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Abstract. In this paper, we propose a framework that provides softagents
with the ability to askapproximatequestions to each other in the context of het-
erogeneous ontologies. The framework combines the usegaf-based tech-
nigues with ideas from rough set theory. Initial queries byagent are trans-
formed into approximate queries using weakest sufficiedistongest necessary
conditions on the query and are interpreted as lower andriuggg@oximations
on the query. Once the base communication ability is pral/ittee framework is
extended to situations where there is not only a mismatalideat agent ontolo-
gies, but the agents have varying ability to perceive theitirenments. These
limitations on perceptive capability are formalized usthg idea of tolerance
spaces.

1 Introduction

With the inception of the World-Wide Web (WWW), a distribdteaformation infras-
tructure has been set up containing a vast repository ofrimdtion resources. This
infrastructure is designed primarily for human use, wittidisupport for the deploy-
ment of software agents which can take advantage of thesaniafion resources to
assist humans in accomplishing a number of different in&girom processing and gath-
ering tasks. The next stage in the evolution of the the WWW isrthance the current
infrastructure with support for explicit, machine accbksidescriptions of informa-
tion content on the Web. These machine accessible desecrgtif information content
should be usable and understandable by machines, in gartgnftware agents. Tim
Berners-Lee has used the teBemantic Web- a web of data that can be processed
directly or indirectly by machines[3], to describe this hpkase in the evolution of the
Web.

The meaning or semantics of diverse information contenthd&® accessible to soft-
ware agents for use and reasoning if sophisticated knowledgnsive tasks are to be
automated in the Web context. Most importantly, just as mswaoperate and commu-
nicate in a common language and conceptual space in ordehteva complex tasks,
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so will software agents, both with other software agentswatidl humans. There is a
great deal of research activity in this area, particularlpiioviding the necessary tools
to support communication among agents and constructionsedf sharedntologies

Webster'’s dictionary definemtologyas,
“the branch of metaphysics dealing with the nature of beingality”.

In artificial intelligence, more specifically knowledge repentation, the term is used
somewhat more pragmatically to describe how we chooseit®“gp” reality and rep-
resent these choices in representational structures oseddsoning about agent en-
vironments at various levels of abstraction. One common efdglicing” or concep-
tualizing is to specify a base set of individuals, propeitielations and dependencies
between them. This choice is particularly amenable to égs$tifarward use of logic as
a representational tool.

In knowledge engineering circles, the term “ontology” heleein on a related but some-
what different meaning as explicit computational struesiwhich “provide a machine-
processible semantics of information sources that can imezmicated between differ-
ent agents (software and human)”[9]. Ontologies are uséatititate the construction

of domain models and to provide the vocabulary and relatis®sl in this process.
Gruber [11] provides the following definition:

“An ontology is a formal, explicit specification of a sharazhceptualization.”

The intention is that ontologies should facilitate the udenowledge sharing and reuse
among software agents and humans alike.

Just as the Web is currently a heterogeneous collectionfofnmation sources, it is
reasonable to assume that the future semantic web willdectucollection of hetero-
geneous domain-specific ontologies, sometimes with seécnangyntactic overlap and
sometimes not. One particularly relevant issue demandiagtéon is how two or more
software agents can communicate in a cooperative task viteea is a mismatch be-
tween the particular ontologies each has access to. Thigdiffi@ult problem which
demands a number of different solutions since the naturbeofyipes of mismatch in
ontologies will vary within both the syntactic and semapectrum.

A number of different approaches to resolving the problemsahmunication in the
context of heterogeneous ontologies have been proposée iliterature. Bailin and
Truszkowski [2] provide a useful classification along thédiwing lines, each with
their own strengths and weaknesses:

— Standardization of ontologies- Develop standard ontologies for specific domains
and acquire agreement upon them.

— Aggregation of ontologies— Develop broader ontologies that include the multi-
plicity of smaller ontologies and provide the expert in oredfiwith access to the
vocabulary and definitions of the related fields.

— Integration of ontologies— Use a variety of alignment techniques and supplement
the original ontologies with mappings that link correspioigcbr related concepts.



On Mutual Understanding among Communicating Agents 3

— Mediation between ontologies- Originally proposed in the context of heteroge-
neous databases, mediators are pieces of software thsiatebetween different
schemata (ontologies). A request for information arrivies enediator in terms of
one or more ontologies; the mediator translates this int@pgmopriate request us-
ing the ontologies at the information source; the outputénttranslated back into
an ontological form understandable by the sender of theastqu

In this paper, we will propose a number of logic-based taphes combined with ideas
from rough set theory that can provide software agents \withability to askapproxi-
matequestions to each other in the context of heterogeneoubgigs. The techniques
assume that some integration of existing ontologies has pewvided. The idea of a
mediator is implicit in the approach but is transparent t® tommunicating agents
since each agent has its own mediator which only generatreguanother agent can
answer given a particular context.

Once the base communication ability is provided, we willeext the idea to situa-
tions where there is not only a mismatch between agent ayiedpbut the agents have
varying ability to perceive their environments. Even thbtigey may have concepts in
common, their ability to perceive individuals as havingafie properties or relations
will be distinct. The question then is how this affects thesfions that can be asked and
the replies that can be generated by agents with perceptimtiéns limited to varying
degrees.

Figure 1 provides a useful schematic of the basic problenttamdssumptions made in
the problem specification.
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Fig. 1. Problem specification.
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Assume agentlg; has a local ontology consisting of concepts/relation®irand S

and that concepts/relations i have previously been aligned with thosefina subset
from a global ontology repository assumed accessible tadgieet community in ques-
tion. In addition,Ag;’s knowledge base contains a mapping theory which represent
dependencies between various concepts/relatioRsandS. These are assumed to be
logical formulas in a fragment of first-order logic repretien some sufficient and nec-
essary conditions for concepts/relationsirandS. Ag,’s database can contain rough
set approximations of concepts/relationsi) R andsS.

Assume similarly, that agemtgs has a local ontology consisting of concepts/relations
in R andQ and that concepts/relations R’ have previously been aligned with those
in R, the same subset thatgl has alignedR’ with. In addition, Ag>’s knowledge
base contains a mapping theory which represents depeeddrativeen various con-
cepts/relations iR and Q representing some sufficient and necessary conditions for
concepts/relations iR and@. Ag.'s database can contain rough set approximations of
concepts/relations i”, R andQ.

From an external perspective, ageAts andAg, have concepts/relations fain com-
mon and therefore a common language to communicate, but atthe timeAg; has
the additional concepts/relatiossdisjoint from Ag,, and Ag, has the additional con-
cepts/relations) disjoint from Ag;. When reasoning about the world and in asking
questions to other agents, it is only natural tHgt would like to use concepts from
R’, R andS. In a similar mannerAg, would like to use concepts from”, R and

Q. Since we assume alignment of bd® and R” with R, and that both agents know
they haveR in common, the communication issue reduces to that betweewo
sub-languages using vocabulariesS andR,Q.

Suppose agentlg; wants to ask agentlg, a question inAg;’'s own language. We
will assume that any first-order or fixpoint formula using cepts/relations fronk, S
can be used to represent the question. To do thig, will supply the querya to its
mediation function in addition to its mapping thedfyR, S). The mediation function
will return a new approximate query consisting of

— the weakest sufficient condition ef under theoryl’(R, S) in the sub-language
consisting of concepts/relations frofhand

— the strongest necessary conditioncofinder theoryT'(R, S) in the sub-language
consisting of concepts/relations froR

Both these formulas can be understood by agatbecause they are formulated using
concepts/relations thalg, can understand and that can be used to query its rough
relational database for a reply ty;. More importantly, it can be formally shown that
agentAg; can not ask a question more informative, under the assungptie have
made.

In the remainder of the paper, we will provide the detailstfogs communicative func-
tionality for software agents in the context of heterogerseontologies/schemata. We
do this by first introducing rough set theory, weakest sudfitand strongest necessary
conditions, and the connection to approximate queries.h&®| extend the results by



On Mutual Understanding among Communicating Agents 5

introducing tolerance spaces. Tolerance spaces forniatiations on an agent’s per-
ceptive capabilities. Such limitations influence the ggtbrof the queries and replies
generated by these agents. Some of these ideas were dyiginedented separately
in [6] and [7]. This paper combines and extends the two.

2 Rough Sets

The methodology we propose in this paper uses a number of &saciated with rough
set theory which was introduced by Pawlak (see, e.g., [16]nany Al applications
one faces the problem of representing and processing inetenpmprecise, and ap-
proximate data. Many of these applications require the fisgproximate reasoning
techniques. The assumption that objects can be observedwalgh the information
available about them leads to the view that knowledge ablojects in themselves, is
insufficient for characterizing sets or relations pregiséle thus assume that any im-
precise conceptis replaced by a pair of precise concepésiahle lower and the upper
approximation of the imprecise concept, where

— the lower approximation consists of all objects which wiéntainty belong to the

concept

— the upper approximation consists of all objects for whicls ipossible that they
belong to the concept

— the complement of the upper approximation consists of gétab which with cer-
tainty do not belong to the concept

— the difference between the upper and the lower approximatastitutes a bound-
ary region of an imprecise concept, i.e. the set of elementwlfich it is unknown
whether they belong to the concept.

More precisely, by a rough s&twe shall understand a pafr= (X,Y"), whereX C Y.
The setX is interpreted as thiwwer approximatiorof Z andY as theupper approxi-
mationof Z. We also use the notatigfi™ andZ® to denoteX andY’, respectively. By
Z~ we denote the complement 8. Theboundary regiorof Z, defined asz® — Z T,
is denoted byZ*.

By a rough querywe shall understand it as a pdi)’, Q”), where@’ and Q" are
formulas of a given logic such that for any underlying dasga, D = Q' — Q".
By (Q’, Q") p we denote the result of evaluating the quégy, Q") in the databas®.
In essence, a rough query provides an upper and lower appativn on the original
crisp query.

3 Strongest Necessary and Weakest Sufficient Conditions

The strongest necessary and weakest sufficient condiasnsderstood in this paper
and defined below, have been introduced in [13] and furthezldped in [6].

3 We deal with relational databases where queries are fotetlils first-order or fixpoint for-
mulas (for textbooks on this approach see, e.g., [1, 8, 12]).
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Definition 3.1. By a necessary condition of a formuleon the set of relation symbols
P undertheory” we shall understand any formufacontaining only symbols iff such
thatT = o — ¢. Itis thestrongest necessary conditjatenoted bYsNC(«; T'; P) if,
additionally, for any necessary conditignof o on P underT, T = ¢ — ¢ holds. =

Definition 3.2. By a sufficient condition of a formula on the set of relation symbols
P under theoryI’ we shall understand any formula containing only symbols i#®
such thatl’ = ¢ — «. It is theweakest sufficient conditigmlenoted byVSC(«; T'; P)
if, additionally, for any sufficient conditiont of « on P underT', T = ¢ — ¢ holds.=

The setP in Definitions 3.1 and 3.2 is referred to as theget language
The following lemma has been proven in [6].

Lemma 3.3. For any formulac, any set of relation symbolB and theoryT” such that
the set of free variables df is disjoint with the set of free variables af

— the strongest necessary condit®NC(«; T'; P) is defined bydd.[T A o],
— the weakest sufficient conditioMSC(a; T'; P) is defined byw®.[T — a],

where® consists of all relation symbols appearingihanda but not inP. "

The above characterizations are second-order. Howeves, lrge class of formulas,
one can obtain logically equivalent first-order formulase(se.g., [4, 10]) or fixpoint

formulas (see, e.qg., [14, 15]) by applying techniques foniglating second-order quan-
tifiers, Below we quote the result of [15] (Theorem 3.4), whadlows one to eliminate

second-order quantifiers for formulas of a certain form.

Let e, t be any expressions andany subexpression ef By e(s := t) we shall mean
the expression obtained fromby substituting each occurrence oty ¢. Let a(Z)

be a formula with free variables Then by«(z)[a] we shall mean the application of
«(z) to arguments. In what followslfp ¢.a(®) andgfp @.«a(P) denote the least and
greatest fixpoint operators, respectively. A formals positive(respectivelynegativg

wrt relation symbolp if it appears ina under an even (respectively odd) number of
negations only.

Theorem 3.4. Assume that all occurrences of the predicate varighitethe formulas
bind only variables and that formutais positive w.r.t®.

— if B is negative w.r.t¢ then
3PV (@) — 2(H)] A [B(-P)] = BIE(T) := Ifp B(y).(P)[t]] 1)

* It is assumed here that all implications of the fopm— ¢ are substituted byp Vv ¢ and all
equivalences of the form = ¢ are substituted by—p Vv q) A (=g V p).
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— if §is positive w.r.t® then

JBVy([D(y) — a(P)] A [B(D)]

BlO(t) == gfp (y).c( @) [2]]- (2)

The resulting formula provided by Theorem 3.4 is a fixpointrala. If the input for-
mula is non-recursive wrt relations that are to be elimidatieen the resulting formula
is a first-order formul The input formula can also be a conjunction of the form (1) or
a conjunction of formulas of the form (2) since those confioms can be transformed
equivalently to a form required in Theorem 3.4.

4 Agent Communication with Heterogeneous Ontologies

The original proposal for developing a communicative fiomeality for agents in the
context of heterogeneous ontologies/schemata was édtiat [6]. In this case, only
strongest necessary conditions replaced the originalycared no appeal was made to
approximate queries or rough set database. Let us now fultivelop the idea by using
the proposal described in Section 1.

In this case, we assume an agdpt wants to ask a questiap to an agentdg,. Agent
Ag; can use any of the terms R, S, where the terms i are unknown to agemntgs,
while both have the terms iR in common. Letl'(R, S) be a mapping theory in agent
Ag,'s knowledge base describing some relationships betueandsS. It is then natural
for agentAg, to use its mediation function to first compute the weakedicsent condi-
tionWSC(Q; T(R, S); R) and the strongest necessary condis®C(Q; T'(R, S); R),

with the target language restricted to the common agentbudasy R and then to re-
place the original query by the computed conditions.

The new query is generally not as precise as the originallmrtés the best that can be
asked. Namely,

— the weakest sufficient condition provides one with tuplesiang the query with
certainty

— the strongest necessary condition provides one with tupkgsmight satisfy the
query

— the complement of the strongest necessary condition peevade with tuples that
with certainty do not satisfy the query.

Observe that the difference between the strongest negessathe weakest sufficient
conditions contains tuples for which it is unknown whetleytdo or do not satisfy the

query.

5 In such a case fixpoint operators appearing on the righthiies sf formulas (1) and (2) are
simply to be removed.



8 P. Doherty, W. Lukaszewicz, A. Szatas

In summary, instead of asking the original quérwhich can be an arbitrary first-order
or fixpoint formula, agentlg; will ask a pair of queries

(WSC(Q; T (R, S); R), SNC(Q; (R, S); R))

which represent the the lower and upper approximatiof of he following example
illustrates the idea.

Example 4.1.Consider a situation where a ground operator (agefat) is communi-
cating with a UAV® (agentAgy ), which is flying over a road segment. Assumey
can provide information about the following rough relagpR, and thatdg,- has these
in common withAgq:

(x,y) — there is a visible connection between objectndy
S( ,y) — the distance between objeataindy is small
— E(z,y) — objectse andy have equal speed
— C(z, z) — objectz has colorz.

We can assume that the concepts “visible connection”, “stistiance” and “color”
were acquired via machine learning techniques with samgaie glenerated from video
logs provided by a UAV on previous flights while flying over sian road systems with
traffic.

Assume also that agentgc has a vocabulary consisting &%, in addition to other
relationsS, not known byAgy . S also includes a relatiofon(z,y), denoting that
objectsr andy are connected. Suppose thaj, knows the following facts abouton
which are included iMg¢’s knowledge base:
Va,y.[V(z,y) — Con(z,y)] 3)
Va,y.[Con(z,y) — (S(z,y) A E(z,y))] 4)
and that (3) and (4) are consistent (checking the consigt@iguch formulas with the
contents ofdgs’s database can be done efficiently - see [5]).
Supposedgqs wants to askAgy for information about all connected brown objects
currently perceived bylgy . This can be represented as the following query,
Con(z,y) A C(z,b) A C(y,b), ()

whereb stands fobrown

SinceAgy can notunderstand queries with the teFian, Agc has to reformulate query
(5) using only terms ink which are also understood b¥gy,. The most informative
query it can then ask is:

(WSC((5); B) A (4):{V; S, E, C}),SNC((5); (3) A (4):{V, S, E, C})). (6)

8 Unmanned Aerial Vehicle.
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By applying Lemma 3.3 and Theorem 3.4 one obtaihs following equivalent formu-
lation of (6):

(V(x,y) ANC(z,b) A C(y,b), (7
S(z,y) A E(z,y) A C(z,b) A C(y,b)). (8)

Observe that objects perceived Ry satisfying (7) belong to the lower approximation
of the set of objects satisfying the original query (5) angeots perceived bygy
satisfying (8) belong to the upper approximation of the dephjects satisfying the
original query (5). Thus:

— all objects satisfying formula (7) satisfy the original qués)

— all objects not satisfying formula (8) do not satisfy thegamal query (5)

— on the basis of the available information and the capadilitf Agy, it remains
unknown to Age whether objects satisfying formul@8) A —=(7)) do or do not
satisfy the original query (5).

Suppose Table 1 represents the actual situation on the egagent as sensed by,
whereb, dr, r stand for “brown”, “dark red” and “red”, respectively. Tabl represents

[Objec{lV] S | E [C]

1 21 2,5(2,5|b
2 1(1,3,41,3,4b
3 -1 2 2 |b
4 -1 2 2 |r
5 -1 1 |dr

Table 1. Actual situation on the road segment considered in Examfle 4

these relations by indicating, for each perceived objeith which entities a given re-
lation holds. For example, the first row indicates that, 2), S(1,2), S(1,5), E(1, 2),
E(1,5) andC(1, b) hold.

Query (6), approximating the original query (5), computedrahe database shown in
Table 1, results in the following

{(1,2), (2,1}, {(1,2),(2,1),(2,3), (3,2)}),

which will be returned as an answerAg’s original query. In consequencég: will
know that tupleg1, 2), (2, 1) satisfy the query (5), tuple®, 3), (3, 2) might satisfy the
query and, for example, the tup{é, 5) does not satisfy the query (in fact, object 5 is
not brown). .

" These steps can be computed automatically.
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5 Tolerance Spaces

Tolerance spaces have been introduced in [7]. Technith#y, allow us to partition a
universe of individuals into indiscernibility or toleramclasses based on a parameter-
ized tolerance relation. They provide a basis for dealinp wie inaccuracy of agent
perception capabilities.

Definition 5.1. By atolerance functiolon a sef/ we mean any function: U xU —
[0, 1] such that for allx, y € U,

T(z,z) =1 and 7(z,y) = 7(y, x). .

Definition 5.2. For p € [0, 1] by atolerance relation to a degree at leastased orr,
we mean the relation? given by

7 E (o, y) | 7(z,y) > ).

The relationr? is also called thgparameterized tolerance relation "

In what follows,7?(z, y) is used to denote the characteristic function for the refati
7P. For a tuplez = (uq,...,u;) of elements of the domain, by’ (2) we denote the
tuple of neighborhood&® (u,), ..., 7P (uk)).

A parameterized tolerance relation is used to construetdate neighborhoods for
individuals.

Definition 5.3. By aneighborhood function wrt? we mean a function given by
0 (u) € {u € U | 72 (u,u) holds).
By aneighborhood of: wrt 77 we mean the value™ (u). .

The concept of tolerance spaces plays a fundamental rolgriapproach.
Definition 5.4. Atolerance spacis defined as the tuplES = (U, 7, p), consisting of

— a nonempty sdt/, called thedomainof TS
— atolerance function
— atolerance parametere [0, 1]. .

Consider a tolerance spa€& = (U, 7, p), and a relational database with univetsé
When an agent does not perceive a difference between sifwitaa given tolerance
function) objects, it instead perceives a difference betweeighborhoods of elements
rather than with elements themselves. In this case, a gtionilof a database can be
generated based on neighborhoods of individuals, as ddjeled.

8 Here we focus on relational databases only. The extensiarbitrary relational structures is
presented in [7].
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Definition 5.5. LetM = (U, {r;};cs) be arelational database arilS = (U, 7, p) be
a tolerance space. Bygranulation ofM wrt TS, we mean the structure

MTS — <UTS, {TJTS}]'EJ>
in which:

—yrs {n™"(u) : u € U} is the set of all neighborhoods of elementg/in
— forj € J, if r; is ak-ary relation, then”S C U x ... x U”¥ is defined by

k times
) def def
roS(nTp(xl),...,nTp(xk)) = nTp(rj(ml,...,qck)) =
3,3 en ™ (@) AL AT €nT (o) Ay (e, o))

For any formulac, by o we understand it to be the formutain which any reference
to a relation symbol, saR, is replaced byR”S. =

|Objec{] V| S | E | C ]

{1} {2} {25, {5} | {2},{5} [{b.dr}
{2 |{1H{2} {3} {41 |{1}, {3}, {4}|{Db, dr}

{3} {2} {2t |{b.dr}
{4 | - {2} {2} {r}
{5t || - {1} {1 |{b,dr}

Table 2. Granulation of the relational database in Example 5.6,€erahkrt the perception capa-
bilities of agentAgy .

Example 5.6.Consider the granulation of the relational database usécample 4.1
(see Table 1) wrt the tolerance spacgy = (U, v, pv), whereri identifies equal
elements and additionallyr with b. The resulting granulation is presented in Table 2.
Observe that the arguments to relations are now neighbdgiaduced by the associ-
ated tolerance space. Note that several tolerance spagiesbeassociated with each
type of data in a table if desired. "

6 Agent Communication with Heterogeneous Perceptive
Capabilities

Consider a multi-agent application in a complex environtseich as the Web where
software agents reside, or a natural disaster in an urbanadrere physical robots re-
side. Each agent will generally have its own view of its eoriment due to a number of
factors such as the use of different sensor suites, knowlstigctures, reasoning pro-
cesses, etc. Agents may also have different understanairige underlying concepts
which are used in their respective representational strestand will measure objects
and phenomena with different accuracy. How then can agetiishfferent knowledge
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structures and perceptive accuracies understand eaateoitheffect meaningful com-
munication and how can this be modeled? In this section, tmdnance spaces and
upper and lower approximations on agent concepts andaetatire used to define a
means for agents to communicate when different sensor iiipaland different levels
of accuracy in knowledge structures are assumed.

In Section 4, we showed how agents could communicate with etler in the context
of heterogeneous ontologies. In this section, we will ecttére approach by assuming
that agents also have different perceptive capabilitibss Will be done by associating
with each agent, one or more tolerance spaces represeetiogptive limitations. The
net result will be that answers to queries will be represkmeerms of neighborhoods
of individuals, where the agent will be unable to determirnéclv of the individuals in
a neighborhood have been perceived. Initial work with thésas may be found in [7].

We begin with a general definition oftalerance agenélso provided in [7].

Definition 6.1. By atolerance agente shall understand any pajig, T'S), WhereAg
is an agent and’S is a tolerance space.

Here we do not define what an agent is specifically, as the fremkewe propose is
independent of the particular details. The assumptionas tie Ag part of a toler-
ance agent consists of common functionalities normallg@ased with agents such as
planners, reactive and other methods, knowledge basesuotwsts, etc. The knowl-
edge bases or structures are also assumed to have a rdlatamzonent consisting
of approximate relations which are derived and viewed thhaihe agents limited sen-
sor capabilities. When the agent introspects and quesemih knowledge base these
limited perceptive capabilities should be reflected in amsweer to a query.

Let us start with the simpler case when communicating tokagents have the same
perception capabilities, i.e., the same tolerance spaces.

Definition 6.2. LetT'S = (U, 7, p) be a tolerance spac&;A; = (Agy,TS), TAz =
(Ag2,T'S) be tolerance agents and 16t = (Q1, Q=) be a rough query asked 13yA;
and answered b{'A,. Let M = (U, {r;},cs) be a relational database. Then the
meaning of) wrt 7S and M is defined agQ?™, Q1) ;. =

Remark 6.3.It is important to note that formula@?™® and@?%*® in Definition 6.2 refer

to neighborhoods. Thus neighborhoods are to be encodediabat®es as first-class
citizens. It can easily be done since the number of neighdmathis not greater than the
number of elements of the underlying domaithus any neighborhood can be encoded
by an element chosen from the neighborhoods. However, infohaws, for the clarity

of presentation we use neighborhoods themselves rathethba encodings. =

Example 6.4.Consider a tolerance agefigy, TSy ), where Agy is as described in
Example 4.1 and the tolerance spdt® is as provided in Example 5.6 (i.elgy does

9 In fact, it usually is much less than the number of elementh@fomain.
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not recognize the difference between coldrandb). According to Definition 6.2, the
approximation (wrfl’Sy) of the query (5), given by(7), (8)), is expressed by

(VTS (,y) A CTSV (2, {b,dr}) A CT5V (y, {b,dr}), (9)
STV (z,y) AN ETSV (2, y) A CTSV (x, {b,dr}) A CTV (y, {b,dr})). (10)

Using the granulations o 75v, §TSv  ETSv and CTSv wrt TSy, from Table 2,
((9), (10)) evaluates to:

{{1 2D, ({25 {1h)},
{120, ({25 {1, ({25, {31, (183 {21, ({11 {51, (3L {1 }). =

Suppose that two tolerance agents have different pereepéipabilities and conse-
quently different tolerance spaces. It will then be neagskadefine the meaning of
queries and answers relative to the two tolerance agentpré\dously advocated, a
tolerance agent, when asked about a relation, answers hy il approximations of
the relation wrt its tolerance space. On the other hand, geatahat asked the query
has to understand the answer provided by the other agerd itstdwn tolerance space.

The dialog between two agents, sByl; (query agent) and’ A, (answer agent), will
then conform to the following schema:

1. T A, asks a question d&Ff A, using a rough querg) = (Q1, Q2)

2. T A, computes the answer approximating it according to its émlee space and
returns as an answer the approximatighs = (Q742, Q1 42)

3. T A, receives A as input and interprets it according to its own tolerancespa
The resulting interpretation provides the answer to theyjas understood by A,

and taking into account the perceptive limitations of bajbras.

This schema will only work properly under the assumption @banmon vocabulary
which has also been assumed in previous sections. The aefmitescribing this inter-
action now follow.

Definition 6.5. LetT'S; = (U, 71,p1), T'S2 = (U, 72, p2) be tolerance spaces defined
over the same domain and letR be a relation. Then the lower and upper approxima-
tions of RT>2 wrt T'S; are defined as

RTSQTsl+ e (@) : RTS2(n™" (@) andn™" (@) € n™t ' ()}
RS g0 & fnrl" (@) : RTS (0m" (@) andn!” (@) 078 (@) £ 0} m
Remark 6.6.The intuition behind Definition 6.5 is that neighborhoodsrespond to

disjunctions. Namely, if an agent returns a neighborhooa @esult, it means that due
to limitations in its perception capabilities, it cannaostitiguish between values in the
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neighborhood and, in consequence, it cannot verify which@falues from the neigh-
borhood is actually perceived. For example, if the neighbod is {brown, red}, it
means that a perceived objecbiswn or red.

In consequence, the accepted notion of satisfiability rnsfléee intuitions of modal
possibility. "

Definition 6.7. LetT A, = (Ag1,T51), TAs = (Ago, T'S>) be tolerance agents with
tolerance spaces as defined in Definition 6.5. (@1, Q2) be a rough query, which

is asked byl"A; and answered by"A,. Then themeaning of the queris given by

approximations{QlTSzTSf, QQTS2TS§B>. .

Example 6.8.Consider the tolerance agefitsgy, T'Sy) and(Aga, T'Sc) where:

— Agy andT'Sy are as described in Examples 4.1 and 6.4
— TS¢ = (U,7¢,pa) such thatr’® identifies equal elements and additionadly
with r.

Supposedgq wants to askdgy for information about the colors of connected objects.
A suitable query expressed in the languagel ¢ is:

Jz,y.[Con(z,y) A C(xz,z1) A C(y, 22)]. (11)
SinceCon is not in Agy’s vocabulary, agentige has to approximate query (11) in a
manner similar to that done in Section 4

(WSC((11); (3) A (4);{V. S, E, C}),SNC((11); (3) A (4):{V, S, E, C})). (12)

By applying Lemma 3.3 and Theorem 3.4gs will obtain the following equivalent
formulation of (12):

(Fz,y.[V(z,y) A C(x, z21) A Cly, z2)],
Az, y.[S(z,y) A E(z,y) AC(z,21) A C(y, 22)])-

Using Definition 6.7, agentigy will then evaluate this rough query in the context of

its perception capabilities, i.e., according to the dagalgranulation given in Table 2.

The answer returned bygy, QA = (QT5V, QT*V) s,

(3, . [VTSV (@, y) A CTSV (2, 21) A CTSV (y, 22)],
31; y'[STSV (l‘, y) A ETSV (l‘, y) A CTSV (Za Zl) A CTSV (ya Z2)]>
ThusAgy will return the following answer tolgq:
({{{b,dr}, {b,dr})}, (13)
{({b,dr},{bdr}), ({b,dr}, {r}), ({r},{b,dr})}). (14)

Age will then compute the final answer by interpreting (13)-(tdlative to its tol-
erance space using Definition 6.7 and the database granusdtown in Table 3. The
final answer,<Q1TSVTSg,QQTSVT52>, is

(0, {{{b},{b}), ({b},{r,dr}), {{r,dr}, {b}), ({r,dr}, {r,dr})}). "
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|Objecf] V| S | E | C |

{1} {2 {2, {5} | {21, {5} | {b}
{24 |[{1H{L) {3} {4} {1}, {3}, {4}] {b}

{3} {2} {2} {b}
{4 | - {2} {2} |{rdr}
{5} || - {1} {1 |{rdr}

ble 3. Granulation of the relational database given in Table 1 \erception capabilities of
entAgcq as defined in Example 6.8.
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