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Abstract

Building complex systems such as autonomous robots usu-
ally require the integration of a wide variety of components
including high-level reasoning functionalities. One important
challenge is integrating the information in a system by setting
up the data flow between the components. This paper extends
our earlier work on semantic matching with support for adap-
tive on-demand semantic information integration based on
ontology-based introspection. We take two important stand-
points. First, we consider streams of information, to handle
the fact that information often becomes continually and in-
crementally available. Second, we explicitly represent the se-
mantics of the components and the information that can be
provided by them in an ontology. Based on the ontology our
custom-made stream configuration planner automatically sets
up the stream processing needed to generate the streams of
information requested. Furthermore, subscribers are notified
when properties of a stream changes, which allows them to
adapt accordingly. Since the ontology represents both the sys-
tem’s information about the world and its internal stream pro-
cessing many other powerful forms of introspection are also
made possible. The proposed semantic matching functional-
ity is part of the DyKnow stream reasoning framework and
has been integrated in the Robot Operating System (ROS).

1 Introduction

Building complex systems such as autonomous robots usu-
ally require the integration of a wide variety of components
including high-level reasoning functionalities. This integra-
tion is usually done ad-hoc for each particular system. A
large part of the integration effort is to make sure that each
component has the information it needs in the form it needs
it and when it needs it by setting up the data flow between
components. Since most of this information becomes incre-
mentally available at run-time it is natural to model the flow
of information as a set of streams. As the number of sensors
and other sources of streams increases there is a growing
need for incremental reasoning over streams to draw rele-
vant conclusions and react to new situations with minimal
delays. We call such reasoning stream reasoning. Reasoning
over incrementally available information is needed to sup-
port important functionalities such as situation awareness,
execution monitoring, and planning.

When handling a large number of streams, it can be dif-
ficult to keep track of the semantics of individual streams

and how they relate. The same information query further re-
quires different configurations for different systems. Such
a manual task leaves ample room for programmer errors,
such as misspelling stream names, incorrect stream config-
urations and misunderstanding the semantics of stream con-
tent. Furthermore, if the indefinite continuation of a stream
cannot be guaranteed, manual reconfiguration may be nec-
essary at run-time, further increasing the risk for errors.

In this paper we extend earlier work on semantic match-
ing (Heintz and de Leng 2013) where we introduced support
for generating indirectly-available streams based on fea-
tures. The extension focuses on ontology-based introspec-
tion for supporting adaptive on-demand semantic informa-
tion integration. The basis for our approach is an ontology
which represents the relevant concepts in the application do-
main, the stream processing capabilities of the system and
the information currently generated by the system in terms
of the application-dependent concepts. Relevant concepts
are for example objects, sorts and features which the sys-
tem wants to reason about. Semantic matching uses the on-
tology to compute a specification of the stream processing
needed to generate the requested streams of information. It is
for example possible to request the speed of a particular ob-
ject, which requires generating a stream of GPS-coordinates
of that object which are then filtered in order to generate a
stream containing the estimated speed of the object. Figure 1
shows an overview of the approach. The semantic matching
is done by the Semantics Manager (Sec. 4) and the stream
processing is done by the Stream Processing Engine (Sec. 3).

Semantic matching allows for the automatic generation
of indirectly-available streams, the handling of cases where
there exist multiple applicable streams, support for cop-
ing with the loss of a stream, and introspection of the set
of available and potential streams. We have for example
used semantic matching to support metric temporal logical
(MTL) reasoning (Koymans 1990) over streams for collab-
orative unmanned aircraft missions. Our work also extends
the stream processing capabilities of our framework. In par-
ticular, this includes ontology-based introspection to support
domain-specific reasoning at multiple levels of abstraction.

The proposed semantic matching functionality is in-
tegrated with the DyKnow stream reasoning frame-
work (Heintz and Doherty 2004; Heintz 2009; Heintz,
Kvarnstrém, and Doherty 2010; Heintz 2013) which pro-
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Figure 1: High-level overview of our approach.

vides functionality for processing streams of information
and has been integrated in the Robot Operating System
(ROS) (Quigley et al. 2009). DyKnow is related to both Data
Stream Management Systems and Complex Event Process-
ing (Cugola and Margara 2012). The approach is general and
can be used with other stream processing systems.

The remainder of this paper is organized as follows. Sec-
tion 2 starts off by putting the presented ideas in the context
of similar and related efforts. In Section 3, we give an in-
troduction to the underlying stream processing framework.
This is a prelude to Section 4, which describes the details of
our approach, where we also highlight functionality of in-
terest made possible as the result of semantic matching. The
paper concludes in Section 5 by providing a discussion of
the introduced concepts and future work.

2 Related Work

Our approach is in line with recent work on semantic mod-
eling of sensors (Goodwin and Russomanno 2009; Rus-
somanno, Kothari, and Thomas 2005) and work on se-
mantic annotation of observations for the Semantic Sensor
Web (Broring et al. 2011; Sheth, Henson, and Sahoo 2008;
Botts et al. 2008). An interested approach is a publish/sub-
scribe model for a sensor network based on semantic match-
ing (Broring et al. 2011). The matching is done by creating
an ontology for each sensor based on its characteristics and
an ontology for the requested service. If the sensor and ser-
vice ontologies align, then the sensor provides relevant data
for the service. This is a complex approach which requires
significant semantic modeling and reasoning to match sen-
sors to services. Our approach is more direct and avoids most
of the overhead. Our approach also bears some similarity to
the work by (Whitehouse, Zhao, and Liu 2006) as both use
stream-based reasoning and are inspired by semantic web
services. One major difference is that we represent the do-
main using an ontology while they use a logic-based markup
language that supports ‘is-a’ statements.

In the robotic domain, the discussed problem is some-
times called self-configuration and is closely related to task

allocation. The work by Tang and Parker (Tang and Parker
2005) on ASyMTRe is an example of a system geared to-
wards the automatic self-configuration of robot resources
in order to execute a certain task. Similar work was per-
formed by Lundh, Karlsson and Saffiotti (Lundh, Karlsson,
and Saffiotti 2008) related to the Ecology of Physically Em-
bedded Intelligent Systems (Saffiotti et al. 2008), also called
the PEIS-ecology. Lundh et al. developed a formalisation
of the configuration problem, where configurations can be
regarded as graphs of functionalities (vertices) and chan-
nels (edges), where configurations have a cost measure. This
is similar to considering actors and streams respectively. A
functionality is described by its name, preconditions, post-
conditions, inputs, outputs and cost. Given a high-level goal
described as a task, a configuration planner is used to con-
figure a collection of robots towards the execution of the
task. Some major differences between the work by Lundh
et al. and the work on semantic information integration with
DyKnow is that the descriptions of transformations are done
semantically with the help of an ontology. Further, DyKnow
makes use of streams of incrementally available information
rather than shared tuples as used by channels. The configu-
ration planner presented by Lundh et al. assumes full knowl-
edge of the participating agents’ capabilities and acts as an
authority outside of the individuals agents, whereas we as-
sumes full autonomy of agents and make no assumptions on
the knowledge of agents’ capabilities. Configuration plan-
ning further shares some similarities with efforts in the area
of knowledge-based planning, where the focus is not on the
actions to be performed but on the internal knowledge state.

In a broader context, the presented ideas are in line with a
broader trend that moves away from the how and towards the
what. Content-centric networks (CCN) seek to allow users
to simply specify what data resource they are interested in,
and lets the network handle the localisation and retrieval of
that data resource. In the database community, the problem
of self-configuration is somewhat similar to the handling of
distributed data sources such as ontologies. The local-as-
view and global-as-view approaches (Lenzerini 2002) both
seek to provide a single interface that performs any neces-
sary query rewriting and optimisation.

The approach presented here extends previous work
by (Heintz and Dragisic 2012; Heintz and de Leng 2013;
Heintz 2013) where the annotation was done in a sepa-
rate XML-based language. This is a significant improvement
since now both the system’s information about the world and
its internal stream processing are represented in a single on-
tology. This allows many powerful forms of introspective
reasoning of which semantic matching is one.

3 Stream Processing with DyKnow

Stream processing is the basis for our approach to seman-
tic information integration. It is used for generating streams
by for example importing, synchronizing and transforming
streams. A stream is a named sequences of incrementally-
available time-stamped samples each containing a set of
named values. Streams are generated by stream processing
engines based on declarative specifications.



3.1 Representing Information Flows

Streams are regarded as fundamental entities in DyKnow.
For any given system, we call the set of active streams the
stream space S C S*, where S* is the set of all possible
streams; the stream universe. A sample is represented as a
tuple (¢, t,, U), where t, represents the time the sample be-
came available, t, represents the time for which the sam-
ple is valid, and ¥ represents a vector of values. A special
kind of stream is the constant stream, which only contains
one sample. The execution of an information flow process-
ing system is described by a series of stream space transi-
tions St = S = ... = S~ Here S represents a stream
space at time ¢ such that every sample in every stream in S
has an available time ¢, < t.

Transformations in this context are stream-generating
functions that take streams as arguments. They are associ-
ated with an identifying label and a specification determin-
ing the instantiation procedure. This abstracts away the im-
plementation of transformations from the stream processing
functionality. Transformations are related to the combina-
tion of implementation and parameters of their correspond-
ing implementations. This means that for a given implemen-
tation there might exist multiple transformations, each using
different parameters for the implementation.

When a transformation is instantiated, the instance is
called a computational unit. This instantiation is performed
by the stream processing engine. A computational unit is as-
sociated with a number of input and output streams. It is able
to replace input and output streams at will. A computational
unit with zero input streams is called a source. An example
of a source is a sensor interface that takes raw sensor data
and streams this data. Conversely, computational units with
zero transmitters are called sinks. An example of a sink is a
storage or a unit that is used to control the agent hosting the
system, such as an unmanned aerial vehicle (UAV).

DyKnow’s stream processing engine as shown in Figure 1
is responsible for manipulating the stream space based on
declarative specifications, and thereby plays a key role as
the foundation for the stream reasoning framework.

3.2 Configurations in DyKnow

A configuration represents the state of the stream process-
ing system in terms of computational units and the streams
connecting them. The configuration can be changed through
the use of declarative stream specifications. An example of
a stream specification is shown in Listing 1, and describes
a configuration for producing a stream of locations for de-
tected humans.

Listing 1: Configuration specification format

1 <?xml version="1.0" encoding="UTF-8"7?>
2 <spec:specification

3 xmlns:xsi=

4 "http://www.w3.0rg/2001/XMLSchema-
instance"

5 xsi:schemalocation=

"http://www.dyknow.eu/ontology#
Specification

=)

7 http://www.dyknow.eu/config.xsd"

8 xmlns:spec=

9 "http://www.dyknow.eu/ontology#
Specification">

10 <spec:insertions>

11 <spec:cuname="result"

12 type="project2Dto3D">

13 <spec:cu type="fusionRGBIR">

14 <spec:cu type="rgbCam" />

15 <spec:cu type="irCam" />

16 </spec:cu>

17 <spec:cu type="GPSto3D">

18 <spec:cu type="gps" />

19 </spec:cu>

20 </spec:cu>

21 </spec:insertions>

22 <spec:removals>

23 <!-— Removals based on names of
transformations and CUs ——>

24 </spec:removals>

25 </spec:specification>

The shown specification can be executed by the stream
processing engine, which instantiates the declared computa-
tional units and connects them according to the specification.
In the example shown here, we make use of an XML-based
specification tree, where the children of every tree node rep-
resent the inputs for that computational unit. The cu tag is
used to indicate a computational unit, which may be a source
taking no input streams. A computational unit produces at
most one stream, and this output stream can thus be used
as input stream for other computational units. Indeed, only
one computational unit explicitly defines the output stream
name as result. When no explicit name is given, DyKnow
assigns a unique name for internal bookkeeping. Note that
every CU tag has a label associated with it. This label rep-
resents the transformation used to instantiate the computa-
tional unit, which is then given a unique name by DyKnow
as well. As long as a transformation label is associated with
an implementation and parameter settings, the stream pro-
cessing engine is able to use this information to do the in-
stantiation. In this toy example, the specification tree uses a
GPS to infer coordinates, and combines this with RGB and
infrared video data to provide the coordinates of some en-
tities detected in the video data. Since DyKnow has been
implemented in ROS, currently only Nodelet-based imple-
mentations are supported.

The result of the stream declaration is that the stream
processing engine instantiates the necessary transformations
and automatically assigns the necessary subscriptions for the
result stream to be executed. Additionally, it uses its own
/status stream to inform subscribers when it instantiates a
transformation or starts a new stream, along with the speci-
fication used. This makes it possible for other components
or even computational units to respond to changes to the
stream space. This is illustrated in Figure 1, where the /s-
tatus stream reports to the semantics manager. The stream
space shows streams as arrows produced by computational
units (C) and sources (S).



The described stream processing capability serves as a
foundation for stream reasoning. It makes it possible to gen-
erate streams based on specifications over labels, abstracting
away some of the low-level details. However, further im-
provements can be made by considering ontology-based in-
trospection through semantic information integration.

4 Semantic Information Integration

Semantic information integration in the context of this paper
is about allowing a component to specify what information
it needs relative to an ontology describing the semantics of
the information provided by a system. This allows the sys-
tem to reason about its own information and what is required
to generate particular information. It takes away the need to
know exactly which streams contain what information, what
information is currently being produced by the system, or
which combination of transformations generates a specific
kind of information. It greatly simplifies the architecture of
components connected by streams to one where only the de-
sired information needs to be described at a higher level
of abstraction, and wherein the underlying system config-
ures and adapts automatically. This is achieved through the
use of ontologies and a technique called semantic match-
ing. Both are maintained in our framework by the semantics
manager. The advantages of this approach includes the au-
tomatic generation of indirectly-available streams, the han-
dling of cases where there exist multiple applicable streams,
providing support for coping with the loss of a stream, and
providing support for the introspection of the space of avail-
able and potential streams.

4.1 Ontology for Configuration Modeling

Ontologies are used to describe concepts and relations
between concepts. The Web Ontology Language (OWL)
(McGuinness, Van Harmelen, and others 2004) was de-
signed to describe such ontologies, and is closely related
to Description Logic (DL). In efforts to further the Seman-
tic Web (Berners-Lee, Hendler, and Lassila 2001), many
ontologies have been created. However, to the best of our
knowledge no ontology exists to describe the concepts re-
lated to streams and stream transformations. As such, in de-
veloping our own ontology to serve as a data model for our
stream reasoning framework.

In order to describe the stream space, we developed
the DyKnow Ontology for Stream Space Modeling'. Fig-
ure 2 shows the corresponding concept graph generated by
Protégé. We use the prefix : (colon) to refer to concepts in
this ontology. The ontology seeks to specify the general con-
cepts related to streams. Some of these terms have been dis-
cussed in the previous section, and are formalized in the on-
tology. For example, by using an ontology we can also in-
dicate that every stream has at least one sample, and that a
computational unit is an instance of a transformation and
has some input and output streams. This makes it possi-
ble to model and reason about sets of streams and changes.
For example, we can assign an individual (object) to the
:Stream concept to represent an existing stream. Similarly,
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Figure 2: Protégé-generated concept graph of the application
independent DyKnow Ontology for Stream Space Modeling

we can model the computational units and their input and
output streams. By using a DL reasoner, we can then infer
(through the inverse property between :haslnput and :isln-
put) which computational units a stream acts as input and
output for. Concretely, by populating the ontology with in-
formation on the stream space, it can serve as a structured
semantic model of the stream space that can be queried.
As an example, consider again the specification presented
in Listing 1. It assumes a number of transformations (indi-
cated by spec:type) which are represented as individuals
of dyknow:Transformation. The computational units gen-
erated as the result of executing this specification are also
registered by the semantics manager and added to the on-
tology. The fusionRGBIR-type computational unit is con-
nected to its input providers of types rgbCam and irCam.
Listing 2 shows how the ontology registers this computa-
tional unit. The registration for the other computational units
in the specification is done similarly.

Listing 2: Example CU in Turtle syntax

1 :dyknow_cul a :ComputationalUnit ;
2 thasInput :dyknow_streaml ;

3 :hasInput :dyknow_stream?2 ;

4 thasOutput :dyknow_stream3;

5 :instantiationOf :fusionRGBIR.

The second group of concepts of interest are :Annota-
tion and :Specification. A specification as mentioned ear-
lier describes how something is constructed. As such, the
functional :hasSpecification object property can be used to
assign one specification to for example a stream or a trans-
formation. The :Annotation concept is used to provide an-
notations for objects in the ontology. The annotations are



used for describing transformations by their input and out-
put features. DyKnow considers entities in the world to be
classified as sorts, which represent alike groups of objects.
For instance, a sort can be UAV, for which uav2 might be
an object. Features are used to describe object properties or
relations between objects. Therefore :Sort and :Feature are
also part of this ontology, which allows us to specify hierar-
chical structures over sorts and features, e.g. Car C Vehicle
(i.e. Car less general than Vehicle). Every ontological Thing
can be regarded as a :Sort, and as such the two are con-
sidered to be equivalent concepts. The :Sort and :Feature
concepts act like stubs that can be extended for a particu-
lar application domain. An example for transformations is
shown in Listing 3, where the fusionRGBIR transformation
is used.

Listing 3: Example transformation in Turtle syntax

:fusionRGBIR a :Transformation;

1
2 :hasAnnotation [

3 :hasOutputAnnotation [

4 :describesFeature :ImagePosition;
5 :describesSort :Human

6 1;

7 :hasInputAnnotation [

8 :describesFeature :RawRGBCam ;

9 :describesSort :self;

10 :nextSegment [

11 thasInputAnnotation [

12 :describesFeature

13 :RawIRCam;

14 :describesSort iself

15 1

16 1

17 1

18 1;

19 :hasName ‘‘fusionRGBIR”string.

In this example, :fusionRGBIR represents the transfor-
mation from RGB and IR camera images to 2D image co-
ordinates. As expected, it is an individual of the :Transfor-
mation concept. The example also states that it has an an-
notation and a name string. Note that these :Annotation in-
dividuals are not the same as OWL annotations, which are
treated as comments that are disregarded by DL reasoners.
The annotation has an output annotation and an input an-
notation, both describing a feature and a number of sorts
depending on the arity of the feature. For the input annota-
tion, we specify two inputs where the ordering is kept ex-
plicit using :nextSegment in order to avoid ambiguity. The
same construct can be used to construct non-unary features
by specifying a list of sorts, making use of the :Description-
Sequence concept.

The ontology makes it possible to draw inferences over
the internal state of the system. Even though the semantics
manager only reports status updates, the ontology specifies
properties over predicates that can be used to perform lim-
ited reasoning. For instance, using DL reasoners it is possi-
ble to determine for a given transformation which computa-
tional units are instances. Similarly, given a stream we can

query which computational units it serves as inputs and out-
puts for. Likewise, one could query the ontology for trans-
formations with some provided annotation.

The OWL-S (Martin et al. 2004) and SSN (Compton and
others 2012) ontologies are closely related to the application
focus of this paper. OWL-S is an upper ontology for ser-
vices in which services can be described by service profiles.
Being an upper ontology, it restricts itself to abstract repre-
sentations, leaving more concrete extensions to users of the
upper ontology. Similarly, the SSN ontology takes a sensor-
centric approach. Our ontology differs by representing both
the transformations (services) and streams through popula-
tion of the ontology with individuals, and complements the
aforementioned ontologies.

4.2 Maintaining the System Ontology
Correspondence

The ontology presented in the previous section can be used
as a knowledge base (KB) for stream reasoning frameworks
in general. Note that the KB treats streams and transforma-
tions over streams as entities that can be assigned properties
to. This approach is similar to semantic (or RDF) streams,
which can be used to represent parts of an ontology that
change over time. Rather than representing the data con-
tained within streams, we chose to represent the streams
themselves as entities. From a stream reasoning framework
perspective, this allows us to model the active and potential
streams and transformations.

Figure 1 showed a high-level outline of our approach.
When considering the task of maintaining the knowledge
base, our focus is on the semantics manager. The semantics
manager is primarily tasked with detecting changes that take
place in the system, such as new computational units being
instantiated or existing computational units changing their
subscriptions to streams. It is able to perform this task by
listening to the status streams of computational units, which
they use to notify subscribers when their individual configu-
rations change. Of course, this leads to a bootstrapping issue
of finding the computational units in the first place. Recall
that the stream processing engine is used to execute config-
uration specifications. Given a configuration specification,
it instantiates new computational units and provides infor-
mation on the names of the streams to subscribe to or pro-
duce. The ability to instantiate new computational units is
not limited to the stream processing engine, but it serves as
the first computational unit in the system. As such, the se-
mantics manager can presume its existence and listen to its
status stream to capture the instantiation of any new compu-
tational units. By listening to status streams, the semantics
manager is able to keep track of the state of the stream pro-
cessing system and update the ontology to match the state.

In addition to tracking the system configuration and mod-
eling this in the ontology, the semantics manager is able
to model additional information. In our conceptualisation,
computational units are instances of transformations, which
in turn represent the combination of implementations and
parameters. For example, a people tracker implementation
may need a number of parameter assignments in order to
work properly on a specific UAV type. There may be a num-



ber of such combinations consisting of a specific imple-
mentation and a number of parameter assignments. Every
such combination is represented as a labelled transforma-
tion. A transformation can have multiple computational unit
instances, which are combinations of transformations with
specific input and output streams. Transformations thus do
not exist themselves as entities in the system state, but the
ontology is able to describe them and relate them to com-
putational unit instances. Similarly, it is possible to anno-
tate entities with additional information. For example, in the
stream reasoning context, it is useful to annotate transforma-
tions with the features it takes and produces. This is used to
perform semantic matching, described in detail below.

By providing an interface to the model of the system state
(or configuration), computational units themselves can re-
quest changes to be made to the ontology. This can be useful
when properties change and have to be updated accordingly,
such as may be the case when describing the semantics of
a stream using annotations in cases where the stream may
change due to environmental changes.

4.3 Semantic Matching Algorithm

Semantic matching in the context of a stream reasoning
framework presented here is the task of providing a stream
specification given a desired feature. Such a specification
may make use of existing streams and computational units,
or it may use its knowledge of transformations to reconfig-
ure the system in such a way that it produces a stream with
the desired feature. We call such streams latent streams. The
focus is on desired features because we are interested in rea-
soning over metric temporal logic formulas, where the fea-
ture symbols need to be grounded in streams in order for
them to have meaning. The semantic matching procedure is
another powerful form of introspection using the ontology.
Semantic matching is thus performed by the semantics man-
ager and constitutes its secondary responsibility of providing
high-level services related to the ontology.

By providing semantic annotations for transformations,
we can specify which features a transformation produces or
requires. The semantics manager’s services make it possible
to provide these semantic annotation during run-time, both
by a human operator or a computational unit. Features de-
scribe properties of objects or relations between objects. For
example, Altitude(UAV) describes the unary Altitude fea-
ture over the UAV sort. A transformation produces a sin-
gle output stream and any number of input streams. We
consider the following example transformations, where the
name of the transformation is followed by the input and out-
put stream annotations, shown below.

e gps: = GPS[seIﬂ

e imu: () = IMU[self]

e rgbCam: () = RGBself]

e irCam: () = IR[self]

e attitude : IMU[Thing] = Attitude[Thing]

e GPSto3D : GPS[Thing] = GeolLocation[Thing]

e humanDetector : RGB[RMAX],
IR[RMAX] =- PixelLocation[Human]

e humanCoordinates : PixelLocation[Human],
GeolLocation[RMAX], Attitude[RMAX]
= Geolocation[Human]

In this small example, the source transformations are
marked as having no input features. RGB and IR are in-
tended to represent colour and infrared camera streams. A
Yamaha RMAX is a type of rotary UAV, and self is assumed
to be of sort RMAX. We also represent a human detector,
which in the 2D version produces pixel location information
from the camera data. This can then be combined with the
state of an RMAX to produce an estimation of the 3D posi-
tion of a detected human. Note that the detectors are specific
to the RMAX sort because they depend on certain parame-
ters that are specific to the UAV platform used. This allows
for the same implementation to be used with different pa-
rameters for a different platform, and in such a case it is
treated as a different transformation.

If we are interested in a stream of Geolocation features
for the Human sort, we can generate a specification that
produces such a stream if we make use of the above trans-
formation annotations. While the example can provide one
specification, in some cases we may have multiple possible
alternative specifications for generating the desired feature
information. This could happen when there already exists a
computational unit producing the desired feature informa-
tion, or even just part of the information needed in order to
generate the desired feature information. Additionally, there
might simply be multiple ways of generating the same fea-
ture information. For example, assume we add a transforma-
tion that uses both the GPS and IMU to determine location:

IMUGPSto3D : GPS[Thing], IMU[Thing]
= Geolocation[Thing]

Now there are two ways of getting GeolLocation informa-
tion. In order to avoid a lot of duplicate subtrees, we make
use of a tree datastructure, in which every node represents
a transformation or computational unit instance and edges
correspond to features. A node’s children are collections of
nodes that produce the same feature. The transformation tree
is produced for some desired feature, which then yields a set
of valid subtrees each of which produces the desired feature.
A subtree is valid iff none of its leaf nodes require any input
features, i.e. computational unit instances or source trans-
formations. By adding the constraint that features may only
occur once along every path in the tree, we prevent cycles.

Once a transformation tree has been generated, it con-
tains all possible ways of generating the desired feature. A
stream specification can be generated by traversing the tree
and picking a single transformation for every set of applica-
ble transformations. In the process, subtrees can be removed
based on some strategy.

Fast solution By doing a depth-first traversal, a stream spec-
ification can be found while excluding potentially a large
part of the search space. This might be useful when a quick
solution is desired, after which a more expensive strategy
can be used to find a better solution to switch to.

Minimise cost Similar to the configuration problem work
by (Lundh, Karlsson, and Saffiotti 2008), we can assign a



cost to instantiating transformations as computational units.
The cost can be a property of a transformation in the ontol-
ogy. This way the algorithm is encouraged to make use of
pre-existing streams where possible. Another cost could be
assigned to the number of subscribers for a particular stream,
which can be determined from the ontology.

Maximise quality Instead of minimising the cost, we can
maximise the quality. This strategy picks transformations
with the highest information quality. Since cost and qual-
ity are not necessarily inversely proportional, the two strate-
gies are distinct. In the example, quality maximisation might
mean that the strategy would pick the IMUGP St 03D trans-
formation rather than the GPSto3D transformation, com-
bining IMU and GPS data even if this comes at a perfor-
mance cost.

4.4 Adaptive Subscriptions

Semantic matching makes it possible to find or generate
streams of desired information, but it can also be used to deal
with instances where streams stop. This could occur due to a
source no longer providing information, or a transformation
becoming unresponsive, both of which are real problems in
integrated systems. This allows for adaptivity. Another issue
that might occur in for example robotic systems is a change
of semantics for a particular stream due to the actions per-
formed by the system. Being able to detect these changes
and provide an appropriate response makes a system more
rigid to (unexpected) changes. Adaptive subscriptions make
use of semantic matching to this end, and thereby employ a
more refined form of ontology-based introspection.
Subscriptions are usually based on the name of a gener-
ated stream. The problem is that these break easily and fail
to capture the intended behaviour of a subscription. A client
should not have to care about whether a stream is still active,
or whether its semantics changes over time. In our stream
reasoning context, we are interested in streams represent-
ing features. Using semantic matching, we are able to auto-
matically construct a specification to generate a stream for
a specific feature. However, if the stream stops for whatever
reason, or if the semantics of the stream changes, it is im-
portant that the subscription is revised to take these changes
into account. The semantics manager is able to do so to
some degree. The main challenge is the detection and report-
ing of these changes. A computational unit is able to deter-
mine when the quality of a stream drops, for example when
delays increase, and can request the semantics manager to
for example change the quality property of some stream-
producing computational unit to reflect the poor quality.
Similarly, a change in semantics caused by a new compu-
tational unit can be reported by that computational unit.
Since ontology updates are handled by the semantics
manager, it can respond to those updates accordingly. In
some cases this might mean that semantic matching needs
to be performed to find an alternative stream for a de-
sired feature. Because the semantics manager is able to per-
form ontology-based introspection, it can make sure to only
change the subscriptions for those computational units that
require them. The resulting adaptivity greatly enhances the

ability of the system to cope with unexpected changes, and
shows further importance of introspective capabilities.

5 Conclusions and Future Work

We have presented an approach to ontology-based intro-
spection supporting stream reasoning. Introspection is used
to configure the stream processing system and adapt it to
changing circumstances. The presented semantic matching
approach based on introspection makes it possible to spec-
ify information of interest, which is then provided auto-
matically. This functionality makes it possible to provide
high-level descriptions, for example in the evaluation of
spatio-temporal logical formulas over streams, without hav-
ing to worry about individual streams or transformations.
The high-level descriptions use an ontology, which provides
a data model and a common language. Our DyKnow on-
tology for stream space modeling has been designed to be
implementation-independent, and can therefore be used in
other stream-based frameworks. Since the ontology repre-
sents both the system’s information about the world and its
internal stream processing many other powerful forms of in-
trospection are also made possible.

There remain many interesting extensions and improve-
ments. Currently the semantic annotations have focused on
features and sorts. However, this is a narrow semantic speci-
fication for e.g. sensors. Existing work towards the semantic
sensor web such as the SensorML (Botts and Robin 2007)
and the SSN ontology (Compton and others 2012) may pro-
vide hints for such an extension. It is also interesting to con-
sider the case where transformations are provided with their
own ontologies, and how such an ontology could be used
in combination with the DyKnow ontology for stream space
modeling. Presently humans usually provide semantic an-
notations for transformations, although it is technically pos-
sible for a program to provide annotations. A different di-
rection is a multi-agent approach where local collections of
streams can be shared between heterogeneous agents.

The presented work presents a great improvement to-
wards our earlier semantic matching efforts by leveraging
ontology-based introspection. This makes it possible to pro-
vide semantic subscriptions, which are more reliable than
syntactic subscriptions. Furthermore, by providing an on-
tology to describe our stream processing system’s internal
state, we have a common vocabulary that could be shared
between multiple such systems. We believe that our taken
direction complements the work done by the semantic/RDF
stream reasoning community, by focusing on stream pro-
cessing at a higher level while using similar semantic web
technology tools, and by providing an ontology of our own.
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