General Domain Circumscription and its
First-Order Reduction

Patrick Doherty'*, Witold Lukaszewicz?**, Andrzej Szalas?***

! Department of Computer and Information Science,
Linkoping University, S-581 83 Linkoping, Sweden,
e-mail: patdo@ida.liu.se
2 Institute of Informatics, Warsaw University,
ul. Banacha 2, 02-097 Warsaw, Poland,
e-mail: witlu,szalas@mimuw.edu.pl.

Abstract. We first define general domain circumscription (GDC) and
provide it with a semantics. GDC subsumes existing domain circumscrip-
tion proposals in that it allows varying of arbitrary predicates, functions,
or constants, to maximize the minimization of the domain of a theory.
We then show that for the class of semi-universal theories without func-
tion symbols, that the domain circumscription of such theories can be
constructively reduced to logically equivalent first-order theories by using
an extension of the DLS algorithm, previously proposed by the authors
for reducing second-order formulas. We also isolate a class of domain cir-
cumscribed theories, such that any arbitrary second-order circumscrip-
tion policy applied to these theories is guaranteed to be reducible to a
logically equivalent first-order theory. In the case of semi-universal the-
ories with functions and arbitrary theories which are not separated, we
provide additional results, which although not guaranteed to provide re-
ductions in all cases, do provide reductions in some cases. These results
are based on the use of fixpoint reductions.

1 Introduction

In many common-sense reasoning scenarios, we are given a theory T specifying
general laws and domain specific facts about the set of phenomena under inves-
tigation. In addition, one provides a number of closure axioms circumscribing
the domain of individuals and certain properties and relations among individu-
als. The closure machinery normally involves the use of non-monotonic rules of
inference, or in the case of circumscription, a second-order axiom. In order for a
circumscribed theory to be useful, it is necessary to find a means of computing
inferences from the circumscribed theory in an efficient manner. Unfortunately,
the second-order nature of circumscription axioms creates an obstacle towards
doing this.

* Supported in part by the Swedish Council for Engineering Sciences (TFR).
** Supported in part by KBN grant 3 P406 019 06.
*** Supported in part by KBN grant 3 P406 019 06.



In previous work [3], we proposed the use of an algorithm (DLS) which when
given a second-order formula as input would terminate with failure, or output a
logically equivalent first-order formula. Since circumscription axioms are simply
second-order formulas, we showed that the DLS algorithm could be used as
a basis for efficiently computing inferences for a broad class of circumscribed
theories by first reducing the circumscription axiom to a logically equivalent first-
order formula and then using classical theorem proving techniques to compute
inferences from the original theory augmented with the output of the algorithm.
In [4], the DLS algorithm was generalized using a reduction theorem from [11].
It was shown that a broad subset of second-order logic can be reduced into
fixpoint logic. Moreover, a class of fixpoint formulas was characterized which
can be reduced into their first-order equivalents.

In this paper, we extend the previous work in three ways:

1. We define a general form of domain circumscription which subsumes ex-
isting domain circumscription proposals in the literature ([10], [2], [6], [7],
and [8]). We call the generalization general domain circumscription (GDC).
GDC distinguishes itself from other proposals in the following manner. When
circumscribing the domain of a theory T') it is permitted to vary arbitrary
predicates, functions, or constants, to maximize the minimization of the do-
main of individuals.

2. We characterize a class of theories which when circumscribed using GDC
are guaranteed to be reducible to equivalent first-order theories which are
constructively generated as output from extended versions of the original
DLS algorithm. Included in this class are theories for which both McCarthy’s
original domain circumscription [10] and Hintikka’s mini-consequence [7] are
always reducible to first-order logic.

3. We characterize a class of theories which, when first circumscribed using
GDC and then circumscribed using an arbitrary circumscription policy, are
guaranteed to be reducible to equivalent first-order theories which are con-
structively generated as output from the extended versions of the original
DLS algorithm mentioned in the previous item.

We approach the characterization and reduction problems in the following
manner.

— Given a theory T', we show that if the domain closure axiom is entailed by the
domain circumscribed theory Cirep(T), then Cirep(T) is always reducible
to a logically equivalent first-order theory.

— We then characterize a class of theories where the domain closure axiom is
not only entailed by the domain circumscribed theory, but can be automat-
ically generated and used in the extended algorithm to reduce theories from
this class to their corresponding first-order equivalents.

— Given a theory in the class characterized above and an arbitrary circumscrip-
tion policy applied to that theory, we show that the extended version of the
DLS algorithm will always generate a first-order theory logically equivalent
to the second-order circumscribed theory.



The key to the approach is determining when a domain circumscribed theory
Cirep(T), entails it’s domain closure axiom. Semantically, a possible answer is
when the cardinalities of all minimal models of the domain circumscribed theory
have the same finite upper bound. Syntactically, we can characterize two classes
of theories that provide such constraints when minimized:

1. Universal theories without function symbols, where the general domain cir-
cumscription policy can include arbitrary constants and predicates that vary.

2. Semi-universal theories without function symbols, where the general domain
circumscription policy can include arbitrary constants and predicates that
vary.

The class of semi-universal theories is a broad class of theories much more expres-
sive than universal theories which have previously been studied in the context
of restricted forms of domain circumscription. In the case of universal and semi-
universal theories with function symbols, where the general domain circumscrip-
tion policy can include arbitrary constants, predicates and functions that vary,
reducible classes of theories are difficult to characterize. In this case, we provide
additional results which guarantee reduction non-constructively and additional
methods which, although not guaranteed to provide first-order reductions in all
cases, do provide reductions in some cases.

The paper 1s organized as follows. Section 2 consists of preliminary definitions
and notation. In Section 3, general domain circumscription is introduced togeth-
er with it model-preferential semantics. In Section 4, the original DLS algorithm
is briefly described together with two limitations associated with the basic algo-
rithm. In Section 5, two generalizations of the basic DLS algorithm are described
which deal with the limitations previously described. In Section 6, reducibility
results concerning different specializations of general domain circumscription are
presented together with a number of concrete examples. In Section 7, we consid-
er the potential for reducing a larger class of arbitrarily circumscribed theories
which are first circumscribed using general domain circumscription.

We refer the reader to [5], for an extended version of this paper which includes
all proofs, additional methods for reduction based on fixpoint methods, and
additional examples.

2 Preliminaries

In this paper, the term theory always refers to a finite set of sentences of first-
order logic. Since each such set is equivalent to the conjunction of its members,
a theory may be always viewed as a single first-order sentence. In the sequel,
we shall never distinguish between a theory 7" and the sentence being the con-
junction of all members of T". Unless stated otherwise, the term function symbol
refers to a function symbol of arity n, where n > 0.



2.1 Notation

An n-ary predicate expression is any expression of the form AZ. A(T), where T is
a tuple of n individual variables and A(%) is any formula of first-order classical
logic. If U is an n-ary predicate expression of the form AZ. A(ZF) and @ is a
tuple of n terms, then U(@) stands for A(@). As usual, a predicate constant P is
identified with the predicate expression AZ. P(Z). Similarly, a predicate variable
& is identified with the predicate expression AZ. ¢(T).

An n-ary function expression is any expression of the form AZ. 7(Z), where
7 is a tuple of n individual variables and 7(%) is any term of first-order classical
logic. If w is an n-ary function expression of the form AZ. 7(Z) and ¢ is a tuple
of n terms, then u(t) stands for 7(¢). An n-ary (n > 0) function constant f
is identified with the function expression AZ. f(Z). An n-ary (n > 0) function
variable ¢ is identified with the function expression AZ. ¢(7). Note that 0 — ary
function variables are simply individual variables.

Let U = (Uy,...,U,) and V = (Vq,...,V,) (vesp. © = (uy,...,u,) and
¥ = (v1,...,v,) ) be tuples of predicate (resp. function) expressions. U and V'
(resp. w and ) are said to be similar iff, for each ¢ (1 < < n), U; and V; (resp.
u; and v;) are predicate (resp. function) expressions of the same arity.

Truth values true and false are denoted by T and L, respectively.

If U and V are predicate expressions of the same arity, then U < V stands
for VEU(Z) D V(Z). f U = (Uy,...,Uy) and V = (V1, ..., V},) are similar tuples
of predicate expressions, then U/ <V is an abbreviation for A;_, [U; < V;].

If Aisa formula, & = (01,...,0,) and & = (8;,...,8,) are tuples of any
expressions, then A(¢ — 5) stands for the formula obtained from A by simul-
taneously replacing each occurrence of o; by & (1 < ¢ < n). For any tuple
T = (x1,...2,) of individual variables and any tuple ¢t = (¢1,...t,) of terms, we
write # = { to denote the formulaz; =t A--- Az, = {,. We write # £ as an
abbreviation for =(z = ).

2.2 Definitions

Definition1. A theory T issaid to be existential (universal) iff all of its axioms
are of the form 37 T} (resp. VZ T1), where T} is quantifier free.

Definition2. A theory is called semi-universal if its axioms do not contain
existential quantifiers in the scope of universal quantifiers.

Definition3. Let T be a theory without function symbols and suppose that,
for n > 0, ¢1,...c, are all the individual constants occurring in 7. The domain
closure axiom for T, written DCA(T), is the sentence

Ve.x=c V---V&=c¢,.

Let ¢ be a tuple of individual constants. By DC’A_Z(T) we shall denote the
sentence Ve © = ¢1V...Vx = ¢,, where ¢y, ..., ¢, are all the individual constants



of T" excluding constants from ¢. For & € w, by DC’A+k(T) we shall denote the
sentence

dzy - ApVeax =V Ve=zz Ve =c1 V...VZT = cp,

where c1,..., ¢, are all the individual constants of 1'. We also use notation
DC’A_C‘I'k(T) as a combination of the above.

Definition4. A predicate variable @ occurs positively (resp. negatively) in a
formula A if the conjunctive normal form of A contains a subformula of the

form @(t) (resp. ~P(1)). A formula A is said to be positive (resp. negative) w.r.t.
@ iff all occurrences of @ in A are positive (resp. negative).

Definition 5. Let @ be either a predicate constant or a predicate variable and
& be a tuple of predicate constants or a tuple of predicate variables. Then a
formula T(®) is said to be separated w.r.t. @ iff it is of the form T1(®) A To(P)
where T1(®) is positive w.r.t. ¢ and T is negative w.r.t. .

3 General Domain Circumscription

In this section, we provide a definition of general domain circumscription (GDC)
and its model-preferential semantics. GDC subsumes both McCarthy’s original
domain circumseription, introduced in [10], studied in [2], and substantially im-
proved in [6], and Hintikka’s mini-consequence, formulated in [7] and studied

in [8].

Definition6. Let P = (Pi,..., Py) be a tuple of different predicate constants,
f=(f1,..., fr) be a tuple of different function constants (including, perhaps,
individual constants), T(P, f) be a theory and let & be a one-place predicate
variable, ¥ be a tuple of predicate variables similar to P, and ¢ be a tuple of
function variables similar to f. By Aziom(®, P, 7), sometimes abbreviated by

Aziom(®), we shall mean the conjunction of:

— @(a), for each individual constant @ in 7' not occurring in f,

— @(4;), for each individual constant @ in T such that a is f;,

—Vay..ap[@(e) A AD(xy) D B(f(x1,...20))], for each n-ary (n > 0)
function constant f in 7' not occurring in f, and

— Yoy ..ap (@) A AD(y) D P(i(w1,...2p))], for each n-ary (n > 0)
function constant f in 7" such that f is f;.

T? stands for the result of rewriting T'(¥, E), replacing each occurrence of Vz

and Jz in T(¥,¢) with "Va $(x) D” and ” Iz G(x)A”, respectively.

Definition7. Let P = (Py,....P,), f = (fi,-.., fx) and_T(F,T) be as in
Definition 6. The general domain circumscription for T(P, f) with variable P
and f, written CTRCp(T; P; f), is the following sentence of second-order logic:

T(P, f) ANVOYIYVS[(xd(x) A Axiom(®, P, f) AT?) D Yad(x)]. (1)



A formula « is said to be a consequence of CIRCp(T; P; f)iff CIRCp(T; P; f)
E o, where ”=” denotes the entailment relation of classical second-order logic.

The second conjunct of the sentence (1) is called the domain circumscription
ariom.

It is not difficult to see that (1) asserts that the domain of discourse (repre-
sented by @) is minimal with respect to T', where P and f are allowed to vary
during the minimization.

We shall write CTRCp(T) as an abbreviation for CIRCp(T;();()), i.e. if
neither predicate nor function constants are allowed to vary. This simplest form
of domain minimization corresponds closely to McCarthy’s original domain cir-
cumscription [10] with the augmentation described in [6].?

We shall write CTRCp(T; P) as an abbreviation for CIRCp(T; P;()), i.e. if
some predicate constants, but not function constants, are allowed to vary. If P
includes all predicate constants occurring in a theory 7', then C’IRC’D(T;F) is
exactly mini-consequence, introduced in [7] and improved in [8]. Following [8],
this form of minimization will be referred to as variable domain circumscription.®

Frample 1. Consider a theory T consisting of Y& P(x) A Q(z) A P(a) A Q(b). We
shall minimize the domain of 7" without varying predicate or function constants.

CIRCp(T) is given by

TAYP[(FxP(2)AP(a) AP(D)AVx(P(x) D (P(2)AQ(2)AP(a)AQ()))) D Vad(x)].
Substituting Az.x = aV x = b for @, we get .
TABe(x=aVe=bbA(a=aVa=b)A(b=aVvb=bA (3)
Ve[(x =aVae =)D (Px)AQ(z)AP(a) AQ(b))] D
Ve(x =aVae=05).
)

Since (3) is equivalent to T A (VY = a V & = b), we conclude that the domain
closure axiom for 7, i.e. the sentence V& ¢ = a vV« = b is a consequence of

CIRCp(T).

Frample 2. Let T consist of P(a) A P(b). We minimize the domain of 7' with the
constant @ allowed to vary during the minimization. CTRCp(T; (), (a)) is given
by®

T AVPYx[Fed(x) ADP(x4) AP(b) A P(xg) A P(b) D Vad(x)]. (4)
Substituting Az.z = b for @ and b for z,, one easily calculates that (4) implies

T AVz & = b. Accordingly, we conclude that the domain of T' consists of one
object, referred to by both a and b.

® In fact, CIRCp(T) is slightly stronger in that it is based on a second-order axiom
rather than on a first-order schema.

* Note that in variable domain circumscription all predicate constants, but no function
constants, are allowed to vary during the minimization process.

® Since a is an individual constant, the variable corresponding to a is, in fact, an
individual variable. Accordingly, we denote it by z,, rather than by .



We now proceed to give a semantics for general domain circumscription.
Given a model M, we shall write | M | to denote the domain of M.

Definition8. Let P, f and T(P, f) be as in Definition 6. Let M; and M be
models of 7. We say that M; is a (P; f)-submodel of M, written M; < Mo,
iff | My |C| Ms |, and for each predicate, function or individual constant ('
occurring neither in P nor in f, the interpretation of C' in M is the restriction

of the corresponding interpretation in My to | My |. A model is said to be
(P; f)-minimal iff it has no proper (P; f)-submodels.

Theorem9. Let P, f and_T(F, 7) be as in Definition 6. A formula A is a con-
sequence of CIRCp(T; P; f) iff A is true in all (P; f)-minimal models of T

3.1 An Optimization Technique

In this section, we propose a technique that allows one to reduce the size of a
domain circumscription axiom. The technique allows one to sometimes remove
counterparts of universal formulas from the axiom. More precisely, let theory T
consist of axioms, including universal axioms of the form Vay - - -Va,, A(z1, -+, 2p),
and suppose that all predicate and/or function constants occurring in A(zy, - -+, 2p)
are not allowed to vary during the minimization. Then each such axiom reap-
pears in (1) as a part of 7%, equivalent to the formula

Vay - -Ya, = @(x1) V-V =P(xn) V Az, -+, ). (5)

Since (5), together with the corresponding axiom of T, reduces to T, it can be
removed from 7'¢. We thus have the following principle:

Remove a counterpart of every universal axiom A of T from 7°? in the do-
main circumscription axiom, provided that none of the predicate and/or
function constants occurring in A are allowed to vary. If B is the resulting
formula, then T'A B is equivalent to CIRCp(T; P; f).

Observe also that one can remove formula Jz@(x) from (1) whenever T con-
tains a constant symbol. This follows from the fact that for each constant sym-
bol, say a, one has ¢(a) as a conjunct of Aziom(P). Thus Jad(x) follows from
Aziom(®) and can be removed.

It should be emphasized that the DLS algorithm works successfully without
the above mentioned optimizations. However, as shall be seen in the examples
in Section 6, they usually considerably decrease the complexity of the reduced
formula.

4 DLS Algorithm

4.1 The Basic DLS Algorithm

In this section, we briefly describe the DLS algorithm mentioned in the introduc-
tion. Its complete formulation can be found in [3]. The algorithm was originally



formulated in a weaker form in [13], in the context of modal logics. It is based
on Ackermann’s techniques developed in connection with the elimination prob-
lem (see [1]).The DLS algorithm is based on the following lemma, proved by
Ackermann in 1934 (see [1]). The proof can also be found in [13].

Lemma 10 Ackermann Lemma. Let $ be a predicate variable and A(Z,z),
B(®P) be formulas without second-order quantification. Let B(®P) be positive w.r.1.
@ and let A contain no occurrences of @ at all. Then the following equivalences

hold:
IoVzr[d(z) vV A(z,2)] A B(® — —~P) = B(P — A(z,%2)) (6)

APVz[-P () V A(Z,2)] A B(P) = B(P — A(Z, 7)) (7)

where in the righthand formulas the arguments & of A are each time substituted
by the respective actual arguments of @ (renaming the bound variables whenever
necessary).

The DLS algorithm is based on eliminating second-order quantifiers of the
input formula using a combination of applications of Lemma 10 together with
various syntactic transformations which preserve equivalence.

4.2 Problems with the Basic DLS Algorithm

There are two weaknesses associated with the basic DLS algorithm which cause
it to terminate with failure:

1. Non-separated input problem.
2. Unskolemization problem.

In order for the DLS algorithm to reduce an input formula, it must be possible
for the formula to be transformed into separated form. If the input formula
consists of clauses which contain both positive and negative occurrences of the
predicate variable being eliminated, then the basic DLS algorithm will return
with failure.

Another limitation of the basic DLS algorithm involves unskolemization.
Skolemization is sometimes required either due to the original form of the input
formula, or to one of the phases in the algorithm which may introduce new exis-
tential quantifiers. When applying Ackermann’s Lemma, all existentially quanti-
fied individual variables have to be removed from the prefix of the formula being
reduced. For this purpose, Skolemization is performed using the equivalence,

Vzdy A(Z,y) = VT A(Z,y — f(T)), (8)

where f is a new function variable. After application of Ackermann’s Lemma,
one tries to remove the newly introduced function variables using equivalence (8)
in the other direction. Unfortunately, unskolemization is not always successful.



5 Extending the DLS Algorithm

There are two generalizations of the basic DLS algorithm that extend the class
of input formulas that can be successfully reduced to include non-separated
input formulas and formulas which would normally fail to be reduced due to
unskolemization problems.

The first method appeals to the observation that for a particular class of
theories whose domain closure axiom is entailed by the corresponding general
domain circumscribed theory, both the non-separated input and unskolemiza-
tion problems can be avoided by combining the basic DLS algorithm with the
additional constraints contributed by the domain closure axiom associated with
the input theory. Although this method can be used for a particular class of
input formulas, 1t can not be used for all non-separated input formulas.

The second method generalizes Ackermann’s Lemma (10) by transforming
an input formula into a (possibly) non-separated form which can be shown to
be logically equivalent to a fixpoint formula in a fixpoint calculus. In the case
where the fixpoint formula 1s bounded, the non-separated input formula can be
reduced to a logically equivalent first-order formula.

Due to page limitations, we will concentrate on the first method whose formal
justification is described in Section 5.1. We refer the reader to [5], for a detailed
description of both methods.

5.1 DLS Algorithm with the Domain Closure Axiom

As mentioned before, the DLS algorithm may fail due to non-separatedness and
unskolemizaton problems. On the other hand, whenever it is known that the
domain closure axiom ( DCA ) follows from the theory considered, the non-
separatedness and unskolemization problems are always solvable. This is partic-
ularly important in cases when one combines domain circumscription with other
second-order formalisms, like e.g. second-order circumscription.

Assume that 7T is a theory. Then, for each formula A, DCA(T) implies:

Jx Alx) = (A(er) V-V Alen)) (9)

and

Ve A(z) = (A(cr) A A Alen)). (10)
The following example illustrates the use of equivalences (9) and (10).

FEzample 3. Assume that Vo £ = aV x = b holds. An application of equivalence
(9) to formula Vy3z P(y, z) results in Yy(P(y,a) V P(y,b)). An application of
equivalence (10) to this formula results in (P(a, a)V P(a, b)) A(P(b,a)V P(b,b)).

Using equivalence (9) one can remove existential quantifiers that would re-
quire Skolemization. This solves the unskolemization problem associated with
the DLS algorithm. Observe that in order to make the DLS algorithm work one
could also use equivalence (10) in order to remove universal quantifiers preceding
the existential quantifiers, whenever necessary.



The second reason the DLS algorithm fails is when formulas cannot be sep-
arated w.r.t. predicate @. In the canonical case, this occurs when a universally
quantified clause contains both positive and negative occurrences of @. Using
equivalence (10), one can remove the universal quantifiers from the clause pre-
fix. This, together with certain distributions across subformulas, is guaranteed
to transform the initially non-separated formula into a separated formula.

Of course, the above technique can easily be modified if it is known that
DCA™(T), DC’A+k(T) or DC’A_E‘H“(T) is entailed from T'. Before we introduce
this modification, consider the following simple example.

Ezample 4. Assume that 32Vx @ = zVa = a holds. An application of equivalence
(10) to formula Vy P(y) results in Iz[Va(z = z V& = a) A P(z) A P(a)].

Observe that, unlike Example (3), the DCA reappears in the result. This
is due to the existential quantifier 3z that has to bind both the DCA and the
resulting formula. B

The following theorem justifies the technique.
Theorem 11. Assume that for a given second-order theory T,
T = DCA™TE(T).
Then T s equivalent to a first-order formula.

Since CIRCp(T, P, 7) is a second-order sentence, we have the following corol-
lary.

Corollary 12. Assume that CIRCp(T), P. ) E DC’A_Z‘HC(T). Then
CIRCp(T, P, f) is equivalent to a first-order formula.

Theorem 11 allows us to modify the DLS algorithm in such a way that when-
ever there is a Skolemization or separatedness problem, one applies formulas (9)
and (10), or their generalizations, respectively. We will denote this modification
of the DLS algorithm by DLS™.

The following example illustrates the use of the DLS™ algorithm.

Ezample 5. Assume that the DCA is of the form 32Ve « = 2V & = a, and let T'
be the second-order formula

APVeVy[(P(x)V-P(y)V R(a)) ATz=P(2) AJudP(u)]A(F2Ve ¢ = zVae = a). (11)

We first Skolemize DCA and obtain Va(z = bV 2z = a). We then try to eliminate
the quantifier 3¢ from formula (11) using the DLS algorithm. In this case, one
first Skolemizes one of the first-order existential quantifiers. Whichever is chosen,
we are then faced with a non-separated formula. Due to this, the DLS algorithm
fails. If instead one uses the DLS* algorithm, we first eliminate one of the
existential quantifiers, say Ju, by applying equivalence (9) and obtain

FB[DCA A ISV y(B(x) V ~D(y) V R(a)) A Jz=d(2) A (B(b) V B(a)))]. (12)



Formula (12) is not separated. We thus apply equivalence (10) to quantifier Yy
and obtain:

FB[DCA A ISV ((D(x) V ~B(b) V R(a)) A (S(z) V ~B(a) V R(a)))  (13)
ATz B(2) A (B(b) V B(a)))].

(13) is equivalent to

F[DCOA A [3B(Fz=d(2) AVad(z) A (BB V B(a))] vV (14)
[36(3z=B(2) A (=B(b) V R(a)) A (=B(a) V R(a)) A (B(b) V D(a)))]

It is easily observed that each disjunct is in separated form, and no additional
skolemization 1s necessary, so application of the basic DLS algorithm results in
a first-order formula equivalent to (14).

6 Reducing General Domain Circumscription

In this section we provide some reducibility results concerning various variants of
general domain circumscription. In what follows, we assume that theories under
consideration contain at least one individual constant symbol.

6.1 Fixed GDC

Universal Theories In Example 1, we saw that domain circumscription may
allow the derivation of the domain closure axiom. It turns out that for universal
theories without function constants this is always the case. Moreover, as the next
theorem shows, if 7" 1s a theory of that type, then the domain circumscription
of T is equivalent to T'A DCA(T).

Theorem 13. Let T be a universal theory without function symbols. Then
CIRCp(T) is always reducible into first-order logic using the DLS algorithm.
Moreover, if A is the resulting formula, then A is equivalent to T AN DCA(T).

Observe that according to our assumption, we consider only theories that
contain at least one individual constant. This is only a technical assumption. If
T has no individual constant symbols then

CIRCp(T) = TAYP[Ix &(x) D Vz &(2)].
After negating the second conjunct of this formula we obtain
AP[Fx P(x) A 2P (2)],

which, after applying the DLS algorithm, results in the equivalent Jz3z[z # «].
Thus CIRCp(T) = T AVaVz(x = 2).



Semi-Universal Theories As regards semi-universal theories without function
symbols we have the following theorem:

Theorem 14. Let T be a semi-universal theory without function symbols. Then
CIRCp(T) is always reducible into first-order logic using the DLS algorithm.
Moreover, if A s the resulting formula, then A implies DC’A+k(T), where k 1s
the number of existential quantifiers of T'.

6.2 Variable GDC

For universal and semi-universal theories; we have the following counterparts of
Theorems 13 and 14:

Universal Theories

Theorem 15. Let T' be a universal theory without function symbols and suppose

that P is a tuple of predicate symbols occurring in T. Then CIRCp(T;(P)) is
always reducible into first-order logic using the DLS* algorithm. Moreover, if A
is the resulting formula, then A implies DCA(T).

For theories with varied individual constants the following theorem holds.

Theorem 16. Let T be a universal theory without function symbols. Let P be a
tuple of predicate symbols and ¢ be a tuple of individual constants occurring in T
Then C’IRC’D(T;?; ) is always reducible into first-order logic using the DLS*
algorithm. Moreover, if A is the resulting formula, then A implies DC’A_Z(T).

The following example varies an individual constant.

FEzample 6. Consider the theory T given by

Al. S(e) AS(d)
A2.¥z R(x,c) = R(z,d)
A3.Vz=R(z,¢) AVy-R(y,d) AVz-R(z, z).

This example is taken from [12]. Here S(z), R(z,y), ¢ and d are to be read “the
evidence says that x saw the victim alive”, “the evidence says that x saw the
victim alive after y saw her alive for the last time”, “murderer” and “suspect”,
respectively. Suppose further that the police try to find all individuals who sat-
isfy exactly those formulas that the (unknown) murderer ¢ does, by comparing
what is provable about the murderer with what is provable about a particular
individual. To formalize this type of procedure, we should minimize the domain
under consideration with all constant symbols fixed, except that referring to the
murderer which is allowed to vary. In our case, we minimize the domain of T'
with variable ¢. The intended conclusion 1s d = ¢.



The second-order part of Cirep(T, (), (¢)), after simplifications, is equivalent
to

Ve NO[P(x) AP(d) A S(x:) ANV2(P(x) D (mR(x,2.) V R(x,d)) (15)
AR(z,x.) V- R(2,d)) AVe(P(x) D Rz, 2.)) D VsP(s)].

Negating (15), we obtain

o 3P[P(x.) AP(d) A S(ze) AVe(=P(x) V ~R(x, 2.) V R(z, d))A (16)
(=@(x)V R(z,z.) V- R(z,d)) AVe(=P(x) V - R(z, x.)) A Ts=P(s)]

which is transformed by the DLS algorithm to
3532, IOV2[(D(2) V (2 £ we A # d)) A S(x.) AVa(~D(x) V = R(x, 2.)) A —D(s)]
and then, after the application of Ackermann’s Lemma, to

3530 [S(e) AVe((x # 2o Ax £ d)V Rz, x) AN(s £x.As#d)]. (17)
Negating (17), we obtain

VsV, [S(z.) AVe((z £ 2. ANe £ d)V -R(x,2.) D (s # 2. As # d)]
and so, Ciirep (T, (), (¢)) =

T AVsVz [S(z) AVe((z £ e. Ae £ d)V —R(z,2.) D (s # z. Ns #d)]

Tt is easily seen, substituting d for z., that Cirep (7, (), (¢)) E d = c.

Semi-Universal Theories

Theorem 17. Let T be a semi-universal theory without function symbols and
suppose that P is a tuple of predicate symbols occurring in T'. Then CIRCp(T; P)
15 always reducible into first-order logic using the DLS* algorithm. Moreover, if
A s the resulting formula, then A implies DC’Ak(T), where k 1s the number of
existential quantifiers of T.

The following theorem generalizes Theorem 16 to semi-universal theories.

Theorem 18. Let T be a semi-universal theory without function symbols. Let
P be a tuple of predicate symbols and € be a tuple of individual constants occur-
ring in 1. Then C’IRC’D(T;?; ¢) is always reducible into first-order logic using
the DLS* algorithm. Moreover, if A s the resulting formula, then A implies
DC’A_E‘H“(T), where k is the number of existential quantifiers of T.

A reduction of variable domain circumscription for a semi-universal theory
is illustrated below.



Frample 7. Let T consist of Jx Q(x) A[Q(a) D Jy y # a]. This example is taken
from [8]. The intended conclusion of domain circumscription with @ allowed to
vary is JygVe c =y Vo = a.
We reduce CIRCp(T;(Q); (). The second-order part of CTRCp(T;(Q); ()
(after removing Jxd(x)) is
VIVP[[P(a) A Fu(P(2) AT (2)) A (F(a) D Y(P(y) Ay # a))] D VzP(2)]. (18)
Negating (18), we obtain
AIP[P(a) A Fu(P(x) AT (x)) A (P(a) D Fy(P(y) Ay # a))] A Jz—=P(z),
which is equivalent to
e FyFzTTIP[P(a) AP(x) AT () A (=¥ (a) V (P(y) Ay # a)) A —=P(2)],
which is equivalent to
FxFyFzI0IAP[P(a) AP(x) AT (2) A (R (a) V (P(y) Ay # a)) AVH(—P(t) VL # z)].
Applying Ackermann’s Lemma to (19), we eliminate @ and obtain 1)
eIy [a# z A £ 2zAT(e)AN (T (a)V (y £z Ay #£ a)),
which is equivalent to
FeIyFzTa £z A £ 2 AV TR)VEZ 2)A (P (a)V (y £ 2 Ay £ a))]. (20)
Applying Ackermann’s Lemma to (20), we eliminate ¥ and obtain
JeFyAzla £z AN (afaV (y# 2z Ay #a)). (21)
The negation of (21) is
VeVyVzla=zV(a=2A(y=2zVy=a)).
Thus,

CIRCp(T;(Q); ) =T AYaVyzla=zV(a=2 A (y=2zVy=a))

It is easily verified that CTRCp(T;(Q);()) implies IyVae z =y V& = a.



6.3 Arbitrary Theories and Functions

A fixpoint generalization of the basic DLS algorithm (DLSTX) is described in
[11], applied in [4] to the class of semi-Horn formulas, and applied in [5] to general
domain circumscription. Due to page limitations, we can only briefly describe
the latter results:

— For arbitrary domain circumscribed theories without functions, neither the
DLS algorithm nor its fixpoint generalization DLSTX, guarantee a reduction
to classical first-order logic. However reductions can sometimes be obtained
using DL S,

— For arbitrary domain circumscribed theories with functions, the DLS algo-
rithm always fails. However, the following results apply.

Theorem19. Let T be a semi-universal theory. Then CIRCp(T) is always
reducible into firpoint logic using the DLST algorithm.

If one can show that the fixpoint formula output by the DLS™ algorithm is
bounded, then the input formula is reducible to classical first-order logic.

Theorem 20. Let T be a theory and let P be the tuple of all predicate symbols
occurring in T'. Suppose further that T has a (?, T)-minimal model and car-
dinalities of all such models have the same finite common upper bound. Then
CIRCp(T; P; f) can be reduced into an equivalent first-order sentence using the
DLS* algorithm.

7 Combining Domain Circumscription with Arbitrary
Circumscriptions

Theorem 11 states that given a second-order theory 7', if one can show that
the domain closure axiom is entailed by 7', then T is reducible to a first-order
formula using DLS™. There is a direct connection between this result and the
reduction of arbitrary circumscriptive policies applied to a certain class of domain
circumscribed theories. The connection works as follows:

1. We know that given a semi-universal theory 7', the domain circumscription of
T, Cirepe(T; P; f)6, can be reduced to its first-order equivalent using DLS™.
In addition, the DCA used in the DLS* algorithm can be constructively
generated.

2. Suppose the result of Circpc(T; P, f) is T". Observe that for any arbitrary

circumscription Circso(T"; P; f), applied to T” that
Circso(T'; P; f) = Circso(T' A DCA; P; f).

6 f is restricted to individual constants.



3. Since the DLS algorithm can only fail when unskolemization or non-separatedness
occur, and we have shown how to avoid these problems for theories which
entail the DCA, it follows that Circso(T"; P; f) is always reducible to a
first-order formula using DLS* with the DCA.

In summary, we have the following result.

For any semi-universal first-order theory without functions and any
arbitrary circumscription policy applied to the theory, the DLS* algo-
rithm will always reduce the circumscribed theory to a logically equiv-
alent first-order formula, provided that the theory is first circumscribed
using domain circumscription.

The reduction process i1s achieved as follows.

1. Given a semi-universal theory T', constructively generate the DCA for T
using the procedure described in the proof of Theorem 18.

2. Apply DLS* to T resulting in the output 7”.

3. Apply DLS* to the arbitrary circumscriptive policy applied to 7" using the
previously generated DCA. This results in 7", a first-order formula logically
equivalent to the latter arbitrary circumscription.

The following example illustrates the technique. To save space, we will first
domain circumscribe the following theory and then apply a particular circum-
scription to the original theory in conjunction with the generated DCA.

FEzample 8. Let T consist of

Al. Ab(a)
A2 YaVyAb(x) A S(y,z) D Ab(y)
A3. FaVyS(y, x)

where Ab and S stand for Abnormal and Son-of, respectively.
The DCA entailed by the domain circumseription CTRCp(T) is”

AVe(r =zVae =a) (22)

(22) can be constructively generated using the procedure described in the proof
of Theorem 18.

In the next phase, we would like to minimize the predicate Ab relative to T'A
DCA. Let T” denote the first-order formula output by application of the DLS*
algorithm to CTRCp(T). Since T' |= DC' A and CTRCs0o(T; Ab) = CIRCs0(TA
DCA; Ab), the DLS* algorithm can be applied to CIRCgo(T; Ab) using the
DC A with a guarantee that the output of DLS* will be a formula in classical
first-order logic, logically equivalent to CTRCgo(T; Ab) A DC'A. In fact, the
output of DLS™ is

Az[ Ve(x =2V e =a)
AVz(—Ab(2)V —=S(z,2) V Ab(2)) A FaeVyS(y, x) A Ab(a)
A(S(z,a) V S(a,a) VV¥dIenS(e,d) V Ve(a = e V ~Ab(e)))].

7 In this example, by DCA, we mean DCA*!.



References

10.

11.

12.

13.

. Ackermann, W. (1935) Untersuchungen tber das Eliminationsproblem der mathe-

matischen Logik, Mathematische Annalen, 110, 390-413.

. Davis, M. (1980) The Mathematics of Non-Monotonic Reasoning, Artificial Intel-

ligence J., 13, 73-80.

. Doherty, P., Lukaszewicz, W., Szalas, A. (1994) Computing Circumscription Re-

visited. A Reduction Algorithm, Technical Report LiTH-TDA-R-94-42, Linkoping
University, 1994. Also in, Proc. 14th IJCAI, 1995, Montreal, Canada.® Full version
to appear in Journal of Automated Reasoning.’

. Doherty, P., Lukaszewicz, W., Szalas, A. (1995) A Reduction Result for Circum-

scribed Semi-Horn Formulas, To appear in Fundamenta Informaticae, 1996.

. Doherty, P., Lukaszewicz, W., Szalas, A. (1995) General Domain Circumscription

and its First-Order Reduction, Technical Report LiTH-IDA-R-96-01, Linkoping
University.

. Etherington, D. W., Mercer, R. (1987) Domain Circumscription: A Revaluation,

Computational Intelligence, 3, 94-99.
Hintikka, J. (1988) Model Minimization — An Alternative to Circumscription, Jour-
nal of Automated Reasoning, 4,1-13.

. Loreng, S. (1994) A Tableau Prover for Domain Minimization, Journal of Auto-

mated Reasoning, 13, 375-390.

. Lukaszewicz, W. (1990) Non-Monotonic Reasoning - Formalization of Common-

sense Reasoning, Ellis Horwood Series in Artificial Intelligence. Ellis Horwood,
1990.

McCarthy, J. (1977) Episternological Problems of Artificial Intelligence, in: Proc.
5th IJCAI, Cambridge, MA, 1977, 1038-1044.

Nonnengart, A., Szalas, A. (1995) A Fizpoint Approach to Second-Order Quantifier
Elimination with Applications to Correspondence Theory, Report of Max-Planck-
Institut fur Informatik, MPI-I-95-2-007, Saarbricken, Germany.

Suchanek, M. A. (1993) First-Order Syntactic Characterizations of Minimal En-
talment, Domain-Minimal Fntailment, and Herbrand Entailment, Journal of Au-
tomated Reasoning, 10, 237-263.

Szalas, A. (1993) On the Correspondence Between Modal and Classical Logic: an
Automated Approach, Journal of Logic and Computation, 3, 605-620.

This article was processed using the #TEX macro package with LLNCS style

& To try out the algorithm: http://www.ida.liu.se/labs/kplab/projects/dls/ .
® ftp://ftp.ida.liu.se/pub/labs/kplab/people/patdo/jal-final.ps.gz.



