
DYNAMIC PLANNING PROBLEM GENERATION IN A
UAV DOMAIN

Per Nyblom ∗
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Abstract: One of the most successful methods for planning inlarge partially observable
stochastic domains is depth-limited forward search from the current belief state together
with a utility estimation. However, when the environment iscontinuous and the number
of possible actions is practically infinite, then abstractions have to be made before any
forward search planning can be performed. The paper presents a method to dynamically
generate such planning problem abstractions for a domain that is inspired by our research
with unmanned aerial vehicles (UAVs). The planning problems are created by first stating
the selection of points to fly to as an optimization problem. When the points have been
selected, a set of possible paths between them are then created with a pathplanner and
then forward search in the belief state space is applied. Themethod has been implemented
and tested in simulation and the experiments show the importance of modelling both the
dynamics of the environment and the limited computational resources of the architecture
when searching for suitable parameters in the planning problem formulation procedure.
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1. INTRODUCTION

It is generally accepted within the AI community
that continuous stochastic partially observable envi-
ronments are very difficult to handle for autonomous
agents. First of all, the representation of an agent’s be-
lief state that evolves when time passes by can gener-
ally not be represented exactly if very strong assump-
tions are not made (such as linearity and Gaussian
representations of probability distributions (Kalman,
1960)). Secondly, any type of planning in such envi-
ronments that involve solving the problem forevery
possible or reachable belief state is not applicable due
to the continuous state variables.

Such findings have drawn researchers within the area
to experiment with approximative representations of
belief states such as particle filters (Doucetet al.,
2001) which has shown great success within the area
of localization and simultaneous localization and map-
ping (SLAM) (Montemerloet al., 2002). For planning,

forward search combined with good heuristics (Paquet
et al., 2005) seems to be a promising, but possibly
computationally intensive, approach that assumes that
the problem solving agent can perform the computa-
tion online.

For continuous domains, another problem arises when
the agent performs planning. The number of possible
actions in a certain situation could possibly be infinite
and a number of simplifying assumptions must be
made before such a problem can be stated as a forward
search planning problem.

We will in this paper focus on how to dynamically
formulate discrete planning problems suitable for for-
ward search depending on an agent’s current belief
state in continuous domains. We have implemented
a dynamic planning problem formulation procedure
that is applied to a problem domain that is inspired by
our research with unmanned aerial vehicles (UAVs)
(Doherty, 2004). The main idea is to state parts of



the planning problem formulation as an optimization
problem in the space of possible sets of points to fly to
from the agent’s current position. The selected points
are then transformed into a planning problem for a
forward search planner that operates with belief states.
The depth-limited forward search is combined with
domain specific heuristics which is used at the cutoff
depth.

2. PRELIMINARIES

In this section, we provide some preliminaries that
briefly describe particle filters and forward search in
belief states.

2.1 Particle Filters

Filters of different kinds are often used to represent an
autonomous agent’s belief state over time. In theory,
a filter can use the Recursive Bayesian Estimation
equations (Jazwinsky, 1970) to perform the necessary
updates of the probability distributions. In practice,
this update is not feasible in its pure form when the
state contains non-linear and multi modal characteris-
tics and some kind of approximation is necessary.

A common approximation is to represent the distri-
bution as a set of so calledparticleswhich, in its most
simple form, are full instantiations of the random vari-
ables in that distribution. The set of particles together
with the update machinery is called aparticle filter.
This representation makes it possible to use any type
of non-linear forward model to describe the dynamics
of the domain.

The update rule for a particle filter can be imple-
mented by resampling the particles depending on the
current observation. The accuracy of a particle fil-
ter depends on the number of particles used and for
probability distributions with many variables, a large
number of particles may be required. More informa-
tion about the different types of particle filters can be
found in (Doucetet al., 2001) and (Arulampalamet
al., 2002).

2.2 Planning and Forward Search

Automated planning is a general term for automat-
ically generating plans or other types of solutions
that determine what actions to perform, given some
model of a task domain and a goal or preference mea-
sure. Automated planning is considered as one of the
cornerstones of Artificial intelligence and is in gen-
eral very difficult, especially in partially observable
stochastic domains.

A common method to perform planning in such diffi-
cult domains is to use forward search from the current
belief state (Paquetet al., 2005). It is then possible to

avoid generating solutions for every reachable belief
state but with the extra cost of performing the planning
online before each action execution. The search is cut
off at a certain depthd where an approximative utility
function U is used instead. At every search depth,
all the applicable actions and possible observations
are enumerated which is impossible for domains that
contain continuous observations. Instead of enumerat-
ing all possible observations in continuous domains,
it is possible to sampleNobs observations from the
belief state. When the belief state is represented with a
particle filter with normalized weights, the observation
sampling can be performed by picking a particle at
random and generating a random observation from it.

3. DOMAIN DESCRIPTION

Much of the work with this paper is inspired by our
research with Vertical Takeoff and Landing (VTOL)
UAVs and how efficient planning and execution can
be combined in our system (Doherty, 2004). Our test
domain is therefore a step towards a more autonomous
system which can handle the stochastic and dynamic
domains that we encounter during our different types
of flight missions.

The problem domain consists of a freely moving agent
in a continuous 2D environment (see Figure 1). The
environment contains obstacles or zones where the
agent is forbidden to fly. The agent can fly to any
free point in the environment but must do so by first
generating a stepwise linear path from its current posi-
tion to the target. The path is generated by a roadmap
based pathplanner, which is a simplified 2D version
of the one we use in our current system (Wzorek and
Doherty, 2006).
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Fig. 1. A problem instance of the UAV domain. D1 and
D2 are dangers and OT is an observation target.
The circles around the external agents show the
cost and classification radius. FA1 and FA2 are
finish areas.

The environment can containfinish areasthat are
rectangular areas where the agent can safely stop its
execution (corresponds to landing zones for our UAV).



Each finish area is associated with a certain reward
that the agent receives if it chooses to stop there.

Other external agentscan also move within the en-
vironment and they are partitioned intoobservation
targets and dangers. These observation targets and
dangers can either move freely or are restricted to
move on certain paths that represent a road network.
The main agent’s task is to avoid the dangers and try
to classify the observation targets, and this is done by
specifying negative rewards for being close to dangers
and positive rewards for classifying observation tar-
gets.

Each danger has a max costCmax associated with it,
which specifies the maximum negative reward that can
be received during one second if the agent is visible
from the danger and close to it. The cost decreases
linearly with the distance until it reaches zero. That
zero-cost distance is called thecost radiusof the
danger. Dangers with a negativeCmax can be used
to simulate targets that are supposed to be followed
continuously by the agent.

The agent is equipped with a camera that can be used
to track the external agents and perform classification.
The camera is assumed to have a certain maximum
view distance when it is used for such tasks.

The agent can try to classify an observation target.
This operation is supposed to model a more detailed
sensor action for a UAV that can be used to extract
more information about a target than its position. The
probability for success depends on the distance from
the agent to the target and how long the classifica-
tion is performed. The observation target must also
be visible from the agent and within the camera’s
view area. Each observation target has aclassification
radiusassociated with it which determines the maxi-
mum range where the agent can possibly classify the
target. The probability of a successful classification of
an observation targetot from a distanced is modelled
with a continuous-time Markov Process with only two
possible states and with the intensityλd of going from
“not classified” to “classified”. The intensity decreases
linearly from a maximum value to zero at the maxi-
mum classification distance.

The observation model that is used to update the
belief state, is specified with likelihood functions. The
likelihood for getting an observation from an object
o at positionp′o when the true position ispo and is
visible from the agent’s position, is assumed to be
max(ǫ, Po,max − αd) whereα is a positive constant,
Po,max is the maximum probability of observingo
(when the distance is zero) andd is the distance
betweenpo and p′o. If po is not visible from the
agent, the likelihood is set toǫ which models spurious
observations. When no observation is received, the
likelihood function for visible states is a constantβ

and for invisible statesγ whereγ > β.

4. BELIEF STATE REPRESENTATION

The belief state for the agent is represented with par-
ticle filters, one for each external agent. Each parti-
cle for free flying objects is a tuple that contains the
pose and velocity. Each particle for a road network
bound object is a tuple containing the network link,
the distance travelled on that link and the velocity. The
agent’s pose is assumed to be known.

The belief state update is performed by a sequential
importance resampling (SIR) (described in (Arulampalam
et al., 2002)) together with the observation model de-
scribed in Section 3.

5. DYNAMIC PLANNING PROBLEM
GENERATION

In order to perform planning with the help of the
output from the particle filter, a planning problem has
to be constructed. This task has been divided into two
parts. The first part is to select a set of “good” points
to fly to given the current belief state. The second part
consists of planning (with a path planner) the paths
between the selected points to generate the planning
problem specification. In this way it is possible to
transform the extremely difficult problem of planning
with the output from the particle filter directly into a
tractable but simplified problem.

5.1 Point Selection

The first part of our problem generation in the UAV
domain is to select the possible points that the agent
should consider flying to. The point selection prob-
lem is stated as an iterative optimization problem by
defining a utility measure for a point, given the current
belief state and the previously selected points.

The utility of a point is assumed to depend on the
distance to visible dangers, unclassified observation
targets, whether the point is within a finish area and the
possibility for the agent to move to that point. In our
domain, where current state is partially observable,
the expectedutility of a point is used instead. When
particle filters are used to represent the belief state of
the agent, the expected utility can be considered to be
the mean utility of the particles in the belief state used
for point selection.

The utility U(p) of a pointp given a particle and a set
of previously selected points, is divided into a sum of
utility contributions from dangers, observation targets,
finish areas and the previous points.

The utility contribution from a danger object,Udo,
depends on the distanced from the particle to the
agent:

Udo = min(−Cmax +
Cmax

CR

d, 0) (1)



whereCR is the cost radius of the danger.

Similarly, the point utility for observation targets also
depends on the distance but we also need to consider
whether it has been classified previously or not:

Uot =

{

Rcl,ot −
Rcl,ot

ClR,ot
d d < ClR,ot and¬clot

0 otherwise
(2)

whereRcl,ot is the reward for classifying the targetot,
ClR,ot is the classification radius andclot the boolean
variable that specifies whetherot has been classified
previously or not. Notice that observation targets that
have been previously classified provide nothing to the
point utility.

The utility contributionUfa from a finish areafa

is the same as the corresponding finish reward if the
point is withinfa and the agent has not executed the
finish action yet.

To provide a simple way to create diversity of the
selected points, the point selection takes the previ-
ously selected points into account. We use a penalty
functionUp for the set of previously selected pointsp

that depends on the distance between the considered
point with one exception: If the newly selected point
is located within a finish area and no other point is, no
penalty is given.

The sum of
∑

do Udo,
∑

ot Uot,
∑

fa Ufa andUp is
then used during optimization with a random restart
hillclimbing search where the neighbourhood function
generates a set of points that are within 5, 10 and 20
meters away. A point within the closest finish area is
also added to a point’s neighbourhood.

5.2 Problem Generation

When the set of points have been selected, paths are
planned between every combination of distinct point
pairs. This operation is very fast with our simplified
2D pathplanner, but it might be a bottleneck when our
onboard pathplanner is used. The number of points
also partly specifies the branching factor during for-
ward search which means that there are two good
reasons for keeping the set of selected points quite
small.

Before the problem is considered ready, the number of
paths are reduced to lower the branching factor for the
forward search. Paths that contribute little or nothing
are removed. In practice this filtering is performed by
considering all triples of distinct points. If the length
of a path between two pointsa andb is given byla,b,
then if la,b + lb,c < α · la,c, the path froma and
c is removed from the problem model.α is in our
implementation set to 1.1.

Figure 2 shows an example of how a dynamically gen-
erated problem can look like given the utility function
calculated from the belief state of the agent.
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Fig. 2. A generated problem for forward search given a
point value function calculated from a belief state
of the agent. The selected points are drawn with
circles. The road network is hidden for clarity.

6. PLANNING AND EXECUTION

This section describes how the planning and execution
is performed given a problem model.

6.1 Forward Search

The planning in the problem model is done by for-
ward search from the current belief state. The prob-
lem model is unfortunately not suitable for direct ap-
plication of the forward search idea since by simply
considering the flight from one point to another as a
primitive action without modification ignores all the
possible observations receivedduring the execution.

We have choosen to use a fix step sizeτplan during
planning and sample a number of possible observa-
tion sequences to approximate the enumeration of all
observations. Another simplification during the search
is that the camera’s view area is a circle around the
agent’s position, but still taking obstacles into account.
This simplification was done because considering all
possible camera directions during search would in-
crease the branching factor too much. The camera
pointing actions can be planned in a more refined
problem specification (assuming that the path is al-
ready given) or defined with a preprogrammed behav-
ior module. The latter is the method we use in our
current implementation (see Section 6.2).

6.2 Execution

Actions that are returned from the planner are exe-
cuted by behaviors which emulate the behavior gener-
ating components used in our current robotic system
(Doherty, 2004).

Paths, generated from the pathplanner, are followed in
the straightforward way, assuming that the agent is a
point with no dynamics. The camera movement during
execution is performed by a greedy camera control



behavior which points the camera towards a direction
that maximizes the expectedrelevanceof the visible
particles in the belief state. The relevanceRpdo

for
a visible danger object particlepdo is calculated by
Cmax · e−αpdo

·d whered is the current distance from
the agent,Cmax is the maximum cost for the danger
andαpdo

is set so thatRpdo
has 10 percent of its value

at the cost radius.

The camera is assumed to be capable of pointing
instantaneously towards a selected point, independent
of its previous angle.

6.3 Replanning

During execution, the belief state of the agent changes
and eventually the dynamically generated problem
specification becomes outdated. In this paper, we have
used a simple replanning strategy where a new prob-
lem specification is generated everyTr seconds.

7. EXPERIMENTS

We have performed a set of experiments with our im-
plementation that are aimed towards finding suitable
design parameters for our UAV domain. The following
parameters are varied in the experiments:

• Number of points that are selected during prob-
lem generation,Npg

• Search depth for the forward search,d

• Number of sampled observation sequences for
the forward search,Nobs

• Replanning periodTr

• Number of particles used for belief state during
forward search,Npfs

• Number of particles used for belief state during
point selection,Npps

• Whether simulated dynamic mode is used,SD

(see Section 7.1)

We believe that the parameters should ideally change
dynamically during execution depending on the cur-
rent situation. For example, it should be obvious that
large numbers ford andNobs (which would yield a
long planning time) should be avoided when the agent
is situated within a danger’s cost radius. However, in
this paper we only investigate fixed parameter settings
and delay the experimentation of dynamic settings for
future work.

7.1 Experimental Setup

Most of the experiments were performed in a simu-
lated dynamic mode which means that the environ-
ment is evolving during the agent’s deliberation. The
deliberation time is estimated by counting the most
frequently and costly operations that are performed

during point selection and planning. The two opera-
tions that are used for deliberation time estimation are
the utility calculations of a point during point selection
and planning, and the simulation step function that
is used for prediction during planning. The time for
those operations were first measured in our imple-
mentation and then assumed to be fixed during the
experiments.

The belief state is represented with 500 particles for
each external agent which seems to be more than
enough in this particular domain. Using the full belief
state for planning and point selection was not success-
ful due to the extra overhead during point selection
and planning and it is therefore always subsampled
before any of these operations.

Every test result is averaged over 500 randomly gen-
erated environments which all have two dangers, one
observation target and two finish areas (see Figure 1).

7.2 Experimental Results

Since it is not feasable to generate results for ev-
ery possible configuration of the parameters described
previously, we tested some configurations that point
out some interesting behavior of our implementation.
We first created adefault configuration, with some
trial and error, which is shown in Table 1. This con-
figuration was then used as basis for our experiments
when we changed a subset of the parameters.

Npg d Nobs Tr Npfs Npps SD

7 1 8 2.0 5 5 Yes

Table 1. The default configuration.

7.2.1. Number of Particles One of the experiments
that we performed was to vary the number of particles
used during forward search and point selection. Since
the dynamics of the environment is simulated, delib-
eration time is penalized both by the cost of hovering
during planning but also with increased response times
in dangerous situations. The result of the experiment is
shown in figure 3 which demonstrates the importance
of taking the dynamics and available computational
resources into account. The best result was obtained
whenNpfs was set to 2 andNpps to 4 which was much
lower than we expected.

7.2.2. Search Depth and ObservationsThe default
configuration uses a search depth of 1, which is rather
extreme. But the best results were in fact obtained
when this setting was used. Table 2 shows the result
of an experiment when the search depth and number
of observation samples are varied simultaneously. The
result clearly indicates that a search depth of 1 should
be used for this problem specification when the com-
putational resources are taken into account. We be-
lieve that the best search depth also highly depends on
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Fig. 3. The result when the number of particles for
point selection and planning are varied.

d

1 2 3 4

Nobs

1 53.58 18.88 -247.2 -2502
2 53.71 -3.932 -2137 NA
3 56.88 -64.09 NA NA
4 53.56 NA NA NA
5 56.43 NA NA NA
6 52.24 NA NA NA
7 49.31 NA NA NA
8 48.02 NA NA NA

Table 2. The results when the number of
observations and search depth parameters

are varied.

Npg d Nobs Tr Npfs Npps SD Value
10 1 15 1.0 50 50 No 59.39
20 1 15 1.0 50 50 No 62.46
20 1 20 1.0 200 200 No 64.30

Table 3. Three results when no simulated
dynamics is used.

the problem formulation procedure, which in our case
generates problems with very long temporal steps.

7.2.3. No Simulated DynamicsWe also performed
some tests when we disabled the simulated dynamics.
Table 3 shows the three different configurations that
we used together with their corresponding results. The
results are clearly better than than the best result when
simulated dynamics is used (56.88) but as the table
shows, the number of points selected and particles
used are much higher and it requires a lot more com-
putation.

8. CONCLUSION

We have in this paper developed a method to dynam-
ically create problem specifications depending on the
current belief state in a continuous partially observ-
able stochastic domain inspired by our research with
unmanned aerial vehicles. Our experiments shows that
the best results are obtained when a surprisingly inac-
curate model (very few particles) is used during plan-
ning and problem generation. This result demonstrates

the importance of modelling both the dynamics of
the environment and the architecture’s computational
resources.

We will in our further work both try to make the
domain more and more realistic and make it work for
real in our current UAV system. An important step
on the way is to move from a purely reactive cam-
era control to a full camera motion planner. We also
need to consider 3D environments and the resulting
computational aspects when our real on-board path-
planner is used instead. Another important extension
is to perform the planningduringexecution instead of
first braking and then doing it while hovering.
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