
Fundamenta Informaticae 57 (2003) 193–213 193

IOS Press

Formalizing Defeasible Logic in CAKE

Ewa Madalińska-Bugaj�

Institute of Informatics, Warsaw University

Banacha 2, Warsaw, Poland

Witold Łukaszewicz�

Dept. of Computer Science, Linköping University

and College of Economics and Computer Science

TWP, Olsztyn, Poland

Abstract. Due to its efficiency, defeasible logic is one of the most interesting non-monotonic for-
malisms. Unfortunately, the logic has one major limitation: it does not properly deal with cyclic
defeasible rules.

In this paper, we provide a new variant of defeasible logic, using CAKE method. The resulting
formalism is tractable and properly deals with circular defeasible rules.

1. Introduction

During the last two decades, non-monotonic logics have been given much attention in the AI literature.
Unfortunately, most of these formalisms have been never used in the real applications due to their com-
putational complexity. A positive exception is defeasible logic (DL for short), designed by Nute [11, 10]
and later studied by many researchers.1 As shown in [9], DL has a linear time complexity (with respect
to the number of rules) what makes it very attractive from the practical point of view.

�Supported in part by KBN grant 8 T11C 00919.
Address for correspondence: Institute of Informatics, Warsaw University, Banacha 2, Poland
�Supported in part by the WITAS project grant under the Wallenberg Foundation, Sweden and KBN grant 8 T11C 00919.
1Actually, many variants of defeasible logic have been proposed in the literature. In this paper, we focus on the most popular
variant, introduced in [2, 4].

194 E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE

Proof theory of DL is heavily influenced by a notion of unprovability. More specifically, to defeasibly
prove that a formula � holds in DL we must first constructively show that �� is defeasibly unprovable.
Unfortunately, the unprovability mechanism used in DL is too weak when cyclic defeasible rules are
involved. To illustrate the point, consider the following scenario.

John is 17-year-old.

Typically, 17-year-olds are unmarried.

Typically, adults are married.

Typically, adults are employed.

Typically, employees are adult.

Given the above facts, we intuitively feel that “John is unmarried” should be provable. However, this
conclusion cannot be derived in DL. The problem is that we are unable to show that “John is married” is
unprovable. The unprovability of the last fact can be shown only by showing the unprovability of “John
is adult”. Unfortunately, this cannot be shown due to the circularity between “adult” and “employee”: to
show the unprovability of “John is adult”, we have first to show the unprovability of “John is employed”;
to show the unprovability of “John is employed”, we have first to show the unprovability of “John is
adult”.

In this paper, we formalize defeasible logic in the framework of CAKE method [6, 7]. The resulting
formalism is tractable and properly deals with circular defeasible rules.

The paper is organized as follows. In the next section, we provide a brief introduction to standard
defeasible logic. In section 3, we describe CAKE method for stratified CAKE programs. In section 4,
we show how defeasible theories should be translated into CAKE programs. In section 5, we provide
a method to deal with non-stratified programs, using well-founded semantics. In section 6, we compute
two non-stratified CAKE programs applying the method specified earlier. Finally, section 7 contains
conclusions.

2. Description of Defeasible Logic

2.1. General description

DL is a non-monotonic formalism based on rules and allowing a priority relation on them. A theory
in this logic consists of five components: facts, strict rules, defeasible rules, defeaters and a superiority
relation.

Facts are classical logic statements describing indisputable facts, for example “Marco is Italian”,
what is represented as

����������	
�� (1)

or “Marco is a communist”, represented as

����������	
��� (2)

E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE 195

Strict rules are rules in a classical sense, i.e. if premises of a rule hold then so do the conclusion. An
example of a strict rule is

����������� ��	��������� (3)

Defeasible rules are understood in the following way: if premises of a rule hold and the contrary of
the conclusion of the rule is unknown, then the conclusion holds. An example of such a rule is “Typically,
Italians are catholics” which is represented as

����������� �������
���� (4)

The rule (4) together with (1) allows us to conclude that Marco is a catholic.
Consider now the rule

����������� ��������
���� (5)

Given (5) and (2) we can conclude that Marco is not a catholic. However, if the theory under considera-
tion consists of (1), (2), (4) and (5), we cannot determine whether Marco is a catholic or not.

Defeaters are rules that are not used to draw any conclusions, but to prevent conclusions of some
defeasible rules. An example of a defeater rule is

����������� ��������
���� (6)

This rule have the following intuitive meaning: “for any object �, if � is a communist, then the conclusion
that � is a catholic should be blocked.” Thus, given (2) and (6), we cannot conclude that Marco is not a
catholic. However, these rules, together with (1) and (4), prevent the conclusion that ��	
� is a catholic.

The superiority relation among rules is used to make one rule stronger than another one. It is assumed
that this relation is cycles free and is defined locally, i.e. between rules with complementary heads. For
example, assume that we have two rules (4) and (5) and the superiority relation ��� � ���. These,
together with (1) and (2), allow us to conclude that Marco is not a catholic, because the conclusion of (4)
is overriden by the conclusion of (5).

2.2. Formal definition

Our presentation of DL is based on [2, 9].
We deal with a fixed subset of first-order language containing a finite set of constants and a finite

set of relations. Both facts and rules may contain free variables. Such facts (rules) are interpreted as
schemata of facts (rules), i.e. as the set of all instances over the set of constants of the considered
language.

A defeasible theory D is a triple �������, where � is a finite set of literals (called facts), � is a
finite set of rules, and � is an acyclic superiority relation on �. Rules are of the form: 	 � ��	� �� ��	�,
where 	 is a unique label of the rule, ��	� – its antecedent (body) which is a finite list of literals, ��	� –
its consequent (head) which is a single literal and �� depends on a kind of a rule:

���

���
��

� if it is a strict rule

� if it is a defeasible rule

� if it is a defeater

196 E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE

A superiority relation � is a binary relation on �. 	� � 	� states that 	� overrules 	� if both rules are
applicable. The relation � is assumed to be acyclic and is defined between rules with complementary
heads.

We denote by��,��,���� the subsets of strict rules, defeasible rules and defeaters of�, respectively.
We write ���� to denote a set of all rules from � with � in their heads.

2.3. Proof theory

DL is defined by a proof theory. A conclusion of a theory � is a tagged literal which have one of the
following forms:

	
� which means that � is definitely provable in �.

�
� which means that we have proved that � is not definitely provable in �.

	Æ� which means that q is defeasibly provable in �.

�Æ� which means that we have proved that � is not defeasibly provable in �.

Now, we define the notion of provability in DL. It is based on the concept of a derivation in � �
�������. A derivation is a finite sequence � � �� ���� � � � � � ���� of tagged literals constructed by
inference rules of four kinds. Below, � ������ denotes the initial part of the sequence � of length �.

	
 � We may append � ��	 �� � 	
� if either

(1) � � � or

(2) �	 � ����� 	� � ��	� � 	
� � � ������.

�
 � We may append � ��	 �� � �
� if

(1) �
� � and

(2) 		 � ����� �� � ��	� � �
� � � ������.

	Æ � We may append � ��	 �� � 	Æ� if either

(1) 	
� � � ������ or

(2) (2.1) �	 � ������ 	� � ��	� � 	Æ� � � ������ and
(2.2) �
�� � � ������ and
(2.3) 	� � ����� either

(2.3.1) �� � ���� � �Æ� � � ������ or
(2.3.2) �� � ������ such that 	� � ���� � 	Æ� � � ������ and � � �.

�Æ � We may append � ��	 �� � �Æ�

(1) �
� � � ������ and

(2) (2.1) 		 � �������� � ��	� � �Æ� � � ������ or
(2.2) 	
�� � � ������ or
(2.3) �� � ����� such that

(2.3.1) 	� � ���� � 	Æ� � � ������ and
(2.3.2) 	� � ������ either �� � ���� � �Æ� � � ������ or �
� �.

E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE 197

2.4. Examples

Example 2.1. Consider a theory �������, where

� � �����������	
��� ����������	
���
� � �	� � ����������� �������
���� 	� � ����������� ��������
����
�� �	� � 	���

Below is a derivation of 	Æ��������
���	
��.

� � �	
����������	
��, 	Æ����������	
��, 	
����������	
��,
	Æ����������	
��, �
�������
���	
��, 	Æ��������
���	
����

Example 2.2. A DL theory corresponding to the scenario from section 1 is given below. (Here �, ��,
�, � and � stand for !���, ��� "��	 � ��#, �#���, ����"�# and ��		��#, respectively.)

 ����

����� ����
����� ����

���������
 ���� � �����.

We leave it to the reader to show that the conclusion 	Æ����� cannot be derived.

3. The CAKE system

The CAKE system has been developed to reason in the framework of distributed and incomplete infor-
mation2. The method is under implementation at Department of Computer and Information Science of
Linköping University.

The system is based on a rough relation paradigm. More specifically, a rough relation � is a triple
���� ��� ���, where �� denotes a set of tuples known to satisfy �, �� denotes a set of tuples known
not to satisfy � and �� denotes a set of remaining tuples.

The basic notion of CAKE is that of an information granule. Any granule contains information
concerning a single rough relation. However, if a relation is given by many sources, it may be distributed
among many granules. To point out the source of information, any relation is prefixed by a name of a
granule.

Formally, an information granule can be viewed as a set of facts and rules allowing to compute the
relation the granule is responsible for. The following example will help to illustrate the basic ideas.

Example 3.1. We are given two databases, �$� and �$�, containing information about a relation
���� "� meaning that a place � is directly connected with a place ". �$� contains �����, ��� 	�
and �$� contains ��� %�, ���� ��. Let �� and �� be names of information granules representing

2CAKE is an acronym which stands for Computer Aided Knowledge Engineering. In this paper we only use a subset of this
formalism. In particular, we do not use diagrams which allow to visualise the reasoning process.

198 E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE

these databases. �� consists of the facts ����
����� and ����

��� 	�, whereas �� consists of
����

��� %� and ����
���� ��.3

Suppose now that we want to combine information from �� and �� and to represent indirect con-
nections too. For this purpose, we introduce a new granule, �, provided with the following rules.

����
���� "� �����

���� "�� ������� "� (7)

����
���� "� �����

���� "�� ������� "� (8)

����
���� "� �����

���� "�� ������� "� (9)

����
���� "� �����

���� "�� ������� "� (10)

������� "� �����"� &� � ������� &�� (11)

The rules (7)-(10) import consistent information from �� and ��. It should be emphasized that
�����

���� "� and �����
���� "� are equivalent to ����

���� "� � ����
���� "� and ����

���� "� �
����

���� "�, respectively. Using the facts stored by �� and ��, together with the rules (7)-(11), we can
infer ������� %�. This intuitively means that the granule � answers “yes” to the query whether there is
a connection between � and %.

3.1. Syntax of CAKE

We start with an alphabet of the classical first-order logic containing an enumerable set of individual
variables and finite sets of individual constants and relation symbols4.

An atomic formula of CAKE, C-atom for short, is an expression of the form ������� or �������,
where � is a name of an information granule, � is a relation name and � is a tuple of individual variables
and/or constant symbols.

A literal is a C-atom or an expression of the form ��, where � is a C-atom.
A CAKE rule is any expression of the form

�� � � � �� � � �� � �� (12)

where ��� � � � � �� are literals and � is C-atom. The formula � is called the head of the rule, whereas
�� � � � �� is called its body.

A rule with the empty body is called a fact. In the sequel, we shall write � instead of � �.
Any finite set of rules and facts is called a CAKE program.

Definition 3.1. Let ���� � � � � ��� be a tuple of all free variables occurring in a rule (12). A ground
instance of (12) is any rule obtainable from (12) by uniformly replacing each occurrence of �� by
�,
where
� is an individual constant, for � � � � �. A set of all ground instances of all rules from a
program � is called the ground instance of �.

3Only positive and negative parts of relation are explicitly represented in facts and rules.
4Note that CAKE does not permit function symbols.

E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE 199

3.2. Voting

It is often the case that different granules provide contradictory information about a particular relation.
In such a situation, a granule which combines information from contradictory sources (as � in Example
3.1), has to solve the inconsistency problem. In Example 3.1 the problem is solved by the rules (7)-(10).
In general case, i.e. if there are many different granules responsible for a relation, it is often convenient
to introduce an additional granule, called voting granule, and equip it with rules solving inconsistencies.
The standard voting mechanism is based on the following idea.

� if at least one granule responsible for relation � answers True to the query and none of the granules
answers False, the final answer to the query is True

� if at least one granule answers False to the query and none answers True, the final answer to the
query is False.

� otherwise, the answer to the query is Unknown.

The idea is formalized as follows. Let � be the set of all granules delivering the relation �. The CAKE
voting granule ' attached to relation � consists of the following rules:

�
���

(������
�

���

�(������� '������

�
���

(������
�

���

�(������� '�������

It is also possible to change the standard voting policy, for instance, by providing priorities among
granules, but this subject will be discussed later.

3.3. Semantics of CAKE

In this section, we provide a fixpoint semantics of CAKE programs. We start with semi-positive pro-
grams.

Definition 3.2. A CAKE program � is said to be semi-positive if, whenever a literal � occurs negatively
in the body of a rule of �, then the relation symbol of � occurs in facts only.

Let � be a semi-positive CAKE program and) be a set of ground C-atoms. A ground C-atom � is an
immediate consequence of � and) if either � �) or �� � � � �� � � is a ground instance of a rule
from � such that

1. if �� is a positive literal, then �� �) and

2. if �� is negative literal of the form �*�, then *�
�) .

We define an operator �� such that, for any set of ground C-atoms K, ���)� is the set of all immediate
consequence of � and) .

Let � be a semi-positive CAKE program. The set of consequences of � is the smallest fixpoint,
written lfp, of the operator ��. For a semi-positive CAKE program �, ������� always exists and is
given by the following construction:

200 E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE

X:=K, where K is the set of all facts from �;

while X
� ��(X) do X:=��(X).

The above semantics can be generalized to stratified CAKE programs5.

Definition 3.3. By a stratification of a CAKE program � we mean a sequence of CAKE programs
��� � � � ���, with �� possibly empty, such that

� �� � � � � ��� � � and for all � � �
� � � �, �� ��	 � �

� for any relation X of � and � � � � �:

– if X occurs positively in a rule’s body in ��, then all the rules with X in their heads are in
�� � � � � ���

– if X occurs in a rule’s body in �� under negation, then all the rules with X in their heads are
in �� � � � � ������

Given a stratification ��� � � � ��� of �, each �� is called a stratum of the stratification. A program is
called stratified if it has a stratification.

Let � be a stratified CAKE program and let ��� � � � ��� be its stratification. We define an operator
����+� by

����+� � �����+�� �����

���
��+� � ����+�

�����+� � ���������� ���

�
��+��

The set of consequences of � is the smallest fixpoint of an operator ���. Its existence follows from
the fact that, for � , � � �, the program �� � ������ ���

� � is semi-positive.

4. Translating defeasible theories into CAKE programs

In this section, we show how defeasible theories are to be translated into CAKE programs. The following
notation will be useful.

Let � be a literal of the form � ��� or �� ���, where � is a relation symbol and � is a tuple of
individual variables and/or constant symbols. We write ��� to denote the expression ����� if � is positive
and ����� otherwise. For instance, �-��� ��� is -���� ��, whereas ������ "�� is ����� "�.

We start by providing translation of defeasible theories into CAKE programs under the assumption
that the considered theories contain neither priorities nor defeaters.

Definition 4.1. Let � � ����� �� be a priority-free defeasible theory over a language �	 such that
� contains no defeater rules. The CAKE program, ��, associated with � is the smallest set of rules
defined as follows. (Information granules occurring in the CAKE program corresponding to a DL theory

5The notion of stratification has been independently proposed by several researchers [3, 5, 8, 13]

E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE 201

will be named by the symbols
 and Æ, the latter possibly with subscripts6. To simplify notation, we
shall write
�����,
�����, Æ�����, Æ�����, Æ������, Æ������, instead of
������,
������,
Æ������, Æ������, Æ�������, Æ�������.)

1. If � � � , then
��� � ��.

2. If �� � � � �� � � is a strict rule from �, then �
���� � � �
�����
���� � ��.

3. For each �-ary relation symbol � occurring in the language of the theory �,�� contains the rules

������ Æ����� and
������ Æ�����, where � is an �-tuple of individual variables.

4. Let ��� � � � �� be the set of all relation symbols occurring in the heads of strict and defeasible rules
from �. For each � � � � �:

(a) Suppose that 	��� � � � 	
�

 is the set of all rules containing �� in their heads.

�� contains the following rules:
��
� ��� � Æ	�

�
� ��� and
��� ��� � Æ	�

�
� ���, for

(� � � � %).
For each 	�	 (� � � � %) of the form �� � � � �� � � (or �� � � � �� � �), �� contains
the rule Æ���� � � � Æ���� �Æ	����� Æ	 ���.

(b) In addition, �� contains the following pair of voting rules

�
	��

Æ	�
�
� ���

�
	��

�Æ	�
�
� ���� Æ��

� ��� (13)

�
	��

Æ	�
�
� ���

�
	��

�Æ	�
�
� ���� Æ��

� ���� (14)

Remark 4.1. The points 4(a) and 4(b) can be simplified for those relation symbols from ��� � � � � ��
which occur in the head of exactly one rule. Assume that �� enjoys this property and suppose that ��
occurs in the head of the rule of the form ��� � � �� � � (or ��� � � �� � �). In this case, the CAKE
rule Æ����� � �Æ�����Æ	 ����� Æ	 ��� from point 4(a) can be replaced by Æ����� � �Æ�����Æ����� Æ���
and the voting rules from point 4(b) can be omitted.

Example 4.1. Consider the defeasible theory � � ����� ��, where7

� � �-���� ����� and � � �-��� � � ���� ����� �� �����

6The Æ symbol is subscribed if there are many rules with the same relation in their heads.
7This is the Nixon diamond theory with �� ����� standing for ��	
�, �������, ������ and ����������, respectively.

202 E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE

The CAKE program, �, corresponding to � is the following.

-���� (15)

����� (16)

����� � Æ����� (17)

����� � Æ����� (18)

-���� � Æ-���� (19)

-���� � Æ-���� (20)

����� � Æ����� (21)

����� � Æ����� (22)

����� � Æ��
���� (23)

����� � Æ��
���� (24)

����� � Æ��
���� (25)

����� � Æ��
���� (26)

Æ-���� �Æ��
����� Æ��

���� (27)

Æ����� �Æ��
����� Æ��

���� (28)

�Æ��
���� � Æ��

�����

��Æ��
���� �Æ��

������ Æ����� (29)

�Æ��
���� � Æ��

�����

��Æ��
���� �Æ��

������ Æ������ (30)

The partition ��=�(15)-(26)�, ��=�(27),(28)�, ��=�(29),(30)� provides a stratification of the above set.
The computation of the smallest fixpoint of the operator ��� is given below.

�
-�����
������

�
-�����
������ Æ-����� Æ������

�
-�����
������ Æ-����� Æ������ Æ��
����� Æ��

������ (31)

Observe that according to intuitions neither Æ����� nor Æ����� is a member of the set (31).

We now consider defeasible theories with priorities, but without defeater rules.

Definition 4.2. Let � � ������� be a defeasible theory such that � contains no defeater rules. The
CAKE program associated with � is specified as in Definition 4.1 with voting rules from point 4(b)
replaced by

�
	��

�Æ	�
�
� ���

�
���

�Æ��
�
� ���� �	�	 � 	����� � Æ��

� ��� (32)

�
	��

�Æ	�
�
� ���

�
���

�Æ��
�
� ���� �	�	 � 	������ Æ��

� ���� (33)

E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE 203

Here 	�	 � 	�� evaluates to True or False, depending on whether 	�	 � 	�� holds or not.8 The � symbol in
expression in [] stands for logical implication and this expression should be evaluated and abbreviated
to single C-atom during translation. It should be stressed that in the case where the superiority relation
� is empty, the rules (32) and (33) are equivalent to the rules (13) and (14), respectively.

Example 4.2. Consider a prioritized version of the theory from Example 4.1 given by

� � ��-���� ������ �	�� 	��� �	� � 	����

where 	� � �-���� � ���� and 	� � ������ �� ����. The CAKE program, �, corresponding to �
is as in Example 4.1 with (29) and (30) replaced by

�Æ��
���� �Æ��

����� �	� � 	����

Æ��
���� �Æ��

����� �	� � 	���� � Æ����� (34)

�Æ��
���� �Æ��

����� �	� � 	����

�Æ��
���� �Æ��

����� �	� � 	���� � Æ����� (35)

respectively.
The set of rules ����� � ���� ���� � ����� is stratified by the partition �� � ����� � �����, �� �

����� � ����, �� � ����� � �����. The computation of the smallest fixpoint of the operator ��� is
given below.

�
-�����
������

�
-�����
������ Æ-����� Æ������

�
-�����
������ Æ-����� Æ������ Æ��
����� Æ��

�����

�
-�����
������ Æ-����� Æ������ Æ��
����� Æ��

����� Æ������� (36)

Note that according to intuitions Æ����� belongs to the set (36).

Now, we provide a translation of arbitrary defeasible theories into CAKE programs.

Definition 4.3. Let � � ������� be an arbitrary defeasible theory. The CAKE program associated
with � is specified as in Definition 4.1, together with the following modifications and additions.

� Suppose that 	�
��� � � � 	
�

� is the set of all defeater rules containing �� in their heads.

For each 	�	 (% 	 � � � � % 	 �) of the form �� � � � �� � �, the set �� contains the rule
Æ���� � � � Æ����� #	 ���.

� Voting rules from point 4(b) in Definition 4.1 should be replaced by

�
	��

�Æ	�
�
� ���

�
���

�Æ��
�
� ���� �	�	 � 	����

��
��
��

�#��
�
� ���� �	�	 � 	������ Æ��

� ��� (37)

�
	��

�Æ	�
�
� ���

�
���

�Æ��
�
� ���� �	�	 � 	����

��
��
��

�#��
�
� ���� �	�	 � 	������ Æ��

� ���� (38)

8Note that since the relation � is assumed to be acyclic, ��� � ��� cannot be both True and False.

204 E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE

Example 4.3. Consider the theory given by

�������� ����� � ����� ���� � ���������� ������� ���

(Here �, �, � and � stand for .�/�0
�����	�����, �#���, ����"�# and !���, respectively.) The
CAKE program, �, corresponding to � is the following.

����� (39)

������ Æ����� (40)

������ Æ����� (41)

������ Æ����� (42)

������ Æ����� (43)

������ Æ����� (44)

������ Æ����� (45)

Æ������ #����� (46)

Æ����� �Æ����� �#������ Æ����� (47)

Æ����� �Æ����� �#������ Æ������ (48)

Note that the partition �� � ����� � �����, �� � ����� � ���� provides a stratification of the above
set of rules. The computation of the smallest fixpoint of the operator ��� is given below.

�
�����

�
����� Æ�����

�
����� Æ����� #������

�
����� Æ����� #������ Æ������� (49)

Observe that according to our intuitions Æ����� is a member of the set (49), but Æ����� is not.

Remark 4.2. In general, CAKE programs corresponding to defeasible theories need not be stratified.
Consider for instance, the defeasible theory � � ��� �� ��, where

� � �� � ����� -����� ����� � ���� �-���� -���� ������ ����� �� �����

We leave it to the reader to show that the CAKE program corresponding to � is not stratified.

There still remains the problem to determine what is derivable in our version of DL. The details
follow.

Definition 4.4. Let� � ������� be a defeasible theory and let a stratified program � be its translation.
A tagged literal 	
���� (resp. 	Æ�����	
������	Æ������ is derivable from � iff
�����

(resp. Æ�����,
������ Æ������ belongs to ��������.
A tagged literal �
���� (resp. �Æ����,�
�������Æ������ is derivable from � iff
�����

(resp. Æ�����,
������ Æ������ does not belong to ��������.

E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE 205

Example 4.4. Consider the translation � of the theory � from Example 2.2.

 ������

������ Æ�����

������ Æ�����

������ Æ�����

������ Æ�����

������ Æ�����

������ Æ�����

������ Æ��
����

������ Æ��
����

������ Æ��
����

������ Æ��
����

 ������� Æ ������

 ������� Æ ������

Æ����� �Æ������ Æ�����

Æ����� �Æ������ Æ�����

Æ����� �Æ��
����� Æ��

����

Æ ������ �Æ��
����� Æ��

����

Æ��
���� �Æ��

����� Æ�����

Æ��
���� �Æ��

����� Æ�����

Æ��
���� �Æ��

����� Æ�����

Æ��
���� �Æ��

����� Æ������

The computation of the smallest fixpoint of the operator ��� is given below.

�
 ������

�
 ������ Æ ������

�
 ������ Æ ������ Æ������� (50)

Note that according to our intuitions, Æ����� is derivable from �.

Originally, the CAKE system has been developed for stratified programs only. However, not stratified
programs can be also dealt with, using another semantics which is called well-founded. This semantics,
which is presented in the next section, is also tractable and can be applied to all CAKE programs.
Moreover, well-founded semantics can be viewed as a natural extension of stratified semantics because
both agree on stratified programs.

206 E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE

5. Well-founded Semantics for CAKE Programs

Well-founded semantics is based on a notion of three-valued interpretation, in which the truth value
of facts can be True, False or Unknown. In the sequel, we shall consider only finite interpretations,
i.e. interpretations providing truth values to all ground C-atoms in a given CAKE program �. Our
presentation of well-founded semantics follows [1].

5.1. Three-valued interpretations.

We start by defining a notion of a 3-valued interpretation.

Definition 5.1. Let �1���� be a set of all ground C-atoms in a CAKE program �. A 3-valued
interpretation S of ��� is a mapping from �1���� into the set �True,Unknown,False�.

We denote by S	, S���, S� the set of C-atoms in �1���� whose truth value is False, Unknown and
True respectively.

It is often convenient to represent a 3-valued interpretation by listing the positive and negative
facts and omitting the unknown ones. For instance, the interpretation S, where S�Æ������ � True,
S�Æ���2�� � Unknown, S�Æ���2�� � Unknown and S�Æ������ � False can be represented as
S=�Æ�������Æ������.

There is a natural ordering � among 3-valued interpretations of a program ��� defined by

S � T iff S� � T� and T	 � S	�

The least element wrt �, denoted by �, is the interpretation where all atoms are false.
Given a 3-valued interpretation S we can extend it in a standard way to Boolean combinations of

atoms:

S�� $� � ����S����S�$��

S�� �$� � ����S����S�$���

S���� �

���
��

True if S��� � False

Unknown if S��� � Unknown

False if S��� � True

where ������� are defined according to the truth ordering False , Unknown , True.

Definition 5.2. Given a CAKE program � and an interpretation S of �, the positivized version of � wrt
S is the program obtained from ground instance of � by replacing each negative literal �� by S(��)
(i.e. False, True or Unknown). Such program will be called a 3-CAKE program.9

9Note that 3-CAKE programs do not contain negation symbols.

E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE 207

Example 5.1. Consider a ground CAKE program � given by

�Æ������ Æ�����

�Æ����� Æ������ Æ-����

�Æ1����� Æ0����

Æ-���� �Æ0����� Æ1����

�Æ1���� Æ����� Æ0����� Æ3����

and the interpretation � � ��Æ�������Æ-������Æ�������Æ0������Æ1������Æ3�����. The pos-
itivized version of � wrt � is the 3-CAKE program, ��, given by

True � Æ�����

True Æ������ Æ-����

True � Æ0����

Æ-���� True � Æ1����

True Æ����� Æ0����� Æ3�����

5.2. Computing well-founded semantics

In this section, we provide a method of efficiently computing CAKE programs using well-founded
semantics. We start with some preliminary notions.

Definition 5.3. Let � be a 3-CAKE program. The 3-valued immediate consequence operator, 3-��, on
an interpretation S of � is a mapping defined as follows, where � � �1����:

3-�����

��
�

��������
�������

True if � is a fact or there is a rule of the form

�� � � � �
 � � such that S��� � � � �
� � �

False if there is no rule with � in its head or, for each

rule of the form �� � � � �
 � �, S��� � � � �
� � �

Unknown otherwise.

The immediate consequence operator 3-�� has following property ([1]).

Theorem 5.1. Let � be a 3-CAKE program. Then the sequence �(3-����������	 is non-decreasing
and converges to the least fixpoint of 3-��.

Let � be a CAKE program and let S be a 3-valued interpretation. We write 3-����S� to denote
the least fixpoint of 3-��� , where �� is the positivized version of the ground instance of the program �
wrt S.

208 E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE

Example 5.1. (continued)
We compute 3-������.10

3-������ � �Æ������ Æ0������Æ-������Æ1������Æ3������Æ������

�3-����
���� � �Æ������ Æ0����� Æ-������Æ1������Æ3������Æ������

�3-����
���� � �Æ������ Æ0����� Æ-����� Æ1����� Æ3������Æ������

�3-����
��� � �3-����

�����

Thus, 3-������ � �Æ������ Æ0����� Æ-����� Æ1����� Æ3������Æ������.

We are now ready to define well-founded semantics of a CAKE program. Let � be a ground CAKE
program. First we define the following sequence of interpretations:

S	 � �

S��� � 3-����S���

It can be shown that, for all � � �,

S	 � S� � � � � S�� � S���� � � � � � S���� � S���� � � � � � S��

Thus, the even subsequence is non-decreasing and the odd one is non-increasing. Since there are
finitely many three-valued interpretations for a given program, each of those subsequences becomes
constant at some point. Let S� denote the limit of the subsequence �S����
	 and let S� denote the limit
of the subsequence �S������
	. We define a three-valued interpretation of � , denoted by S�����, by

S����� �

���
��

True if S���� � S���� � �

False if S���� � S���� � �

Unknown otherwise

The above interpretation is called the well-founded model of a program �. The well-founded semantics
assigns to a given CAKE program � the well-founded model of �.

Example 5.1. (continued)
We now compute the well-founded model for the program �. Note that

S� � 3-������ � �Æ������ Æ0����� Æ-����� Æ1����� Æ3������Æ�������

By continuing the application of the operator 3-���, we obtain the following sequence of interpretations.

S� � 3-����S�� � �Æ������ Æ-������Æ�������Æ0������Æ1������Æ3�����

S� � 3-����S�� � S�
S � 3-����S�� � S��

Hence S� � S � �Æ������ Æ-������Æ�������Æ0������Æ1������Æ3����� and S� � S� �
�Æ������ Æ0����� Æ-����� Æ1����� Æ3������Æ������. Thus, S�� � �Æ������ Æ-������Æ�������

10Recall that the positivized version of � wrt� is the 3-CAKE program ��.

E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE 209

There remains the problem of determining what is derivable from a defeasible theory under the well-
founded semantics. The details follow.

Definition 5.4. Let � � ������� be a defeasible theory and let � be its translation. Suppose further
that S�� is the well-founded model of �.

A tagged literal 	
���� (resp. 	Æ�����	
������	Æ������ is wf-derivable from� iff
�����
(resp. Æ�����,
������ Æ������ belongs to S��.

A tagged literal �
���� (resp.�Æ����,�
�������Æ������ is wf-derivable from � iff
�����
(resp. Æ�����,
������ Æ������ does not belong to S��.

Example 5.2. Reconsider the defeasible theory from example 4.1 and its translation into CAKE pro-
gram � given by rules (15)-(30). We compute the well-founded model for this program.

S	 � � � ��
-������
�������
�������
-������
�������
������

�Æ-������Æ�������Æ�������Æ-������Æ�������Æ�������Æ��
�����

�Æ��
������Æ��

������Æ��
������

S� � 3-����S	� � �
-�����
������ Æ������ Æ-����� Æ��
����� Æ��

�����

Æ������ Æ�������
-������
�������
�������
������

�Æ-������Æ�������Æ��
������Æ��

������

S� � 3-����S�� � �
-�����
������ Æ������ Æ-����� Æ��
����� Æ��

�����

�Æ�������Æ�������
-������
�������
�������
������

�Æ-������Æ�������Æ��
������Æ��

������

S� � 3-����S�� � S��

Thus, S�� � S�.

Comparing Examples 4.1 and 5.2, it is immediately seen that the set of tagged literals derivable from
the considered theory � is equal to the set of tag literals that are wf-derivable from �. As the next
theorem shows, this is a general case for stratified CAKE programs.

Theorem 5.2. Let � be a stratified defeasible theory. A tagged literal � is derivable from � iff it is
wf-derivable from �.

6. Examples

In this section, we apply well-founded semantics to two non-stratified defeasible theories.

Example 6.1. Consider the defeasible theory � � ��� �� ��, where � � �� � ����� -�����
����� � ��� � �-���� -��� � ������ ���� � �� ����. The CAKE program �, corresponding
to � is the following.

������ Æ�����

-����� Æ-����

������ Æ�����

210 E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE

������ Æ�����

-����� Æ-����

������ Æ�����

�Æ����� �#������ Æ�����

�Æ-���� �#-����� Æ-����

�Æ����� �#������ Æ�����

Æ������ #-����

Æ-����� #�����

Æ������ #������

The program � is not stratified. We now compute the well-founded model of �. We start with

S	 � � � ��
�������
-������
�������
�������
-������
�������Æ������

�Æ-������Æ�������Æ�������Æ-������Æ�������#�������#-������#�������

By applying 3-��� operator, we obtain the following sequence of interpretations.

S� � ��
�������
-������
�������
�������
-������
������ Æ������

Æ-����� Æ�������Æ�������Æ-������Æ������ #������ #-����� #������

S� � S	
S� � S��

Thus S� � S� and S� � S�. In consequence,

S�� � ��
�������
-������
�������
�������
-������
������

�Æ�������Æ-������Æ�������

Example 6.2. Consider the defeasible theory � � ����� ��, where � � �-���� and � � �-��� �
� ���� ���� � �� ���� � ���� -���� 0���� �-����. The ground CAKE program � corresponding
to � is the following.

-����

-����� Æ-����

-����� Æ-����

������ Æ�����

������ Æ�����

������ Æ�����

������ Æ�����

0����� Æ0����

0����� Æ0����

E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE 211

������ Æ��
����

������ Æ��
����

������ Æ��
����

������ Æ��
����

-����� Æ�-
����

-����� Æ�-
����

-����� Æ�-
����

-����� Æ�-
����

Æ-���� �Æ��
����� Æ��

����

Æ����� �Æ��
����� Æ��

����

Æ����� �Æ�-
����� Æ�-

����

Æ0���� �Æ�-
����� Æ�-

����

�Æ��
���� � Æ��

����� ��Æ��
���� �Æ��

����� � Æ�����

�Æ��
���� � Æ��

����� ��Æ��
���� �Æ��

����� � Æ�����

�Æ�-
���� � Æ�-

����� ��Æ�-
���� �Æ�-

������ Æ-����

�Æ�-
���� � Æ�-

����� ��Æ�-
���� �Æ�-

������ Æ-�����

It is easily checked that the program � is not stratified. We now compute the well-founded model of �.
We start with

S	 � � � ��
-������
�������
�������
0������
-������
������

�
�������
0������Æ-������Æ�������Æ�������Æ0������Æ-�����

�Æ�������Æ�������Æ0������Æ��
������Æ��

������Æ��
������Æ��

�����

�Æ�-
������Æ�-

������Æ�-
������Æ�-

������

Applying 3-��� operator, we obtain the following sequence of interpretations.

S� � �
-������
�������
�������
0������
-������
������

�
�������
0����� Æ-����� Æ�������Æ�������Æ0������Æ-�����

�Æ�������Æ�������Æ0����� Æ��
������Æ��

������Æ��
������Æ��

�����

Æ�-
������Æ�-

����� Æ�-
������Æ�-

������

S� � S��

Hence, S� � S� � S� and thus S�� is given by

�
-������
�������
�������
0������
-������
������

�
�������
0����� Æ-����� Æ�������Æ�������Æ0������Æ-�����

�Æ�������Æ�������Æ0����� Æ��
������Æ��

������Æ��
������Æ��

�����

Æ�-
������Æ�-

����� Æ�-
������Æ�-

������

Note that the above interpretation agrees with our intuitions.

212 E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE

7. Conclusions

In this paper, we have provided a new version of defeasible logic which properly deals with cyclic
defeasible rules. Like all logical formalisms expressible using the CAKE method, our formalism is
tractable.

Although the well-founded semantics can be viewed as a natural generalization of the stratified se-
mantics, we decided to present both of them. The reason is that stratified programs should be computed
using the stratified semantics rather, because it is more efficient than the well-founded one.

Defeasible logic, and our variant of this formalism in particular, can be easily extended by allowing
defeasible rules with strong premises. This would allow to express naturally occurring reasoning patterns
which otherwise are difficult to formalize. An example of this kind of a rule is the rule stating: “If a
person is known to be honest, then in the absence of evidence to the contrary she/he can be safely lent a
large amount of money”.

The prototype system of Defeasible Logic in CAKE based on stratified semantics has been imple-
mented by our students at Warsaw University.

References

[1] S. Abiteboul, R. Hull and V. Vianu. Foundations of Databases. Addison-Wesley, 1996.

[2] G. Antoniou, D. Billington, G. Governatori and M. Maher. Representation Results for Defeasible Logic.
ACM Transactions on Computational Logic, 2, 255-287, 2001.

[3] K. R. Apt, H. A. Blair, A. Walker. Towards a Theory of Declarative Knowledge. Foundations of Deductive
Databases and Logic Programming, J. Minker (ed.), Morgan Kaufmann Publishers, Palo Alto, CA, 89-148,
1988.

[4] D. Billington. Defeasible Logic is Stable. Journal of Logic and Computation, 3, 370-400, 1993.

[5] A. K. Chandra, D. Harel. Horn Clause Queries and Generalizations. Journal of Logic Programming, 2(1),
1-15, 1985.

[6] P. Doherty, W. Łukaszewicz and A. Szalas. CAKE: A Computer Aided Knowledge Engineering Technique.
Proceedings of the 15th European Conference on Artificial Intelligence, IOS Press, July, Amsterdam, 2002.

[7] P. Doherty, P, W. Łukaszewicz, A. Skowron and A. Szalas. Knowledge Engineering: A Rough Set Approach.
Physica Verlag, 2003, to appear.

[8] V. Lifschitz. On the Declarative Semantics of Logic Programs with Negation. Foundations of Deductive
Databases and Logic Programming, J. Minker (ed.), Morgan Kaufmann Publishers, Palo Alto, CA, 177-192,
1988.

[9] M. Maher. Propositional Defeasible Logic has Linear Complexity. Theory and Practice of Logic Program-
ming, 1 (6) 691-711, 2001.

[10] D. Nute. Defeasible Reasoning and Decision Support Systems. decision Support Systems, 4, 97-110, 1998.

[11] D. Nute. Defeasible Logic. In D. M Gabbay, C. J. Hogger and J. A. Robinson (eds.): Handbook of Logic in
Artificial Intelligence and Logic Programming, vol. 3, Oxford University Press, 1994, 353-395.

E. Madalińska-Bugaj and W. Łukaszewicz / Formalizing Defeasible Logic in CAKE 213

[12] T. Przymusiński. Well-founded Semantics Coincides with Three-valued Stable Semantics. Fundamenta In-
formaticae, IOS Press, XIII, 1990, 445-463.

[13] A. Van Gelder. Negation as Failure Using Tight Derivations for General Logic Programs. IEEE Symposium
on Logic Programming, 127-139, 1986.

