Linképing University | Department of Computer Science
Master thesis, 30 ECTS | Information Technology
2017 | LIU-IDA/LITH-EX-A--17/024--SE

Organ Detection and
Localization in
Radiological Image Volumes

Detektion och lokalisering av organ i
radiologiska bildvolymer

Ola Jigin
Tova Linder

Supervisor : Cyrille Berger
Examiner : Ola Leifler

LINKOPING A
o UNIVERSITY 146 13 28 10 00, www.li.se

http://www.liu.se

Upphovsritt

Detta dokument halls tillgdngligt pa Internet — eller dess framtida erséttare — under 25 ar
fran publiceringsdatum under forutsittning att inga extraordindra omstindigheter uppstar.
Tillgéng till dokumentet innebar tillstdnd for var och en att ldsa, ladda ner, skriva ut enstaka
kopior for enskilt bruk och att anvinda det oférandrat for ickekommersiell forskning och for
undervisning. Overforing av upphovsritten vid en senare tidpunkt kan inte upphéva detta
tillstind. All annan anvéndning av dokumentet kraver upphovsmannens medgivande. For
att garantera dktheten, sakerheten och tillgangligheten finns losningar av teknisk och admin-
istrativ art. Upphovsmannens ideella ritt innefattar ritt att bli ndmnd som upphovsman i
den omfattning som god sed krédver vid anvdandning av dokumentet pa ovan beskrivna sétt
samt skydd mot att dokumentet dndras eller presenteras i sidan form eller i sddant sam-
manhang som &r krankande for upphovsmannenslitterdra eller konstnérliga anseende eller
egenart. For ytterligare information om Linkdping University Electronic Press se forlagets
hemsida http:/ /www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet — or its possible replacement
— for a period of 25 years starting from the date of publication barring exceptional circum-
stances. The online availability of the document implies permanent permission for anyone to
read, to download, or to print out single copies for his/hers own use and to use it unchanged
for non-commercial research and educational purpose. Subsequent transfers of copyright
cannot revoke this permission. All other uses of the document are conditional upon the con-
sent of the copyright owner. The publisher has taken technical and administrative measures
to assure authenticity, security and accessibility. According to intellectual property law the
author has the right to be mentioned when his/her work is accessed as described above and
to be protected against infringement. For additional information about the Linkoping Uni-
versity Electronic Press and its procedures for publication and for assurance of document
integrity, please refer to its www home page: http:/ /www.ep.liu.se/|

Ola Jigin
Tova Linder

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

Using Convolutional Neural Networks for classification of images and for localization and
detection of objects in images is becoming increasingly popular. Within radiology a huge
amount of image data is produced and meta data containing information of what the im-
ages depict is currently added manually by a radiologist.

To aid in streamlining physician’s workflow this study has investigated the possibility
to use Convolutional Neural Networks (CNNs) that are pre-trained on natural images to
automatically detect the presence and location of multiple organs and body-parts in medi-
cal CT images.

The results show promise for multiclass classification with an average precision 89.41%
and average recall 86.40%. This also confirms that a CNN that is pre-trained on natural
images can be succesfully transferred to solve a different task. It was also found that adding
additional data to the dataset does not necessarily result in increased precision and recall
or decreased error rate. It is rather the type of data and used preprocessing techniques that
matter.

Acknowledgments

Thanks to all employees at Sectra Imaging IT Solutions AB for making us feel welcome
and part of your organization during our thesis work. A special thanks to our supervisor
Jonas Strandstedt for being supportive and engaged in our project. The expertise within the
machine learning field provided by Daniel Forsberg and Erik Sjoblom has been extremely
valuable, thanks for supporting our work. We also want to reach out to the project sponsor
Fredrik Hall for the continous progress discussions to determine where to focus our work.

We also want to thank our supervisor and examiner at Linkoping University, Cyrille
Berger and Ola Leifler for keeping the structured and clear schedule for the milestones to
be completed at the university. Thanks to David Berntsen and Robin Abrahamsson for
valuable reviews. Finally we want to thank all of the above mentioned for your honest and
encouraging comments and questions that have taken our work and thesis report to the next
level.

iv

Contents

[Abstract iii
|Acknowledgments| iv
v
vii
[List of Tables] ix
(1 _Introductionl 1
[L1I_Motivationl o o e e e 2
.. 3
1.3 Research Questions| 3
[.4_Delimitations] e 4

1.5 Thesi linel e 4

5
nvolutional ral ksl .. 6

22 Traminga CNN|o o o 10

|Z.3 OBtimization of HZEerEarameterg 13
R4 TmprovingCNNAccuracy]o oo 15

2.5 Classification, Localization and Detection with CNN| o v v v v vt .. 17
[2.6 Data Representation| o 20
27 EvaluationMefrics] 20
3 Method 22
3.1 Frameworks, Platforms and Hardware|. 22
BZ Dafasel]lt 22
B.3 Classificationl. e e 28
B.4 Tocalization and Detectionl. o 31
3.5 Evaluationmetrics| o 32
.6 Experiments| 34
A_Results| 42
4.1 Tuningthe CNN|. o o 42
42 BestModel Evaluationl 45
4.3 Misclassifications| L L o 47
4.4 Predicting Full Stacks|. o o oo o 49
4.5 Reduced Training Set| 53
4.6 Localization with Sliding Window Technique| 54
6 Discussion] 60

.1 Comparison with State-of-the-Art|. 60

b.2 Organ Specific Discussion| 62
B3 UseinPracticel 62
4 Creating Tablesof Content| 63
b.5 Size of Training Dataset] 67
b.6 Improvement of the Predictions| 68
izati jon| 69

.8 ValidityofStudy| oo 71

I iderContextl 73

le__Conclusionl 75
6.1 FutureWorkl 75
Bibliographyj 77
|A_Class Specific Results| 81
AT Metricsl oo 82
1A.2 Confusion Matrices| o v v i e e e e e e 83
Per CI isclassification]o L 83

[B_Localization with Sliding Window Results| 85

List of Figures

2.1 Artificial Neural Networkl 5
2.2 Artificial Neuronl 6
23 Example Feature Map| 7
2.4 Convolutional Operation]. 8
2.5 Max-pooling Operation| 9
2.6 Typical CNN Architecture| 10
R.7 Tog-lossfunction], 12
28 OverfitandUnderfifl 14
3.1 ToolUsed for Labelling|. 23
.2 DICOM patient space coordinate system]|. 25
B.3Sample Images for All Classes|. 27
B4 RescaledImage|, 29
B5 Dataset Splifl 30
4.1 Learning Curves Accuracy -BestModel| 44
4.2 Learning Curves Loss-BestModel| 44
43 PerClassError. 45
B4 PerClassRecalll 46
U5 PerClass Precision| 46
B6 Misclassifications] o 47
4.7 Misclassifications False Negatives| 48
4.8 Misclassifications False Positivesl 48
49 Full BodyStackl 49
410 H I 50
411 HeadStack2l. 50
4.12 Upper Body Stack 1| 51
4.13 Upper Body Stack2|. 51
414 Tower Body StackT]. 52
415 Lower Body Stack 2. 52
4.16 Reduced Training Sets- Error Rate] 53
4.17 Reduced Training Sets - Precision]o oo vt 53
4.18 Reduced Training Sets-Recall|. 54
4.19 Heatmap Bestfor Pelvis| 55
4.20 Heatmaps Worst for Pelvis|. 55
421 Heatmap Bestfor RightLung| 56
422 Heatmap Worstfor RightLung| 56
423 Heatmap BestforLiver]. 57
424 Heatmap Worstfor Liver|. 57
425 Heatmap Best for Left Kidney| 58
4.26 Heatmap Worst for LeftKidney|o o0 58
.27 CDF - Intersect over Union Score 59

vii

.1 Precision-Recall Trade-off] 63

.2 Dataset Distribution Over Scalings) 64
p.3 " Full Body Stack Without Resampling]. 66
4 Full Body Stack With Resampling{. 66

Precision-Recall Trade-off RightKidney] 69

Non-Representative Label| 70

List of Tables

8.1 ImageScalingPerClass) 25
B2 Training and TestSet DataPer Class| 26
B3 Trainingand TestSetData] 26
B4 Architecture of Implemented CNN] 28
B.5 Settings for Fine-tuning| 31
B.6 Optimized Hyperparameters| 34
B.7 Relevant Misclassifications]. 36

3.8 Reduced Training Sets| 37
B9 Training Sets For Experiment] 38

B.10 Sliding Window Sizes for Selected Scales| 40
[B.1T Number of Samples Located per Class| 41
U1 GrdSearchResultl 43
4.2 Metric Values forthe Modell 45
4.3 Intersect over Union scores for the settings scoring the best percentage of hits. The |
used settings were Average Heatmap, All Scales, Adapting Threshold] 59

.1 Positive/Negative Samplesin TestSet| 61
5.2 Sample Distribution in Reduced Datasets| 67
.1 Per(Cl TICS| . . e e 82
A.2 Per Class Confusion Matrices| 83
A.3 Per Class False Negative Misclassifications| 84
A4 Per Class False Positi isclassifications] oL 84
[B.1 Average Heatmap, All Scales, Fixed Threshold| 85
[B:2™ Average Heatmap, Selected Scales, Fixed Threshold] 86
[B.3~ Average Heatmap, Selected Scales, Adapting Threshold]. 86
[B-4 Merged Boxes, All Scales, Fixed Threshold| 87
[B.5 Merged Boxes, Selected Scales, Fixed Threshold] 87
[B.6 Merged Boxes, All Scales, Adapting Threshold| 88
[B.7 Merged Boxes, Selected Scales, Fixed Threshold] 88

ix

Abbreviations

ANN
CNN
COCO
CS

CT
DICOM
GPU
GUI
ILSVRC
TIoU

KL

MRI
PACS
ReLU
RPN
SGD
SPP
SVM

Artifical Neural Network

Convolutional Neural Network

Common Objects in Context

Code String

Computed Tomography

Digital Imaging and Communications in Medicine
Graphics Processing Unit

Graphical User Interface

ImageNet Large Scale Visual Recognition Challenge
Intersect over Union

Kullback-Leibler

Magnetic Resonance Imaging

Picture Archiving and Communication System
Rectified Linear Unit

Region Proposal Network

Stochastic Gradient Descent

Spatial Pyramid Pooling

Support Vector Machine

Introduction

Staff shortage within health care is a problem affecting the entire society today. The world’s
population is getting older and larger which means that the demand for medical examina-
tions and treatments is increasing. Meanwhile the existing health care professionals spend
an increasing amount of time on administrative activities. Manual input into different kinds
of IT systems is an excellent example of such time consuming activities. One way to enable
the clinicians to spend more time with the patients is to automate processes to avoid manual
input and other manual tasks whenever possible.

Automation of processes that previously depended on manual input can be done by using
machine learning. Machine learning is a field within computer science where computers are
to learn to act on a task without being specifically programmed for that task [17]. Machine
learning algorithms depend on some type of representation, often called features. A simple
example is a e-mail spam-filter where the features can be a vector representing the presence
of certain words in the e-mail. From the feature representation a model can be trained on
many samples to be able to determine if an incoming, previously unseen e-mail is spam or
not.

When it comes to detecting objects in images traditional image classifiers relied on hand-
crafted feature extractors to be engineered depending on the type of the input. Different
domains required different extractors and the engineer had to possess domain specific knowl-
edge [25]. The last few years a machine learning technique called representation learning has
become very popular for image classification. This technique learns features that are created
by transforming the raw input data and does not depend on domain specific feature extrac-
tors, making them much more flexible to use on different types of problems and input data.

One representation learning technique is Deep Learning. Deep learning has been applied to
organ detection in Computed Tomography (CT)-images [35, 7] but also to a variety of other
problems within the medical fields. A few examples are diagnosing potential skin cancer
from photographs of skin lesions [11]], localization of the fetal standard plane in ultrasound
videos [6] and right ventricle (heart chamber) segmentation in Magnetic Resonance Images
(MRI) [26].

A deep learning method has several layers which are composed of linear and non-linear
modules. Each module corresponds to a layer and the module transforms the input into a
more abstract representation. This enables complex functions to be learned. Using this tech-
nique there is not much engineering that is done by hand, rather it is automated in the learn-

1.1. Motivation

ing of the method [25]. One deep learning method is Convolutional Neural Networks (CCNs).
The complex function that a deep learning model represents is learned through training with
a large amount of training data. In 1996, Sahiner et al. [37] applied CNNs to medical images,
the training time for the CNN was described as “computionally intensive”. Today, the rapid
development of GPUs (Graphics Processing Unit) enables the use of deep learning methods
since more computational power is available in form of parallel computing [9].

A big challenge that still remains when using deep learning techniques is the amount of
data available for training the model. If too little training data is used to train a large model
there is a risk that the complex functions fit too well to the training data and do not generalize
well, an issue known as overfitting [25].

This thesis investigates the possibility to automatically create a table of content for CT ex-
amination listing depicted organs and their location through image analysis with deep learn-
ing techniques. It also investigates the effect of the amount of training data when training a
deep learning system.

1.1 Motivation

The project is carried out at Sectra AB, within the field of Medical Imaging IT Solutions.
Sectra’s main office is located in Linkoping and the company offers products and provides
services within the fields of Secure Communication and Medical Imaging IT Solutions.

1.1.1 Sectra

Sectra Medical Imaging IT Solutions AB develops among other things software for storage,
management, transfer and visualization of radiology data, called PACS (Picture Archiving
and Communication System). The universal standard DICOM is used in the PACS system.
Today the meta-data for a DICOM image contain a manually added examination code de-
scribing the main organ examined, the tag is called Body Part Examinevﬂ The tag can take pre-
defined values or any value that conforms to the DICOM value representation Code Stringﬁ
(CS). There is always a risk of inconsistency or insufficient information when information is
manually added with such freedom, for example different hospitals or even clinicians use
different conventions or languages when adding the meta-data. Gueld et al. showed in a
study the insufficiency of using only DICOM tags for image classification. They found that
around 15% of the images in their dataset were falsely tagged and ended up being incorrectly
classified [18]]. In this study manually added tags are not considered as input to the deep
learning system due to reliability concerns.

Sectra’s software provide a feature showing priors. Priors are previous examinations of
the same organ as the clinician is currently viewing. These priors are retrieved using com-
plex rule sets that are based on the examination code. A table of content could simplify the
complex rule sets for retrieval since information of all organs depicted in each image would
be available. It would also reduce the risk of missing out on relevant priors when the organ
currently being examined was depicted but was not the main organ examined in the prior
examination. The clinician does not have to search for relevant images thus saving time.

When dealing with images depicting different parts of the body there are clearly many
different types of tools and features in Sectra’s software. With the knowledge of what organs
that are depicted in an image the GUI could dynamically adapt and only display tools that
are relevant for the clinician. One example is suggesting the relevant organ specific medical
decision support documents depending on what organs the clinician is viewing. This can aid
the clinician in making the right decisions and will also save time browsing for the right tools
and decision support documents.

lAccording to the DICOM standard tag (0018, 0015),http:/ /dicom.nema.org/dicom /2013 /output/chtml/part03/sect_C.8.html
2DICOM Code String, ftp:/ /dicom.nema.org/medical/DICOM/2013/output/chtml/part05/sect_6.2.html

1.2. Aim

Today there is also a possibility for the clinician to manually add an organ tag to the anno-
tations they make in the images. This feature is not frequently used since it has to be done
manually. If the organs depicted in the image are known to the system a tag can be suggested
to the clinician thus improving the user experience. An increased use of the feature will also
result in more data which can be used to improve the exisiting intelligent systems or to train
deep learning models for new applications within the medical domain.

1.1.2 General Application

The previous section described applications of an automated organ tagging system specifi-
cally for Sectra PACS. The motivation is however applicable to the general medical field as
many systems could take advantage of such feature. All PACS systems use DICOM stan-
dard the problem with inconsistency and insufficient classification by just using the DICOM
tags is recurrent, making research on other classification approaches valuable to the commu-
nity. Automatic tagging solves the general problem of abundant time spent on structuring,
retrieving, filtering and analyzing data manually.

1.2 Aim

The goal with this project is to investigate and evaluate solutions to automate the classifica-
tion and localization of organs in CT images using deep learning. The output from the thesis
is a stand-alone system that is able to classify images based on the organs they contain and
locate organs in CT stacks.

1.3 Research Questions

Given the introduction and background the following are the research questions that will be
answered in this thesis.

1. How good accuracy, precision, recall, F-score and error rate [’| can be achieved using
a CNN taking the pixel data of the image as input to do organ- or body-part-specific
anatomical classification of 2D medical CT images?

Previous studies have shown that CNNs can be used to successfully classify objects in
medical images [7]. The studies have however detected individual or a few objects or
organs located in disjunct parts of the body. In this study these questions will be an-
swered for a larger set of organs where multiple organs can appear in the same images.

2. Can a CNN taking the pixel data of 2D CT images as input on its own suffice to create
a table of content over the organs and body-parts depicted for an entire CT stack?

The previous research question answers how well the CNN can classify individual 2D
images, however the CT stacks are sets of many images [4]. This research question
moves from single images to analyzing the performance in a real-world context where
the images of one stack are considered as one unit. This makes it possible to pass the
images of an entire stack to the classifier consecutively. It will be investigated if the
individual predictions for the 2D images are enough to create the fable of content with
the depicted organ and its location within the stack or if additional processing such as
using heuristics based on prior knowledge about the stacks (for example the order of
the images) are needed.

3definitions of metrics can be found in Section

1.4. Delimitations

3. How does the amount of training data affect the accuracy, precision, recall and error
rate when training a CNN to classify 2D CT images?

There have been experiments on how the number of training samples affect the accu-
racy of a CNN in the medical domain, for example the study by Cho et al. [7]. The goal
with this research question is to find out if an increased amount of training data would
likely improve the accuracy and error rates of the classification network.

4. Can asliding window technique be used together with a classifying CNN to locate and
detect the spatial location of organs and body-parts within a medical 2D CT image?

The second research question introduces the concept of a fable of content over organs
and body-parts depicted in a CT stack. Since CT stacks are 3D a classifying 2D images
can aid in determining the location in one of the dimensions, however to determine the
location in the other two dimensions localization of an organ or body-part within the
2D image must be done. This research question is answered by producing suggestions
on how localization within 2D images can be done with a CNN. The goal is to provide
a direction for future work in localization.

1.4 Delimitations

The dataset is limited to only contain CT images. Compared to natural images the avail-
ability of medical images is limited, often because of privacy regulations. A fact resulting in
the availability of labelled medical data at public sources being significantly lower than the
availability of labelled datasets with natural images. Due to this only data from Sectra will
be considered in this study.

1.5 Thesis Outline

The next Chapter covers relevant background theory. In Chapter 3| the method is described
followed by the results in Chapter 4 The method and results are discussed in Chapter
Finally, the conclusions are presented in Chapter|6]

Theory

As mentioned in the introduction machine learning algorithms depend on some type of rep-
resentation or features. For a simple algorithm the features are passed as input and the al-
gorithm can make a prediction [17]. In the traditional image classifiers where features were
not automatically learned the feature extraction became a problem-specific engineering prob-
lem itself. The extracted features could then be passed to a trainable systems, for example a
Support Vector Machine (SVM).

In Artificial Neural Network (ANN) the model is a feed-forward network of highly con-
nected neurons (or units). The model uses representation learning to discover and learn more
complex features from simpler features that are based on the input data [17]. This makes the
data representation and feature extraction more general and applicable to many different
problems and inputs. The networks are inspired by the way a biological brain works and can
have one or many input units, called the visible layer (input layer). Within the network there
are hidden units composed in multiple hidden layers, the final layer acts as output layer and
can have multiple output units. Today a more general term, Deep Learning, is used to describe
the field in machine learning where the models learn multiple levels of composition, such as
ANN:Ss [17]. Figure 2.1|shows an ANN network.

) outputs
inputs

A\

input layer hidden layer output layer

Figure 2.1: A small example of an ANN architecture with the visible input layer, one hidden
layer and the output layer. Each gray circle represent a neuron.

The learning procedure of a deep learning algorithm is supervised or unsupervised. In su-
pervised learning the data sample is associated with a label (“the correct answer” for that

' Diagram of a multi-layer feed-forward artificial neural network by Chrislb licensed under CC BY-SA 3.0

2.1. Convolutional Neural Networks

sample), often called the ground truth. The algorithm learns to predict the probability P(y|x)
where x is the input and y is the output of the algorithm. Unsupervised learning algorithms
must be able to learn a probability distribution for p(x) by analyzing the structure of the in-
put data. Supervised learning is usually used for regression or classification problems and
unsupervised learning is commonly used for clustering problems [17].

The act of passing input that propagates through the network and produces an output is
called forward propagation [17]]. Each neuron has n + 1 (the 1 being a bias input) inputs x;. On
the input the weights w;; are applied, see Figure The set of weights for the entire network
is often denoted ® and these weights affect the output from the network. The training process
adjusts these weights in order to improve the performance of the network.

weights

inputs

X;
activation
functon
X
@ 9
activation

Figure 2.2: An artificial neuron with inputs x, weights w;; and activation function ¢.

An activation function ¢ is applied to the sum of the inputs for a neuron j and produces the
output activation o; in Equation More on activation functions is found in Section

0j=1¢ <Z wijxi> (2.1)
i=1

When using supervised learning to train the network a loss or cost J(®) is calculated to mea-
sure how inaccurate the output from the network is compared to the ground truth for a set of
weights ©. This is done by letting the sample forward-propagate through the network. The
network improves its performance by updating the weights connecting the neurons, this is
done by minimizing the cost by calculating its gradient and use it with an optimization algo-
rithm [17]]. It is expensive to numerically compute gradients but the back-propagation algorithm
uses an inexpensive approach where the cost information flows backwards in the network
and the gradients can be calculated. It is therefore common to use the back-propagation al-
gorithm when calculating the partial derivatives in a back-propagation process in a multi-layer
neural networks [17].

2.1 Convolutional Neural Networks

A regular artificial neural network takes features as input, which means each pixel in an im-
age can be passed to the network [25]. Using one feature per pixel generates very heavy
calculations when working with large images as input. The introduction of Convolutional
Neural Network enabled a way to discover features in multi-dimensional data efficiently
[25]. Instead of using each pixel as a separate input feature the convolutional neurons are
responsible for convolving a spatial region of the image, called receptive field, as in the book
Deep Learning by Courville et al. [17]. Courville et al. also explains that the statistical proper-
ties of an image are not sensitive to translation. They also state that due to this fact the same

2Diagram of an artificial neuron by Chrislb licensed under CC BY-SA 3.0

2.1. Convolutional Neural Networks

weights, shared weights, are used for all neurons in the same layer and reducing the number
of parameters in the CNN.

2.1.1 CNN Architecture

There are different types of layers that make up the architecture of a CNN. In this section
convolutional layers, pooling layers and fully connected layers are introduced.

The layers in a CNN are organized into stages, with the initial stage containing convolu-
tional layers followed by pooling layers [25]. Each convolutional layer takes a 3D volume as
input and outputs a 3D volume (feature maps) by passing the input through an activation
function.

A sequence of these layers is often repeated multiple times and followed by fully con-
nected layers preceding the output layer [25].

Convolutional Layer

The role of the convolutional layer is to apply filters to the raw data in order to detect features
and produce feature maps [25]. A feature map is a new representation of an image after
applying some type of operation to the entire image (a convolutional operation). Each filter
is responsible for applying one type of operation but applies that specific operation to all
spatial regions of the image. The output from each filter is one feature map. An example of
an input and the resulting feature map can be seen in Figure

(a) Original representation (b) Resulting feature map

Figure 2.3: Example of the feature map of an image after applying an operation to the original
representation of the image.

Since there are multiple filters in each convolutional layer the resulting output will be a set of
2D feature maps which are represented as a 3D volume. The convolution operation can for
two-dimensional input and filters be defined as:

S(i,j) = (1+K)(i,j) = XD I(i —m, j — n)K(m,n) 2.2)

where S is the feature map, I is the two-dimensional input and K is the two-dimensional
filter [17]. The output of the convolution operation in Equation [2.2] corresponds to one cell
in the output in Figure Once the operation is performed, the filter slides to the next

7

2.1. Convolutional Neural Networks

spatial region and performs the same operation. This is repeated until all spatial regions are
covered. A filter have a stride which decides how many pixels at the time the filter shall slide
over the image and move to the next spatial region. The filter have a width and height which
are equal for all filters in a layer. The number of filters used are referred to as the depth of
the convolution layer and defines the depth of the output 3D volume from the layer. It is
also possible to use zero-padding in the convolutional layer. This means that input volume
is padded with zeros in order to control the spatial size of the output volume, commonly
used to keep the output volume the same as the input volume. Padding with zeros is used to
ensure that padding does not contribute to the convolution. Figure 2.4/ displays an example
of how the convolutional operation works.

Filter
1 0
1 1

61/3/2 8 |9 |7

2 8|4 1 16 |13 | 8
1 1 2 5 4 11 | 11
Input Output

Figure 2.4: A convolution with a filter size 2x2 and input size 4x4, no zero-padding and stride
1 (sliding 1 pixel at a time) where the filter is currently operating one of the spatial regions of
the image.

The filters are represented as the weights on the links from the previous layer [25]. Before
the next layer in the architecture an activation function is applied to all feature maps. The
activation function defines the output of a neuron. A common activation function in CNNs
is the rectifier function:

g(z) = max{0,z}, where z is the input (the feature map). (2.3)

Two other activation functions are the sigmoid function:

1
1+ez

g(z) = 0(z), where 0(z) = (2.4)

and the hyperbolic tangent activation tangent function:
g(z) = tanh(z), where tanh(z) = 20(2z) — 1 and ¢ is the same in Equation2.4] (2.5)

Krizhevsky et al. used the rectifier function in Equation[2.3} since training time can be reduced
compared to using the sigmoid activation function in Equation [2.4|or the hyperbolic tangent
activation function in Equation [23]. Units that use the rectifier function are called Rectifier
Linear Units (ReLUs) [30]. Courville et al. [17] states that the default recommendation in
modern neural networks is to use ReLU .

2.1. Convolutional Neural Networks

Pooling Layer

The role of the pooling layer is to merge similar features into one to reduce the dimension
of the features. One common problem when trying to fit a model is overfitting which means
either that the model fits too well to the training data or that the model fits to random noise
and therefore does not represent the underlying relationship between parameters as describe
in a paper called Deep Learning by LeCun et al. [25]. An algorithm trained with a small
training dataset is more prone to overfitting [6]. LeCun et al. also describe that pooling layers
decrease the number of parameters and the amount of computation done in the network,
hence it also reduces the risk of overfitting. It is common to use a maximum function as
a pooling layer, often referred to as max pooling. The max-pooling filter simply takes the
maximum pixel value within the spatial region the filter is currently operating on to produce
the output pixel, Figure [2.5shows an example of a max-pooling filter. The pooling layers
have a filter size and a stride. The filter size determines the number of pixels in the original
image represented by one pixel in the pooled image. The stride is similar to the stride in a
convolutional layer and describes how many pixels the filter should slide at the time [17].

1 5 2 3

6 1 3 2 6
2 8 8
1 1

Input Output

Figure 2.5: The input and output when applying a max pooling filter with size 2x2. The stride
value is 2.

Fully Connected Layer

The fully connected layers are not specific for convolutional neural networks, they have the
same architecture as the fully connected layers for a regular neural network. In the book
Deep Learning Courville et al. [17] describes that each neuron in the fully connected layer
have connections to all output activations of the previous layer. In a CNN that is designed
to classify, this layer is responsible for the classification, the output of the last fully connected
layer is the classification score for each class.

The activation function in the last fully connected layer is adjusted depending on the task
the network is solving, e.g. classification or regression. Courville et al. suggest that in the case
of classification according to a multinoulli distribution, i.e. only one out of many multiple is to
be selected, the softmax function is shall be used. The softmax function ensures that the sum
of the elements in the output vector is 1. For a multiclass-multilabel classification task, where
the probabilities are independent, the sigmoid function can be used instead as described in
the book Deep Learning. It can range anywhere from 0 to 1 - k where k is the number of classes.
The sigmoid function is defined in Equation 2.6l where f(x;) is the probability that a sample
belongs to class i.

1

=" (2.6)

f(xi)

For a regression task a linear output activation function as seen in Equation is used, to
transfer the values predicted by the network to the output. This enables output values to be
any real-valued number.

f(xl-) = Xl'Vi (27)

9

2.2. Training a CNN

From Individual Layers to a Network

Figure [2.6| shows an example of a CNN. First convolutions are done on the original input
image creating feature maps. The subsampling represents the pooling layers discussed above
and reduces the size of the feature maps. The convolution-subsampling pattern is repeated
several times until the final feature maps have been created and these are passed to the fully
connected layers which produce the final output from the network.

Fealura maps

.,
*., Dutput

Convolutions Subsampling Convolutions Subsampling Fully connected

Figure 2.6: A typical CNN architecture. Convolutional operations create feature maps, the
stages annotated as subsampling in the figure are the pooling operations.

2.2 Training a CNN

In the book Deep Learning, Courville et al. [17] describes that when training a CNN the origi-
nal dataset is split into a training set and a held-out test set in a process called data generating
process. They also explain, when the training is complete the test set is used to evaluate how
well the model generalizes to previously unseen data within the same domain given that the
two sets are independent. In CNNS5s the settings that can be adjusted to effect the behaviour
and performance of the network are called hyperparameters. When optimizing these an unseen
data set is needed to confirm that the model generalizes. This set is created by splitting the
training data into two disjoint sets, the training set that makes up approximately 80% of the
original training data and the validation set that makes up approximately 20% of the original
training data as mentioned in the book Deep Learning. Since the hyperparameters are tuned
using the validation data the validation error will typically underestimate the error measured
on the real test data when the training is complete.

2.2.1 Weight initialization

The weights (or parameters) ® in a CNN network must be initialized to some value. It has
been shown by several, such as Glorot et al. [[16] and He et al. [20] that initializing the weights
according to some statistical distribution gives faster convergence and lower error rates than
randomly initialized weights. Glorot et al. draw a sample from a set that is normally dis-
tributed around 0 and with standard deviation ¢ as seen in Equation

7= ¢ (o o) 28

where fan;, is the number of inputs into the neuron and fan,,; is the number of outputs from
the neuron.

3typical CNN architecture by Aphex34 licensed under CC BY-SA 4.0

10

2.2. Training a CNN

2.2.2 Number of iterations

The iterations over the dataset are often split into epochs, which is a hyperparameter that
can be tuned to an appropriate value to avoid overfitting. However this parameter can be
optimized without barely any cost by implementing Early Stopping [1| 17]. Depending on
how many times the training data is iterated over during one epoch the number of iterations
and epochs can be the same. Early stopping terminates the training process by observing
the validation error and validation accuracy after each epoch using heuristics to determine
when we have seen the best model. One commonly used heuristic is implemented based on
patience, if the validation error has not improved over a certain number (the value of patience)
of epochs the training process is terminated [1}{17].

2.2.3 Objective

During training the weights are updated to minimize an objective function. There is a dif-
ference between pure optimization and training a deep learning model. Courville et al. [17]
describes that the goal when optimizing the objective function is to optimize the result of
some performance measure, but in pure optimization the goal is to optimize the objective
function itself. It is therefore important to find an appropriate objective function to represent
the performance measure of the task. The objective function serves as a measure of the inac-
curacy of the current prediction and is denoted J(®) where © are the weights in the network.
According to Courville et al. different objective functions are used depending on the type of
task the model is trained to solve. Common objective functions for regression problems are
Mean Squared Error (Equation and Mean Absolute Error (Equation, x/ is the prediction
for sample j and y/ is the ground truth and 7 is the number of samples.

n

(@) = Y~y 29)
j=1

J(©) = YW -y (2.10)
i=1

For classification problems the Logistic Loss Function is commonly used, it is often referred to
as log-loss which is visualized in Figure[2.7} Log-loss and Cross-entropy Loss Function are very
similar and share the underlaying math.

The entropy of a variable is a measure of uncertainty for a variable X with a distribution
p [29]. Objective functions calculate a loss based on two distributions, p and q. The dissimi-
larity between the two distributions can be calculated with Kullback-Leibler divergence (KL
divergence) measure. KL divergence is also called relative entropy and is defined as follows
[29]:

K
KL(pllg) = 3, pulog!® (2.11)
n=1 n

When the sum is replaced by an integral for probability distribution functions it can be rewrit-
ten into [29]:

KL(pllg) = Y pulogpn — > puloggn = —H(p) + H(p,q) (2.12)
n n

where H(p, q) is called cross entropy [29].

11

2.2. Training a CNN

H(p,q) = —) palogqn (2.13)
n

To describe cross entropy in a more intuitive way one could explain it as the negative sum of
the products of the logs of the predicted probabilities multiplied by the ground truth proba-
bilities. Cross-entropy is closely related to logistic loss. When working with binary classifica-
tion, pe {y,1—y}andge {§,1—7}, cross entropy can be written as:

H(p,q) = —), puloggn = —ylogi — (1 —y)log(1 — §) (2.14)

which is the definition of logistic loss for two distributions p and g as seen in Figure p
can be seen as the ground truth labels, a distribution containing just ones and zeros and g as
the predicted probabilities.

Predicting a high probability j for a class with a ground truth y = 0 or a low 7 for a class
with y = 1 one will result in a high loss value as seen in Equation The log function
between zero and one is visualized in Figure

000 025 050 0 100
P

Figure 2.7: Log function for probabilities in interval { 0,1 }. [

On multi-class classification the logistic loss function can be summarized over all classes to
calculate the total loss.

2.2.4 Optimizer

An optimizer is responsible for minimizing the objective function. Stochastic Gradient Descent
(5GD) is commonly used for this purpose [7, 24, 40, 45, 48]. According to Courville et al.
[17] it is the most common optimization algorithm for deep learning. A regular stochastic
gradient descent updates the weights for each training sample and a batch gradient descent
updates the weights once for all training samples. Courville et al. also describe mini-batch
gradient descent where the gradient is computed and the weights are updated after n training
samples. The mini-batch gradient descent updates according to:

© =01 Ao (©,xT+),yl+n) (2.15)

Where © are the parameters (weights), 77 is the learning rate, j is a sample in the training data
and Ag] is the loss calculated for the mini-batch with the objective function.

In the book Deep Learning [17] the term batch size is used to describe the size of the mini-
batch and has to be selected when training a model. If the batch size is small, a small learning

4log-loss curve by Bfortuner licensed under CC BY-SA 4.0

12

2.3. Optimization of Hyperparameters

rate must be used to maintain stability. The training time will also be longer since more
updates needs to be done due to the small learning rate and more batches needs to be pro-
cessed in order to cover the whole dataset. According to Courville et al. the samples in the
batches are run in parallel if the hardware setup allows it making the hardware the limiting
factor on how large batches that can be used. Bengio states in Practical Recommendation for
Gradient-Based Training of Deep Architecture [1] that a batch size of 32 samples is a good default
value. He also claims that once the batch size has been chosen that value can be fixed while
optimizing other hyperparameters.

SGD can be used with momentum which includes the previous weight change into the
update to reduce the effect of gradient noise [47], where 0 < momentum < 1.

2.2.5 Learning Rate

The learning rate (17) determines how fast the algorithm moves towards the optimal value, i.e.
the step size when optimizing, as described in the book Deep Learning [17]. If the learning rate
it is set too high there is a risk to miss the optimal solution and if it is set too low too many
updates are required before reaching the optimal solution. Courville et al. suggests that it can
be effectively chosen by monitoring the learning curves while training the network. Bengio
[1] recommends an initial learning rate of # = 0.01 as default value for deep networks but
points out that if there is only time to tune one hyperparameter the learning rate should be
chosen for optimization.

According to Courville et al. [17] it is common to use a learning rate decay schedule
when using Stochastic Gradient Descent as the optimizer introduces noise that will remain
through the whole training process, even when optimum is close. There are various ways to
implement the learning rate decay schedule. Courville et al. suggest one common approach
where the learning rate is decreased linearly until epoch 7. Bengio suggests another approach
where the learning rate is constant until epoch 7 and then decrease it by factor O(%) where ¢
is the current epoch.

2.3 Optimization of Hyperparameters

When optimizing the hyperparameters the learning process must be observed, this is used by
analyzing learning curves. The learning curves are created by plotting the training accuracy,
training loss, validation accuracy and validation loss for each epoch.

2.3.1 Observing the learning process

A model can suffer from two distinct problems: overfitting and underfitting, see Figure
A model overfitting the training data passes through the training data points exactly and
will not generalize well, a model suffering from underfitting will not be able to capture the
training data points at all [17].

13

2.3. Optimization of Hyperparameters

— Model —— True function » Training data points

Figure 2.8: A simple example to illustrate a): underfit, will neither generalize nor fit the
training data well b): fits true function, will generalize well c): overfit, will not generalize
well.

To obtain a model that generalizes the validation error (also called generalization error) and
the training error are observed during the training process. Generally the following holds
[17]:

e If both the training error and the generalization error are large - the model is underfit-
ting the training data

o If the training error and the generalization error diverge - the model is overfitting the
training data

o If the generalization error is just slightly higher than the training error - the model gen-
eralizes well

2.3.2 Hyperparameter optimization techniques

There are several techniques to optimize hyperparameters in a neural network, for exam-
ple Grid Search and Random Search. Model-based hyperparameter optimization is another
approach where for example a Bayesian regression model estimates the expected validation
error before exploration and explores parameters that will likely perform well. These are
however often very similar to the parameters the algorithm has already seen [17]]. Courville
et al. do not explicitly recommend the use of model-based approaches for hyperparameters
in neural networks since it sometimes can perform very well but in other cases it fails badly.

Bengio [1] makes a point that humans can get very good at optimizing parameters man-
ually. For reproducibility reasons it is however recommended to avoid human decisions to
infer within the optimization process. Bengio also suggests the hyperparameter ranges can
be specified in the paper and is therefore the only part that should include human decisions.

Grid Search

In the book Deep Learning, Courville et al. [17] explains that grid search is an algorithm
for hyperparameter optimization which is commonly used if the number of parameters to
optimize are three or fewer. For each individual parameter a set of values is set up, usually
picked on a log-scale . Bengio [1] suggest that it should be ensured that the "best" values aren’t
the ones on the border, as this risks that better values are unexplored outside the interval. He
also states that three values are insufficient for the optimization even if the best value is the
middle value. The values of the parameters make up a parameter space and the goal of the
grid search algorithm is to find the combination of parameters giving the optimal solution in
the parameter space. Courville et al. describes that the algorithm does an exhaustive search

14

2.4. Improving CNN Accuracy

by training the model for each combination of hyperparameters in the cartesian product of the
sets of individual parameters. It returns the combination of hyperparameters giving the best
validation error. Bengio highlights that grid search has the advantage of being parallelizable.
However, both Bengio and Courvile et al. means that the exhaustive search makes grid search
suffer from the curse of dimensionality as the number of combinations of hyperparameters
grow exponentially when the number of individual parameters is increased.

Random Search

In random search, as explained in the book Deep Learning [17], the sets of values for each
hyperparameter is not explicitly defined, instead intervals in which the algorithm picks val-
ues are defined. Courville et al. and Bengio define these as a marginal distribution for each
hyperparameter, a uniform distribution on log-scale is appropriate for positive real-valued
hyperparameters. Bergstra et al. [2] have compared the use of grid search and random
search for optimizing hyperparameters in neural networks and found that random search
finds models that are better or at least as good as the models found with grid search on the
same domain, but the computation time was a small fraction of the computation time for grid
search. Courville et al. explains this improved computation time by the fact that no exper-
imental runs are wasted since the individual parameters more likely get different values in
each exploration. They also described that in grid search there are cases where one param-
eter is changed that does not make much difference on the validation error, these cases are
avoided with random search since all the other hyperparameters will have different values.

24 Improving CNN Accuracy

To improve the accuracy of a CNN there are techniques that can be used. In this section a few
such techniques are described - data augmentation, a number of regularization techniques
and the use of transfer learning. The techniques described are frequently used when applying
CNN models to a problem where the amount of training data is limited.

2.4.1 Data augmentation

In a study by Chatfield et al. [5] data augmentation is described as a tool to deal with over-
fitting and to optimize the dataset in deep learning. Roth et al. [35] showed that data aug-
mentation reduces classification error rates. With data augmentation they achieved an error
rate of 5.9% compared to 9.6% without. Chatfield et al. suggests there are different methods
to do data augmentation, e.g. flipping, translation and cropping. This creates new samples
of the image, transformed images. The generated samples from the original image may be
used during training or testing. By using data augmentation, Chatfield et al. explains that
the dataset becomes larger which reduces the likelihood of overfitting.

2.4.2 Regularization

Courville et al. [17] describes the general term regularization as “any modification we make
to a learning algorithm that is intended to reduce its generalization error but not its training
error”. This makes for example the previously described Early Stopping technique a form a
regularization. Courville et al. means that there is no obvious form of regularization, it has
to be chosen depending on the task of the machine learning algorithm.

Weight Decay

The weight decay regularization coefficient A can be set to a value greater than 0 to push
the weights towards a specific value, this specific value is normally zero according to Bengio
[1], but Courville et al. [17] point out that other values could be used. The weight decay

15

2.4. Improving CNN Accuracy

penalizes large weights, limiting the freedom of the model, and thus prevents overfitting.
Bengio explain that weight decay is practically done by adding a regularization term to the
objective function of the model. Adding the regularization term results in a new objective
function J(©), as seen in Equation[2.16| where L represents the regularization term:

Ireg(G)) =](®) +L (2.16)

The most common form of weight decay is L? regularization (Equation 2.17) but others such
as L! regularization (Equation 2.18) are also used [1].

2 _ 2
L? = AZG)j (2.17)
]

L'=1>110j (2.18)
j
Using Lz—regularization will thus result in the following objective function:

Jreg(©) = (@) + 1) €7 (2.19)
j

When optimizing, with for example SGD, the gradients are calculated based on the new ob-
jective function and the regularization term will propagate into the optimization algorithm.
Choosing a too large A will limit the freedom of the model excessively and result in underfit-
ting and a too small A will result in overfitting [1].

Bengio [1] states that using early stopping plays essentially the same role as L? regular-
ization. He also means that tuning early stopping is easier than optimizing L? regularization,
thus recommending to drop L? regularization if early stopping is used. However, he suggests
that L! regularization can sometimes be useful to ensure that parameters that are not useful
for the fit are driven towards 0.

Dropout

Adding dropout layers is a way to reduce the risk of overfitting. A dropout layer drops
neurons in the network and their connection with a certain probability [42]. Hinton et al.
[21]] show that simply adding dropout to a neural network reduces the error rates for several
benchmark tests.

2.4.3 Transfer Learning

Training CNNs from scratch (fully train) requires a substantial amount of labelled data which
is not always available, especially within the medical domain. The limited amount of data
can cause problems with overfitting. Chen et al. show in Standard Plane Localization in Fe-
tal Ultrasound via Domain Transferred Deep Neural Networks [6] that even though medical im-
ages are different from natural images they do share many low-level features. Their result is
promising for the use of an approach called transfer learning, where a pre-trained network
is fine-tuned. A pre-trained network in this context is a CNN that have pre-trained weights
which are re-used in the new network. Fine-tuning means to adjust the weights in the pre-
trained network to the target task [45]. Chen et al. stated in 2015 that they believe transfer
learning can be the solution to be able to use CNNs in domains where the limitation is the
size of the dataset. With 11942 training images they trained a CNN to locate the standard
plane in fetal ultrasound.

16

2.5. Classification, Localization and Detection with CNN

Furthermore, fully training a network is time-consuming and requires a considerable amount
of computation power and memory resources. Several studies [45) 48, 24, |6, 15] show that
the use of transfer learning can improve accuracy and reduce training time. Yosinski et al.
[48] have experimentally investigated how transferable features in deep neural networks are.
Even though they find that the transferability decreases with the distance between the task
the network is trained for and the new task it is applied to they do find that weights from a
distant task give better results than initializing random weights.

In a CNN there are [layers as described in section each weight of corresponding
layer [in the pre-trained network is transferred into a new network. The last fully connected
layer is not transferred because every network has different desired outputs. To compute the
weights of the newly constructed fully connected layer the pre-trained CNN can be used as
a feature extractor and the computed features are used as input to the fully connected layer
during a training process. [45].

Tajbakhsh et al. [45] refer to fine-tuning only the fully connected layers as shallow tuning
and fine-tuning all layers as deep tuning.

The problem with overfitting arises once again if the entire CNN is fine-tuned. Tajbakhsh
et al. suggests one approach to handle overfitting which is to work backwards from the last
layer and incorporate the earlier layers if necessary. It is not always necessary to do deep
tuning since the first layers learn low level features which is a very similar process for many
different tasks.

Transfer learning also includes the possibility to use the pre-trained network as a feature
extractor. Razavian et al. [32] explain that the last fully connected layer is removed from the
pre-trained network and the entire CNN is now seen as the feature extractor. The output for
the CNN is a feature vector. Razavian et al. means that this feature vector may be the input
to another CNN or to a linear classifier, e.g. a SVM.

2.5 Classification, Localization and Detection with CNN

Classification, localization and detection are three tasks with increasing difficulty within com-
puter vision. Classification treats the case where images are classified according to the main
objects depicted in the image. In localization the goal is to be able to determine the location
of a certain object in an image. Localization and detection tasks are very similar as detection
is to locate all objects present in an image. The main differences between the two tasks are
that an algorithm giving false indications of the presence of an object is penalized in detection
and that a detection algorithm must be trained to recognize a background (parts of the image
that does not contain any of the seeked objects). Convolutional Neural Networks have been
widely used to solve these tasks on medical CT images [39, 35, 24, 7, 6].

2.5.1 Image Classification with CNN

Using neural networks for image classification became very popular when Krizhevsky et
al. [23] applied neural nets in the ImageNet Large Scale Visual Recognicition Challenge
(ILSVRC) in 2012 and managed to win with a classification error of 15% where the second best
achieved 26% on the ImageNet dataset. The ILSVRC is a yearly competition for large scale
object detection and image classification [36]. The ImageNet datasets contain in total over 14
000 000 natural images and are publically available on the ImageNet websit The network
presented in ImageNet Classification with Deep Convolutional Neural Networks by Krizhevsky et
al. [23]] was one of the largest to be trained on the ImageNet dataset at that time, making over-
fitting a major problem. They proposed several techniques to prevent overfitting which are
still major techniques today, such as dropout and data augmentation. Their main limitation of
the network size was the capability of the GPUs at the time and their final network contained

Simage-net.org

17

2.5. Classification, Localization and Detection with CNN

five convolutional layers and three fully-connected layers. Their experiments showed that
the depth of the network is critical to achieve good results. Simonyan et al. [40] also analyzed
the effect of the depth of the convolutional network on the classification accuracy by keeping
all parameters except for the network depth unchanged. Their conclusions in Very Deep Con-
volutional Networks for Large-Scale Image Recognition [40] in 2014 were that deeper networks are
beneficial for the accuracy. They could show that using a conventional ConvINet architecture
could reach state-of-the-art performance on the ImageNet challenge dataset with network
depth varying from 11 to 19 layers, their architecture is today known as VGG. In their work
they refer to the CNN by Krizhevsky et al. as “the original architecture by Krizhevsky et al.”
which clearly shows the impact of the paper ImageNet Classification with Deep Convolutional
Neural Networks [23].

The CNN architectures used for image classification are becoming deeper, as in very re-
cent architectures such as GoogLeNet proposed in Going Deeper with Convolutions [44] and
ResNet proposed in Deep Residual Learning for Image Recognition [19]. GoogLeNet is a 22 layer
deep architecture and was submitted to ILSVRC-2014. The network was built up by inception
modules which was a new type of network organization based on network-in-network struc-
ture. Each inception module forms a small network on its own and the main advantage of
this architecture is that depth and width of the network was increased but still keeping the
computational time constant [44]. More details on GoogLeNet are found in the paper Going
Deeper with Convolutions. In ResNet the training process is optimized by learning residual
functions that reference the layer inputs instead of completely unreferenced functions. This
is practically done by using shortcut connections that skip one or more layers. Compared to
VGG they are able to use 8x as many layers, up to 152 layer, in one ResNet. It was shown
that the networks are easier to optimize than the corresponding number of layers in a more
traditional architecture [19]. With an ensemble of residual networks they won the ILSVRC-
2015 classification task with a 3.58% error rate on the ImageNet data set. The network has
also shown great success in ImageNet detection, ImageNet localization, Common Objects in
Context (COCO) detection and COCO segmentation challenges [19]. As ILSVRC the COCO
datasets are publically available on the website ﬂ

Considering the more specific case of classifying medical images it was shown in Anatomy-
Specific Classification of Medical Images Using Deep Convolutional Nets [35] in 2015 that CNN5s
are effective in classifying medical images based on the organ or body-part they depict. With
images from 1675 different patients they achieve results with a classification error of 5.9%.
The experiments are performed with a CT stack depicting a full torso.

Machine learning applications require a large amount of data, thus the limited amount of
training data within the medical domain can possibly be a problem when training a CNN.
In 2016 Cho et al. published the article How much data is needed to train a medical image deep
learning system to achieve necessary high accuracy? [7]. In the study they classify six different
body-parts depicted in 2D CT images using GoogLeNet. The experiment was performed for
several different training data sizes and the result for each size was used to predict that 4092
images per class are needed to reach a classification accuracy of 99.5%

Previously it has been very common to use transfer learning when classifying medical
images [45,24,|6]]. This is due to the significant amount of data and training time needed when
fully training a CNN. Yet another study that investigates the reuse of features is An Ensemble
of Fine-Tuned Convolutional Neural Networks for Medical Image Classification [24]. Kumar et al.
investigated the possibility to combine features from multiple pre-trained networks and then
fuse the results to predict classes for new images. With their experiments they showed that in
some cases the ensemble of pre-trained CNNs achieve better accuracy than previous CNNs.

6I'IISCOCO.OI'g

18

2.5. Classification, Localization and Detection with CNN

2.5.2 Object Localization and Detection with CNN

CNNs can also be used to detect and locate objects in images. For a simpler task where
only one (or exact k, where k is a number of objects) object is to be located and classified per
image the last fully connected layers can be replaced with a regression head for localization
and a classification head for classification. The regression head outputs coordinates and the
classification head outputs a class score for each image.

Sliding Window Approach

Another approach is to use a sliding window, meaning that the classification and regression
is applied to multiple locations of different scales of the image. The sliding window approach
is used by Sermanet et al. in the study OwverFeat: Integrated Recognition, Localization and Detec-
tion using Convolutional Networks [39]. They won the ILSVRC-2013 localization competition
with error rate of 29.9% with their localizer that uses the classification scores and a proposed
bounding box for each window. The bounding boxes were merged into a localization pre-
diction containing the coordinates of a bounding box surrounding the object. To make the
sliding window approach efficient the same convolutional features are used to produce two
different outputs, one classification score and one bounding box prediction [39].

Sliding Window Efficiency

Running the CNN on many scales and many location in a sliding window fashion is a com-
monly used approach. It becomes very computationally expensive and inefficient if the entire
pipeline is calculated for each window. Using a classifying CNN together with a sliding win-
dow approach is suitable according to Sermanet et al. [39]]. The overlapping spatial regions
that share many common computations allows to calculate these features once for the entire
image and reuse them for each window location. It is also possible to convert the last fully
connected layers into convolutional layers making it possible to calculate the probabilities for
all windows for one scale in a single forward pass.

Region Proposals

If the number of classes per image is not exactly k, regression can no longer be used. The
need for variable sized outputs call for object detection. Using classification to detect ob-
jects as done by Sermanet et al. [39] is a possibility, however the need to test many locations
and scales calls for others solutions. One alternative to the sliding window approach is to
use a subsystem to produce “region proposals” (sometimes referred to as “object propos-
als”), which are fed to the network. This approach is used in by Girshick et al. in the study
Rich feature hierarchies for accurate object detection and semantic segmentation [15] where the al-
gorithm Selective Search [46] is used to produce region proposals. There are also many other
algorithms that can be used to produce region proposals. What makes for effective detection
proposals? [22]] presents a comparison of Selective Search and several other such algorithms.
Producing the region proposals is slow and therefore a bottleneck in a detection system.
The approach was improved with Fast R-CNN [14] where Girshick introduced faster region
proposals by using SPPnets (Spatial Pyramid Pooling Networks). These share the same ex-
pensive convolutional computation for each region proposal, thus reducing the total time
spent on producing region proposals. Many applications do however require real-time local-
ization of objects in images. Ren et al. [33] have improved Fast R-CNN even further by intro-
ducing Region Proposal Networks (RPN) with their work in Faster R-CNN: Towards Real-Time
Object Detection with Region Proposal Networks. The actual localizing network, Faster R-CNN,
and the RPN can be trained to share the same convolutional features and the whole system
can be trained end-to-end in one stage. Using 300 proposals per image the detection system

19

2.6. Data Representation

manage to achieve a frame rate of 5 fps while getting state-of-the-art detection accuracy on
PASCAL VOC 2007 and 2012 (73.2% and 70.4% respectively).

2.6 Data Representation

CT scans are commonly used to obtain image data of the human body for medical purposes.
It uses x-ray technology to circle the patient’s body with the x-rays and produces images that
represent slices of the scanned body part, the slices make up what is called a CT stack [4]. A
computer can then reconstruct the CT stack into 3D volume of the entire body which helps
the radiologist in diagnosing potential disease [4]. The pixel data of an image is stored to-
gether with a header containing meta-data supplied by the scanner according to the DICOM
standard.

The data used for this project is medical data stored as DICOM objects. A DICOM object
has a list of attributes such as identifier, modality, patient identifier, number of images in the
series, series identifier and many more. There is one special element containing the pixel
data. For full list of elements see The DICOM Standard [31].

Series are sets of multiple images that are captured in the same examination, also referred
to as stacks [4]. These stacks can be visualized in different ways, for example as 3D volumes.

Each stack is varying in size. Each DICOM object has an attribute called slice thickness
which is the thickness in millimeter of a slice in a stack. The slice thickness is varying thus
it is possible that it exists different amount of slices in stacks that depicts the same organ
or body-part. Another DICOM attribute is the spacing between slices which is relevant when
displaying stacks as 3D volumes [31].

2.7 Evaluation Metrics

In statistics accepting a null hypothesis that is false is called Type-I error and rejecting a null
hypothesis that is true is called Type-II error. In the medical field these are usually referred
to as false positive (f p) and false negative (fn) [27]. Correctly classified samples are either true
positive (tp) or true negative (tn). Measures based on false positives and false negatives are

useful for accuracy evaluation in classification. Accuracy and error rate adds up to 1 and are
defined:

tp+in
A = 2.2
ceuracy tp+tm+ fp+ fn (220)
Error rate = fp+fn (2.21)
tp+tn+ fp+ fn
Van Rijsbergen [34] presents definitions of precision and recall as follows:
tp
Recall = 2.22
ech tp+ fn 222)
Precision = fp (2.23)
tp+ fp '

Calculating the weighted harmonic average of precision and recall can be done through F-
score [34].

(1+5%) -tp

(1+p%)-tp+ B> fn+fp (224

Fg =

20

2.7. Evaluation Metrics

Where § is a real positive number used to adjust the emphasis put on false negatives, that is
B times more importance of recall than precision [34]. F-score ranges between 0 and 1, it is
desirable to get a high F-score.

When localizing objects in images with bounding boxes the predicted bounding box (B)
has to be evaluated against a bounding box representing the ground truth (Bg). A com-
monly used evaluation metric to measure how well the localizer has predicted is Intersect
over Union (IoU) calculated as:

_area(By N Bgt)

ToU = (2.25)

area(By U Bgt)

IoU is used in the PASCAL VOC Challenge where an overlap > 0.5 is judged as a true positive
[12].

21

Method

The approach used to solve the task is to use pre-trained CNNs. This Chapter begins with an
overview of the frameworks and hardware used. It covers important information about the
used dataset and describes the necessary pre-processing steps that have been performed. A
motivation to the choices and details about the CNN implementation are covered. Finally, the
experiments coducted to answer the research questions and the evaluation of the experiments
are described.

3.1 Frameworks, Platforms and Hardware

The CNNs were implemented in Keras [§]], a high level library for neural networks. Keras is
written in Python and runs on top of Tensorﬂowﬂ or Theancé in this work Tensorflow was
used. The most important reason for using Keras is that it supports convolutional networks
and it is used by Sectra in other deep learning projects. Additionally Keras can run both on
CPU and GPU. All the training was however done on GPUs using the parallell computing
platform CUDAEI To accelerate computation for deep neural networks cuDNNH which is a
part of the NVIDIA Deep Learning SDK was used. The graphics card used for training was
NVIDIA GeForce GTX 1060 with 6GB memory and NVIDIA GeForce GTX 1080 with 8GB
memory.

3.2 Dataset

Sectra provided an unlabelled dataset with medical images. Medical images are standardized
according to DICOM and there are regulations regarding their quality, these properties make
them more suitable for machine learning than natural images [7].

The given data was anonymized to the extent that an anonymized patient id was given
each patient, the patient age was not anonymized. The patient’s age was kept since the
anatomy of children and adults differ and the age information can aid when selecting which
data to consider.

I Tensorflow, https:/ /www.tensorflow.org/

thtp: / / deeplearning.net/software/theano/

3CUDA, http:/ /www.nvidia.com/object/cuda_home_new.html
4cuDNN, https:/ /developer.nvidia.com/cudnn

22

3.2. Dataset

The dataset consisted of CT stacks stored in DICOM format. In total there were 129 CT stacks
distributed over 52 different patients. Stacks can depict an entire body or just part of the body.
The dataset contained stacks of different sizes depicting different parts of the body and it was
ensured that all relevant organs and body-parts are depicted in several stacks. The relevant
organs and body-parts are the classes used for classification:

e 10 coarse body-parts: Head, Neck, Shoulders, Chest, Abdomen, Pelvis, Femur, Knee,
Tibia and Ankles/Feet

e 5 additional finer organs: Right lung, Left lung, Liver, Left kidney, Right kidney

The coarse classes were chosen to cover all the entire body (except the arms). The finer classes
were chosen since they are located in areas of the body where many organs exist. The total
number of stacks containing a specific class is found in Table The implemented CNNs
were fed with 2D images, the slices in the CT stacks. In order to make pre-processing and
labelling more efficient the CT stacks were initially treated as 3D volumes and were not con-
verted to 2D images until the labelling was completed.

3.21 Labelling

The labelling was done using Sectra’s PACS by extending a part of a 3D tool used to create
boxes in volumes to save these boxes as label-files. Figure shows a screen shot of the
software used to create labels.

00 Tagoibeck. b, Dol

Figure 3.1: A screenshot of the tool used for labelling. The right side is a 3D representation of
the stack and the three images to the left shows the stack from three different 2D projections.
The green box is the box where the coordinates are transferred to a label file. This example
box surrounds both lungs.

Since the labelling was done by the authors and not radiology experts organ maps of the body
were used to recognize and locate the relevant organs and body-parts. Sectra representatives
with more experience in working with CT images were also consulted to verify the authors
knowledge of these specific organs and body-parts. Each label-file consists of a unique id

23

3.2. Dataset

associating the label with a pixel file, coordinates representing the corners of the box and one
of the classes.

There were two alternatives when the boxes that mark a class (an organ or body-part)
were created in 3D, either make the label box containing or contained. A containing box had
to be created around the widest part of the class in order to contain the entire organs/body-
parts . The approach could result in parts of other organs or body-parts to appear in the
periphery of the label box. The alternative approach was to use contained boxes, in that case
the entire label would reside within the organ or body-part. This approach would guarantee
that only the labelled class resides within the label box but would result in large portions of
the organ or body-part to reside outside of the label box. For this study the first option was
used.

3.2.2 Preprocessing

The implemented system was fed with one raw pixel file per CT stack containing the pixel
data, an associated xml-file containing relevant meta-data from the DICOM headers and the
label files described in the previous section. The meta-data file contained:

e A unique identifier for the CT stack

The dataset was split into a training set and test set where the training set contained
approximately 80% of the data and the test set contained approximately 20% of the
data as recommended in the book Deep Learning [17]. The stack identifier was used to
perform this split by stack. The split should preferably be done by patient to reflect a
realistic situation where a new patient has an examination and the input to the system
is completely unseen images. However the limited number of patients would require
a too large portion of the data to reflect all classes in the test set if the split is done by
patient. Instead the split was done by stack, when a new stack is captured the detector
will not have seen parts of that data during training. It was also ensured that all classes
were represented in the test set.

o The patient’s age
All stacks with a patient younger than 18 years were excluded from the dataset since
the anatomy of children and adults differs and only adults were to be considered in this
study.

e The dimensions of the stack
The dimensions of the stack are used to reshape the raw-pixels which were imported as
a 1-dimensional array and to filter out images with a larger ratio than % between width
and height. Lastly used to make all images quadratic as part of the pre-processing
pipeline. An additional pre-processing step was also used to resize the images to
224x224 pixels, this additional pre-processing step is described in more detail in Sec-

tion[3.3.71

e The orientation of the volume in patient space
All images stored according to the DICOM standard are related to the orientation of
the human body in the scanner according to the patient space coordinate system, as
illustrated in Figure Only images aligned along the z-axis in patient space were
extracted in the pre-processing step, this projection is in medical terms often referred to
as the axial plane.

24

3.2

Dataset

Figure 3.2: A CT scanner with a patient and the DICOM Patience Space Coordinate System. E|

e Scaling in mm/px for each dimension of the volume
The scaling parameter for each image gives the number of mm represented by one pixel
in both dimensions of the 2D image. When the scaling was analyzed for all images in
the dataset it could be concluded that all images had the same scaling in both dimen-
sions. The smallest scaling that appeared in the dataset was 0.5mm /px and the largest
2.68mm/ px.

The smallest organs considered in this study is the kidneys, see Table[3.1] In a 2D image
they measure approximately 70x70mm. In the 224x224px large images smallest scaling
would result in the smaller of the dimensions of a kidney to be represented by 25px.
The scaling was however only considered to the extent that it was analyzed in the pre-
processing step. Possible effects on the result caused by the different scaling of the
images are discussed in more detailed in the Discussion in Chapter 5|

Class Max scale (mm/px) | Min scale (mm/px) | ~Size (mm) | Max size (px) | Min size (px)
head 1.339 0.732 163x182 223.0 122.0
neck 2.679 0.5 107x95 190.0 35.0
shoulders 2.679 1.246 360x197 158.0 74.0
chest 2.679 1.089 339x247 227.0 92.0
right lung 2.679 1.089 127x192 117.0 47.0
left lung 2.679 1.089 117x183 107.0 440
abdomen 2.679 1.089 333x261 240.0 97.0
liver 2.679 1.089 172x181 158.0 64.0
right kidney | 2.679 1.089 71x66 61.0 25.0
left kidney 2.679 1.089 68x67 62.0 25.0
pelvis 2.679 1.089 351x254 233.0 95.0
femur 2.232 1.339 364x204 152.0 91.0
knee 2.232 0.61 234x147 241.0 66.0
tibia 2.232 1.339 284x125 93.0 56.0
ankles/feet | 2.232 1.339 253x212 158.0 95.0

Table 3.1: The minimum and maximum scale in mm/px for an image that has been resized
to 224x224 pixels. Approximate size of an organ/body-part in mm and the maximum and
minimum size for each class in px. The organ/body-part sizes are calculated by taking the
average size of the class in all samples in the training dataset.

SCT Scanner by BotMultichillT licensed under CC-PD-Mark

25

3.2. Dataset

3.2.3 Resulting dataset

The volumes were converted into 2D images and the labels were translated into label vectors.
All images without any label were filtered out. The resulting dataset contained:

Class # slices | #stacks || Class # slices | # stacks
head 4220 24 head 897 3
neck 3673 24 neck 994 4
shoulders 1392 39 shoulders 131 4
chest 5014 41 chest 1104 7
right lung 6237 36 right lung 1229 7
left lung 6227 29 left lung 1230 9
abdomen 5268 21 abdomen 830 7
liver 3445 23 liver 655 6
right kidney | 2334 18 right kidney | 232 5
left kidney | 2593 18 left kidney | 218 5
pelvis 5234 52 pelvis 1706 8
femur 5528 51 femur 1948 8
knee 3077 54 knee 730 9
tibia 4523 36 tibia 1714 5
ankles/feet | 2823 41 ankles/feet | 1005 5
(a) Training set (b) Test set

Table 3.2: The number of slices and the number of stacks containing each class in the training
dataset and the test dataset.

The total number of stacks and slices in the two datasets are found in Table It should
be noted that the presence of several classes in the same slice/stack causes the number of
slices/stacks per class to not add up to the total amount of slices/stacks.

Set \ Total number of slices Total number of stacks
Training | 41394 108
Test 11036 21

Table 3.3: The total number of slices and stacks in the two datasets.

The results from the article How much data is needed to train a medical image deep learning sys-
tem to achieve necessary high accuracy? [7] by Cho et al. in 2016 were used as guideline when
collecting and labelling data. They showed that with around 4000 images per class a classifi-
cation accuracy of 99.5% could be reached. Figure[3.3|shows examples of images belonging
to each class.

26

3.2

Dataset

(a) Head (b) Neck (c) Shoulders

(f) Pelvis

(h) Knee (i) Tibia

(m) Liver (n) Right Kidney (o) Left Kidney

Figure 3.3: Sample images for all classes.

27

3.3. Classification

3.3 Classification

To be able to evaluate a classifier, a CNN was implemented in Keras. The classification prob-
lem was of the type multiclass-multilabel, meaning that classification is done over multiple
classes and each sample can contain multiple labels.

Due to the limited amount of data available for training, a transfer learning approach was
chosen as discussed in Section[2.4.3] The classifier was implemented using a pre-trained base
network, reusing the weights from all the convolutional layers. The final layers were then
added and fine-tuned on top of the base network.

The classifier was implemented by using a VGG16 architecture to form a base network
[40]. As discussed in Section VGG is a set of networks and the numbers in the name
of the network specifies how many layers the network has. Other popular networks used
as base networks when applying transfer learning are GoogleNet [44] and AlexNet [23]. In
ILSRVC-2014, VGG16 finished in the top with GoogleNet and beat the results of AlexNet from
2012 [40]. This in combination with the fact that there exists pre-trained implementations of
VGG16 in Keras made it a suitable choice for this project. The implementation for this study
was based on the VGG16 implementation in Very Deep Convolutional Networks for Large-Scale
Image Recognition [40].

The network has a 16 layer deep architecture of which 13 (block 1-5 in Table have
been used as implemented in VGG16 and instead of the last three fully connected layers in
the original implementation by Simonyan et al. [40], two fully connected layers adjusted to
the specific classification task were used. The architecture details are presented in Table

block 1 2 3 4 5 6 7
type conv+max conv+max conv+max | conv+max | conv+max || fc fc

conv layers | 2 2 3 3 3 - -

filters 64 128 256 512 512 256 15
conv stride 2x2 2x2 3x3 3x3 3x3 - -
zero-pad size | 1x1 1x1 1x1 1x1 1x1 - -

pool size 2x2 2x2 2x2 2x2 2x2 - -

pool stride 2x2 2x2 2x2 2x2 2x2 - -

reg - - - - - L? -
input shape | (224,224,3) | (112,112, 64) | (56, 56,128) | (28,28,256) | (7,7,512) (1,25088) | (1,256)
output shape | (112,112, 64) | (56,56,128) | (28,28,256) | (7,7,512) (1,25088) (1, 256) (1,15)

Table 3.4: The architecture of each block of the implemented CNN.

In Table[3.4Jthe type is either a convolutional block containing a few convolutional layers and
is ended with a max pooling layer (conv+max) or a fully connected layer (fc). # conv layers
tells how many convolutional layers a block contains. # filters is the number of filters used in
each convolutional layer in the the block (i.e. the third dimension of an activation volume).
Conv stride described the stride for the convolutional operation of the convolutional layers
in the block. Each convolutional layer is preceeded with a zero-padding layer, zero-pad size
tells how many rows and columns of zeros that are added to the input. Each block ends with
one max pooling layer and pool size and pool stride in the table describes the settings for the
max pooling operation. More information about the different layers and their settings can be
found in Section

Each convolutional layer was preceeded by zero padding 1x1, adding one row and one
column of zeros to the input to the layer and followed by a max pooling layer with filter size
2x2 and the stride 2 in both dimensions as in Figure The image dimension was reduced
to half the size by this pooling operation. Between the two fully connected layers there is a
dropout layer with dropout probability 0.5.

28

3.3. Classification

The activation function used for each convolutional layer in the VGG16 architecture is ReLU,
Equation 2.3} which is the most common in convolutional architectures according to LeCun
etal. [25]. The last fully connected layer used a sigmoid activation, as seen in Equation[2.6]
The pre-trained weights loaded into the base network were saved when training the net-
work on the ILSVRC-2014 dataset. The fully connected layers were initialized with a distri-
bution in Keras called glorot_normal which was implemented as explained in Section[2.2}

3.3.1 Dataset

To be able to benefit of the existing weights for the pre-trained network the input shape had to
be the same as for the original network, hence the 2D images used as input were resampled to
224x224 pixels in an additional pre-processing step. Figure[B.4shows an example of an image
before and after the resampling. VGG16 expects the pixels in the input data to be in a range
0-255 [40]. All image data was converted into this range by converting each pixel value into
the new range based on the old minimum and maximum pixel value in the image. Simonyan
et al. used a normalization where the mean RGB value was subtracted from each channel in
the original work with VGG16 [40]. To maximize the performance of VGG16 when extracting
features for the input data normalization was done in the same way as when the network
was pre-trained.

(a) Original size (b) Resized to 224x224

Figure 3.4: Example of relative size between original and rescaled image.
Before fine-tuning 20% of the stacks in the training dataset were extracted into a validation
set, the remaining 80% remained in the training set, see Figure[3.5| The split resulted in 10%

of the individual images in the original training set to belong in the validation set and 90% in
the new training set.

29

3.3. Classification

80% 20%
Training Test
80% 20%
Training Validation

Figure 3.5: Illustration of dataset split. 20% of the stacks in original dataset have already been
extracted to a test set. The remaining data in the training dataset is split, creating a validation
dataset of 20% of the stacks and a new training dataset with 80% of the stacks.

Roth et al. used data augmentation techniques in Anatomy-Specific Classification of Medical
Images Using Deep Convolutional Net [35] to improve the classification result. Keras provides
the possibility to do data augmentation on the input using a ImageDataGenerator. Zooming
was applied randomly within the interval of [0.8,1.2], resulting in images that are zoomed
in or out 0 — 20%. Shear angle was applied with value 0.2rad, giving sheared images within
the interval of —0.2rad to 0.2rad. Randomly horizontal flips to the input were also used.
This data augmentation was applied to the training data, no augmentation was applied to
the validation data. Two different augmentations were applied per image for the training
dataset, resulting in an augmented training dataset that is twice as large as the original train-
ing dataset.

3.3.2 Fine-tuning the Network

The pre-trained network was fine-tuned by freezing the weights of the 13 first layers, fine-
tuning only the fully connected layers. Since the weights of the frozen layers were never
adjusted during training the training time could be reduced by only predicting the feature
maps for training and validation data once. This way the base network is used as a feature
extractor and the computed feature maps could then be used as input training and validation
data to the first non-frozen layer when fine-tuning the network.

Objective

The CNN was compiled using binary_crossentropyﬂ objective in Keras. The objective J(®) is
calculated with logistic loss as defined in Equation In this setting when the probability
distribution is between 0 and 1, the cross-entropy is the same as logistic loss as shown in
Equation[2.14

It is appropriate to use a binary_crossentropy objective as loss function since it computes
sigmoid cross entropy, i.e. it measures the probability error where each class is independent
and not mutually exclusive.

Optimizer

During fine-tuning, the model was compiled using the optimizer SGD (Equation as
implemented in Keras. The implementation was a mini-batch gradient descent. The size of
the mini-batches was set to 32 (i.e. the batch size parameter in Keras was set to 32) which
was a recommended default value for the batch size according to Bengio [1]. The momentum
used with SGD was 0.9 which was used in previous work where a model was fine-tuned [48),
45]. A value between 0.8 and 0.9 was also referred to as commonly used value by Widrow et
al. [47]. A learning rate decay schedule was used where #7;,cy = 0.95 - 77prep Where 17,100 Was
the learning rate used in the previous epoch.

6Source code for objective functions https:/ /github.com/fchollet/keras /blob/master/keras/objectives.py

30

3.4. Localization and Detection

Number of Iterations

The network was fine-tuned during 50 epochs, iterating the augmented training data once
per epoch. However early stopping was implemented with patience = 5 on the validation
loss after the 25th epoch had completed. Early stopping is implemented in multiple ways.
When the training has terminated the model that was saved was the model after the epoch
for which the best validation loss was observed. Meaning that the model can be saved prior
to 25 epochs. The reason for forcing the model to train during 25 epochs before terminating
is to avoid a few unlucky weight updates during the first few epochs to stop the model from
continue training, giving the model a chance to improve. The limitation to train during 50
epochs was mainly used to avoid overfitting, training the model during too many epochs
with the same training data can cause the model to overfit. Secondly it was used to ensure
that training eventually stops due to time limitations. It takes approximately 8 hours for one
model to train 50 epochs.

L2-regularization is not useful when applying Early Stopping according to Bengio [1],
however early stopping was not used until epoch 25. L2-regularization was used to reduce
the risk of overfitting during the first 25 epochs.

Parameter | Value

Optimizer SGD

Loss binary_crossentropy
Batch size 32

Epochs 50 (with early stopping)
Training samples 37051

Training samples after augmentation 74102

Validation samples 4343

Validation samples after augmentation | 4343

Learning rate decay 0.95

Momentum 0.9

Table 3.5: Fixed settings for fine-training the network.

3.4 Localization and Detection

The approach used in OuverFeat: Integrated Recognition, Localization and Detection using Con-
volutional Networks by Sermannet et al. [39] was used as inspiration when investigating the
possiblity to locate organs and body-parts in the 2D images. They use a sliding window
approach where they let windows of different scales slide over the original image and the
content of the window at each step is the input to their CNN. They have trained a CNN
with two different heads that share the same convolutional blocks, one classification head
and one regression head. A class prediction score is produced by the classification head and
a bounding box (four coordinates) are produced by the regression head on each window for
each scale. Bounding boxes from windows where classification confidence is high are then
merged using an algorithm described in their paper to produce a final prediction.

In this study one part of their pipeline has been implemented to investigate the possibility
to locate or detect organs and body-parts with this approach in medical CT images. The part
of their pipeline that has been implemented is a classifying CNN that is used in a sliding
window manner. The window slides over the image and each part is passed as input to the
CNN. The CNN produces confidence score for the presence of each class in that window.

The CNN architecture was identical to the CNN used for the classification task and was
trained with the same settings. The difference is the training data that was passed to the
network. Instead of passing the entire 2D image for each sample patches were extracted

31

3.5. Evaluation metrics

based on the labels in the original samples. The CNN requires the input to be quadratic and
224x224px. For labels that are not quadratic pixeldata outside the smaller dimension of the
label was added to match the larger dimension. Finally each patch was rescaled to 224x224px.

When running inference on the CNN it is applied to windows of the image and one con-
sideration is the size of these windows. Since the goal is to detect different sized organs and
body-parts the likelihood to find each class is larger if multiple sizes of the sliding window is
used [39]. Based on the sizes in mm of the classes presented in Tablethe sizes s are chosen.

s = {50,70,100, 150,200, 250, 300, 350 } (3.1)

The window has a step-size, determining how many pixels at the time it should slide in
both dimensions. Chosing a too large step-size will result in predictions that are not detailed
enough while choosing a too small step-size will give redundant information. A sliding win-
dow approach is very computationally expensive with many models but is suitable to use
with CNN. The nature of convolutional calculations is to apply the same calculation to the
entire image which can be calculated once and reused for each window [39].

3.5 Evaluation metrics

In Section [2.7| the evaluation metrics were defined in a simple form. A form that is not ap-
plicable to multi-class multi-label problems. To enable the use of the metrics in the setting
with multi-class multi-label task Sokolova et al. [41] presents the following modification to
the metrics.

Average accuracy and error rate was defined as follows:

Skttt
= tpi+£ni+fpi+t”i (32)

Average Accuracy =

Zkfl fpitfn
=1 tpi+fni+fpitin (3.3)

Average Error Rate = .

k is the number of classes. This average accuracy determines the average per-class effective-
ness of the classifier.

Sokolova et al. also introduce a metric called Exact Match Ratio which considers the case
of complete label matching. The metric gives the accuracy where each prediction vector L; is
considered one unit, I is the indicator function and n is the number of label vectors. L;i are
the ground truth label vectors and L]C» are the label vectors produced by the classifier.

S I = L)

Exact Match Ratio = (3.4)

n
In The Precision-Recall Plot Is More Informative than the ROC Plot When Evaluating Binary Classi-
fiers on Imbalanced Datasets Saito et al. is investigating metrics evaluating a classifier when the
dataset is imbalanced, i.e fp + tp # fn + tn [38]. In the case of an imbalanced dataset Saito
et al. noted in their experiments that precision reveals differences in performance that would
be unnoticed if accuracy was used without precision. Precision, recall and F-score were eval-
uated in two ways, macro-averaging (denoted with M) or micro-averaging (denoted with p).
Macro-averaging takes the average over the classes for a measure that is calculated the same
way for each class. The alternative is to sum the number of tp, tn, fp and fn for each class and
calculate the metric from the cumulative values. Thus, micro-averaging puts a bias on larger
classes. Precision, recall and F-score for macro-averaging are defined [41]

32

3.5. Evaluation metrics

S s
. i=1 tpi+fp;
Precisionp; = 7;1 Ipi

St G o
Recally; = = ! (;{”'Jrf”l)

Fscoren — (B% + 1) - Precisiony; - Recally
M= B2 - Precision + Recallp

k
Precisiony, = —¢ 2i=1tpi
Yi—1(tpi + fpi)

k
Recall, = - 2iz1 1P
i (tpi+ fni)

(B? + 1) - Precisiony, - Recall,,

Fscore,, =
" p? - Precision, + Recall,

For the experiements = 1, to put equal weight on recall and precision.

(3.5

(3.6)

(3.7)

(3.8)

(3.9

(3.10)

The output from the system is a probability vector y. To get a true or false prediction a
threshold on the probability must be used for each class i. In this study the same threshold is

used for all classes. This threshold is set to:

1 y;=05
Yi=
0 y; <05

(3.11)

33

3.6. Experiments

3.6 Experiments

Four experiments were conducted, the first experiment: tuning a CNN, the second experi-
ment: creating a “table of content” for CT stacks based on CNN classifications and the third
experiment examining the importance of the size of training dataset. Finally, the fourth ex-
periment investigates how a classifying CNN can be used in a sliding window manner to
localize organs within single CT images.

3.6.1 Tuning a classification CNN

Some choices of the settings for the model were already set in Section the remaining
hyperparameters were tuned as a first experiment.

Since the learning process was extremely time consuming only two hyperparameters were
chosen for optimization, the initial learning rate and the L2-regularization coefficient. If time
is limited Bengio, [1] recommends to prioritize optimizing the initial learning rate as the
most important hyperparameter. When the training dataset is small CNNs are more prone to
overfitting [5], therefore the weight regularization is chosen as the second hyperparameter to
optimize since it aids to reduce overfitting.

The tuning was done with grid search as presented in[2.3.2} Although Bergstra etal. found
that random search is more effective than grid search in the work Random Search for Hyper-
Parameter Optimization [2] grid search is chosen for optimization. Their study was conducted
on a 32-dimensional configuration space and they state that for low dimensional configura-
tions (up to three hyperparameters) grid search is reliable. It is also stated by Bengio [1] that
grid search is more efficient only when the number of hyperparameters to optimize are below
2 or 3. Grid search is therefor reliable and efficient choice for optimizing the learning rate and
regularization coefficient.

The following values for initial learning rate # and regularization coefficient A were cho-
sern:
7:1072,1073,1074,1075,10~°
A:1071,1072,1073,107%, 0.0

Model | 7 A 13 [1074 | 1073
1 1072 | 107! 14 | 1074 | 10¢
2 102 | 1072 15| 1074 | 0.0

3 1072 | 103 16 | 1075 | 1071
4 1072 | 10~¢ 17 | 1075 | 1072
5 10=2 | 0.0 18 | 107> | 1073
6 10=3 | 107! 19 | 107° | 10~
7 103 | 1072 20 | 1075 | 0.0

8 1073 | 103 21 | 107 | 10!
9 10=3 | 104 22 | 107% | 102
10 10=3 | 0.0 23| 107% | 1073
11 10~4 | 107! 24 | 107 | 10~*
12 104 | 1072 25| 107% | 0.0

Table 3.6: Combinations of hyperparameters for each of the trained models.

34

3.6. Experiments

The learning rates in the experiment were chosen by letting the network train during a few
epochs and analyze the behaviour for the edge cases. The other parameter was fixed while
finding the edge cases which is a common approach according to Practical Recommendations
for Gradient-Based Training of Deep Architectures by Bengio [1]. It was found that with a lower
learning rate than 10~ convergence is very slow. With a higher learning rate than 10~2 loss
does not decrease on every epoch and may not converge, 103 is the recommended initial
learning rate when training a CNN according to Bengio. The lower bound for regularization,
0.0, means no regularization at all. The higher bound 10~* was chosen by observing the
loss and noticing that with larger regularization the regularization term dominated over the
weights in the network.

Evaluation

To evaluate the result of the experiment the model, validation accuracy and validation loss
were analyzed. The model with the lowest validation loss was chosen as the best model. This
model were used to make predictions on the previously unseen test set. For the predictions
the following metrics, as defined in Section 3.5, were calculated:

e Average accuracy

e Average error rate

Micro and macro average recall

Micro and macro average precision
e Micro and macro average F-score

To extend the examination of the chosen model, the misclassifications done by the model
were analyzed. The analysis considered what class was predicted instead when a sample
was misclassified for some class i, it was done per class. For each false positive predicted for
class i the probability vector was scanned for false negatives on other classes and for each
false negative predicted for class i the probability vector was scanned for false positives on
other classes. By doing this it was possible to get an idea if anatomically adjacent classes were
predicted instead of the correct classes when the sample was misclassified.

A new term relevant misclassification was introduced. A prediction that was wrong was

considered a relevant misclassification if it instead predicted an anatomically adjacent class
as defined in Table[3.71

35

3.6. Experiments

Class \ Relevant Misclassification

head neck

neck head, shoulders

shoulders neck, chest

chest shoulders, abdomen

right lung chest, left lung

left lung chest, right lung

abdomen chest, pelvis

liver abdomen, left kidney, right kidney

right kidney | abdomen, liver, left kidney
left kidney abdomen, liver, right kidney

pelvis abdomen, femur
femur pelvis, knee
knee femur, tibia
tibia knee, ankles/feet

ankles/feet | tibia

Table 3.7: Relevant misclassifications for each class.

For each class the percentage of misclassifications that was relevant misclassifications was
calculated. The measure was also calculated for the case when the misclassification was a
false positive and a false negative separately. The percentage of cases where no other class
was predicted was also calculated.

Finally, since the classifier handles multiple classes per sample a value for Exact Match
Ratio is calculated. This value gives the percentage of prediction vectors that are identical to
the ground truth vector.

3.6.2 “Table of content” for CT stacks based on CNN classifications

In the previous experiment only classification of individual 2D images was considered. To
generalize and put the classifier in context, seven full stacks were selected:

One full body stack, covering all classes except head

e Two upper body stacks, covering classes in the upper body except head
e Two head stacks, covering the head.

e Two lower body stacks, covering all classes from pelvis and down.

Of these seven stacks, four stacks were selected from the test set and three were acquired for
this test. The new stacks were gathered due to the lack of full body stacks in the test set and to
ensure stacks of new patient’s were presented to the classifier. A similar experiment has been
done by Roth et al. in Anatomy-Specific Classification of Medical Images Using Deep Convolutional
Net [35].

The best performing classifier from the previous experiment was used in this experiment.
During pre-processing an index for each image in the stack was stored to make it possible to
know the order of the axial slices seen from top to bottom of the body. Each image in the stack
was fed to the trained classifier which outputted a probability vector containing the predicted
probabilities for each class for that sample.

36

3.6. Experiments

Evaluation

For each class a probability curve was plotted along the body. This was done for each class
by extracting the desired class probabilities from every image prediction vector. The result
was analyzed to see whether the odd probabilities appear in completely wrong places or if
the probabilities generally are high around the location of the class. Furthermore suggestions
on heuristics were discussed to explore the opportunity to enhance the result by looking at
other images’ predictions in the stack to see if they could aid and correct a misclassification.

3.6.3 Reducing the size of the training dataset

It remained an open question if a larger original training set would likely improve the perfor-
mance in terms of accuracy, precision and recall of the classifier. Instead of adding more data
to the training dataset the training set was split into several smaller training sets to investigate
this. The test set was not modified at all.

To extend the training dataset it would be required to add additional stacks, no more slices
can be obtained from the stacks that are already included in the training set. To reflect this re-
alistic situation entire stacks were removed to create the smaller training sets, the percentage
of stacks in each training set is found in Table

The stacks to be included in each training set were randomly selected among all stacks
but it was ensured that all classes were represented in each of the smaller training sets. It
was also ensured that the smaller training sets always were a subset of the larger. Selecting
random stacks from the original training set can however result in very different number of
images to belong to the different sets since stacks can have different size (i.e. different amount
of slices). To handle this sets containing from 10% to 100% of the stacks were created with an
interval of 5%, the resulting sizes of the sets is displayed in Table

Dataset | Number of stacks | Number of slices | % of original stacks | % of original slices
1 8 6086 10% 16%
2 13 7268 15% 19%
3 17 12770 20% 34%
4 22 18607 25% 50%
5 26 21949 30% 59%
6 30 22994 35% 62%
7 35 25298 40% 68%
8 39 26775 45% 72%
9 44 28287 50% 76%
10 48 29835 55% 80%
11 52 30980 60% 83%
12 57 33218 65% 89%
13 61 34284 70% 92%
14 66 35029 75% 94%
15 70 35558 80% 95%
16 74 35846 85% 96%
17 79 36161 90% 97%
18 83 36781 95% 99%
19 88 37051 100% 100%

Table 3.8: The number and percentage of stacks and slices in each of the reduced training sets.

To get spaced values between 0% to 100% for the percentage of slices in the data training set
the sets shown in Table 8.9 were selected to be used for the experiment.

37

3.6. Experiments

Dataset | Number of stacks | Number of slices | % of original stacks | % of original slices
1 8 6086 10% 16%
2 13 7268 15% 19%
3 17 12770 20% 34%
4 22 18607 25% 50%
5 26 21949 30% 59%
7 35 25298 40% 68%
9 44 28287 50% 76%
11 52 30980 60% 83%
15 70 35558 80% 95%
19 88 37051 100% 100%

Table 3.9: Percentage of original stacks in each new training set

One model was trained with each of the training datasets using the settings that were found
to give the best model in the first experiment. A similar experiment was conducted by Cho
et al. in How much data is needed to train a medical image deep learning system to achieve necessary
high accuracy? [7].

Evaluation

To evaluate the outcome of the experiment the trained CNNs were used to make predictions
on the test set. For the predictions the following metrics were calculated as introduced in
Section [3.5):

e Average error rate
e Micro and macro average recall
e Micro and macro average precision

By analyzing the values of these metrics as the training set gets larger it can be predicted
whether adding additional stacks to the training set would improve the performance in terms
of the calculated metrics of the trained CNN.

3.6.4 Towards object localization

To analyze the possibility to use a classifying CNN to locate organs and body-parts in medical
CT images the CNN described in Section 3.4 was trained. A subset of the test set containing
at least 10 samples of each class was extracted from the original test set. Each class was
represented by at least three different stacks.

The test images were rescaled to make the sliding window sizes in mm be represented
by 224px. The rescaled image size depends on the original scaling (mm/px) and size of the
image. For the experiment a step-size of 30px was used for both dimensions as the window
slid over the image. The number of windows per scale depends on the size of the rescaled
image.

The output when the entire image was covered was a heatmap with per-pixel likelihood of
the presence of a specific class. The per-pixel likelihood was calculated by taking the average
confidence score for each window that has convered that region (pixel) of the image.

The bounding box extraction approach differs from the approach in OverFeat: Integrated
Recognition, Localization and Detection using Convolutional Networks where a regressor was used
to propose one bounding box per window and then merge these over all windows and all
scales.

38

3.6. Experiments

The approach used for this investigation was instead to extract bounding boxes based on
the per-pixel likelihood heatmaps. A threshold confidence score and the minimum and
maximum pixels in both dimensions that are above the threshold are set as limits for the
extracted bounding box. Three different parameters with two values each have been tested
for the extraction process.

Average Heatmap vs. Merged Boxes

The first parameter determines if an average heatmap was used to extract one single bound-
ing box or if one bounding box was extracted for each scale. The average heatmap was calcu-
lated by taking the average probabilities over the heatmaps created for each scale. When ex-
tracting multiple bounding boxes the following merging algorithm was used to merge these
into one.

1. Assign C to be the located class.
2. Assign Bs the predicted bounding box for C for all scales in s (see EquationB.1).
3. Assign B «— UB;
4. Repeat merging until the length of B is 1:
e B —— B\ {by, by} umerge_boxes(by, by)

In the algorithm merge_boxes takes the average of the bounding box coordinates which
is the same approach as used in OuverFeat: Integrated Recognition, Localization and Detection
using Convolutional Networks. There is however more steps to their algorithms that were not
used in this study, they use a match_score to determine if the merging should continue or
not. In this work there were fewer bounding boxes initially since the bounding boxes were
retrieved with a different approach. The merging process was not finalized until there was
only one bounding box left.

Fixed Threshold vs. Adapting Threshold

The second parameter, the threshold used to extract bounding boxes, was also varied in two
different ways. The first approach was to use a fixed threshold set to 0.5 (Equation[3.12). The
second approach was to find the maximum probability, max_prob, in the heatmap (hm) and
based on this set the threshold as seen in Equation

T_fixed = 0.5 (3.12)
T_adaptive = max (max_prob(hm) —0.1,0.1) (3.13)

All Scales vs. Selected Scales

The third parameter determines which of the two settings All Scales or Selected Scales that is
used when creating the average bounding boxes. To create the bounding box for the average
heatmap or the bounding boxes for each scale either all scales s (see Equation3.1)) or a subset
Seup Of s can be considered. The set sg,,;, for each class (see Table was chosen based on
the size of the organ or body-part to locate in mm, as can be seen in Table .1} This was done
since it is more likely that an organ or body-part can be located if it fits within a window.

39

3.6. Experiments

Class | Ssub

head 100, 150, 200
neck 70, 100, 150
shoulders 150, 200, 250, 350
chest 200, 250, 350
right lung 70, 100, 150, 200
left lung 70, 100, 150, 200
abdomen 200, 250, 350
liver 70, 100, 150, 200

right kidney | 50, 70, 100
left kidney 50, 70, 100

pelvis 200, 250, 350

femur 150, 200, 250, 350
knee 150, 200, 250

tibia 100, 150, 200, 250, 350

ankles/feet | 150, 200, 250

Table 3.10: The sliding window sizes used for each class when selected scales are used to
extract bounding boxes.

Localization covers the task where it is known which object is sought and that object is lo-
cated. Combining the described approach with the exisiting classifier the problem can be
formulated the following way. First the original classifier (trained for the classification part)
is used to classify an image, then the sliding window approach is used to locate the identified
organs and body-parts in the sample. Knowing what is sought allows to select the most likely
area even if probabilities overall are low, i.e using the adapting threshold.

The localization task ran on the selected data for each combination of the three settings
resulting in 8 different combinations of settings.

The extracted subset of the data set contained 150 samples, 10 samples were extracted per
class. Multiple classes can appear in the images making some of the classes appear in more
than 10 samples as shown in Table[3.11] The table also shows the number of times the original
classifier managed to detect the class, making it subject for localization.

40

3.6. Experiments

Class \ # of Appearences # Times Detected
head 10 10
neck 10 9
shoulders 11 7
chest 28 23
right lung 31 29
left lung 33 29
abdomen 41 31
liver 28 16
right kidney | 19 10
left kidney | 20 12
pelvis 11 10
femur 10 10
knee 10 9
tibia 10 9
ankles/feet | 11 10

Table 3.11: The number of times a certain class appears in the test set and the number of
times it is detected by the classifier.

Evaluation

As can be seen in Table the original classifier does not detect all samples for each class,
there are false negatives. Similarily there are also false positives. The performance of the orig-
inal classifier has however already been evaluated thus all false negatives and false positives
are neglected and only the true positives are located.

The localization performance is evaluated using the intersect over union measurement to
compare the predicted bounding box with the ground truth bounding box. The following is
calculated for each setting:

e The average and median IoU for each class and the total average IoU
e The percentage of hits (IoU > 0.5 as defined in Section[2.7)

o The maximum and minimum IoU value for each class

Examples of good and bad predicted bounding boxes together with their respective heatmap
representation are also presented as part of the evaluation of the technique.

41

Results

This Chapter presents the results used to answer how well a CNN can perform when clas-
sifying medical CT images. It also gives results that are the base for answering if a table of
content for a full stack can be created by using a CNN taking 2D CT images as input. Lastly,
results for CNNs trained on different sized datasets are presented to be able to determine if
more training data would likely improve the classifiction performance of the CNN.

4.1 Tuning the CNN

This section addresses the first part of the study, the tuning of the hyperparameters learn-
ing rate () and L2 reqularization coefficient (A). Even though the L2-regularization is zero for
some models, regularization is still applied in form of early stopping and dropout. Table
shows the settings used and the validation accuracy and validation loss for each of the trained
models obtained from the grid search. It also displays the number of epochs the model was
trained before early stopping terminated the training process or 50 epochs were completed.

42

4.1. Tuning the CNN

Model | 7 A #Epoch | Val acc | Val loss
6 10=3 | 10~! | 40 99.23 0.02

7 1073 | 1072 | 37 99.22 0.0205
11 10~% | 1071 | 42 99.11 0.0229
12 104 | 1072 | 39 99.02 0.0261
2 1072 | 1072 | 37 98.87 0.0265
8 1073 | 107° | 33 99.02 0.0302
14 1074 | 107% | 32 99.03 0.0305
10 1073 | 0 38 98.86 0.0313
15 1074 |0 32 98.96 0.0322
9 1073 | 107% | 32 98.88 0.0322
3 1072 | 1073 | 37 99.21 0.0335
13 10=% | 1073 | 38 98.85 0.0368
19 107° | 10~% | 50 98.64 0.0378
16 10=° | 10~1 | 50 98.51 0.0388
20 10° 10 50 98.39 0.0443
18 107> | 1073 | 50 98.36 0.047
17 107> | 1072 | 50 98.43 0.0498
23 10=% | 1072 | 50 97.05 0.0862
25 107¢ | 0 50 96.91 0.0862
22 107° | 1072 | 50 96.91 0.0956
21 10— | 10~! | 50 97.01 0.0991
24 106 | 10~% | 50 96.37 0.1116
1 10=2 | 107! | 35 93.39 0.135
4 1072 | 107 | 32 94.03 0.9616
5 1072 |0 41 93.33 1.0756

Table 4.1: Results for all the models obtained from the grid search sorted on validation loss.
Validation accuracy is rounded to two decimals and validation loss is rounded to four deci-
mals. The model number is the same as in Table

The best model is model number 6 as seen in Table The validation loss is 0.02 and it is
trained with # = 0.001 and A = 0.1. Early stopping terminated the training after 40 epochs.
Ten models (16, 17, 18, 19, 20, 21, 22, 23, 24, 25) did not early stop before reaching the 50th
epoch and terminated due to reaching the limitation on number of epochs to run. These nine
models are the models with the lowest value of the learning rates, 7 = 107> and 57 = 107°.
The learning curves for the training accuracy and validation accuracy for the best model
is displayed in Figure The learning curve for the training loss and validation loss is

displayed in Figure

43

4.1. Tuning the CNN

—— Val acc, n: 0.001 A: 0.1

99.25 Training acc, n: 0.001A: 0.1 p

-

99.00

o
&
~
wul
-

©
o
wn
=)

ft=3
oo
~N
w

©
@®
o
=]

97.75

Validation Accuracy (%)

97.50

97.25

see s L. N

N, A \
.,

10 15 25 30

20
Epoch

35 40

Figure 4.1: Learning curves for the training accuracy and validation accuracy for the best

model, 7 =103 and A = 10~L.

0.08 —— Val loss, n: 0.001 A: 0.1
3 Training loss, n: 0,001 A: 0,1
0.07
& 0.06
o
.}
5
5 0.05
©
R
S o004
0.03
l\\""‘\ A -
N R e, A PN
Y \"// ‘\ P s > alli e \.7.:--4—-»-'_'_..»,""1 3 //\ ‘K-/A .
0.02 v
5 10 15 20 25 30 35 40
Epoch

Figure 4.2: Learning curves for the training loss and validation loss for the best model, 7 =

103 and A =10~ 1.

As can be seen in Figure 4.2] the lowest validation loss is after epoch 12. The chosen best

model is therefore the model after epoch 12 and not epoch 40.

44

4.2. Best Model Evaluation

4.2 Best Model Evaluation

The previous section only considers the validation dataset to find and select the best model
among the models trained using a grid search algorithm. From this section and onwards the
model refers to the best model that was selected. This section presents the results when the
model was used to classify the data in the held out test set. Table 4.2| shows a summary of
the average (both macro-average M and micro-average) values over all classes for the listed

metrics.

Metric

Value (%)

Average accuracy
Average error rate
Precisiony,

Recally,

F-score,
Precisionp
Recally,

F-scorej

Exact match ratio

98.89
1.11

95.37
91.93
0.936
89.41
86.4

0.879
88.24

Table 4.2: Metrics for the model, definition of metrics is found in Section

The accuracy, error rate, recall (M and y) and precision (M and y) were also calculated indi-
vidually for each class. These metrics are plotted in Figure[.3} Figure[d.4and Figure[#.5] Exact
values for class specific metrics are found in Appendix[A.T} For numbers of true positives,
true negatives, false positives and false negatives per class see Appendix[A.2}

2.62%
2.5

2.0

1.5

Error rate %

0.5

0.19% 0.19%

0.0

) .] X n s i o < el
e et a0 e et e gt re® O e g e e g“ﬂmr\fe‘f“mﬂe\i
o

Class

Figure 4.3: Per class error.

The class with the highest error rate is abdomen with error rate 2.62%. The classes with the
lowest error rates are head and neck with an error rate 0.19%.

45

4.2. Best Model Evaluation

100

80

60

9 14%

Recall %

40

20

o Y] X n s i R S el . :
ned® qed 5\’\0“\62‘ cnes awo‘“e NS et yne® o el @ ght‘““')\est‘““g e \g“‘wo“e" i
]

Class

Figure 4.4: Per class recall.

The class where the largest fraction of the relevant cases are selected is femur which has a
recall value of 97.9%. Neck and head follows closely behind with a recall value of 97.89% and
97.66%. The class where the least number of relevant cases are selected by the classifier is

right kidney where the recall value is 49.14%, meaning that the right kidneys are not detected
in more than half of all samples it is depicted in.

A

e gect wz“’ nest W‘,&\“ ot o gaer ﬂ“.,\\l‘“* g wﬁ ‘wﬂ‘l e

Class

100

Precision %
3 3

o
=)

~
=)

Figure 4.5: Per class precision.

The class where the largest fraction of the selected cases are relevant are head and neck for
which the classifier score a precision value of 100.0%. For these two classes there are no false
positives. The class where the least fraction of the selected are relevant cases is the right

kidney with precision 43.51% meaning that in 56.49% of the cases where a right kidney is
p<ns1:XMLFault xmlns:ns1="http://cxf.apache.org/bindings/xformat"><ns1:faultstring xmlns:ns1="http://cxf.apache.org/bindings/xformat">java.lang.OutOfMemoryError: Java heap space</ns1:faultstring></ns1:XMLFault>