solvers applicable for goal POMDPs. With ex-
amples we have demonstrated that the convergence of these
algorithms can be significantly improved with the method.

For future work we believe it is possible to make the
method applicable for a broader range of problems by ex-
tending the method to discounted POMDPs. Other future
work is to explore the possibility of also treating actions with
non-deterministic effects on the fully observable variables as
support actions.

Acknowledgments
This work is supported in part by Scania CV AB and grants
from the Vinnova program FFI, the Excellence Center at
Linköping and Lund in Information Technology (ELLIIT),
the EU FP7 project SHERPA, grant agreement 600958, the
Swedish Foundation for Strategic Research CUAS Project,
and the Research Council (VR) Linnaeus Center CADICS.

249

References
Araya-Lòpez, M.; Thomas, V.; Buffet, O.; and Charpillet,
F. 2010. A Closer Look at MOMDPs. In Proceedings of
the Twenty-Second IEEE International Conference on Tools
with Artificial Intelligence.
Besse, C., and Chaib-draa, B. 2009. Quasi-Deterministic
Partially Observable Markov Decision Processes. In Neural
Information Processing, volume 5863, 237–246.
Bonet, B., and Geffner, H. 2009. Solving POMDPs: RTDP-
Bel vs. Point-based Algorithms. In Proceedings of the 21st
International Joint Conference on Artificial Intelligence.
Bonet, B. 2009. Deterministic pomdps revisited. In Pro-
ceedings of the Twenty-Fifth Conference on Uncertainty in
Artificial Intelligence.
Boutilier, C., and Poole, D. 1996. Computing optimal poli-
cies for partially observable decision processes using com-
pact representations. In Proceedings of the Thirteenth Na-
tional Conference on Artificial Intelligence.
Cassandra, A.; Kaelbling, L.; and Littman, M. 1998. Plan-
ning and Acting in Partially Observable Stochastic Domains.
Artificial Intelligence 101(1-2):99–134.
Charlin, L.; Poupart, P.; and Shioda, R. 2007. Automated hi-
erarchy discovery for planning in partially observable envi-
ronments. Advances in Neural Information Processing Sys-
tems 19:225.
Hansen, E., and Zhou, R. 2003. Synthesis of hierarchi-
cal finite-state controllers for POMDPs. In Proceedings of
the Thirteenth International Conference on Automated Plan-
ning and Scheduling.
Hansen, E. A. 1997. An Improved Policy Iteration Algo-
rithm for Partially Observable MDPs. In Advances in Neural
Information Processing Systems 10, 1015–1021. MIT Press.
Hart, P.; Nilsson, N.; and Raphael, B. 1968. A Formal
Basis for the Heuristic Determination of Minimum Cost
Paths. IEEE Transactions on Systems Science and Cyber-
netics 4(2):100–107.
He, R.; Brunskill, E.; and Roy, N. 2010. PUMA: Planning
under uncertainty with macro-actions. In Proceedings of the
Twenty-Fourth AAAI Conference on Artificial Intelligence.
Kurniawati, H.; Du, Y.; Hsu, D.; and Lee, W. 2011. Mo-
tion planning under uncertainty for robotic tasks with long
time horizons. International Journal of Robotics Research
30(3):308–323.
Kurniawati, H.; Hsu, D.; and Lee, W. S. 2008. SARSOP:
Efficient Point-Based POMDP Planning by Approximating
Optimally Reachable Belief Spaces. In Proceedings of the
2008 Robotics: Science and Systems Conference.
Ong, S.; Png, S.; Hsu, D.; and Lee, W. 2010. Planning
under uncertainty for robotic tasks with mixed observability.
The International Journal of Robotics Research 29(8):1053–
1068.
Pernestål, A.; Warnquist, H.; and Nyberg, M. 2009. Model-
ing and Troubleshooting with Interventions Applied to an
Auxiliary Truck Braking System. In Proceedings of 2nd
IFAC workshop on Dependable Control of Discrete Systems.

Pernestål, A.; Warnquist, H.; and Nyberg, M. 2012. Model-
ing and inference for troubleshooting with interventions ap-
plied to a heavy truck auxiliary braking system. Engineering
Applications of Artificial Intelligence 25(4):705 – 719.
Pineau, J.; Gordon, G.; and Thrun, S. 2003. Point-based
value iteration: An anytime algorithm for POMDPs. In Pro-
ceedings of the 16th International Joint Conference on Arti-
ficial Intelligence.
Pineau, J.; Roy, N.; and Thrun, S. 2001. A hierarchical ap-
proach to POMDP planning and execution. In Proceedinngs
of the ICML Workshop on Hierarchy and Memory in Rein-
forcement Learning.
Shani, G.; Brafman, R. I.; and Shimony, S. E. 2007. For-
ward search value iteration for POMDPs. In In Proceedings
of the 20th International Joint Conference on Artificial In-
telligence.
Shani, G. 2012. POMDPSolver - an Java implemen-
taion arranged as an Eclipse package, of most of the point-
based algorithms for solving POMDPs. Retrieved from
http://www.bgu.ac.il//~shanigu.
Smith, T., and Simmons, R. G. 2004. Heuristic Search Value
Iteration for POMDPs. In Proceedings of the 20th Confer-
ence on Uncertainty in Artificial Intelligence.
Smith, T., and Simmons, R. G. 2005. Point-Based POMDP
Algorithms: Improved Analysis and Implementation. In
Proceedings of the 21th Conference on Uncertainty in Ar-
tificial Intelligence.
Sondik, E. 1971. The optimal control of partially observable
Markov processes. Ph.D. Dissertation, Stanford.
Spaan, M. T. J., and Vlassis, N. A. 2005. Perseus: Random-
ized Point-based Value Iteration for POMDPs. Journal of
Artificial Intelligence Research 24:195–220.
Tarjan, R. 1971. Depth-first search and linear graph algo-
rithms. In Proceedings of the 12th Annual Symposium on
Switching and Automata Theory, 114–121.
Theocharous, G.; Mahadevan, S.; and Kaelbling, L. 2005.
Spatial and temporal abstractions in POMDPs applied to
robot navigation. Technical report, DTIC Document.
Warnquist, H. 2011. Computer-assisted troubleshooting for
efficient off-board diagnosis. Licentiate Thesis, Linköping
University.

250

