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Abstract� We �rst de�ne general domain circumscription �GDC� and
provide it with a semantics	 GDC subsumes existing domain circumscrip�
tion proposals in that it allows varying of arbitrary predicates� functions�
or constants� to maximize the minimization of the domain of a theory	
We then show that for the class of semi�universal theories without func�
tion symbols� that the domain circumscription of such theories can be
constructively reduced to logically equivalent �rst�order theories by using
an extension of the DLS algorithm� previously proposed by the authors
for reducing second�order formulas	 We also isolate a class of domain cir�
cumscribed theories� such that any arbitrary second�order circumscrip�
tion policy applied to these theories is guaranteed to be reducible to a
logically equivalent �rst�order theory	 In the case of semi�universal the�
ories with functions and arbitrary theories which are not separated� we
provide additional results� which although not guaranteed to provide re�
ductions in all cases� do provide reductions in some cases	 These results
are based on the use of �xpoint reductions	

� Introduction

In many common�sense reasoning scenarios� we are given a theory T specifying
general laws and domain speci�c facts about the set of phenomena under inves�
tigation� In addition� one provides a number of closure axioms circumscribing
the domain of individuals and certain properties and relations among individu�
als� The closure machinery normally involves the use of non�monotonic rules of
inference� or in the case of circumscription� a second�order axiom� In order for a
circumscribed theory to be useful� it is necessary to �nd a means of computing
inferences from the circumscribed theory in an e�cient manner� Unfortunately�
the second�order nature of circumscription axioms creates an obstacle towards
doing this�
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In previous work �	
� we proposed the use of an algorithm �DLS� which when
given a second�order formula as input would terminate with failure� or output a
logically equivalent �rst�order formula� Since circumscription axioms are simply
second�order formulas� we showed that the DLS algorithm could be used as
a basis for e�ciently computing inferences for a broad class of circumscribed
theories by �rst reducing the circumscription axiom to a logically equivalent �rst�
order formula and then using classical theorem proving techniques to compute
inferences from the original theory augmented with the output of the algorithm�
In �

� the DLS algorithm was generalized using a reduction theorem from ���
�
It was shown that a broad subset of second�order logic can be reduced into
�xpoint logic� Moreover� a class of �xpoint formulas was characterized which
can be reduced into their �rst�order equivalents�

In this paper� we extend the previous work in three ways�

�� We de�ne a general form of domain circumscription which subsumes ex�
isting domain circumscription proposals in the literature ����
� ��
� ��
� ��
�
and ��
�� We call the generalization general domain circumscription �GDC��
GDC distinguishes itself from other proposals in the followingmanner� When
circumscribing the domain of a theory T � it is permitted to vary arbitrary
predicates� functions� or constants� to maximize the minimization of the do�
main of individuals�

�� We characterize a class of theories which when circumscribed using GDC
are guaranteed to be reducible to equivalent �rst�order theories which are
constructively generated as output from extended versions of the original
DLS algorithm� Included in this class are theories for which both McCarthy�s
original domain circumscription ���
 and Hintikka�s mini�consequence ��
 are
always reducible to �rst�order logic�

	� We characterize a class of theories which� when �rst circumscribed using
GDC and then circumscribed using an arbitrary circumscription policy� are
guaranteed to be reducible to equivalent �rst�order theories which are con�
structively generated as output from the extended versions of the original
DLS algorithm mentioned in the previous item�

We approach the characterization and reduction problems in the following
manner�

� Given a theory T � we show that if the domain closure axiom is entailed by the
domain circumscribed theory CircD�T �� then CircD�T � is always reducible
to a logically equivalent �rst�order theory�

� We then characterize a class of theories where the domain closure axiom is
not only entailed by the domain circumscribed theory� but can be automat�
ically generated and used in the extended algorithm to reduce theories from
this class to their corresponding �rst�order equivalents�

� Given a theory in the class characterized above and an arbitrary circumscrip�
tion policy applied to that theory� we show that the extended version of the
DLS algorithm will always generate a �rst�order theory logically equivalent
to the second�order circumscribed theory�



The key to the approach is determining when a domain circumscribed theory
CircD�T �� entails it�s domain closure axiom� Semantically� a possible answer is
when the cardinalities of all minimalmodels of the domain circumscribed theory
have the same �nite upper bound� Syntactically� we can characterize two classes
of theories that provide such constraints when minimized�

�� Universal theories without function symbols� where the general domain cir�
cumscription policy can include arbitrary constants and predicates that vary�

�� Semi�universal theories without function symbols� where the general domain
circumscription policy can include arbitrary constants and predicates that
vary�

The class of semi�universal theories is a broad class of theories much more expres�
sive than universal theories which have previously been studied in the context
of restricted forms of domain circumscription� In the case of universal and semi�
universal theories with function symbols� where the general domain circumscrip�
tion policy can include arbitrary constants� predicates and functions that vary�
reducible classes of theories are di�cult to characterize� In this case� we provide
additional results which guarantee reduction non�constructively and additional
methods which� although not guaranteed to provide �rst�order reductions in all
cases� do provide reductions in some cases�

The paper is organized as follows� Section � consists of preliminary de�nitions
and notation� In Section 	� general domain circumscription is introduced togeth�
er with it model�preferential semantics� In Section 
� the original DLS algorithm
is brie�y described together with two limitations associated with the basic algo�
rithm� In Section �� two generalizations of the basic DLS algorithm are described
which deal with the limitations previously described� In Section �� reducibility
results concerning di�erent specializations of general domain circumscription are
presented together with a number of concrete examples� In Section �� we consid�
er the potential for reducing a larger class of arbitrarily circumscribed theories
which are �rst circumscribed using general domain circumscription�

We refer the reader to ��
� for an extended version of this paper which includes
all proofs� additional methods for reduction based on �xpoint methods� and
additional examples�

� Preliminaries

In this paper� the term theory always refers to a �nite set of sentences of �rst�
order logic� Since each such set is equivalent to the conjunction of its members�
a theory may be always viewed as a single �rst�order sentence� In the sequel�
we shall never distinguish between a theory T and the sentence being the con�
junction of all members of T � Unless stated otherwise� the term function symbol
refers to a function symbol of arity n� where n � ��



��� Notation

An n�ary predicate expression is any expression of the form �x� A�x�� where x is
a tuple of n individual variables and A�x� is any formula of �rst�order classical
logic� If U is an n�ary predicate expression of the form �x� A�x� and � is a
tuple of n terms� then U ��� stands for A���� As usual� a predicate constant P is
identi�ed with the predicate expression �x� P �x�� Similarly� a predicate variable
� is identi�ed with the predicate expression �x� ��x��

An n�ary function expression is any expression of the form �x� � �x�� where
x is a tuple of n individual variables and � �x� is any term of �rst�order classical
logic� If u is an n�ary function expression of the form �x� � �x� and t is a tuple
of n terms� then u�t� stands for � �t�� An n�ary �n � �� function constant f

is identi�ed with the function expression �x� f�x�� An n�ary �n � �� function
variable � is identi�ed with the function expression �x� ��x�� Note that �� ary

function variables are simply individual variables�
Let U � �U�	 � � � 	 Un� and V � �V�	 � � � 	 Vn� �resp� u � �u�	 � � � 	 un� and

v � �v�	 � � � 	 vn� � be tuples of predicate �resp� function� expressions� U and V

�resp� u and v� are said to be similar i�� for each i �� � i � n�� Ui and Vi �resp�
ui and vi� are predicate �resp� function� expressions of the same arity�

Truth values true and false are denoted by � and �� respectively�
If U and V are predicate expressions of the same arity� then U � V stands

for �x U �x� � V �x�� If U � �U�	 � � � 	 Un� and V � �V�	 � � � 	 Vn� are similar tuples
of predicate expressions� then U � V is an abbreviation for

Vn

i���Ui � Vi
�
If A is a formula� �
 � �
�	 � � � 	 
n� and �� � ���	 � � � 	 �n� are tuples of any

expressions� then A��
 � ��� stands for the formula obtained from A by simul�
taneously replacing each occurrence of 
i by �i �� � i � n�� For any tuple
�x � �x�	 � � �xn� of individual variables and any tuple �t � �t�	 � � � tn� of terms� we
write �x � �t to denote the formula x� � t� 	 
 
 
 	 xn � tn� We write �x �� �t as an
abbreviation for ���x � �t��

��� De�nitions

De�nition�� A theory T is said to be existential �universal� i� all of its axioms
are of the form 
x T� �resp� �x T��� where T� is quanti�er free�

De�nition�� A theory is called semi�universal if its axioms do not contain
existential quanti�ers in the scope of universal quanti�ers�

De�nition�� Let T be a theory without function symbols and suppose that�
for n � �� c�	 � � � cn are all the individual constants occurring in T � The domain
closure axiom for T � written DCA�T �� is the sentence

�x� x � c� � 
 
 
 � x � cn�

Let c be a tuple of individual constants� By DCA�c�T � we shall denote the
sentence �x x � c��� � ��x � cn� where c�	 � � � 	 cn are all the individual constants



of T excluding constants from c� For k � �� by DCA�k�T � we shall denote the
sentence


z� 
 
 

zk�x x � z� � 
 
 
 � x � zk � x � c� � � � �� x � cn	

where c�	 � � � 	 cn are all the individual constants of T � We also use notation
DCA�c�k�T � as a combination of the above�

De�nition�� A predicate variable � occurs positively �resp� negatively� in a
formula A if the conjunctive normal form of A contains a subformula of the
form ���t� �resp� ����t��� A formulaA is said to be positive �resp� negative� w�r�t�
� i� all occurrences of � in A are positive �resp� negative��

De�nition�� Let � be either a predicate constant or a predicate variable and
� be a tuple of predicate constants or a tuple of predicate variables� Then a
formula T ��� is said to be separated w�r�t� � i� it is of the form T���� 	 T����
where T���� is positive w�r�t� � and T� is negative w�r�t� ��

� General Domain Circumscription

In this section� we provide a de�nition of general domain circumscription �GDC�
and its model�preferential semantics� GDC subsumes both McCarthy�s original
domain circumscription� introduced in ���
� studied in ��
� and substantially im�
proved in ��
� and Hintikka�s mini�consequence� formulated in ��
 and studied
in ��
�

De�nition	� Let P � �P�	 � � � 	 Pn� be a tuple of di�erent predicate constants�
f � �f�	 � � � 	 fk� be a tuple of di�erent function constants �including� perhaps�
individual constants�� T �P	 f� be a theory and let � be a one�place predicate
variable� 
 be a tuple of predicate variables similar to P � and � be a tuple of
function variables similar to f � By Axiom��	P 	 f�� sometimes abbreviated by
Axiom���� we shall mean the conjunction of�

� ��a�� for each individual constant a in T not occurring in f �
� ���i�� for each individual constant a in T such that a is fi�
� �x� � � �xn���x�� 	 
 
 
 	 ��xn� � ��f�x�	 � � �xn��
� for each n�ary �n � ��
function constant f in T not occurring in f � and

� �x� � � �xn���x�� 	 
 
 
 	 ��xn� � ���i�x�	 � � �xn��
� for each n�ary �n � ��
function constant f in T such that f is fi�

T� stands for the result of rewriting T �
	 ��� replacing each occurrence of �x
and 
x in T �
 	 �� with ��x ��x� �� and �
x ��x�	�� respectively�

De�nition
� Let P � �P�	 � � � 	 Pn�� f � �f�	 � � � 	 fk� and T �P 	 f� be as in
De�nition �� The general domain circumscription for T �P 	 f� with variable P

and f � written CIRCD�T �P � f�� is the following sentence of second�order logic�

T �P	 f� 	 ���
����
x��x�	Axiom��	P 	 f� 	 T�� � �x��x�
� ���



A formula� is said to be a consequence of CIRCD�T �P � f� i�CIRCD�T �P � f�
j� �� where �j�� denotes the entailment relation of classical second�order logic�

The second conjunct of the sentence ��� is called the domain circumscription
axiom�

It is not di�cult to see that ��� asserts that the domain of discourse �repre�
sented by �� is minimal with respect to T � where P and f are allowed to vary
during the minimization�

We shall write CIRCD�T � as an abbreviation for CIRCD�T � ��� ���� i�e� if
neither predicate nor function constants are allowed to vary� This simplest form
of domain minimization corresponds closely to McCarthy�s original domain cir�
cumscription ���
 with the augmentation described in ��
��

We shall write CIRCD�T �P � as an abbreviation for CIRCD�T �P � ���� i�e� if
some predicate constants� but not function constants� are allowed to vary� If P
includes all predicate constants occurring in a theory T � then CIRCD�T �P � is
exactly mini�consequence� introduced in ��
 and improved in ��
� Following ��
�
this form of minimizationwill be referred to as variable domain circumscription��

Example �� Consider a theory T consisting of �x P �x�	Q�x�	P �a�	Q�b��We
shall minimize the domain of T without varying predicate or function constants�
CIRCD�T � is given by

T	����
x��x�	��a�	��b�	�x���x�� �P �x�	Q�x�	P �a�	Q�b����� �x��x�
�
���

Substituting �x�x � a � x � b for �� we get

T 	 �
x�x � a � x � b� 	 �a � a � a � b� 	 �b � a � b � b�	 �	�

�x��x � a � x � b� � �P �x�	Q�x� 	 P �a� 	Q�b��
 �

�x�x � a � x � b�
�

Since �	� is equivalent to T 	 ��x x � a � x � b�� we conclude that the domain
closure axiom for T � i�e� the sentence �x x � a � x � b is a consequence of
CIRCD�T ��

Example �� Let T consist of P �a�	P �b�� We minimize the domain of T with the
constant a allowed to vary during the minimization� CIRCD�T � ��	 �a�� is given
by�

T 	 ���xa�
x��x�	 ��xa� 	 ��b� 	 P �xa� 	 P �b� � �x��x�
� �
�

Substituting �x�x � b for � and b for xa� one easily calculates that �
� implies
T 	 �x x � b� Accordingly� we conclude that the domain of T consists of one
object� referred to by both a and b�

� In fact� CIRCD�T � is slightly stronger in that it is based on a second�order axiom
rather than on a �rst�order schema	

� Note that in variable domain circumscription all predicate constants� but no function
constants� are allowed to vary during the minimization process	

� Since a is an individual constant� the variable corresponding to a is� in fact� an
individual variable	 Accordingly� we denote it by xa� rather than by �	



We now proceed to give a semantics for general domain circumscription�
Given a model M � we shall write jM j to denote the domain of M �

De�nition�� Let P � f and T �P	 f� be as in De�nition �� Let M� and M� be
models of T � We say that M� is a �P � f��submodel of M�� written M� � M��
i� j M� j�j M� j� and for each predicate� function or individual constant C�
occurring neither in P nor in f � the interpretation of C in M� is the restriction
of the corresponding interpretation in M� to j M� j� A model is said to be
�P � f��minimal i� it has no proper �P � f��submodels�

Theorem�� Let P � f and T �P 	 f� be as in De�nition �� A formula A is a con�
sequence of CIRCD�T �P � f� i	 A is true in all �P � f��minimal models of T �

��� An Optimization Technique

In this section� we propose a technique that allows one to reduce the size of a
domain circumscription axiom� The technique allows one to sometimes remove
counterparts of universal formulas from the axiom� More precisely� let theory T

consist of axioms� including universal axioms of the form �x� 
 
 
�xn A�x�	 
 
 
 	 xn��
and suppose that all predicate and�or function constants occurring inA�x�	 
 
 
 	 xn�
are not allowed to vary during the minimization� Then each such axiom reap�
pears in ��� as a part of T�� equivalent to the formula

�x� 
 
 
�xn ���x�� � 
 
 
 � ���xn� �A�x�	 
 
 
 	 xn�� ���

Since ���� together with the corresponding axiom of T � reduces to �� it can be
removed from T�� We thus have the following principle�

Remove a counterpart of every universal axiomA of T from T� in the do�
main circumscription axiom� provided that none of the predicate and�or
function constants occurring in A are allowed to vary� If B is the resulting
formula� then T 	B is equivalent to CIRCD�T �P � f��

Observe also that one can remove formula 
x��x� from ��� whenever T con�
tains a constant symbol� This follows from the fact that for each constant sym�
bol� say a� one has ��a� as a conjunct of Axiom���� Thus 
x��x� follows from
Axiom��� and can be removed�

It should be emphasized that the DLS algorithm works successfully without
the above mentioned optimizations� However� as shall be seen in the examples
in Section �� they usually considerably decrease the complexity of the reduced
formula�

� DLS Algorithm

��� The Basic DLS Algorithm

In this section� we brie�y describe the DLS algorithmmentioned in the introduc�
tion� Its complete formulation can be found in �	
� The algorithm was originally



formulated in a weaker form in ��	
� in the context of modal logics� It is based
on Ackermann�s techniques developed in connection with the elimination prob�
lem �see ��
��The DLS algorithm is based on the following lemma� proved by
Ackermann in ��	
 �see ��
�� The proof can also be found in ��	
�

Lemma�
 Ackermann Lemma� Let � be a predicate variable and A��x	 �z��
B��� be formulas without second�order quanti�cation� Let B��� be positive w�r�t�
� and let A contain no occurrences of � at all� Then the following equivalences
hold



���x����x� �A��x	 �z�
 	B��� ��� � B��� A��x	 �z�� ���


���x�����x� �A��x	 �z�
 	B��� � B��� A��x	 �z�� ���

where in the righthand formulas the arguments �x of A are each time substituted
by the respective actual arguments of � �renaming the bound variables whenever
necessary��

The DLS algorithm is based on eliminating second�order quanti�ers of the
input formula using a combination of applications of Lemma �� together with
various syntactic transformations which preserve equivalence�

��� Problems with the Basic DLS Algorithm

There are two weaknesses associated with the basic DLS algorithm which cause
it to terminate with failure�

�� Non�separated input problem�
�� Unskolemization problem�

In order for the DLS algorithm to reduce an input formula� it must be possible
for the formula to be transformed into separated form� If the input formula
consists of clauses which contain both positive and negative occurrences of the
predicate variable being eliminated� then the basic DLS algorithm will return
with failure�

Another limitation of the basic DLS algorithm involves unskolemization�
Skolemization is sometimes required either due to the original form of the input
formula� or to one of the phases in the algorithm which may introduce new exis�
tential quanti�ers� When applying Ackermann�s Lemma� all existentially quanti�
�ed individual variables have to be removed from the pre�x of the formula being
reduced� For this purpose� Skolemization is performed using the equivalence�

�x
y A�x	 y� � 
f�x A�x	 y � f�x��	 ���

where f is a new function variable� After application of Ackermann�s Lemma�
one tries to remove the newly introduced function variables using equivalence ���
in the other direction� Unfortunately� unskolemization is not always successful�



� Extending the DLS Algorithm

There are two generalizations of the basic DLS algorithm that extend the class
of input formulas that can be successfully reduced to include non�separated
input formulas and formulas which would normally fail to be reduced due to
unskolemization problems�

The �rst method appeals to the observation that for a particular class of
theories whose domain closure axiom is entailed by the corresponding general
domain circumscribed theory� both the non�separated input and unskolemiza�
tion problems can be avoided by combining the basic DLS algorithm with the
additional constraints contributed by the domain closure axiom associated with
the input theory� Although this method can be used for a particular class of
input formulas� it can not be used for all non�separated input formulas�

The second method generalizes Ackermann�s Lemma ���� by transforming
an input formula into a �possibly� non�separated form which can be shown to
be logically equivalent to a �xpoint formula in a �xpoint calculus� In the case
where the �xpoint formula is bounded� the non�separated input formula can be
reduced to a logically equivalent �rst�order formula�

Due to page limitations� we will concentrate on the �rst method whose formal
justi�cation is described in Section ���� We refer the reader to ��
� for a detailed
description of both methods�

��� DLS Algorithm with the Domain Closure Axiom

As mentioned before� the DLS algorithm may fail due to non�separatedness and
unskolemizaton problems� On the other hand� whenever it is known that the
domain closure axiom � DCA � follows from the theory considered� the non�
separatedness and unskolemization problems are always solvable� This is partic�
ularly important in cases when one combines domain circumscription with other
second�order formalisms� like e�g� second�order circumscription�

Assume that T is a theory� Then� for each formula A� DCA�T � implies�


x A�x� � �A�c�� � 
 
 
 �A�cn�� ���

and
�x A�x� � �A�c�� 	 
 
 
 	A�cn��� ����

The following example illustrates the use of equivalences ��� and �����

Example 
� Assume that �x x � a � x � b holds� An application of equivalence
��� to formula �y
z P �y	 z� results in �y�P �y	 a� � P �y	 b��� An application of
equivalence ���� to this formula results in �P �a	 a��P �a	 b��	 �P �b	 a��P �b	 b���

Using equivalence ��� one can remove existential quanti�ers that would re�
quire Skolemization� This solves the unskolemization problem associated with
the DLS algorithm� Observe that in order to make the DLS algorithm work one
could also use equivalence ���� in order to remove universal quanti�ers preceding
the existential quanti�ers� whenever necessary�



The second reason the DLS algorithm fails is when formulas cannot be sep�
arated w�r�t� predicate �� In the canonical case� this occurs when a universally
quanti�ed clause contains both positive and negative occurrences of �� Using
equivalence ����� one can remove the universal quanti�ers from the clause pre�
�x� This� together with certain distributions across subformulas� is guaranteed
to transform the initially non�separated formula into a separated formula�

Of course� the above technique can easily be modi�ed if it is known that
DCA�c�T �� DCA�k�T � or DCA�c�k�T � is entailed from T � Before we introduce
this modi�cation� consider the following simple example�

Example �� Assume that 
z�x x � z�x � a holds� An application of equivalence
���� to formula �y P �y� results in 
z��x�x � z � x � a� 	 P �z� 	 P �a�
�

Observe that� unlike Example �	�� the DCA reappears in the result� This
is due to the existential quanti�er 
z that has to bind both the DCA and the
resulting formula�

The following theorem justi�es the technique�

Theorem��� Assume that for a given second�order theory T �

T j� DCA�c�k�T ��

Then T is equivalent to a �rst�order formula�

Since CIRCD�T	 P 	 f� is a second�order sentence� we have the following corol�
lary�

Corollary ��� Assume that CIRCD�T	 P 	 f� j� DCA�c�k�T �� Then
CIRCD�T	 P 	 f� is equivalent to a �rst�order formula�

Theorem �� allows us to modify the DLS algorithm in such a way that when�
ever there is a Skolemization or separatedness problem� one applies formulas ���
and ����� or their generalizations� respectively� We will denote this modi�cation
of the DLS algorithm by DLS��

The following example illustrates the use of the DLS� algorithm�

Example �� Assume that the DCA is of the form 
z�x x � z � x � a� and let T
be the second�order formula


��x�y����x�����y��R�a��	
z���z�	
u��u�
	�
z�x x � z�x � a�� ����

We �rst Skolemize DCA and obtain �x�x � b�x � a�� We then try to eliminate
the quanti�er 
� from formula ���� using the DLS algorithm� In this case� one
�rst Skolemizes one of the �rst�order existential quanti�ers� Whichever is chosen�
we are then faced with a non�separated formula� Due to this� the DLS algorithm
fails� If instead one uses the DLS� algorithm� we �rst eliminate one of the
existential quanti�ers� say 
u� by applying equivalence ��� and obtain


b�DCA 	 
��x�y����x� � ���y� �R�a�� 	 
z���z� 	 ���b� � ��a���
� ����



Formula ���� is not separated� We thus apply equivalence ���� to quanti�er �y
and obtain�


b�DCA	 
��x����x� � ���b��R�a�� 	 ���x� ����a� �R�a��� ��	�

	
z���z� 	 ���b� � ��a���
�

��	� is equivalent to


b�DCA	 �
��
z���z� 	 �x��x�	 ���b� � ��a���
 � ��
�

�
��
z���z�	 ����b� �R�a�� 	 ����a� �R�a�� 	 ���b� � ��a���


It is easily observed that each disjunct is in separated form� and no additional
skolemization is necessary� so application of the basic DLS algorithm results in
a �rst�order formula equivalent to ��
��

� Reducing General Domain Circumscription

In this section we provide some reducibility results concerning various variants of
general domain circumscription� In what follows� we assume that theories under
consideration contain at least one individual constant symbol�

	�� Fixed GDC

Universal Theories In Example �� we saw that domain circumscription may
allow the derivation of the domain closure axiom� It turns out that for universal
theories without function constants this is always the case� Moreover� as the next
theorem shows� if T is a theory of that type� then the domain circumscription
of T is equivalent to T 	DCA�T ��

Theorem��� Let T be a universal theory without function symbols� Then
CIRCD�T � is always reducible into �rst�order logic using the DLS algorithm�
Moreover� if A is the resulting formula� then A is equivalent to T 	DCA�T ��

Observe that according to our assumption� we consider only theories that
contain at least one individual constant� This is only a technical assumption� If
T has no individual constant symbols then

CIRCD�T � � T 	 ���
x ��x� � �z ��z�
�

After negating the second conjunct of this formula we obtain


��
x ��x� 	 
z���z�
	

which� after applying the DLS algorithm� results in the equivalent 
x
z�z �� x
�
Thus CIRCD�T � � T 	 �x�z�x � z��



Semi�Universal Theories As regards semi�universal theories without function
symbols we have the following theorem�

Theorem��� Let T be a semi�universal theory without function symbols� Then
CIRCD�T � is always reducible into �rst�order logic using the DLS algorithm�
Moreover� if A is the resulting formula� then A implies DCA�k�T �� where k is
the number of existential quanti�ers of T �

	�� Variable GDC

For universal and semi�universal theories� we have the following counterparts of
Theorems �	 and �
�

Universal Theories

Theorem��� Let T be a universal theory without function symbols and suppose
that P is a tuple of predicate symbols occurring in T � Then CIRCD�T � �P �� is
always reducible into �rst�order logic using the DLS� algorithm� Moreover� if A
is the resulting formula� then A implies DCA�T ��

For theories with varied individual constants the following theorem holds�

Theorem�	� Let T be a universal theory without function symbols� Let P be a
tuple of predicate symbols and c be a tuple of individual constants occurring in T �
Then CIRCD�T �P � c� is always reducible into �rst�order logic using the DLS�

algorithm� Moreover� if A is the resulting formula� then A implies DCA�c�T ��

The following example varies an individual constant�

Example �� Consider the theory T given by

A�� S�c� 	 S�d�
A�� �x R�x	 c� � R�x	 d�
A	� �x�R�x	 c�	 �y�R�y	 d� 	 �z�R�z	 z��

This example is taken from ���
� Here S�x�� R�x	 y�� c and d are to be read �the
evidence says that x saw the victim alive�� �the evidence says that x saw the
victim alive after y saw her alive for the last time�� �murderer� and �suspect��
respectively� Suppose further that the police try to �nd all individuals who sat�
isfy exactly those formulas that the �unknown� murderer c does� by comparing
what is provable about the murderer with what is provable about a particular
individual� To formalize this type of procedure� we should minimize the domain
under consideration with all constant symbols �xed� except that referring to the
murderer which is allowed to vary� In our case� we minimize the domain of T
with variable c� The intended conclusion is d � c�



The second�order part of CircD�T	 ��	 �c��� after simpli�cations� is equivalent
to

�xc�����xc� 	 ��d� 	 S�xc� 	 �x���x� � ���R�x	 xc� �R�x	 d�� ����

	�R�x	 xc� � �R�x	 d���	 �x���x� � �R�x	 xc�� � �s��s�
�

Negating ����� we obtain


xc
����xc� 	 ��d�	 S�xc� 	 �x����x� � �R�x	 xc� �R�x	 d��	 ����

����x� �R�x	 xc� � �R�x	 d���	 �x����x�� �R�x	 xc�� 	 
s���s�


which is transformed by the DLS algorithm to


s
xc
��x����x�� �x �� xc 	 x �� d�� 	 S�xc� 	 �x����x�� �R�x	 xc�� 	 ���s�


and then� after the application of Ackermann�s Lemma� to


s
xc�S�xc� 	 �x��x �� xc 	 x �� d� � �R�x	 xc� 	 �s �� xc 	 s �� d�
� ����

Negating ����� we obtain

�s�xc�S�xc� 	 �x��x �� xc 	 x �� d� � �R�x	 xc� � �s �� xc 	 s �� d�


and so� CircD�T	 ��	 �c�� �

T 	 �s�xc�S�xc� 	 �x��x �� xc 	 x �� d� � �R�x	 xc� � �s �� xc 	 s �� d�


It is easily seen� substituting d for xc� that CircD�T	 ��	 �c�� j� d � c�

Semi�Universal Theories

Theorem�
� Let T be a semi�universal theory without function symbols and
suppose that P is a tuple of predicate symbols occurring in T � Then CIRCD�T �P �
is always reducible into �rst�order logic using the DLS� algorithm� Moreover� if
A is the resulting formula� then A implies DCAk�T �� where k is the number of
existential quanti�ers of T �

The following theorem generalizes Theorem �� to semi�universal theories�

Theorem��� Let T be a semi�universal theory without function symbols� Let
P be a tuple of predicate symbols and c be a tuple of individual constants occur�
ring in T � Then CIRCD�T �P � c� is always reducible into �rst�order logic using
the DLS� algorithm� Moreover� if A is the resulting formula� then A implies
DCA�c�k�T �� where k is the number of existential quanti�ers of T �

A reduction of variable domain circumscription for a semi�universal theory
is illustrated below�



Example �� Let T consist of 
x Q�x�	 �Q�a� � 
y y �� a
� This example is taken
from ��
� The intended conclusion of domain circumscription with Q allowed to
vary is 
y�x x � y � x � a�

We reduce CIRCD�T � �Q�� ���� The second�order part of CIRCD�T � �Q�� ���
�after removing 
x��x�� is

�
������a�	 
x���x� 	 
 �x�� 	 �
 �a� � 
y���y� 	 y �� a��
 � �z��z�
� ����

Negating ����� we obtain




����a�	 
x���x� 	 
 �x�� 	 �
 �a� � 
y���y� 	 y �� a��
 	 
z���z�	

which is equivalent to


x
y
z


����a� 	 ��x� 	 
 �x� 	 ��
 �a� � ���y� 	 y �� a�� 	 ���z�
	

which is equivalent to


x
y
z


����a�	��x�	
 �x�	 ��
 �a�� ���y�	 y �� a��	�t����t�� t �� z�
�
����

Applying Ackermann�s Lemma to ����� we eliminate � and obtain


x
y
z

 �a �� z 	 x �� z 	 
 �x� 	 ��
 �a� � �y �� z 	 y �� a��
	

which is equivalent to


x
y
z

 �a �� z 	 x �� z 	 �t�
 �t� � t �� x� 	 ��
 �a� � �y �� z 	 y �� a��
� ����

Applying Ackermann�s Lemma to ����� we eliminate 
 and obtain


x
y
z�a �� z 	 �a �� x � �y �� z 	 y �� a��
� ����

The negation of ���� is

�x�y�z�a � z � �a � x 	 �y � z � y � a��
�

Thus�

CIRCD�T � �Q�� ��� � T 	 �x�y�z�a � z � �a � x 	 �y � z � y � a��
�

It is easily veri�ed that CIRCD�T � �Q�� ��� implies 
y�x x � y � x � a�



	�� Arbitrary Theories and Functions

A �xpoint generalization of the basic DLS algorithm �DLS�x� is described in
���
� applied in �

 to the class of semi�Horn formulas� and applied in ��
 to general
domain circumscription� Due to page limitations� we can only brie�y describe
the latter results�

� For arbitrary domain circumscribed theories without functions� neither the
DLS algorithm nor its �xpoint generalization DLS�x� guarantee a reduction
to classical �rst�order logic� However reductions can sometimes be obtained
using DLS�x �

� For arbitrary domain circumscribed theories with functions� the DLS algo�
rithm always fails� However� the following results apply�

Theorem��� Let T be a semi�universal theory� Then CIRCD�T � is always
reducible into �xpoint logic using the DLS�x algorithm�

If one can show that the �xpoint formula output by the DLS�x algorithm is
bounded� then the input formula is reducible to classical �rst�order logic�

Theorem�
� Let T be a theory and let P be the tuple of all predicate symbols
occurring in T � Suppose further that T has a �P 	 f��minimal model and car�
dinalities of all such models have the same �nite common upper bound� Then
CIRCD�T �P � f � can be reduced into an equivalent �rst�order sentence using the
DLS� algorithm�

� Combining Domain Circumscription with Arbitrary

Circumscriptions

Theorem �� states that given a second�order theory T � if one can show that
the domain closure axiom is entailed by T � then T is reducible to a �rst�order
formula using DLS� � There is a direct connection between this result and the
reduction of arbitrary circumscriptive policies applied to a certain class of domain
circumscribed theories� The connection works as follows�

�� We know that given a semi�universal theory T � the domain circumscription of
T �CircDC�T � �P � �f�

	� can be reduced to its �rst�order equivalent usingDLS� �
In addition� the DCA used in the DLS� algorithm can be constructively
generated�

�� Suppose the result of CircDC�T � �P	 �f� is T
�� Observe that for any arbitrary

circumscription CircSO�T
�� �P � �f�� applied to T � that

CircSO�T
�� �P � �f� � CircSO�T

� 	DCA� �P � �f��

� �f is restricted to individual constants	



	� Since the DLS algorithmcan only fail when unskolemization or non�separatedness
occur� and we have shown how to avoid these problems for theories which
entail the DCA� it follows that CircSO�T

�� �P � �f� is always reducible to a
�rst�order formula using DLS� with the DCA�

In summary� we have the following result�

For any semi�universal �rst�order theory without functions and any
arbitrary circumscription policy applied to the theory� the DLS� algo�
rithm will always reduce the circumscribed theory to a logically equiv�
alent �rst�order formula� provided that the theory is �rst circumscribed
using domain circumscription�

The reduction process is achieved as follows�

�� Given a semi�universal theory T � constructively generate the DCA for T
using the procedure described in the proof of Theorem ���

�� Apply DLS� to T resulting in the output T ��
	� Apply DLS� to the arbitrary circumscriptive policy applied to T � using the

previously generated DCA� This results in T ��� a �rst�order formula logically
equivalent to the latter arbitrary circumscription�

The following example illustrates the technique� To save space� we will �rst
domain circumscribe the following theory and then apply a particular circum�
scription to the original theory in conjunction with the generated DCA�

Example �� Let T consist of

A�� Ab�a�
A�� �x�yAb�x� 	 S�y	 x� � Ab�y�
A	� 
x�yS�y	 x�

where Ab and S stand for Abnormal and Son�of� respectively�
The DCA entailed by the domain circumscription CIRCD�T � is



z�x�x � z � x � a� ����

���� can be constructively generated using the procedure described in the proof
of Theorem ���

In the next phase� we would like to minimize the predicate Ab relative to T 	
DCA� Let T � denote the �rst�order formula output by application of the DLS�

algorithm to CIRCD�T �� Since T
� j� DCA and CIRCSO�T �Ab� � CIRCSO�T	

DCA�Ab�� the DLS� algorithm can be applied to CIRCSO�T �Ab� using the
DCA with a guarantee that the output of DLS� will be a formula in classical
�rst�order logic� logically equivalent to CIRCSO�T �Ab� 	 DCA� In fact� the
output of DLS� is


z� �x�x � z � x � a�

	�x��Ab�x���S�z	 x� �Ab�z�� 	 
x�yS�y	 x� 	Ab�a�

	�S�z	 a� � S�a	 a� � �d
c�S�c	 d� � �e�a � e � �Ab�e���
�

� In this example� by DCA� we mean DCA��	
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