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Abstract. This paper focuses on approximate reasoning based on the use of similarity spaces. Sim-
ilarity spaces and the approximated relations induced by them are a generalization of the rough
set-based approximations of Pawlak [17, 18]. Similarity spaces are used to define neighborhoods
around individuals and these in turn are used to define approximate sets and relations. In any of
the approaches, one would like to embed such relations in an appropriate logic which can be used
as a reasoning engine for specific applications with specific constraints. We propose a framework
which permits a formal study of the relationship between approximate relations, similarity spaces
and three-valued logics. Using ideas from correspondence theory for modal logics and constraints
on an accessibility relation, we develop an analogous framework for three-valued logics and con-
straints on similarity relations. In this manner, we can provide a tool which helps in determining
the proper three-valued logical reasoning engine to use for different classes of approximate relations
generated via specific types of similarity spaces. Additionally, by choosing a three-valued logic
first, the framework determines what constraints would be required on a similarity relation and the
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approximate relations induced by it. Such information would guide the generation of approximate
relations for specific applications.

Keywords: approximate reasoning, rough sets, similarity relation, three-valued logics

1. Introduction

There is a natural generalization of classical logical relations studied in rough set theory [17, 18], where
a rough relation is characterized by two crisp relations, one representing an upper approximation to the
original implicit relation and the other representing a lower approximation. Upper and lower approxima-
tions are generated using an indiscernibility relation which is an equivalence relation among individuals
in the domain of discourse and which partitions the universe into indiscernibility classes relative to a set
of features which parameterize the indiscernibility relation.

There is a natural generalization of this idea [3, 8, 10, 13, 20, 21, 22], where one considers a similarity
relation among individuals instead of an indiscernibility relation and generates similarity-based neigh-
borhoods instead of families of elementary sets. The similarity-based neighborhoods provide a covering
of the domain of discourse and via such neighborhoods, one can define upper and lower approxima-
tions. To distinguish this generalization from that of classical rough set theory, we will consider and
use the name approximate relations as a generalization of rough relations and similarity spaces [8, 10]
as a generalization of of families of elementary sets. Approximate relations and similarity spaces have
been shown to be quite versatile in many application areas requiring the use of approximate knowledge
structures [4, 6, 7, 9].

Traditional applications involving the use of rough sets or relations are often table based. From tables
of relational data one often generates classifiers represented as rough relations for use in applications.
These classifiers are then often combined into rules which are used for reasoning about the application
domain in an informal manner. The underlying logic for reasoning with such rule sets is often only
implicitly defined. This would also be the starting point for using approximate relations, where one as-
sumes a similarity relation as a basis for defining neighborhoods which in turn are used to define upper
and lower approximations for each relation. Two important issues arise in the context of this generaliza-
tion, one common with the use of traditional rough sets, and the other derivative of the generalization.

1. What is the appropriate logic and inference mechanism that should be used for reasoning with
approximate relations?

2. Given that there is a wide spectrum of choice concerning constraints that could be placed on the
underlying similarity relation used to generate approximate relations, how can a formal correspon-
dence be set up and shown to hold between these constraints and the logic that will be used to
reason with the approximate relations generated from the similarity relation?

When generalizing to approximate relations, it turns out that there are many choices that can be made
concerning the constraints one might want to impose on the underlying similarity relation used to define
upper and lower approximations for such relations. For example, one might not want the relation to be
transitive since similar objects don’t naturally chain in a transitive manner. Many of these issues are
discussed in the context of rough sets (see, e.g., [20, 21, 22]). Whatever choices are made though, one
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wants to ensure that these constraints are guaranteed to hold in the inference machinery used to reason
with such relations.

With regard to the appropriate logic and inference machinery to use for reasoning with approximate
relations, there are also many choices. There is a nice correspondence though, between three-valued
logics and approximate relations. If an individual is in the lower approximation of an approximate
relation, we say that that relation holds for the individual; if the individual is in the set generated by the
difference between the upper and lower approximation, we say that it is unknown whether the relation
holds for the individual; if the individual is in the set generated by the difference between the domain of
discourse and the upper approximation, we say that it is false that the relation holds for the individual.
In fact, when it can only be ascertained that the individual is in the boundary region between the upper
and lower approximation, thus its membership is unknown, there is a nonmonotonic flavor to its status
since with additional information one may be able to determine whether it is in the lower approximation
or outside the upper approximation. Based on this correspondence, we will focus on the space of three-
valued logics as providing alternatives for appropriate logics for reasoning with approximate relations.

Just as we have a choice regarding constraints on an underlying similarity relation used to define
approximate relations in an application domain, we will also have a choice as to the proper three-valued
logic to embed our relations in for reasoning in the application. What we would like is a formal frame-
work for studying the relation between approximate relations, similarity and three-valued logic. As
a derivative of the framework, we would also like a means of choosing the most appropriate three-valued
logic for reasoning with a set of approximate relations in an application given a similarity relation with
associated constraints. In order to answer the questions above and to define the framework, we will
approach the problem by using methods similar to those used for the analysis of modal logics using
correspondence theory [24].

Possible worlds semantics allows one to make interesting connections between intensional axioms
in modal logic and properties of the accessibility relation between worlds in those frames which vali-
date such axioms. The discovery of this connection clarified the relation between the many intensional
axiomatic theories that had been proposed and provided an intuitive semantic basis for comparison be-
tween such theories. Correspondence theory arose from this context with the key observation that modal
formulas express certain constraints on the accessibility relation in frames and these constraints could be
represented in 1st-order or 2nd-order classical logical formulas.

For example,

�p→ p becomes ∀y(R(x, y)→ P (y))→ P (x) (1)

�♦p→ ♦�p becomes ∀y(R(x, y)→ ∃z(R(y, z) ∧ P (z))) (2)

→ ∃y(R(x, y) ∧ ∀z(R(y, z)→ P (z)))

The parameter x refers to the current world where the formula is being evaluated and the unary predicate
constant P corresponds to the propositional variable p and denotes the set of worlds where p holds.

Since the relational pattern of the accessibility relations is primary and the actual assignments to the
current world and to propositional variables are irrelevant in studying these patterns, a further abstraction
is made on the denotations of the associated predicate constants, where one quantifies over such unary
predicate constants. For example, the 1st-order transcription of the McKinsey axiom (2) is replaced by
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a 2nd-order transcription,

�♦p→ ♦�p becomes ∀P∀x[∀y(R(x, y)→ ∃z(R(y, z) ∧ P (z))) (3)

→ ∃y(R(x, y) ∧ ∀z(R(y, z)→ P (z)))]

When moving from modal formulas to classical formulas, an obvious question of definability1 arises:
which modal formulas define 1st-order relational conditions?

The 2nd-order transcription of the McKinsey axiom is not reducible to a logically equivalent 1st-
order formula while that of �p → p is, and correspondence theory studies the reasons why. In some
cases, this question can be answered by using quantifier eliminations techniques [5, 12, 23]. In these
cases one can automatically generate 1st-order equivalences of the 2nd-order transcriptions. Such elimi-
nation techniques will also be used in this paper.

Symmetrically, when moving in the other direction from classical formulas to modal formulas, an-
other obvious question arises:

Which 1st-order relational conditions are modally definable?

These are some of the many questions studied in the area of correspondence theory for modal logics.
In a similar manner, we will view three-valued axioms in different three-valued logics as expressing

certain constraints on the underlying similarity relation which is used to define the upper and lower
approximations on a base set of approximate relations intended to be used in our applications. Just as
one requires an accessibility relation based semantics in classical logic for transcribing modal formulas
into, we will require a similarity relation based semantics for three-valued logics for transcribing three-
valued axioms into classical formulas representing constraints on the underlying similarity relation.

In this manner, we will have a framework for studying correspondences between three-valued logical
axioms and their equivalent forms in the similarity based relational language. Given a similarity relation
in an application and the definitions of the upper and lower approximations of specific relations generated
from the similarity relation, the constraints on the similarity relation can be expressed in an appropriate
three-valued logic as axioms and the relations can be embedded in the logic to provide the proper in-
ference machinery for reasoning correctly with the approximate relations. By correct, we mean that the
inference machinery does not violate any of the constraints associated with the underlying similarity
relation used to generate the approximate relations to be used in the application.

2. A Motivating Example

Let us assume an application domain where an autonomous robot is operating in a chemical plant that has
been subjected to a terrorist attack with fires and chemical spills in different parts of the plant as a result
of the attack. Different chemicals and gases are also stored in tanks and cannisters. The robot is moving
around in the plant trying to determine whether different regions are safe enough to send in emergency
services personnel. For the application, we can assume an underlying approximate model regarding
safe situations has been generated which consists of a number of approximate relations generated from
a similarity relation.

1As well as a related question of complexity.
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Table 1. Truth tables for ¬, ∼,∨,∧,→ of strong Kleene logic K∼
3 .

¬v, ∼ v
v ¬v ∼ v

T F F
F T T
U U T

u ∨ w
u\w T F U

T T T T
F T F U
U T U U

u ∧ w
u\w T F U

T T F U
F F F F
U U F U

u→ w

u\w T F U

T T F U
F T T T
U T U U

The vocabulary of approximate relations includes, Temperature, Pressure, LiquidLevel, and
Safe parameterized with a situation variable s and other constants related to specific states of regions
in the chemical plant. We can assume that when asking questions about these relations, the result may
be true, false or unknown based on the following relations between partitions of an approximate relation
and a three-valued semantics for atoms which will hold in any choice of logic in the three-valued logical
space.

• If a tuple x̄ is in the lower approximation of a relation R then R(x̄) is true;

• if x̄ is not a member of the upper approximation then ¬R(x̄) is true (R(x̄) is false);

• if x̄ is not a member of the lower approximation and it is a member of the upper approximation
then R(x̄) is unknown.

The robot also has a number of decision rules in its database including the following which the robot
can use to determine whether a situation s is safe or not:

Temperature(s, low) ∧ Pressure(s,medium)∧ → Safe(s) (4)

Temperature(s, low) ∧ LiquidLevel(s,medium)→ Safe(s). (5)

Assuming that all relations occurring in these rules are approximate and can take truth values T, F,U,
how are we to determine the proper semantics for evaluating whether a particular situation is safe based
on a context involving temperature, pressure and liquid level? In addition, how would we guarantee that
the semantics is correct relative to the constraints placed on the underlying similarity relation used to
define the base approximate relations?

For this example, let us choose the Strong Kleene Logic with external negation (see, e.g., [2]) which
we will denote as K ∼3 . K ∼3 truth tables for ¬, ∼,∨,∧,→ are provided in Table 1.

We could then calculate the truth value of Safe(s) by first evaluating each rule, assigning to Safe(s)
the value equal to the truth value of the rule’s body. We would then choose as the result for Safe(s) the
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disjunction of all values obtained in all rules where Safe(s) is a consequent. For example, suppose that
the truth values of the following is asserted:

Temperature(s, low) = T, LiquidLevel(s,medium) = T and Pressure(s,medium) = U.
Then rule (4) assigns U to Safe(s), while rule (5) assigns T . The disjunction U ∨ T is T, therefore we
evaluate safe(s) to be T.

The above calculations are straightforward once one has chosen the underlying three-valued logic.
However the choice of strong Kleene logic is somehow arbitrary. There are many other choices in the
space of three-valued logics (see, e.g., [2, 19]). This is a general problem when reasoning with three-
valued logics, but in this case it is indeed additionally problematic due to the implicit use of approximate
relations in the logic. One could, for example, choose a three-valued logic, where U → F is F. This
choice is sometimes used as the basis for a semantics of deductive databases with negation (see, e.g., [11],
or a discussion about alternatives provided in [19]).

Even though this choice might be intuitive for a semantics for deductive databases, it would not
necessarily be an appropriate choice in other application domains. As an example, consider the formula:(

FourWheels(a) ∧OnRoad(a)
)
→ Car(a). (6)

Assume that an agent determines that the value of Car(a) is F and is unable to determine whether a
has four wheels, i.e., the value of FourWheels(a) is U, or whether a is on the road, i.e., the value of
OnRoad(a) is U . The assumption that U → F is F would make formula (6), F. On the other hand, it is
intuitive to assert that formula (6) is U in this example, as would be the case if K∼3 was used as a basis
for the semantics.

Even if the choice that U → F is F is doubtful in many applications, it is intuitive in other contexts
and might reflect a particular form of approximate reasoning. The problem is to determine if such
a choice is not only intuitive relative to the particular semantic intuitions of the three-valued logic, but
also whether that three-valued logic reflects the underlying similarity constraints associated with the
approximate relations used in the logic.

3. Preliminaries

3.1. Similarity Spaces and Approximations

An important basis for our approach involves the use of similarity spaces [10]. Technically, a similarity
space defines a classification of a universe of individuals relative to neighborhoods generated through
the use of a similarity relation among individuals. In order to provide the means to represent arbitrary
notions of similarity in a universe of individuals, similarity relations initially have no initial constraints.

Definition 3.1. 2 By a similarity space we mean any pair 〈U, σ〉, where U is a set and σ ⊆ U × U . By

a neighborhood of u wrt σ we mean nσ(u) def= {u′ ∈ U | σ(u, u′) holds}. For A ⊆ U , the lower and
upper approximation of A wrt σ, denoted respectively by A+

σ and A⊕

σ , are defined by

A
+

σ = {u ∈ U : nσ(u) ⊆ A}, A
⊕

σ = {u ∈ U : nσ(u) ∩A 6= ∅}.
2For the purposes of this paper, we simplify the definition of similarity spaces used in [10]. There, a similarity space is defined
as a tuple 〈U, τ, p〉 where τ is a similarity function, τ : U × U −→ [0, 1] over the real interval, and p ∈ [0, 1] is a similarity

threshold used together with τ to define a parameterized similarity relation σp def
= {〈x, y〉 | τ(x, y) ≥ p}.
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We also define A−

σ
def= −A⊕

σ , A	

σ
def= −A+

σ and A±

σ
def= A

⊕

σ ∩A
	

σ . C

Let S = 〈U, σ〉 be a similarity space and let A ⊆ U . Then an alternative way to define approxima-
tions on A is

A
+

S = {a ∈ A | ∀b [σ(a, b)→ b ∈ A]},
A
⊕

S = {a ∈ A | ∃b [σ(a, b) ∧ b ∈ A]},
A
−

S = {a ∈ A | ∀b[σ(a, b)→ b 6∈ A]},
A
±

S = {a ∈ A | ∃b, c[σ(a, b) ∧ b ∈ A ∧ σ(a, c) ∧ c 6∈ A]}.
In practice, it is assumed that one or more similarity spaces are provided as part of the application

domain, where a similarity space may be associated with each predicate in the application vocabulary.
For the purposes of this paper, we will assume a single similarity space for all predicates in the application
vocabulary.

3.2. Elimination of Second-Order Quantifiers

Quantifier elimination is an important part of the framework. As a basis for doing this, we will use
the following lemma due to Ackermann [1] (see also, e.g., [5, 23]), where Ψ

[
P (α)← [Φ]xα

]
means

that every occurrence of P in Ψ is to be replaced by Φ where the actual arguments α of P , replace the
variables of x in Φ (and bound variables are renamed if necessary).

Lemma 3.1. Let P be a predicate variable and let Φ and Ψ(P ) be first–order formulae such that Ψ(P )
is positive w.r.t. P and Φ contains no occurrences of P . Then

∃P∀x(P (x̄)→ Φ(x̄, ȳ)) ∧Ψ(P ) ≡ Ψ
[
P (α)← [Φ]xα

]
and similarly if the sign of P is switched and Ψ is negative w.r.t. P . C

The lemma above shows how certain types of existentially quantified 2nd-order formulas can be
reduced to logically equivalent 1st-order formulas. In fact, universally quantified 2nd-order formulas can
also be reduced by negating, reducing, and then negating the result. In order to transform formulas to one
of the forms required in Lemma 3.1, one can apply the DLS algorithm [5] (for an online implementation
of the algorithm see [14]).

More advanced correspondences can be computed by applying the fixpoint theorem of [16]. In this
case, the algorithm would reduce a certain class of 2nd-order formulas to logically equivalent fixpoint
formulas. For a discussion of various approaches to second-order quantifier elimination see [15].

4. Similarity-Based Semantics for Three-valued Logics

In this section we define a translation of three-valued logics into classical first-order logic and define
a similarity based semantics for three-valued logics.

Definition 4.1. Formulas of propositional three-valued logics are defined inductively as the smallest set
containing a denumerable set of propositional variables and closed under applications of propositional
connectives ¬ (strong negation),∼ (weak negation), ∨ (disjunction), ∧ (conjunction) and → (impli-
cation). C
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In what follows we will use three logical values: T (true), F (false) and U (the third value). The
similarity-based semantics for three-valued logics is given by the following definition.

Definition 4.2. Let V be the set of propositional three-valued variables and let S = 〈U, σ〉 be a simi-
larity space. By a valuation of propositional three-valued variables wrt objects of U we understand any
function v : V × U −→ {T, F,U}.

Given a valuation v of propositional variables, we define a valuation vS for arbitrary three-valued
formulas as follows:

vS(p, x) def=


T iff for all y ∈ U, if σ(x, y) then v(p, y) = T
F iff for all y ∈ U, if σ(x, y) then v(p, y) = F
U otherwise,

where p ∈ V

vS(¬α, x) def=


T iff for all y ∈ U, if σ(x, y) then vS(α, y) = F
F iff for all y ∈ U, if σ(x, y) then vS(α, y) = T
U otherwise

vS(∼ α, x) def=

{
T iff vS(α, x) ∈ {F,U}
F otherwise

vS(α ∨ β, x) def=


T iff vS(α, x) = T or vS(β, x) = T
F iff vS(α, x) = F and vS(β, x) = F
U otherwise

vS(α ∧ β, x) def=


T iff vS(α, x) = T and vS(β, x) = T
F iff vS(α, x) = F or vS(β, x) = F
U otherwise

vS(α→ β, x) def=


T iff vS(α, x) = F or vS(β, x) = T
F iff vS(α, x) = T or vS(β, x) = F
U otherwise.

A satisfiability relation |=3 is now defined by

S, v, x |=3 α iff vS(α, x) = T,

where x represents an object of the domain of the similarity space S.
By S |=3 α we mean that for all v and x, we have that S, v, x |=3 α. C

In the rest of the paper we will use the symbols |=3 and |= to denote the satisfaction relation of
a three-valued logic and the classical first (and sometimes second-order) logic, respectively.

Remark 4.1. For the results in this paper to apply, there is some flexibility in the definition of the valu-
ation function. The following restrictions are necessary:
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1. the definitions of internal or strong (¬) or external or weak (∼) negations provided in definition 4.2
must be used; and

2. the truth clauses for the connectives ∨,∧,→ must also be used. One is free to define the falsity
and unknown clauses in a manner reflecting a variety of semantic intuitions in the literature.

Note also that the true and falsity clauses reflect the semantics of classical (two-valued) propositional
logic, and therefore frequently appear in applications. C

The similarity-based semantics for three-valued logics is given via a translation function T (α, x),
where α is a three-valued formula and x ∈ U , with the intuitive meaning that formula α is T for object
x.

Definition 4.3. Let S = 〈U, σ〉 be a similarity space and let α be a formula of three-valued logic.
Let ΣS be a first-order signature with domain U , unary relation symbols P1, . . . Pk, corresponding to
propositional variables p1, . . . pk and a binary relation symbol σ corresponding to σ in S.

The translation T (α, x) of formulas of three-valued logic into classical first-order logic over signa-
ture ΣS is defined inductively as follows:

• T (p, x) def= ∀y[σ(x, y) → P (y)], where p is a propositional variable and P is a unary relation
symbol corresponding to p,

• T (¬α, x) def= ∀y[σ(x, y)→ ¬T (α, y)],

• T (∼ α, x) def= ¬T (α, x),

• T (α ∨ β, x) def= T (α, x) ∨ T (β, x),

• T (α ∧ β, x) def= T (α, x) ∧ T (β, x),

• T (α→ β, x) def= T (α, x)→ T (β, x). C

The intuitive meaning of T (P, x), where P is atomic is that x ∈ P+

σ , of T (¬P, x) is that x ∈ P−

σ ,
while of T (∼ P, x) is that x ∈ P	

σ . This observation relates the definition of the translation function in
Definition 4.3 to the similarity-based partitions of sets in Definition 3.1.

Note also that this translation basically reflects, e.g., the one given in [2] (see Section 12.5 there) for
the strong Kleene logic, K ∼3 .

We now have the following proposition.

Proposition 4.1. let S = 〈U, σ〉 be a similarity space, v be a valuation of propositional variables and α
be a formula of three-valued logic. Let MS = 〈U,P1, . . . Pk, σ〉 be a first-order model over ΣS where
σ ∈MS is interpreted as σ ∈ S, and the interpretations of the P1, . . . Pk are defined by

Pi(x) def=

{
T iff vS(pi, x) = T
F otherwise

and the interpretations of any free variables are individuals in U . Then S |=3 α iff MS |= T (α, x). C
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5. Correspondences between Three-valued Logics and Similarities

5.1. The Method

As stated in the introduction, correspondences between three-valued logics and approximate relations
based on a specific similarity relation can be given in both directions. The general techniques used to
compute correspondences between modal logics and similarity constraints are those described in [23],
but here we deal with three-valued rather than modal logics.

In the similarity to three-valued logic direction:

1. We assume an application has a similarity space S and a set of approximate relations derived from
the similarity space. Associated with the similarity relation σ in S is a set of constraints ∆ such as
seriality, transitivity, etc. Formulas in ∆ are characterized in first- or second-order logic.

2. The idea is to choose a three-valued logic where the constraints in ∆ can be translated into the
three-valued logic as axioms and the the approximate relations can be embedded into the logic
using the definitions in section 3.1. Note that it is not always the case that such a mapping exists.

3. The correspondence framework formally shows that the three-valued logic is correct relative to
the similarity relation chosen and any inferences made in the logic using the defined approximate
relations necessarily obeys the constraints in ∆ if one has successfully mapped each formula in ∆
into an axiom in the three-valued logic.

In the three-valued logic to similarity direction:

1. Given a three-valued logic with associated axioms, generate the constraints on the similarity rela-
tion, ∆, that would be required to enable the use of the logic.

2. To do this:

(a) choose a three-valued axiom α and compute its translation T (α, x)

(b) consider the formula ∀P̄∀x [T (α, x)], where P̄ are all unary relation symbols (corresponding
to propositional variables) in T (α, x)

(c) eliminate second-order variables P̄ , if possible.

If the second-order quantifier elimination is successful in step 2c, then the resulting formula uses only
the non-logical symbols σ, = and is logically equivalent to the initial logical translation of the chosen
axiom. The quantifier elimination step can be automated using the algorithm given in [23] or its gen-
eralization known as the DLS algorithm of [5]. An implementation of DLS, generalized by the fixpoint
theorem of [16], is available online (see [14]). There are also other applicable methods, such as the SCAN

algorithm provided in [12], which may also be used (for an overview of known techniques, see [15]).

5.2. Some Correspondences

Table 2 provides examples of correspondences between three-valued axioms and similarities.
The following examples illustrate calculations leading to some of the correspondences listed in Ta-

ble 2. Note that such calculations can be made automatically using the DLS algorithm [14] quantifier
elimination algorithm.
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Table 2. Correspondences for some axioms.

Axiom The corresponding constraint on σ

∼ (p ∧ ¬p) ∀x∃yσ(x, y) – seriality
p→∼ ¬p ∀x∃yσ(x, y) – also seriality
∼ ¬p→ ¬¬p ∀x, y, z[(σ(x, y) ∧ σ(x, z))→ σ(y, z)] – euclidicity
p→ ¬∼ p ∀x, y, z[(σ(x, y) ∧ σ(y, z))→ σ(x, z)] – transitivity
∼ ¬∼∼ p→ ¬¬p ∀x, y, z[(R(x, y) ∧R(x, z))→ ∃w[R(y, w) ∧R(z, w)]] – directedness
p→ ¬¬p ∀x, y[σ(x, y)→ ∃z(σ(x, z) ∧ σ(y, z))]
p ∨ ¬p ∀x, y, z[(σ(x, y) ∧ σ(x, z))→ y = z] – determinism
p ∨∼ p T – neutral wrt σ

Example 5.1. Consider∼ (p ∧ ¬p). According to the method discussed in Section 5, we first consider

∀P∀x[T (∼ (p ∧ ¬p), x)], (7)

where T is defined as in Definition 4.3. According to Definition 4.3,

T (∼ (p ∧ ¬p), x) = ¬T (p ∧ ¬p, x) = ¬
{
T (p, x) ∧ T (¬p, x)

}
=

¬
{
∀y[σ(x, y)→ P (y)] ∧ ∀z[σ(x, z)→ ¬P (z)]

}
.

Consequently, formula (7) is equivalent to

∀P∀x¬
{
∀y[σ(x, y)→ P (y)] ∧ ∀z[σ(x, z)→ ¬P (z)]

}
,

i.e., to ¬∃x∃P
{
∀y[σ(x, y)→ P (y)] ∧ ∀z[σ(x, z)→ ¬P (z)]

}
and further to

¬∃x∃P
{
∀y[σ(x, y)→ P (y)] ∧ ∀z[P (z)→ ¬σ(x, z)]

}
.

Applying Lemma 3.1 we conclude that this formula is equivalent to

¬∃x∀y[σ(x, y)→ ¬σ(x, y)], i.e., to ∀x∃zσ(x, z),

which asserts the seriality of σ.
It is interesting to note that the three-valued logic K ∼3 , in fact corresponds to this requirement (see,

e.g., [2]). Seriality is interesting in the sense that it corresponds to the requirement that the lower ap-
proximation of a relation is included in its upper approximation (see [10]), which would appear to be the
weakest requirement one would associate with approximate relations. Therefore, K ∼3 can be considered
as a base logic for approximate reasoning in a manner similar to the role the modal logic K serves as
a base logic for all normal modal logics. C

Example 5.2. Consider the axiom p→ ¬∼ p. According to the method discussed in Section 5, we first
consider

∀P∀x[T (p→ ¬∼ p, x)], (8)
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where T is defined as in Definition 4.3. According to Definition 4.3,

T (p→ ¬∼ p, x) = T (p, x)→ T (¬∼ p, x) =
∀y[σ(x, y)→ P (y)]→ ∀z[σ(x, z)→ ¬T (∼ p, z)] =
∀y[σ(x, y)→ P (y)]→ ∀z[σ(x, z)→ ¬¬T (p, z)] =
∀y[σ(x, y)→ P (y)]→ ∀z[σ(x, z)→ ∀w[σ(z, w)→ P (w)]].

Consequently, formula (8) is equivalent to

∀P∀x{∀y[σ(x, y)→ P (y)]→ ∀z[σ(x, z)→ ∀w[σ(z, w)→ P (w)]]

i.e., to ¬∃P∃x∀y[σ(x, y)→ P (y)]∧¬∀z[σ(x, z)→ ∀w[σ(z, w)→ P (w)]] and applying the dual form
of Lemma 3.1 to ¬∃x¬∀z[σ(x, z)→ ∀w[σ(z, w)→ σ(x,w)]], which is equivalent to

∀x∀z[σ(x, z)→ ∀w[σ(z, w)→ σ(x,w)]],

i.e., to the transitivity of σ, as indicated in Table 2. C

5.3. Adding an I Operator to the Correspondence Framework

Observe that the language of three-valued logic and its translation allows one to refer to approximations
of relations only. This choice is intuitively correct when we do not have access to crisp relations them-
selves. This is frequently the case with approximate databases, where one stores only approximations of
relations.

On the other hand, referring only to approximations, we cannot capture important properties of sim-
ilarities, such as reflexivity or symmetry. Therefore it is useful to introduce a new operator Ip, meaning
“p itself”, translated as T (Ip, x) def= P (x), where P is the relation corresponding to p. In the extended
language we can easily express reflexivity or symmetry, respectively by p → Ip and Ip → ¬¬p. Of
course, use of the I operator would require additional reasoning machinery to extend any three-valued
logic used. This however, is a topic we will leave for another paper.

6. A Choice of a Three-Valued Logic Based on Similarity Constraints

It was mentioned previously that it is not always possible to provide a one-one mapping between con-
straints on similarity relations and axioms in a three-valued logic of choice, since there may be constraints
on the similarity relation which can not be expressed solely using three-valued axioms. The following
criteria may instead be used to guarantee weaker forms of correspondence when determining a choice of
three-valued logic.

Definition 6.1. We shall say that a three-valued axiom α is correct wrt a constraint β on a similarity
relation provided that |= β → [∀P̄∀xT (α, x)], where P̄ consists of all unary relation symbols in T (α, x).
It captures the constraint β provided that |= [∀P̄∀xT (α, x)]→ β. It corresponds to the constraint β iff
it both captures and is correct wrt β. C
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Table 3. Correspondences for some approximate reasoning paradigms.

Axioms Approximate reasoning

p→∼ ¬p approximate reasoning based on seriality only
p→ Ip; Ip→ ¬¬p tolerance spaces

Ip→ ¬¬p;∼ ¬p→ ¬¬p; p→ ¬∼ p rough set based reasoning

Full correspondence is an ideal situation. However, in practice one need only require that axioms are
correct wrt constraints on a similarity relation. It is desirable that they capture those constraints3.

Table 3 provides some additional correspondences between three-valued axioms and the underlying
similarity constraints used to characterize a number of approximate reasoning methods.

7. Conclusions

We have proposed a framework which permits a formal study of the relationship between approximate
relations, similarity spaces and three-valued logics. This framework can be used in a number of ways. In
the case where approximate relations are generated for applications using a base similarity or indiscerni-
bility relation, we show how the framework could be used to choose an appropriate three-valued logic
for use as a reasoning engine for such relations. The framework guarantees that the logic is sound (and
sometimes complete) relative to the constraints associated with the underlying similarity or indiscerni-
bility relation. Another way to use the framework is to first choose a three-valued logic which captures
the intuitions one wishes to associate with a reasoning engine for a particular application, and then to
automatically generate the constraints that a similarity relation would have to meet in order to use the
logic. Generation of approximate relations for the application would then have to obey these constraints.

Much remains to be investigated. It would be interesting to do a thorough study of additional classes
of three-valued logics and the constraints these would place on similarity relations. In the opposite
direction, it would be interesting to investigate what common sets of constraints on similarity are used in
existing applications and whether there are sound and complete three-valued logics that could be used as
reasoning engines for such applications.

References

[1] Ackermann, W.: Untersuchungen über das Eliminationsproblem der mathematischen Logik, Mathematische
Annalen, 110, 1935, 390–413.

[2] Busch, D.: Sequent Formalizations of Three-Valued Logics, in: Partiality, Modality and Nonmonotonicity
(P. Doherty, Ed.), CSLI Publications, 1996, 45–75.

[3] Demri, S., Orłowska, E.: Incomplete Information: Structure, Inference, Complexity, EATCS Monographs,
Springer, 2002.

3This, however, sometimes cannot be achieved.



14 P. Doherty, A. Szałas / A Correspondence Framework between Three-Valued Logics and Approximate Reasoning

[4] Doherty, P., Łukaszewicz, W., Skowron, A., Szałas, A.: Approximation Transducers and Trees: A Technique
for Combining Rough and Crisp Knowledge, Rough-Neuro Computing: Techniques for Computing with
Words (S. Pal, L. Polkowski, A. Skowron, Eds.), Cognitive Technologies, Cognitive Technologies, Springer–
Verlag, 2003, 189–218.

[5] Doherty, P., Łukaszewicz, W., Szałas, A.: Computing Circumscription Revisited, Journal of Automated
Reasoning, 18(3), 1997, 297–336.

[6] Doherty, P., Łukaszewicz, W., Szałas, A.: Information Granules for Intelligent Knowledge Structures, Proc.
9th Conf. RSFDGrC (WangG., Q. Liu, Y. Yao, A. Skowron, Eds.), LNCS, vol. 2639 of LNCS, Springer-
Verlag, 2003, 405–412.

[7] Doherty, P., Łukaszewicz, W., Szałas, A.: Similarity, Approximations and Vagueness, Proc. RSFDGrC’05
(e. a. Slezak D., Ed.), LNAI, number 3641 in LNAI, Springer-Verlag, 2003, 541–550.

[8] Doherty, P., Łukaszewicz, W., Szałas, A.: Tolerance Spaces and Approximative Representational Structures,
Proc. 26th German Conf. on AI, KI’2003 (A. Günter, R. Kruse, B. Neumann, Eds.), LNAI, vol. 2821 of LNAI,
Springer-Verlag, 2003, 475–489.

[9] Doherty, P., Łukaszewicz, W., Szałas, A.: Approximate Databases and Query Techniques for Agents with
Heterogenous Perceptual Capabilities, Proceedings of the 7th Int. Conf. on Information Fusion, FU-
SION’2004, 2004, 175–182.

[10] Doherty, P., Szałas, A.: On the Correspondence between Approximations and Similarity, Proc.of 4th Int.
Conf. RSCTC’2004 (S. Tsumoto, R. Slowinski, J. Komorowski, J. Grzymala-Busse, Eds.), LNAI, vol. 3066
of LNAI, Springer-Verlag, 2004, 143–152.

[11] Fitting, M.: A Kripke-Kleene Semantics for Logic Programs, Journal Logic Programming, 2(4), 1985,
295–312.

[12] Gabbay, D., Ohlbach, H.: Quantifier Elimination in Second-Order Predicate Logic, South African Computer
Journal, 7, 1992, 35–43.

[13] Konikowska, B.: A logic for reasoning about relative similarity, Studia Logica, 58(1), 1997, 185–226.

[14] Magnusson, M.: DLS*, http://www.ida.liu.se/labs/kplab/projects/dlsstar/,, 2005.

[15] Nonnengart, A., Ohlbach, H., Szałas, A.: Elimination of Predicate Quantifiers, Logic, Language and Rea-
soning. Essays in Honor of Dov Gabbay, Part I (H. Ohlbach, U. Reyle, Eds.), Kluwer, 1999, 159–181.

[16] Nonnengart, A., Szałas, A.: A Fixpoint Approach to Second-Order Quantifier Elimination with Applica-
tions to Correspondence Theory, Logic at Work: Essays Dedicated to the Memory of Helena Rasiowa
(E. Orłowska, Ed.), Studies in Fuzziness and Soft Computing, vol. 24 of Studies in Fuzziness and Soft Com-
puting, Springer Physica-Verlag, 1998, 307–328.

[17] Pawlak, Z.: Information systems – theoretical foundations, Information Systems, 6, 1981, 205–218.

[18] Pawlak, Z.: Rough Sets. Theoretical Aspects of Reasoning about Data, Kluwer Academic Publishers, Dor-
drecht, 1991.

[19] Przymusinski, T., Przymusinska, H.: Semantic issues in deductive databases and logic programs, Formal
Techniques in AI (R. Banerji, Ed.), North Holland, 1990, 321–367.

[20] Skowron, A., Stepaniuk, J.: Tolerance Approximation Spaces, Fundamenta Informaticae, 27, 1996, 245–
253.
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[22] Słowiński, R., Vanderpooten, D.: A generalized definition of rough approximations based on similarity, IEEE
Trans. on Data and Knowledge Engineering, 12(2), 2000, 331–336.

[23] Szałas, A.: On the Correspondence between Modal and Classical Logic: An Automated Approach, Journal
of Logic and Computation, 3, 1993, 605–620.

[24] Van Benthem, J.: Correspondence Theory, Handbook of Philosophical Logic (D. Gabbay, F. Guenthner,
Eds.), vol. 2, D. Reidel Pub. Co., 1984, 167–247.


