Semantic Information Integration with
Transformations for Stream Reasoning

Fredrik Heintz
Department of Computer and Information Science
Linkoping University, Sweden
[fredrik.heintz @liu.se

Abstract—The automatic, on-demand, integration of informa-
tion from multiple diverse sources outside the control of the
application itself is central to many fusion applications. An
important problem is to handle situations when the requested
information is not directly available but has to be generated
or adapted through transformations. This paper extends the
semantic information integration approach used in the stream-
based knowledge processing middleware DyKnow with support
for finding and automatically applying transformations. Two
types of transformations are considered. Automatic transfor-
mation between different units of measurements and between
streams of different types. DyKnow achieves semantic integration
by creating a common ontology, specifying the semantic content
of streams relative to the ontology and using semantic matching
to find relevant streams. By using semantic mappings between
ontologies it is also possible to do semantic matching over
multiple ontologies. The complete stream reasoning approach is
integrated in the Robot Operating System (ROS) and used in
collaborative unmanned aircraft systems missions.'

I. INTRODUCTION

The information available to modern systems such as
robots is often incremental in nature. A flow of incrementally
available time-stamped information is called a stream. As the
number of sensors and other sources of streams increases there
is a growing need for incremental reasoning over streams to
draw relevant conclusions and react to new situations with
minimal delays. We call such reasoning stream reasoning.
Reasoning over incrementally available information is
needed to support important functionalities such as situation
awareness, execution monitoring, and planning [1].

One major issue with regards to such stream reasoning is
its integration in robotic systems. To do symbolic reasoning it
is necessary to map symbols to streams in a robotic system,
which provide them with the intended meaning for the
particular robot. This is often done syntactically by mapping
symbols to streams based on their names. This makes a system
fragile as any changes in existing streams or additions of new
streams require that the mappings be checked and potentially
changed. This also makes it hard to reason over streams of
information from multiple heterogeneous sources, since the
name and content of streams must be known in advance.

IThis work is partially supported by grants from the Swedish Foundation
for Strategic Research (SSF) project CUAS, the Swedish Research Council
(VR) Linnaeus Center CADICS, and the Center for Industrial Information
Technology CENIIT.

Daniel de Leng
Department of Information and Computing Sciences
Utrecht University, The Netherlands
d.n.deleng @ students.uu.nl

To address these problems we have developed a semantic
matching approach using semantic web technologies [2]. An
ontology is used to define a common vocabulary over which
symbolic reasoning can be done. Streams are annotated with
ontological concepts to make semantic matching between
symbols and streams possible. The output of the semantic
matching is a stream specification which is used to produce
a stream of time states corresponding to a temporal model of
the symbols. One major advantage is that the semantics of
a stream can now be described by the creator of the stream
and then found by anyone based on this semantic annotation.
Previously the user had to know the meaning of the content
of streams to select the appropriate ones.

The semantic information integration approach extends the
stream reasoning functionality of the stream-based knowledge
processing middleware framework DyKnow [3], [4]. DyKnow
is integrated in the Robot Operating System (ROS) [5], which
makes it available for a wide variety of robotic systems.

An important problem for automatic, on-demand, integra-
tion of information from multiple diverse sources outside the
control of an application itself is to handle situations when
the requested information is not directly available but has to
be generated or adapted through transformations. The work in
this paper further extends the semantic information integration
approach with support for finding and automatically applying
transformations. Two types of transformations are considered.
Automatic transformation between different units of measure-
ments and transformations between different types of streams.

II. STREAM REASONING

One technique for incremental reasoning over streams is
progression of metric temporal logic formulas. This provides
real-time incremental evaluation of logical formulas as new
information becomes available. First order logic is a powerful
technique for expressing complex relationships between
objects. Metric temporal logics extend first order logics with
temporal operators that allow metric temporal relationships
to be expressed. For example, our temporal logic, which
is a fragment of the Temporal Action Logic (TAL) [6],
supports expressions which state that a formula F' should
hold within 30 seconds and that a formula F’ should hold
in every state between 10 and 20 seconds from now. This
is similar to the well known Metric Temporal Logic [7].
Informally, O, ;,; ¢ (“eventually”) holds at 7 iff ¢ holds at

some 7' € [T + 71,7 + 72, while Oj7, -, ¢ (“always™) holds
at 7 iff ¢ holds at all 7/ € [T + 71, 7+ 72]. Finally, ¢ U, ,,1 ¢
(“until”) holds at 7 iff 1) holds at some 7/ € [T + 71,7 + T2]
such that ¢ holds in all states in (7, 7).

We have for example used this expressive metric temporal
logic to monitor the execution of complex plans [8] and to
express conditions for when to hypothesize the existence
and classification of observed objects in an anchoring
framework [9]. For example, suppose that a UAV supports a
maximum continuous power usage of M, but can exceed this
by a factor of f for up to 7 units of time, if this is followed
by normal power usage for a period of length at least 7/. The
following formula can be used during execution to detect
violations of this specification: O Vuav : (power(uav) > M —
power(uav) < f - M Ujg) Ojo,~| power(uav) < M).

The semantics of these formulas are defined over infinite
state sequences. To make metric temporal logic suitable for
stream reasoning, formulas are incrementally evaluated using
progression over a stream of time-stamped states. The result
of progressing a formula through the first state in a stream is
a new formula that holds in the remainder of the state stream
if and only if the original formula holds in the complete state
stream. If progression returns true (false), the entire formula
must be true (false), regardless of future states. Even though
the size of a progressed formula may grow exponentially in
the worst case, it is always possible to use bounded intervals to
limit the growth. It is also possible to introduce simplifications
which limits the growth for many common formulas [10].

III. SEMANTIC INFORMATION INTEGRATION

A temporal logic formula consists of symbols representing
variables, sorts, objects, features, and predicates besides
the symbols which are part of the logic. A feature
represents a property or relation that may change values
over time. A sort is a collection of objects. Consider
Vo € UAV : ¢ # uavl — [JXYDist[z,uavl] > 10, which
has the intended meaning that all UAVs, except uavi, should
always be more than 10 meters away from uav1. This formula
contains the variable z, the sort UAV, the object uavi, the
feature XYDist, the predicates # and >, and the constant value
10, besides the logical symbols. To evaluate such a formula
an interpretation of its symbols must be given. Normally,
their meanings are predefined. However, in the case of stream
reasoning the meaning of features can not be predefined since
information about them becomes incrementally available.
Instead their meaning has to be determined at run-time. To
evaluate the truth value of a formula it is therefore necessary
to map feature symbols to streams, synchronize these streams,
and extract a timed state sequence where each state assigns
a value to each feature for a particular time-point [10].

In a system consisting of streams, a natural approach is to
syntactically map each feature to a single stream. This works
well when there is a stream for each feature and the person
writing the formula is aware of the meaning of each stream in
the system. However, as systems become more complex and
if the set of streams or their meaning changes over time it

is much harder for a designer to explicitly state and maintain
this mapping. Therefore automatic support for mapping
features in a formula to streams in a system is needed.

The purpose of this matching is to find one or more
streams for each feature whose content matches the intended
meaning of the feature. This is a form of semantic matching
between features and contents of streams. The process of
matching features to streams in a system requires that the
meaning of the content of the streams is represented and that
this representation can be used for matching the intended
meaning of features with the actual content of streams.

The same approach can be used for symbols referring to
objects and sorts. It is important to note that the semantics of
the logic requires the set of objects to be fixed. This means
that the meaning of an object or a sort must be determined
for a formula before it is evaluated and then stay the same.
It is still possible to have different instances of the same
formula with different interpretations of the sorts and objects.

Our goal is to automate the process of matching the intended
meaning of features, objects, and sorts to content of streams
in a system. Therefore the representation of the semantics
of streams needs to be machine readable. This allows the
system to reason about which stream content corresponds
to which symbol in a logical formula. The knowledge about
the meaning of the content of streams needs to be specified
by a user, even though it could be possible to automatically
determine this in the future. By assigning meaning to stream
content the streams do not have to use predetermined names,
hard-coded in the system. This also makes the system domain
independent meaning that it could be used to solve different
problems in a variety of domains without reprogramming.

In a previous paper [2] we presented a solution based on
creating an ontology acting as a common vocabulary of fea-
tures, objects, and sorts, a language (SSLr) for representing
the content of streams relative to the ontology, and a semantic
matching algorithm for finding all streams which contain in-
formation relevant for a feature, object, or sort in the ontology.

This is in line with recent work on semantic modeling of
sensors [11], [12] and on semantic annotation of observations
for the Semantic Sensor Web [13]-[15]. An interested ap-
proach is a publish/subscribe model for a sensor network based
on semantic matching [13]. The matching is done by creating
an ontology for each sensor based on its characteristics and an
ontology for the requested service. If the sensor and service
ontologies align, then the sensor provides relevant data for the
service. This is a complex approach which requires significant
semantic modeling and reasoning to match sensors to services.
Our approach is more direct and avoids most of the overhead.

The presented approach also bears some similarity to
work by Whitehouse et al. [16] as both use stream-based
reasoning and are inspired by semantic web services. One
major difference is that we represent the domain using an
ontology while they use a logic-based markup language
that supports ‘is-a’ statements. Additionally, they present a
declarative inference composition engine that can be used
to filter events, whereas DyKnow concerns itself with the

evaluation of spatio-temporal formulas. Currently, unlike
Whitehouse et al., we do not yet support Quality of Service
annotations. This remains an open challenge.

Our previous solution handles cases when there is a direct
semantic match between the ontological concept and the
semantic stream annotation. This means that the requested
information must already be available in the desired form.
However, most systems do not contain all potential streams
but only those that are actually needed. In many cases,
a system would be able to produce a matching stream.
However, the creation of streams is separated from the
finding of streams. In the approach described in this paper,
transformations between streams are also annotated and made
available to the semantic matching process. This makes it
possible to either find existing streams or generate a matching
stream using the available transformations.

In this paper we describe two extensions to our previous
approach. The first extension is to explicitly represent and
reason about units of measurement, which is very important
for applications using data from many different organizations
or sensors. The second extension handles transformations
between different features, such as transforming the
barometric pressure to an estimation of the altitude of a UAV,
by annotating transformations and including these in the
semantic matching process.

IV. SUPPORTING UNITS OF MEASUREMENT

In this section, we introduce units of measurement
into the DyKnow framework. Units of measurement are
used to describe the magnitude of a physical quantity. A
physical quantity is something that can be quantified through
measurement, e.g. length or mass. A unit of measurement
determines a scale, such as ‘meter’ or ‘Pascal’, in a dimension,
where the dimension is a combination of relevant physical
quantities. Since DyKnow is designed to create models of
the physical world and reason about the world using these
models, support for units of measurement is important.
Suppose for example that we are interested in monitoring
that the altitude of every known UAV is greater than 10 feet:

Vo € UAV : Altitude[x] > 10ft. (1)

This formula checks whether every object in the domain UAV
has the feature Altitude whose current numerical value is at
least 10 feet. Another example formula is

<>[0)1000]|:|[0’30] XYDist[uav1 s target] < 2m, 2)

which checks whether there are, between now and 1000 time
units from now, at least 30 consecutive time units where the
distance in the zy-plane between objects uavl and target is
less than two meters.

To evaluate these formulas, a number of issues have to
be solved. The first issue is how to handle explicit units of
measurement in stream reasoning formulas. Units such as
feet in Formula 1 and meters in Formula 2 are represented by
the labels ‘ft’ and ‘m’ respectively. To handle these formulas,
the temporal logical language has to be extended with units

of measurements and the semantics have to be extended
to give the right interpretation. The second issue is how to
support interoperability when different streams use different
units of measurement and when a formula uses different
units compared to the streams. In the examples, both metric
and imperial units of measurement are used. Furthermore, a
feature such as Altitude can naturally be described in terms of
both meters and feet, even in the same application. The third
issue is to handle formulas which refer to physical quantities
without explicit units of measurement, which should be
treated differently compared to non-physical quantities such
as the number of UAVs. In Formula 2, for example, the
time units are not explicitly specified, even though they are
physical quantities associated with time.

To handles these issues, we propose a solution which ex-
tends our ontology by representing units of measurements and
their relations, extends our semantic annotation of streams to
also include the unit of measurement, and extends our semantic
matching functionality by taking the units of measurements
into consideration. The rest of this section describes the details.

A. Ontology Support for Units of Measurements

In order to support formulas containing units of
measurement, a representation of these units is needed.
One approach is to construct a general representation that
maps labels to units and utilizes a conversion table between
different units. This is done for example with the Unified
Code for Units of Measures (UCUM) proposed by Schadow
et al. [17]. Additionally, UCUM makes use of prefixes such as
‘kilo’ to reduce the number of explicit conversions required.
However, one downside of this approach is its complexity due
to generality, which may be higher than necessary for many
application domains. Furthermore, it has a fixed custom system
of units described by length, time, mass, charge, temperature,
luminous intensity, and angle. Depending on the application,
this system of units may be considered impractical.

An alternative to the use of a conversion table is to use an
ontology representing units of measurement, which may also
model conversion tables such as UCUM. One example of this
is the Measurement Units Ontology (MUO) [18]. Rijgersberg
et al. [19] analyze existing ontologies that incorporate units
of measurement, including the Suggested Upper Merged On-
tology (SUMO) [20], a subset of the Semantic Web for Earth
and Environmental Terminology (SWEET) ontology [21], the
EngMath ontology [22], ScadaOnWeb [23], and the OpenMath
units and dimension CD groups [24]. The analysis for example
looked at concepts such as unit prefixes and resulted in the On-
tology of Units of Measure and Related Concepts (OM) [25].

Clearly, there exist many variations of units of measurement
representations, which is an ongoing area of research. Instead
of selecting one approach, DyKnow supports all ontologies
that satisfies a small number of requirements with regards to
the properties of the units of measurement ontology. These
requirements are outlined below.

a) Units of measurement are related to their physical
quantities: It is possible to describe many physical quantities

by a signature o = (a,3,7,0,¢,(,n) corresponding to the
unit LOMPBTYI°©°NCJ", where L represents length, M
represents mass, 1 represents time, I represents electric
current, © represents thermodynamic temperature, N
represents amount of substance, and J represents luminous
intensity [19]. For example, 0 = (1,0,—1,0,0,0,0) describes
speed as length (distance) divided by time. By associating
(with an unit—-of relation in OWL) for example {‘meter’,
‘foot’} to length L and {‘second’} to time T, speed L/T
can be described in two different ways, either as meters per
second or feet per second. While we have chosen to use this
seven-dimensional system in this paper, it must be pointed
out that any set of physical quantities may be used. This
includes physical quantities unmentioned, e.g. angle as used
in UCUM. The choice of base physical quantities, described
by a signature of equal dimension, determines which physical
quantities may be derived. In this paper, only length, mass,
and time are used, which means for the purpose of this paper
a signature o’ = (a, 3,7) would have sufficed. However, for
completeness, the seven-dimensional system is used.

b) Every physical quantity must have a default represen-
tative unit of measurement: The International System of Units
(SI) uses meter, kilogram, second, ampere, kelvin, mole, and
candela. However it co-exists alongside various other systems
of units such as the imperial system. Additionally, minor
variations such as using the gram as opposed to the kilogram
for M may sometimes be desired. However, for every physical
quantity there must be one default representative unit of mea-
surement. These units of measurement make up the system of
units, and are modeled through a relation in the ontology called
base from a physical quantity to a unit of measurement.

c) Every physical quantity is closed under unit conver-
sion: This means that every unit of measurement is guaranteed
to have a conversion function f and its inverse f~! to the
representative unit of a physical quantity, which makes it
possible to convert any unit within a physical quantity to any
other unit within the same physical quantity (see Theorem 1 in
Section IV-C). For the representative unit of measurement, f
and f~1 are identity functions. In the case of units on the ratio
scale, the conversion function f will be of the form f(z) =
v X x, where v represents a conversion factor. For example, the
conversion function for ‘feet’ to ‘meters’ is defined as f(x) =
0.3048 x z. This conversion factor is modeled in the ontology
as part of the unit of measurement’s corresponding concept.

With a unit ontology satisfying the above criteria, the name of
the concept of each unit of measurement can be used directly
in stream reasoning formulas. By using equality relations,
it is possible to represent that for example ‘meter’, ‘metre’
and ‘m’ are equivalent concepts that can be used in formulas
interchangeably. Furthermore, the conversion factor between
two commensurable units of measurement is represented in
the ontology as well.

To give every feature a default unit of measurement,
the feature ontology used by DyKnow is extended with a
dimension relation that associates a combination of physical

quantities to a feature. This is used to resolve situations where
there is no explicit unit of measurement and when the same
feature is represented in different ontologies, where a common
unit can not be assumed. To handle non-physical quantities,
e.g. the number of known UAVs, a special unit (no_unit)
representing this is added. This is also implicitly modeled in
the ontology through the absence of a dimension relation.

Derived units of measurement are units of measurement that
are composed of other units of measurement, and have their
own label. It can be useful to represent these aggregate units
of measurement in the ontology. As an example, take Pascal
(Pa), which is defined as 1Pa = 1kg/(m -s?), or alternatively
[kg.m-1.s-2] with signature o = (—1,1,-2,0,0,0,0).
Note that kilogram itself is a concept and not derived from
gram; while it is possible to automatically derive some units of
measurements using prefixes [17], this is beyond the scope of
this paper. In order to refer to Pascal directly, it is necessary to
include it in the ontology. However, it may be undesirable to
introduce pressure as a base physical quantity into the system
of units. Therefore, it needs to be related to its base concepts
‘kilogram’, ‘meter’, and ‘second’ alongside their respective
powers, which constitutes a ternary relation. Because OWL
only supports binary relations, we choose to specify six binary
derivation relations derived; one for every power in the set
{-3,—-2,—1,+1,42,43}. The choice to limit the relations
to this set is based on the fact that most units of measurement
seem to be contained and if necessary it can be changed.
Note that the zero-power relation is always omitted as it is
indirectly represented by the absence of a derived relation.

Pressure can now be represented using derived relations
to length, mass, and time. By including pressure as a non-base
physical unit, a new physical quantity with its own default unit
of measurement is introduced. Assuming ‘kilogram’, ‘meter’,
and ‘second’ are the default units for mass, length, and time
respectively, it is possible to represent ‘pascal’ as the default
unit for pressure with the signature o = (—1,1,—-2,0,0,0,0).

However, representing ‘bar’ as the default unit for pressure,
which is defined as 10° Pa, is more difficult. In order
to represent ‘bar’, an additional conversion factor called
the derived conversion factor is required. This conversion
factor is based on the default units of the derived physical
quantity’s base physical quantities, which in the case of
‘bar’ is 10°. This value is modeled as part of the physical
quantity associated with ‘bar’, being pressure. An example
unit ontology modeling pressure is shown in Figure 1, with
units of measurement in a light shade and physical quantities
in a darker shade. Relations with open arrow heads represent
unit-of relations. By incorporating derived relations
in the ontology, a transformation chain is created from
these derived units of measurement to their base units of
measurement. This makes it possible to semantically annotate
values in streams with derived units of measurement.

One strength of the proposed requirements is that
existing ontologies may be used with a few changes. The
main requirement is that physical quantities and units of
measurement must be identified as such in the ontology, for

pascal) Bar /' \v —

. . N base \
A { Meter
nase\h - 75/ T A// h

7 N y
Pressure { Length |
derived-1 o - -
B yd
- - V\ Mile
derived+1
g S derived-2 base b
/, ™ ./
7 Mass . I Second
:" nasa‘/v — V\ Time)
)] V\ Hour

Kilogram) Pound
v A /

Fig. 1: Example unit ontology with Physical Quantity and Unit
of Measurement concepts omitted for clarity.

example through a concept with the same name. Derived
physical quantities can then be identified by adding derived
relations with other physical quantities, where base physical
quantities are implicit through the absence of derived
relations originating from those physical quantities. Upper
level ontologies such as SWEET and SUMO already contain
concepts for (physical) quantities, which can be extended.

B. Semantic Annotation of Streams with Unit of Measurements

To support semantic information integration, streams
in DyKnow are annotated with their semantic content,
normally one or more features. With the introduction of
units of measurement, streams containing features of physical
quantities are also annotated with their units of measurement.
This annotation allows DyKnow to reason about the unit of
measurement of a stream. This is important both for the se-
mantic matching and for preventing mix-ups between different
measurement systems, with potentially catastrophic results.

Since DyKnow is realized using ROS, streams correspond
to ROS topics. To support units of measurement, the
previously proposed Semantic Specification Language for
Topics (SSLp) [2] is extended. The extended version of
SSLy, inspired by the unit expressions grammar [17],
is presented in Listing 1. The change compared to the
old version is that topic specifications now contain a unit
of measurement (unit_list). Note that the extended
grammar allows for aggregated units of measurement, making
it possible to represent e.g. acceleration (m/ s?)as [m.s-2],
where ‘m’ and ‘s’ are concepts in the ontology related to
length and time respectively. From this notation, the signature
o = (1,0,-2,0,0,0,0) can be inferred, which is necessary
for unit conversion. Non-physical quantities, e.g. the number
of known UAVs, have no_unit as their default unit of
measurement. If no explicit unit is given, then the unit is
assumed to be no_unit.

Listing 1: Extended formal grammar for SSLy.

spec
expression

expression+ ;

"topic’ topic_name ’'contains’

topic_name
feature_list
feature

feature_name
feature_args
feature_arg

feature_list ;
: NAME ' :’' NAME ;
. feature (', feature)x ;
feature_name ’'=' MSGFIELD
unit_list? for_part? ;
: NAME ' (' feature_args ')’ ;
: feature_arg (’,’ feature_arg)x
entity_name alias? ;

for_part "for’ entity (’,’ entity)x ;
entity : sort | object

entity_name : NAME;

unit_list : [’? uwnit (. wnit)x]°?
unit : NAME power? | 'no_unit’;
power : '—’7 NUMBER ;

alias "as’ NAME ;

object entity_full

sort . sort_type entity_full ;
entity_full : NAME '=' MSGFIELD ;
sort_type 'some’ | ‘every’ ;

NAME (a'. 'z | A L2009)+
NUMBER (’07..79)+

MSGFIELD : NAME '.’' NAME ;

Listing 2: Example S'SLp specifications.

topic topicl :UAVMsg contains Altitude (UAV)=msg. alt
ft for every UAV=msg.id

topic topic2:DistMsg contains XYDist(uavl,
.dist for uavl=msg.idl, uav2=msg.id2

topic topic3:UAVMsg contains Acceleration(uav3)=msg.
acc [mi.h—2] for uav3=msg.id

uav2)=msg

As an example, Listing 2 contains topics relevant for
Formulas 1 and 2. topic1 has the message type UAVMsg, and
contains the feature Altitude for every object of sort UAV.
Additionally, it states that Altitude uses the unit feet (ft), which
means that the numerical values of field msg.alt describe
the feature Altitude in feet. For topic2 the message type is
DistMsg. This topic contains feature XYDist for the objects
uavl and uav2. Unlike the case with topic1, no explicit unit
of measurement is given. In such a case, DyKnow either
uses the default unit of measurement for feature XYDist as
represented in the ontology, or returns a warning, depending
on the configuration. If, for example, the default unit is
meters then the numerical value of field msg.dist is assumed
to have the unit meters. Topic topic3 contains messages of
type UAVMsg containing the Acceleration feature for object
uav3. The unit of measurement for Acceleration is described
as miles per hour squared (mi/h?), which is a derived unit.

C. Semantic Matching with Units of Measurement

The semantic matching problem is as follows. Given an
ontology, a stream specification, and a parameterized feature
find a set of streams which allows the estimation of the value
of a feature over time. With the introduction of units of mea-
surement, the previous semantic matching algorithm [2] must
be extended to take into account these units of measurement
during matching. The new algorithm is shown in Procedure 1.

An important aspect of the new functionality is that it can
be treated as an optional extension. Previously, the matching
procedure finished after finding matching features. With the
addition of units of measurement, an additional test is done
to make sure that the units of measurement are aligned or
can be converted so that they are aligned.

Procedure 1 Semantic matching with units of measurement

Input: A well-formed formula ® and a set of stream specifi-
cations S
Output: Set of matching stream specifications S’
Set " — 0
List ' <+ ExtractGroundFeatures(®)
for all f € F do
for all s € MatchSpecs(S,f) do
if Unit(s) = Unit(f) then
S — S"U{s}
else if Convertable(s, Unit(f)) then
S’ «— 8" U {Convert(s, Unit(f))}
end if
end for
end for
return S’

> Match and convert

In order to illustrate unit alignment in semantic match-
ing, consider a slightly altered Formula 1: Altitude[uav3] >
10ft. In this formula, we have sort UAV, feature Altitude,
and unit of measurement ‘ft’ for feet. Running the algo-
rithm on the formula results in Altitude[uav3] being extracted
and inserted into a list. Every element of this list is then
checked to see if it is grounded. If the extracted feature
had for example been Altitude[UAV], then it would have been
grounded for every object of the sort UAV yielding a new (ex-
panded) list {Altitude[uav1], Altitude[uav2], Altitude[uav3]}. For
Altitude[uav3], no expansion is necessary (or even possible).

Next, the topic specifications are matched. In our example,
the three topic specifications from Listing 2. As per the
non-extended semantic matching approach, topics containing
information for feature Altitude[uav3] are selected. Only topic
topic1 contains the Altitude feature for the sort UAV, which
object uav3 is part of. Therefore, topic1 is selected.

Finally, the unit of measurement for feature Altitude is
checked. If the default unit of measurement for Altitude is
‘ft’, the matching procedure is done and returns topic topic1.
However, if the default unit is different from ‘ft’, this qualifies
as a misalignment problem, and a unit conversion mechanism
is used to fix the alignment if possible. When this happens,
the resulting realigned topic is returned as a match.

The process of unit alignment is defined here as the process
of converting the unit of measurement of a stream containing
a feature in order to match the desired unit of measurement.
Recall that every feature described by a physical unit can be
described by a signature o. For example, ‘area’ is described
by o = (2,0,0,0,0,0,0), without specifying the unit of mea-
surement used, which could be e.g. meters, feet, or furlong.

Theorem 1 (Commensurability): Given two physical quan-
tities on the ratio scale, described by signatures o1 and oo,
then if o7 = 09, there exists a transformation function f that
converts the unit of measurement described by o to the unit
of measurement described by os.

Proof: Assume the criteria specified in Section IV-A hold.

Given two physical quantities, described by signatures o7 and
09, such that 01 = o9, we denote u; and us to be the units
of measurement for o, and o, respectively. From the closure
criterion (c), there exists a function f; (u1) = ug4 and a function
fa(ug) = ug, where ug is the default unit. Because of the
requirement, a conversion function exists as well as its inverse,
i.e. f5 '(uq) = uy. This means that f = fiof; !, and therefore
df : f = fio...0fy,. Itis thus shown that there exists a trans-
formation function f that converts the unit of measurement
described by o, to the unit of measurement described by 5. B

Recall that physical quantities can operate at different
scales. For example, units of measurement such as meters,
seconds, and Kelvin all operate on the ratio scale. It is also
possible to apply sequences of transformation on derived
units. As an example, take the conversion of [mi.h-1]
to [m.s—-1], both of which share the same signature;
o =(1,0,—1,0,0,0,0). It is guaranteed that a transformation
sequence f; and f5 converting from miles to meters and from
hours to seconds respectively exists. Given some value x miles
per hour, f; o fy ! can be applied to to yield the speed in
meters per second, which matches the signature o. While this
is possible for units on the ratio scale, it is more challenging
for units such as °C or °F, which operate on the interval
scale. One possibility to model these conversion functions
is by using the built in math functions in the Semantic Web
Rule Language (SWRL) [26], but this is left for future work.

V. SUPPORTING FEATURE TRANSFORMATIONS

So far, our semantic information integration approach only
considers already existing streams. The previous section
introduced a solution to handle the case when there exist
streams producing the requested feature, but where none
of those streams have a matching unit of measurement.
This section describes an approach to automatically create a
matching stream by transforming existing streams.

In DyKnow, computational units are used to transform
streams. A computational unit takes one or more streams as
input and generates one more new streams as output. For ex-
ample, a computational units may act as a refinement process
by taking a stream of time-stamped vehicle positions and gen-
erating a stream of speed estimations for the tracked vehicles.
From a knowledge representation point of view, this computa-
tional unit transforms a position feature into a speed feature.

To support the automatic and on-demand creation of streams
using feature transformations we introduce a language for
semantic annotations of computational units together
with a new semantic matching algorithm. The semantic
annotation language is used to annotate the inputs and
outputs of computational units with their features and units of
measurement. This kind of semantic annotation of inputs and
outputs is in line with service composition approaches [27],
[28]. Then a new semantic matching algorithm uses the
semantic annotations of streams and transformations to either
find or create a matching stream. If it is necessary to create
a stream, it is created by transforming one or more existing
streams using one or more computational units.

A. Semantic Annotation of Feature Transformations

The purpose of the semantic annotation of transformations
is to make it possible to automatically find a transformation
from one feature to another. If a single transformation is not
enough, a chain of transformations might be needed. Another
benefit of semantic annotations of transformations is that it
provides strong semantic typing of computational units.

In DyKnow a computational unit is seen as a function
from a set of streams (the inputs) to another set of streams
(the outputs). For the purpose of semantic matching we will
consider a computational unit C' as a function from a set of
features to a single feature, C' : 7™ — F, where F denotes
the set of all possible features in the ontology. The reason is
that the ontology represents features, not streams, and since
streams are annotated with features the connection is clear. In
order to also represent the unit of measurement of a feature,
each feature is represented as a tuple (name,unit). The
feature name must refer to a feature in the feature ontology.

For example, imagine a stream s annotated with the
feature f and two computational units C; and C,. The
transformations applied by these computational units are
represented by functions ¢; : fi1 — fi2 and to5 : for — foo.
If it is the case that f = (Altitude, m) and fi; = (Altitude, m),
then it follows that stream s and computational unit C
match since the same feature is associated with stream s and
the input of Cq, i.e. f = f11. However, if it is the case that
f21 = (Altitude, ft), then Cy does not match the stream s
unless there is a unit transformation between m and ft.

Recall that in Theorem 1 the notion of commensurability
was introduced in terms of signatures . We now introduce
a function o : F — X, where ¥ is the set of all possible
signatures o. Concretely, this means that the function o(f)
for a feature f yields the signature of the feature. In
the previous example, this means that o(f) = o(f11) =
o(f21) = (1,0,0,0,0,0,0). Because the signatures are the
same, it can be concluded that stream s is commensurable
with the inputs of computational units C; and Cs. In
cases of misalignment, it is possible to distinguish between
commensurable misalignment, which can be realigned through
unit conversion, and strict misalignment, which can not be
realigned through unit conversion. This distinction makes it
possible to automatically introduce required unit conversions.

Listing 3: Formal grammar for SSLrp.

spec expression+ ;
expression “transform’

"from’ feature_list 'to’ feature
feature_list feature (', feature)x ;
feature : NAME unit_list ;
unit_list "['? wunit (.’ unit)x ']°'?
unit : NAME power? | ’'no_unit’;
power '—"? NUMBER ;

NAME (’a’..'z’|’A’..'Z’\'0’ "9 7))+
NUMBER ('07..79)+

To semantically annotate transformations with features
and their units of measurement we introduce the Semantic
Specification Language for Transformations (SSLrp) as
shown in Listing 3. This grammar is based on SSLp.

Listing 4: Example SSLrp specifications.

transform from Distance [m] to Speed [m.s—1]
transform from Distance [km] to Speed [mi.h—1]
transform from NumVehicles no_unit to NumUAVs no_unit

As an example, Listing 4 contains a number of transforma-
tions between different features. The first transformation takes
a feature Distance in (m) to return a feature Speed in (m/s).
The second transformation also transforms from distance to
speed, but with a different unit of measurement. These trans-
formations rely on the time-stamps in the streams. As a final
example, consider the feature NumVehicles which describes the
number of known vehicles and has no unit of measurement as
it is not related to any physical quantity. Its transformation
yields the feature NumUAVs, which describes the number of
known UAVs — a subset of vehicles. Such features with no re-
lation to any physical quantity can be modeled with no_unit.

B. Semantic Matching with Feature Transformation

The semantic matching algorithm presented in Section IV-C
extends the original algorithm by handling the case when
there exists a stream with a commensurable signature. In this
section we extend the algorithm further by handling the case
when there is no commensurable stream but there is a chain
of transformations that produces a commensurable stream.

The problem can be stated as follows. Given a desired
feature f either find a commensurable stream s or a
transformation tree ¢f generating a commensurable stream.
A transformation tree is a tree where the interior nodes are
computational units and the leaves are streams. The output of
a transformation tree is the output of the top-most node (which
can be a stream if the tree consists of only a leaf node). A
computational unit with n inputs must have exactly n children.
A transformation tree describes a valid transformation if every
leaf node is a stream, each interior node is a computational
unit with the right number of children, and the signature of
each child is commensurable with the output of its sub-tree.

Procedure 2 describes an algorithm computing a valid
transformation tree given a feature using the set of stream
specifications S and transformation specifications T'F. The
algorithm recursively extends the transformation tree one node
at the time. To find a matching stream Procedure 1 is used.
If no commensurable stream is found, then try to match each
input of each computational unit which produces a commen-
surable stream. As soon as a valid transformation tree is found
the algorithm may terminate. To increase the efficiency and
avoid cycles previous results are cached. Initially the cache is
empty. By adding an empty tree as the default result before
matching the feature allows cycles to be detected and handled.

The algorithm is non-deterministic in its choice of where to
extend the transformation tree. Many different strategies can be
employed to guide the search. If the transformation tree is ex-
tended in a depth-first manner and there is a solution it should
normally be found quickly. The algorithm can also find optimal
solutions by exhaustively trying all possibilities. The optimal
solution could for example be the transformation tree with the
least number of leaf nodes (streams) or the minimal maximal

Procedure 2 Tree match(Feature f)

Assume: A set of stream specifications S, a set of transfor-
mation specifications T'F', and a cache of results M.
if f ¢ M then
M(f) < Tree()
if 3s: f' € S such that o(f) = o(f’) then
M(f) < Tree(s)
else if 3C : f1,...,fn — fay1 € TF such that
o(f) = o(fny1) Nt1 = match(f1) # TreeQ) A... Aty =
match(f,) # Tree() then
M(f) < Tree(C, [t1,...
end if
end if
return M (f)

)

length of any path from the root to a leaf. If there are n features
and m computational units then the worst case complexity is
O(nm) since each feature is only computed at most once and
each feature at most tries every computational unit once.

VI. CONCLUSIONS AND FUTURE WORK

We have presented a semantic information integration ap-
proach supporting finding and automatically applying stream
transformations. Two types of transformations are considered,
transformations between different units of measurement and
transformations between different features. These extensions
make it possible to integrate information that is not directly
available but can be generated through transformations. This
is an important functionaly as generating desired information
on demand is central to many fusion applications.

In order to support transformations between different units
of measurement, we presented three criteria that an ontology
must adhere to in order to semantically model unit signatures.
We have additionally presented an extended formal grammar
for SSLt that allows for the semantic annotation of streams
with units of measurement. Since our previous matching
algorithm did not consider units of measurement, we have
incorporated this as an extension that also takes into account
commensurability. Finally, we described how derived units
of measurement can be modeled in the ontology, making it
possible to provide concepts for derived units such as Pascal.

In order to support feature transformations the inputs and
outputs of transformations are semantically annotated. For
this, a semantic annotation language for transformations called
SSLrp, based on SS Ly, was introduced. Then an algorithm
for either finding an existing or creating a new matching
stream was introduced. This algorithm leverages the ability
to transform between commensurable units of measurement
and adds the possibility to chain multiple transformations to
generate information that is not directly available.

An open challenge is to support units of measurement
that do not operate on the ratio scale, as interval scale
units of measurement such as Celsius and Fahrenheit are
common. This involves representing more complex conversion
functions, e.g. through SWRL and its built in math functions.

Semantic information integration with transformations
is essential to stream reasoning about the physical world,
since features are often described by physical quantities and
information is not always directly available but have to be
generated or adapted through transformations.

REFERENCES

[1] F. Heintz, J. Kvarnstrom, and P. Doherty, “Stream-based middleware
support for autonomous systems,” in Proc. ECAI, 2010.

[2] F. Heintz and Z. Dragisic, “Semantic information integration for stream
reasoning,” in Proc. Fusion, 2012.

[3] F. Heintz and P. Doherty, “DyKnow federations: Distributing and merg-
ing information among UAVs,” in Proc. Fusion, 2008.

[4] F. Heintz, J. Kvarnstrom, and P. Doherty, “Bridging the sense-reasoning
gap: DyKnow — stream-based middleware for knowledge processing,” J.
of Advanced Engineering Informatics, vol. 24, no. 1, pp. 14-26, 2010.

[5] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,
R. Wheeler, and A. Ng, “ROS: an open-source robot operating system,”
in ICRA Workshop on Open Source Software, 2009.

[6] P. Doherty and J. Kvarnstrom, “Temporal action logics,” in Handbook
of Knowledge Representation. Elsevier, 2008.

[71 R. Koymans, “Specifying real-time properties with metric temporal
logic,” Real-Time Systems, vol. 2, no. 4, pp. 255-299, 1990.

[8] P. Doherty, J. Kvarnstrom, and F. Heintz, “A temporal logic-based
planning and execution monitoring framework for unmanned aircraft
systems,” J. of Auton. Agents and Multi-Agent Systems, vol. 19, 2009.

[9]1 F. Heintz, J. Kvarnstrom, and P. Doherty, “Stream-based hierarchical
anchoring,” Kiinstliche Intelligenz, vol. 27, no. 2, pp. 119-128, 2013.

[10] F. Heintz, “DyKnow: A stream-based knowledge processing middleware
framework,” Ph.D. dissertation, Linkopings universitet, 2009.

[11] J. Goodwin and D. Russomanno, “Ontology integration within a service-
oriented architecture for expert system applications using sensor net-
works,” Expert Systems, vol. 26, no. 5, pp. 409—432, 2009.

[12] D. Russomanno, C. Kothari, and O. Thomas, “Building a sensor ontol-
ogy: A practical approach leveraging iso and ogc models,” in Proc. the
Int. Conf. on Al, 2005.

[13] A. Broring, P. Maué, K. Janowicz, D. Nist, and C. Malewski,
“Semantically-enabled sensor plug & play for the sensor web,” Sensors,
vol. 11, no. 8, pp. 7568-7605, 2011.

[14] A. Sheth, C. Henson, and S. Sahoo,
Internet Computing, pp. 78-83, 2008.

[15] M. Botts, G. Percivall, C. Reed, and J. Davidson, “OGC®) sensor web
enablement: Overview and high level architecture,” GeoSensor networks,
pp. 175-190, 2008.

[16] K. Whitehouse, F. Zhao, and J. Liu, “Semantic streams: a framework
for composable semantic interpretation of sensor data,” in Proc. EWSN,
2006.

[17] G. Schadow, C. J. McDonald, J. G. Suico, U. Fhring, and T. Tolxdorff,
“Units of measure in clinical information systems,” Journal of the
American Medical Informatics Association, vol. 6, no. 2, 1999.

[18] “MUO.” [Online]. Available: http://idi.fundacionctic.org/muo/

[19] H. Rijgersberg, M. Wigham, and J. Top, “How semantics can improve
engineering processes: A case of units of measure and quantities,”
Advanced Engineering Informatics, vol. 25, no. 2, 2011.

[20] “SUMO.” [Online]. Available: http://www.ontologyportal.org/

[21] “SWEET ontologies.” [Online]. Available: http://sweet.jpl.nasa.gov/

[22] T. R. Gruber and G. R. Olsen, “An ontology for engineering mathemat-
ics,” in Proc. KR, 1994.

[23] T. Dreyer, D. Leal, A. Schroder, and M. Schwan, “Scadaonweb - web
based supervisory control and data acquisition,” in Proc. ISWC, 2003.

[24] “OpenMath.” [Online]. Available: http://www.openmath.org/ontology/

[25] H. Rijgersberg, M. van Assem, and J. Top, “Ontology of units of measure
and related concepts,” Semantic Web, vol. 4, no. 1, 2013.

[26] 1. Horrocks, P. Patel-Schneider, H. Boley, S. Tabet, B. Grosof, and
M. Dean, “SWRL: A semantic web rule language combining OWL and
RuleML,” 2004.

[27] J. Rao and X. Su, “A survey of automated web service composition
methods,” in Proc. SWSWPC, vol. 3387, no. 1, 2005.

[28] S. Dustdar and W. Schreiner, “A survey on web services composition,”
International Journal of Web and Grid Services, vol. 1, no. 1, 2005.

“Semantic sensor web,” IEEE

