Linkdpings University | Department of computer science
Bachelor thesis, 16hp | Computer science
Spring term 2016 | LIU-IDA/LITH-EX--16/043--SE

Search guidance with
composite actions

- Increasing the understandability of the domain model

Viégledning med sammansatta handlingar
- Forbattring av forstdbarheten i domédnmodellen

Erik Hansson

Tutor: Mikael Nilsson
Examiner: Jonas Kvarnstrom

—~ L. k . . .t t
LINKOPING T e
® UNIVERSITY 013-28 10 00, www.liuse

http://www.liu.se

Upphovsritt

Detta dokument halls tillgdngligt pa Internet — eller dess framtida erséttare — under 25 ar
fran publiceringsdatum under forutsittning att inga extraordindra omstindigheter uppstar.
Tillgéng till dokumentet innebar tillstdnd for var och en att ldsa, ladda ner, skriva ut enstaka
kopior for enskilt bruk och att anvinda det oférandrat for ickekommersiell forskning och for
undervisning. Overforing av upphovsritten vid en senare tidpunkt kan inte upphéva detta
tillstind. All annan anvéndning av dokumentet kraver upphovsmannens medgivande. For
att garantera dktheten, sakerheten och tillgangligheten finns losningar av teknisk och admin-
istrativ art. Upphovsmannens ideella ritt innefattar ritt att bli ndmnd som upphovsman i
den omfattning som god sed krédver vid anvdandning av dokumentet pa ovan beskrivna sétt
samt skydd mot att dokumentet dndras eller presenteras i sidan form eller i sddant sam-
manhang som &r krankande for upphovsmannenslitterdra eller konstnérliga anseende eller
egenart. For ytterligare information om Linkdping University Electronic Press se forlagets
hemsida http:/ /www.ep.liu.se/.

Copyright

The publishers will keep this document online on the Internet — or its possible replacement
— for a period of 25 years starting from the date of publication barring exceptional circum-
stances. The online availability of the document implies permanent permission for anyone to
read, to download, or to print out single copies for his/hers own use and to use it unchanged
for non-commercial research and educational purpose. Subsequent transfers of copyright
cannot revoke this permission. All other uses of the document are conditional upon the con-
sent of the copyright owner. The publisher has taken technical and administrative measures
to assure authenticity, security and accessibility. According to intellectual property law the
author has the right to be mentioned when his/her work is accessed as described above and
to be protected against infringement. For additional information about the Linkoping Uni-
versity Electronic Press and its procedures for publication and for assurance of document
integrity, please refer to its www home page: http:/ /www.ep.liu.se/|

© Erik Hansson

http://www.ep.liu.se/
http://www.ep.liu.se/

Abstract

This report presents an extension to the domain definition language for Threaded Forward-
chaining Partial Order Planner (TFPOP) that can be used to increase the understandability
of domain models. The extension consists of composite actions which is a method for ex-
pressing abstract actions as procedures of primitive actions. TFPOP can then uses these
abstract actions when searching for a plan. An experiment, with students as participants,
was used to show that using composite action can increase the understandability for non-
expert users. Moreover, it was also proved the planner can utilize the composite action to
significantly decrease the search time. Furthermore, indications was found that using com-
posite actions is equally fast in terms of search time as using existing equivalent methods
to decrease the search time.

Acknowledgments

To begin with I would like to express my gratitude to Jonas Kvarnstrém and Mikael Nilsson
for the feedback and help during the work. Moreover, Mikael also has my gratitude for all the
discussions about planning which was only remotely connected to this thesis. They definitely
proved to be interesting.

I would also like to give my thanks to Orjan Dalhstrém who gave me some of his time to
answer my questions regarding statistics, even if he had no obligation whatsoever to do so.
Furthermore, Ola Leifler deserves my thanks for putting up with my questions all the times I
dropped by his office unannounced.

Finally, to my family, friends and colleagues who have helped me, knowingly or unknow-
ingly, by dropping by for a coffee break, guilt tripping me to leave the office in the evenings
or simply talk about something else. All the small things made wonders for the productivity
and therefore, you have my deepest thanks.

Linkoping, June 2016
Erik Hansson

Contents

[Abstract iii
|Acknowledgments| v
vi
viii
[List of Tables] ix
(I__Introduction 1
[I Motivationl« o 1
M27ATN] . - o o e e 2
[I.3 Researchquestions| 2
imitations] 2

2 Background| 5

d Planning| 5
[2.2 Threaded Forward-chaining Partial Order Planner] 8

17
BI Definitionsandnotations 17
[32 Compositeactions|. L 17
[3.3 Understandability measurement| 20

4 Method 25
4.1 Composite action componentranking| 25

42 Tmplementation] 25
4.3 Searchtimel. 26

4.4 Understandability measurement| 27

45 Understandability experiment|. 28
5_Results| 33
p.1 Composite action component ranking| 33
b2 TImplementation] 34

Imel. 43

4 Understandability measurement| 45

.5 Understandability experiment]. 45
l6Discussionl 47
BI Resulfd 47
62 Methodl. 50
6.3 Sourcecriticisml| 51
6.4 Theworkinawidercontextl, 52

vi

[Z_Conclusionl

A.1 Code and data spatial complexity|.

A2 Tmproved cognitive information complexity].

B_Blocks Worldl

IC Questionnaire|

[D_PDDL Domain Introduction]

[E" Search Time - Compared to no Guidance]

[F Data understandability pre-experiment|

|G Data understandability experiment

Bibliograp

Y

57

63

77

81

83

85

87

List of Figures

21 Acausallinkexample] o o oo 7
2.2 TFPOP plan representation showing the orderingrules) 9
2.3 TFPOP search structure when selecting a primitive action|. 10
2.4 TFPOP search structure when selecting a sequence action] 11
.5 The people-in-distress domain: flags, types, constants and fluents] 12
.6 The people-in-distress domain: operatorspart1] 13
.7 The people-in-distress domain: operatorspart2 14
2.8~ The people-in-distress domain: sequence operators| 15
The distressed people at mountain problem instance|. 16

4.1 Method for searching for understandability measurements| 28
.1 The syntax for composite actionsin TDDL. 35
b.2 Composite action branch point thatadds totheplan| 36
b.3 Composite action branch point that does notadd to the plan] 36
A The syntax for variable infroductionin TDDL]. 39
.5 Branches of a with where branch point|. 40
b.6 The syntax for anif statementin TDDL] 40
b.7 Branches of anifbranchpoint| 41
5.8 Evaluation of anifstatementl 41
.9 The syntax for a while statementin TDDLj. 42
p.10 Branches of a whilebranchpoint] 42
i lestatementl L L 42

[.12 The syntax for a sequence statement in TDDL}. 43
b.13 Evaluation of a sequence statement]. 43
.14 Evaluation of a composite action| 44
.15 Search time, composite actions and equal guidance] 44
.1 Blocks world domain without any extra guidance| 57
B.2 Blocks world domain with composite action as extra guidance. 58
.3 Blocks world domain with guidance equal to composite actions, part1|. 59
[B-4 Blocks world domain with guidance equal to composite actions, part2]. 60
[B.5 Blocks world problem used to compare search time when comparing to no guidance.| 60
|B.6 Example randomized problem for composite action| 61
[B.7 Example randomized problem for equivalent guidance| 61

viii

List of Tables

2.1 The two common search spaces within planning| 6
3.1 Notationsusedinthereport 18
3.2 Software understandability aspects] L L 23
4.1 All the search keywords sorted after categories| 28
.1 The ranking of the composite action components|. 33
.2 The categorization of complex actions in Golog| 34

3 The categorization of components in BEM| 34
b.4 The categorization of components in the extension of TAL with composite actions] 34
b.5 The categorization of components in HIN]. 34
p.6 Composite action component to implementationmap| 37
b.7 Label suffix for memory objects| 38
[5.8 " Search time, composite actions and no guidance] 44
|A.1 The cost for different basic control structures according to Wang and Shao. 56
[E.1 Run time for domain with compositeaction|. 81
[E2 Run time for domain without any search guidance|. 82
[F1 Understandability pre-experimentdatal 83
|G.1 Understandability experimentdatal. 85

ix

Introduction

1.1 Motivation

There are crises that result in situations that are not healthy for a human to be in. For example,
it can be high radiation levels in the case of a reactor leak due to an earthquake. Naturally, this
makes it harder to repair any damages. However, robots would be able to enter the reactor
and make repairs without risking radiation sickness. Moreover, imagine that repair robots
work in collaboration with unmanned aerial vehicles (henceforth, called UAV) to solve the
problem. The UAV could be used to deliver the needed parts and supplies for the repair. This
would make it possible to solve the whole crisis without any humans getting near the risk
zone.

Before the example in the previous section can become reality, there are challenges that
need to be overcome. One of them is that the robots need to have a plan for how to find
everything that has been damaged and repair it. Otherwise, they might wander around ran-
domly until everything is repaired. Two main components are required to create such a plan:
A planner (a program that searches for a plan given a model of the real world called a domain
model) and a domain model.

A common way to model a domain is to use the Planning Domain Definition Language
(PDDL). A drawback with this, according to Strobel and Kirsch, is that it becomes hard to
understand when the model grows in size [[19]. Therefore, it also becomes harder to create and
maintain. Moreover, this becomes an even harder challenge when the planner is a domain-
configurable planner since a domain-configurable planner requires extra information about
the domain (called domain knowledge) to guide the planner when it creates a plan [16]].

There exist tools designed to make it easier for the user to understand a domain model
written in PDDL. For example, Strobel and Krisch developed an integrated development en-
vironment (IDE) [19]. However, these are all tools that in some way provide functionality to
work with PDDL (see Shah et al. for an overview of the existing tools as of 2013 [18]). In
this report another approach is taken to increase the understandability of the domain model.
Instead of providing the user with more tools, an extension to the language for modeling
used by Threaded Forward-chaining Partial Order Planner by Kvarnstrom [14] is proposed.
Henceforth, modeling language will be called TDDL (for Threaded planning Domain Defi-
nition Language) and the planner will be called TFPOP. The extension allows for expressing
certain types of domain knowledge in a less complex manner through allowing composite

1.2. Aim

actions to be defined in the domain in addition to the already supported primitive actions.
Composite actions can be used to express simple sequences of actions (for example, pick up
item a then go to B and deliver item a) or for more complex action sequences (for example,
while there are items at A, first go to A and pick up an item x, then go to B and deliver x).
The planner can use these composite actions when creating a plan, instead of selecting all the
individual components one by one.

As stated in the previous section, the proposed extension is aiming to be less complex
than expressing the domain knowledge without it. Therefore, the lower complexity would
make the model more understandable according to Bansiya and Davis since they identified
complexity as one of the factors that affect understandability negatively [3].

In addition to presenting the extension, this report aims to show that composite actions
can be used to increase the understandability. Moreover, it will also prove that they can be
implemented by implementing support for a subset of all the potential composite actions
in TFPOP. Finally, the report will research whether a planner can utilize the extra domain
knowledge by testing the performance when using them in TFPOP.

1.2 Aim

The main goal of this report is to create an extension to TDDL that allows expressing some
domain knowledge in a more understandable way. Moreover, it also aims to verify that the
extension is more understandable and that it is possible to utilize the domain knowledge to
decrease the search time.

1.3 Research questions

There are three main research questions in this report. Dividing these three into smaller sub-
questions and identifying questions that need to be answered before the main question results
in the following research questions:

1. Can composite action components (for example, sequence and while loops) be imple-
mented in TFPOP?

a) Which composite action components should be implemented?

2. How well can TFPOP utilize the domain knowledge in the composite actions when
searching for a plan?

a) Can extra domain knowledge through composite actions be used to decrease search
time?

b) Is there an indication that extra domain knowledge through composite actions is at
least as good as equivalent domain knowledge without composite actions in terms
of search time to find a plan?

3. Can composite actions increase the understandability of a domain model in TDDL com-
pared to using the equivalent guidance without composite actions?

a) How can understandability be measured for a domain model written in a TDDL?

1.4 Delimitations

In the report there are three delimitations. Firstly, the report will not try to prove that all
composite action components can be implemented in TFPOP (question 1) due to the time
constraints of this report. Moreover, only a subset of all possible composite action compo-
nents will be considered when deciding which composite action components that should
be implemented in TFPOP (question 1a). This restriction is applied since the main goal of

1.4. Delimitations

this report is not to decide which composite action components that are most important but
whether understandability can be increased by introducing composite actions.

Secondly, the report will not attempt to prove or disprove any difference of the effect of
the composite actions and the effect of the equivalent domain knowledge without composite
actions in terms of search time (question 2b). Instead, only a small test will be conducted to
get an indication regarding the previously mentioned equivalence.

Finally, the report will not explore if composite actions always increase understandability
(question 3). This is because composite actions only express one type of domain knowledge.
Therefore, they cannot be used to increase the understandability in the general case.

1.4. Delimitations

Background

The focus of the background chapter is to present the relevant information about TFPOP and
TDDL that is needed to understand how composite actions can be implemented in the plan-
ner. However, this require some basic knowledge about planning and the types of planners
that TFPOP is based on. Therefore, the first section will cover this. The following section will
cover parts about TFPOP and TDDL relevant for this report.

21 Planning

One important part in planning is to search for a plan that solves the given problem [17].
The problems (in classical planing as described by Russel and Norvig [17]) can be formulated
as: Given a certain situation (called the initial state), find an unordered, partially ordered or
totally ordered set of actions (called a plan) that changes the initial state to another situation
(called a goal state). For example, a problem within planning could be (this example will be
a recurring example through the background chapter): Given a UAV at the base, a crate with
supplies at the base and some people in distress on an isolated mountain, find a set of actions
that ensures that the people in distress has the crate with supplies and that the UAV has
returned to the base. To solve this problem a planner has to search through all the possible
plans for a valid plan (one that changes the initial state to a goal state).

There are other ways of formulating a planning problem used in non-classical planning.
For example, Hierarchical Task Networks formulates the planning problem as a high-level
action that needs to be refined into a list of high-level action and primitive actions [17]. This
continues until there is only a sequence of primitive actions left. However, this is still a search
problem since there can be multiple ways to refine a task. All the same, the other ways of
formulating a planning problem will not be covered further in the background chapter since
it is not needed to understand TFPOP.

If a planner is to search for a plan that solves a problem then it needs information about
what can be done to change the situation (called the current state). For example, solving
the problem mentioned above is in itself impossible since the planner does not know what
can be done. However, if the planner gets the extra knowledge that a UAV can perform the
following actions, then it has enough information:

o Start: The UAV starts flying.

2.1. Planning

o Pick up: The UAV picks up a crate. This requires that the crate is at the same location as
the UAV and that the UAV is not holding another crate.

e Move: The UAV moves to a new location.

e Deliver: The UAV delivers the crate it is holding to its current location. This requires that
the UAV is holding a crate.

e Land: The UAYV lands at its current position.

When an action is defined in classical planning it has properties that describe when it can
be used, called preconditions, and what it does, called effects. The preconditions state what
needs to be true for an action to be applicable. For example, pick up has the preconditions
that there need to be a crate at the same place as the UAV and it may not already hold a crate.
The effects are the changes that the action make to the current state. In the example with pick
up, the effect is that the UAV is holding the crate and that the crate is no longer at the place it
was.

The actions together with the types of objects that can exist, the properties and relations
that objects can have and all constant objects are called the domain. This is different from a
problem instance which exists in a domain and describes which objects exist, an initial state
and a goal state.

Given both the domain and the problem instance a planner is able to search for a plan
that guarantees that the goal is reached. Exactly how the search is conducted depends on the
planner. However, the search is usually conducted using a search space (a graph) that is a
state space or a plan space [17]. The different search spaces are explained in table[2.1]

Graph representation State space Plan space

Node A state A plan

An operator that changes the
Directed edge An action plan (for example, add or
remove an action)

Start node The initial state An empty plan
A goal node A state that upholds all the A plan that changes the initial
& conditions in the goal state state to a goal state
A plan changing the state at A sequence of operators that
A path the first node in the path to the modifies the plan in the first
p state at the end node in the node of the path to the plan in
path the last node of the path

Table 2.1: The two common search spaces within planning.

Forward-chaining planning

Forward-chaining planning (also called forward or progression state-space search) is a cate-
gory of planners that searches through a state space from the initial state to a goal state. The
basics are quite simple for this kind of planners. Namely, select a node in the search tree and
one action that is possible to apply in the corresponding state that has not been tried before.
Thereafter, create a new child node whose state is computed by applying the effects of the
selected action to the state of the selected node. Finally, check if the new state fulfills the goal
and if it does not repeat the procedure for a new state and/or action until the goal is reached.

The drawback with this kind of planning is that there can be a huge branching factor in
each choice. For example, TFPOP was tested with problem instances that could contain up
to 512 crates, 16 UAVs, 8 ground robots, 16 carriers for the UAV and more in an article by
Kvarnstrom [14]. Lets assume that all the UAVs are at different locations and each location

6

2.1. Planning

has 16 crates. Furthermore, if there is one action that makes a UAV move a crate to its des-
tined location and returns the UAV to the location it came from, then there are 512 different
combinations of variables for that action. This is among the best case scenarios where the
worst being where all crates and UAVs are at the same location (8192 possible combinations).
Naturally, there are scenarios where there are fewer options. However, no other action is in-
cluded in this number. Hence, it is safe to assume that 512 is the lowest average branching
factor for the problem instance. Finally, lets assume that the problem instance has the goal
that 16 crates has to be moved to the correct location and all UAVs are at the same place they
started at. Using these assumptions, there are 51216 (~ 2.23 « 10%3) possible combinations of
actions with variable bindings in total. Even if a processor could test one combination per cy-
cle and thread, it would take approximately 1.18 + 10% years to check all the Combinationsﬁ
Obviously, this is too long time.

To handle this complexity a forward-chaining planner uses methods to guide the search.
One example is to use a search heuristic that estimates the distance to the goal through the
number of conditions in the goal state that is fulfilled [17]. In the people in distress example
this would mean that deliver is tried before move when an UAV is at the isolated mountain
with the filled create since it results in that the people in distress gets their supplies.

Partial order planning

4
Ejy Ej,. Ejn;
A | R Bm]
| A |

Figure 2.1: A causal link from the effect E j1 inaction A; ensuring that the precondition P;; in
action A; holds. n; is the number of effects of action A; and m; is the number of preconditions
of action A;

Partial order planning is a type of planning that, unlike forward-chaining planning, searches
through a plan space. A plan in partial order planning consists of a partially ordered set
of actions [21]. The following paragraphs describe the partial order causal link (henceforth,
called POCL) approach for creating partially ordered plans.

In POCL a plan consists of a set of actions, a set of ordering rules for the actions and a set
of so called causal links [21]. A causal link is a link going to precondition m (P; ,,) of an action
(A;) from effect n (E;,, == P; ;) of another action (4)), as shown in figure The causal
link models that the effect of A; ensures that the precondition in A; is true and is written as

A; M Aj. These causal links can show threats to the plan if another action (Aj) with the
effect Ex y == —P;;, is added to the plan. For example, if A; is executed and thereafter Ay
then —P; ,, will be true and therefore A; can not be executed. Hence, adding Ay to the plan
also adds a threat to the plan. To resolve this threat, the planner adds an ordering that says
that Ay has to be executed before A; or after A;. Following below is an example of a POCL
algorithm presented by Weld [21].

At the start the algorithm, it creates a starting plan represented by a triple consisting of
actions, ordering rules and causal links (< A, O, L >) and an agenda where:

! The Intel Core i7-5960X can test approximately 6 * 10! combinations per cycle (using data from www.intel.se
accessed 30th of May 2016).

2.2. Threaded Forward-chaining Partial Order Planner

The actions in the starting plan is an initial action Hy and a goal action Hy (A =
{Hy, Hy}) where:

o Hp is an action with no preconditions and its effect is equal to the initial state.
o Hy is an action with no effect and its preconditions are equal to the conditions in the
goal state.

The ordering rules is a set consisting of the rule Hy < Hy that states that Hy has to
happen before Hy, (O = {Hy < Heo}).

The causal links are an empty set (L = {}).

The agenda consists of all the preconditions in Hy, (agenda = {precond(Hy)}, where
precond is a function that extracts the preconditions of the action that is its argument).

The algorithm then iterates over the following steps until agenda is empty:

1. Chose a precondition P; ,, for action A; from agenda.

P im
2. If there exist an action A; in A with the effect E;, == P;,,, add A; — A; to L and

A] < A;to O.
3. Else, choose an action A; from all the possible actions in the domain that has an effect

Py

Ej, == P . Add the action A; to A and add A; — A, to L. Furthermore, add A; < A;,
Ap < Ajand A; < Ay to O and add precond(A;) to agenda.

4. Add new ordering rules to O that resolve all unresolved threats.

5. Remove P;,, from agenda.

When the algorithm terminates it has found a plan consisting of partially ordered actions
which all have their preconditions satisfied by either the initial action or by another action.
Moreover, the resulting plan contains no threats. Though most importantly, the plan solves
the planning problem.

2.2 Threaded Forward-chaining Partial Order Planner

Threaded Forward-chaining Partial Order Planner is a planner that uses ideas from two dif-
ferent types of planning. The first type is forward-chaining planning and the second is partial
order planning [14]. In addition to this, TFPOP is built to create plans for multiple agents exe-
cuting actions in parallel. When searching for a plan, each agent has a thread to which actions
can be added. An important part is that all the actions in one thread are totally ordered. In
contrast, actions in different threads are only partially ordered. Moreover, each thread keeps
track of what it knows as its current state. This enables TFPOP to make use of the knowledge
in the current state, just like in forward-chaining planning [14].

The cost for the partial order between the threads is that the information in a state is not
always complete since an action in another thread might affect the information. As a result, a
variable in a state is not necessarily known to have one specific value but can have multiple
possible values [14]. However, it is important to note that "state" is used to refer to what can
be inferred to be true in a thread (the states that TFPOP stores) and not what is true (the state
of the world). If required, TFPOP can add a causal link between actions in different threads
to ensure that a variable has exactly one of the possible values [14].

In TFPOP there is an extra type of actions in addition to the primitive actions. This typeisa
sequence of primitive actions called sequence action. TFPOP can use these to add a sequence
of primitive actions to the plan instead of the one action it adds when using a primitive action.
For example, it is quite obvious for the one that models the people-in-distress domain that
pick-up crate with supplies followed by move to isolated mountain, then deliver supply
crate and then move to base is a sequence of actions that needs to be done to deliver a crate
and return for delivering more or landing. By modeling this sequence of primitive actions as
a sequence action, TFPOP only has to find the sequence action instead of all four primitive

8

2.2. Threaded Forward-chaining Partial Order Planner

actions (in the correct order and with the correct arguments) to include the delivery of a crate
in the plan.

The following sections will cover the parts of TFPOP that are essential for implementing
composite actions. Following that is a description of how a domain and a problem instance
is written in TDDL. All the information in the following sections comes from the source code
of TFPOP.

Plan structure

A plan in TFPOP is represented by three main components: Nodes that represent the start
and the end of actions (called invocation and effect nodes, respectively), causal links between
these nodes and a set of ordering rules. Causal links and ordering between the nodes in the
plan work just like in POCL planning except that they go from an effect node to an invocation
node instead of from one action to another.

Thread: UAV 1 Thread: UAV 2

Deliver:inv

Deliver:eff

Move:inv

Pick-up:eff

Figure 2.2: A TFPOP plan representation in the people-in-distress domain showing ordering
rules as arrows. UAV 1 is holding a crate in the initial state. Furthermore, UAV 1 and UAV 2
are at the same location in the initial state.

An example plan in the people-in-distress domain is presented in the figure[2.2} The graph
shows that all the nodes in a thread are totally ordered. Moreover, there is an arrow going
between the UAV 1 thread to the UAV 2 thread (from node Deliver:eff to invocation node Pick-
up:inv). This ordering rule is necessary since there is a causal link, which is not shown in the
graph, going from the effect node Deliver:eff to invocation node Pick-up:inv that ensures that
there is a crate for UAV 2 to pick up. Without this ordering rule there would be nothing that
states that Pick-up:inv has to happen after Deliver:eff. Hence, when executed there is a risk the
action Pick-up used by UAV 2 would fail due to the fact that UAV 1 is currently holding the
crate that UAV 2 should pick up.

Searching

The search that TFPOP does to find a plan is usually a standard depth first search. However,
it is guided with extra domain knowledge that is supplied through the domain specification.
During the search, TFPOP visits different kinds of search nodes. These are called branch
points and their children are called branches. The following types of branch points exist at
the moment:

e Thread branch point: TFPOP chooses which thread, and by extension agent, that it
should add an action to. By default, TFPOP makes this choice based on the expected

2.2. Threaded Forward-chaining Partial Order Planner

time it takes for the threads to execute all their actions under the assumption that they
are applied without delays. The first choice is the one which is expected to finish first
and the last is the one that is expected to finish last.

e Arbitrary action branch point: TFPOP chooses which action to add to the plan given
a thread and agent. To make this choice all actions are divided into three sets: The ac-
tions that are known to be applicable in the current state; those that are known to not be
applicable; and those that might be applicable. TFPOP starts with nondeterministically
selecting one from the set that is known to be applicable. If that set is empty, then TFPOP
continues with the set that might be applicable. In addition to selecting which action to
add, this branch point also determines how to make the preconditions of the selected ac-
tion true. This is done by selecting values for the variables and adding causal links from
effect nodes already in the plan to the invocation node associated with the selected action
that ensure its preconditions holds.

e Sequence action branch point: This is similar to the arbitrary action branch point except
that it only has one possible primitive action to choose from and the variables are already
selected. That leaves for the branch point to select which causal links that should be
added to ensure that all the preconditions are guaranteed to be true. One extra part
applies to the first primitive action in the sequence. Namely, that the causal links that
ensure that the preconditions for the sequence action hold are connected to its invocation
node.

e Threat fixing branch point: The planner choose how to solve any threats in the plan by
adding ordering rules.

e Simple action applier branch point: TFPOP adds the invocation and effect nodes asso-
ciated with the selected action to the plan. Moreover, if the action is marked as an action
that can achieve the goal then the branch point will also check if the goal state has been
reached.

When TFPOP visits a branch point, it might be the case that there is no possible branch left
to choose. If that happens, TFPOP will backtrack to the parent node and mark that branch as
tested. Thereafter, it will select a new branch if one exists and else backtrack further.

Figure 2.3: A part of the search
tree that TFPOP searches through
when selecting a primitive action.
Each node is a branch point and
each edge is a branch. The mean-
ing of the abbreviations are: TBP
is thread branch point; AABP
is arbitrary action branch point;
SABP is sequence action branch
point; SAABP is a simple action
applier branch point; and TFBP is
threat fixer branch point.

The search that TFPOP does always start with a thread branch point. This branch point
result in that the next branch point is an arbitrary action branch point unless there are no
branches left. Assuming that the arbitrary action branch point chose a primitive action (se-
quence actions is covered in the next section), the next branch point is a threat fixer branch
point. The next step after all threats are resolved is a simple action applier branch point.
Finally, when the action has been applied, TFPOP is faced with a new thread branch point.
A part of a search tree describing this sequence of choices is shown in figure

If TFPOP selects a sequence action in an arbitrary action branch point, then all the prim-
itive actions in the sequence will be applied. This is done through the process of cycling

10

2.2. Threaded Forward-chaining Partial Order Planner

Figure 2.4: A part of the search
tree that TFPOP searches through
when selecting a sequence action.
In this graph the arbitrary action
branch point selected a sequence
action of length two. Each node
is a branch point and each edge
is a branch. The meaning of the
abbreviations are: TBP is thread
branch point; RTBP is a thread
branch point which is restricted
to the last chosen thread; AABP
is arbitrary action branch point;
SABP is sequence action branch
point; SAABP is a simple action
applier branch point; and TFBP is
threat fixer branch point.

through the following branch points until all the actions has been applied: Sequence action
branch point followed by threat fixing branch point, simple action applier branch point
and finally, thread branch point. In this cycle, all thread branch points but the last is re-
stricted to choosing the thread that was chosen for the sequence action. When all primitive
actions has been applied TFPOP will continue the search as usual. A part of a search tree
describing this for a sequence action of length two is shown in figure

To be able to keep track of where TFPOP is in a sequence action, all sequence action
branch point has a state connected to them. These states contain information that is used by
TFPOP to query if time constraints should be tested in the branch point or if it should test
if a goal has been reached in the branch point. In the sequence action state, time constraints
will only be tested at the end of the sequence and all goal checks are handled by the simple
action applier branch points. In addition, the state is used to determine the next sequence
action branch point, if one exits, in the sequence action.

The states mentioned above are not exclusive for the sequence action. Arbitrary action
branch points also have a state associated with them. However, these states are simple since
they only keep track of one action.

Modeling language

Modeling domains and problem instances in TFPOP is done with TDDL. TDDL is similar to
PDDL when it comes to syntax since both of them have their base in LISP. Moreover, both lan-
guages use similar constructs in the language, even though there are some differences. As in
PDDL, the domain is defined separately in TDDL, making it possible to reuse the domain for
multiple problems. The following sections will cover how a domain and a problem instance
is specified.

11

O 0N NU = W=

2.2. Threaded Forward-chaining Partial Order Planner

Domain specification

A domain defines which types of objects that can exist, which fluents exist, which constant
objects exist and which actions can be used. The previously used people in distress example
will be used to show how a domain is modeled in TDDL. The whole model is written in one
file. However, it has been divided into three code snippets in this report. The first snippet
of the domain model is shown in figure This covers everything except the actions. The
second snippet covers the actions (which are called operators in TDDL) and is shown in
figures [2.6|and Finally, the third snippet covers how a sequence action, see figure is
specified in TDDL.

(:tfpop-domain people—in—distress
(
(
(movables
(crate)
(people)
(agent
(uav)
)
)

(location
(base)
(mountain)
)
)
;; The null—crate symbolizes that there is no crate
;5 (for example when not holding any crates)
;; The same principle applies for null—loc but for locations
((crate null—crate) (location null—loc))
(
(location (at movables))
(boolean (is—empty crate))
(crate (holding agent))
(boolean (is—flying uav))

Figure 2.5: The people-in-distress domain: flags, types, constants and fluents.

The first part of the domain specification covers everything that is not an action. Every-
thing that is included is shown in figure 2.5|and has the following meaning:

¢ ":tfpop-domain people-in-distress": This part specifies that the domain model is a domain
for the TFPOP planner and that it is named "people-in-distress".

o "flags": This part contains the flags that apply to the whole domain. However, they are
not important for this report and will therefore be left out.

e ":types: A specification of the types of objects that exist in the domain. The specification
allows hierarchical types. For example, there are three different sub types of "movables"
in this model: "crate", "people" and "agent".

e ":constants": This part specifies all the objects that exist for all the problem instances
that use the domain. In this case, there are two constants, "null-crate" and "null-loc"
which model a non-existing crate respectively location. This can, for example, be used to
describe that a crate held by an UAV is not at a location.

o "fluents": Every relation that exist in the domain is specified in this section of the domain.
A relation can be between multiple objects, for example "(location (at movables)" states
that a "movable" is at "location", or a property for a single object, for example "(boolean
(is-flying uav))" is a property that states whether a "uav" is flying or not. Note that no
values for the fluents are specified in this part, only that they exist. Finally, resources are
also specified under fluents. However, they are not needed for this report they will be
left out.

12

2.2. Threaded Forward-chaining Partial Order Planner

((start (uav ?uav) (thread ?thread))
(:split-precond
?thread => (= (is—flying 2uav) false)

(:phase
(:duration 2 5 7)
(:effects
(:= (is—flying 2uav) true)
)

ralways—-followed-by)
:definitely-changes (is—flying 2uav))

—~—~—

(:onlypart (pick—up (uav ?uav) (thread ?thread) (location ?loc)
(crate 2crate))
(:split-precond
?thread => (and (= (holding 2uav) null—crate)
(= (is—flying 2uav) true))
2loc => (= (at 2uav) 2loc)
?crate => (and (not (= ?crate null—crate)) (= (at ?crate) ?loc))

(:phase
(:duration 1 2 3)
(:effects
(:= (holding 2uav) 2crate)
(:= (at ?crate) null-loc)

)

ralways-followed-by)
:definitely-changes (holding ?uav) (at ?crate))

—~—~—

(:onlypart (move (uav ?uav) (thread ?thread) (location ?new-loc))
(:split-precond
?thread => (= (is—flying 2uav) true)
?new-loc => (and (not (= 2?new-loc null-loc))
(not (= (at 2uav) ?new-loc)))

(:phase
(:duration 10 20 40)
(:effects
(:= (at 2uav) ?new-loc)

:always—followed-by)
:definitely-changes (at 2uav))

—~—~—

Figure 2.6: The people-in-distress domain: operators part 1.

The second part of the domain model (shown in figures2.6land 2.7) describes all the actions
that can be used within the domain. Each action consists of the following:

e Naming, onlypart flag and parameters: The first part of the action, directly after the
keyword ":operator", is an optional flag (":onlypart") that states that the operator may
only be used as part of a sequence action. Following that is a list where the first item
is the name of the action, the second is the agent parameter and the third is the thread
parameter. The rest of the elements are the remaining parameters to the action. All the
parameters have the syntax (type ?name), where type is the type and ?name is the name.
Note that all variable names in TDDL start with a "?".

o "split-precond": These are requirements in the form of logical expressions that need to
hold for the action to be used. Furthermore, the order of the preconditions need to be the
same as the order they are specified in the parameter list, except for the agent variable
which is left out. More importantly, TFPOP assigns variables in the same order as they are
specified. Hence, it is possible to decrease the search time by having the most restricting
variable first in the argument list and the split precondition. A final note regarding the
split precondition is that a precondition cannot use any of the parameters that are after
itself in the parameter list since they are not yet bound to a value.

13

2.2. Threaded Forward-chaining Partial Order Planner

(:onlypart (deliver (uav 2uav) (thread ?thread) (crate 2c)
(location 2loc))
(:split-precond

?thread => (:true)
?c => (and (not (= ?c null—crate)) (= (holding 2uav) 2c))
?loc => (= (at 2uav) 2loc)
)
(:phase
(:duration 1 3 8)
(:effects

(:= (at 2c) 2loc)
(:= (holding ?2uav) null—crate)
)
)
(:always-followed-by)
(:definitely-changes (at 2c) (holding 2uav))

:can-achieve-goal
)
((land (uav ?uav) (thread ?thread))
(:split-precond
?thread => (= (is—flying 2uav) true)
)
(:phase
(:duration 2 5 7)
(:effects

(:= (is—flying 2uav) false)
)

(:always-followed-by)
(:definitely-changes (is—flying 2uav))
:can-achieve-goal

Figure 2.7: The people-in-distress domain: operators part 2.

":phase": This what the that the action does. It consists of three different parts. The
first part is how long time the action takes. This is written with the ":duration" keyword
which requires three different durations: the minimum, the expected and the maximum
duration for the action. The second part is the changes in relations and properties that
the action make. These are specified with the ":effects" keyword and simply lists all new
relations and properties. Note that this will overwrite the previous value of the relations
and properties. The third part is changes in resources. However, as mentioned before,
resources are not needed for this report and will therefore be left out.
":always-followed-by": This is a flag for the action which specifies which actions that are
allowed to follow the action. The actions are specified as a list of names.
":definitely-changes": This is a list of fluents that the action promises to change.
":can-achieve-goal": This is a boolean flag that, if it exists, states that this action can
achieve a goal for at least one problem instance that uses the domain. Hence, TFPOP
should check if the goal is fulfilled after this action is applied.

The final part of the domain model (figure shows the sequence action. This part is not a
required part of the domain. However, it can provide useful domain knowledge that TFPOP
can used to decrease the search time. A sequence action includes the following parts:

Naming, only part flag and parameters: This has the same syntax and semantics as for
normal operators except that it starts with ":composite-sequence” instead of ":operator".
":split-precond": This has the same syntax and semantics as for normal operators.

e "actions™ This specifies which primitive actions that is to be executed in the sequence

action. It is written as a list of primitive actions with the variables that are going to be
used as the arguments.

":stnu": This is a list of time constraints that must hold in the plan. Each time constraint
starts with the keyword ":requirement" (or ":contingent" but this is not required for the
report and is therefore left out). Following that is the start node of the constraint. After

14

2.2. Threaded Forward-chaining Partial Order Planner

((deliver—and—return (uav 2uav) (thread ?thread)
(base ?base) (crate ?what)
(people ?to) (location ?loc))
(:split-precond
?thread => (and (= (holding ?uav) null—crate)
(= (is—flying 2uav) false))

?base => (= (at ?uav) ?base)

2what => (and (not (= 2what null—crate)) (= (at ?what) ?base))
?to => (:true)

loc => (= (at ?to) ?loc)

(:actions

(pick—up ?uav ?thread ?base ?what)

(move ?uav ?thr ?loc)
(deliver ?uav ?thr at 2loc)
(move ?uav ?thread ?base)

(:stnu
(:requirement start#3 [2, 9] end#3)

:always-followed-by)
:definitely-changes (at ?what))

—~—~—

Figure 2.8: The people-in-distress domain: sequence operators.

that comes the time constraints expressed on the form "[to, t1]". Finally, there is the end
node of the constraint. In essence this means that there must pass between "[fo, t1]" time
units between the two nodes. Nodes are written as "start#x" for invocation node of action
x in the list or "end#x" for effect node of action x in the list (the list is 0-indexed).
":always-followed-by", ":definitely-changes": These have the exact same syntax and
meaning as for normal actions.

Problem specification

A problem instance specifies which objects exist, which relations and properties hold for
these objects in the initial state, which agents exist and what the goal state is. Just like in the
domain, the syntax for the problem instance will be explained using the people in distress
example. The problem instance is shown in figure[2.9|and consists of the following:

":tfpop-problem": This part of the problem says that it is a problem instance for TFPOP
named "distressed-people-at-mountain".

":domain": This specifies which domain that the problem instance exists in. In this exam-
ple, it states that the domain is the "people-in-distress" domain.

":agents": This part specifies which agents exist in the problem instance. It is a list on
the form (type (name thread*)) that says which type the agent has, what the name of the
agent is and which threads it has.

e "objects": This is a list of all the problem specific objects and their types.

":init": This part states the values are in the initial state for all the fluents in the domain.
One way to do this is to manually assign values to all fluents, like in line 19 in figure
However, this can become quite a lot to write if there are a lot of objects. Instead, there
is the possibility to use the ":all" keyword which specifies that all instances of a fluent
should have the specified value, like in line 16 in figure Note that all fluents need to
be specified in this part in order to give TFPOP full knowledge about the initial state.
":goal": This is the last part of the problem specification which states what should be
true for the problem instance to be solved. The syntax for this is a list of predicates that
follows the ":goal" keyword.

15

O 0N ONU = WN -

2.2. Threaded Forward-chaining Partial Order Planner

(:tfpop-problem distressed—people—at—mountain

(
(

people—in—distress)

(uav (uavl uavl—thread))
(uav (uav2 uav2—thread))

(crate empty—crate supply—crate)
(base home—base)

(location isolated —mountain)
(people distressed—people)

all at home—base)
(at distressed—people) isolated —mountain)
all is—flying false)
all holding null—crate)
all is—empty true)
= (is—empty supply—crate) false)

(
(
(
(
(
(

(= (at supply—crate) isolated —mountain)
(= (at uvavl) home—base)
(= (at uav2) home—Dbase)

Figure 2.9: The distressed people at mountain problem instance.

16

Theory

The theory chapter begins with a section introducing notations and definitions that will be
used through the report. Following that is a section covering composite actions in planning
and logic. Thereafter, comes a section presenting different ways to measure understandabil-

ity.
3.1 Definitions and notations

The first thing that needs to be established is what actions are in this report. Actions are
divided into two categories: primitive actions and composite actions. Primitive actions are
actions that are atomic in a sense that they do not depend on any other action. In a TDDL,
the primitive actions are defined with the ":operator" keyword. Composite actions are all the
actions that are dependent on at least one other action. The composite actions can be created
by using different types of constructs called composite action components in this report. For
example, there are control constructs, like while and if, and time constraints constructs.

In the report, a single set of notations will be used to increase clarity. This means that
some formulas presented will be altered to fit the notation. The notation is presented in table

GBI

3.2 Composite actions

The idea of composite actions is not new. One example is the logic programming language
Golog from 1997 which makes use of complex actions and procedures that are similar to com-
posite actions [15]]. Furthermore, composite actions have been used in planning before. For
example, Baier, Fritz and Mcllraith defined a language based on Golog that can be compiled
together with a domain [1]]. The result is a domain and problem instance that includes all
composite actions defined in their language. These two and more that relate to composite
actions will be presented in the following sections.

Golog

Golog is a logic programming language based on situation calculus. Each program written
in this language requires a set of axioms that model the domain that the program is to be

17

3.2. Composite actions

Notation Meaning

a An action

n The name of an action

w A composite action component

iand j Integers

xandy Variables

t A variable for a time point

T A type of variable

¢ A boolean formula

[t A boolean formula at a given time point
[t1,t2]a An action that takes place between t1 and t;

Table 3.1: Notations used in the report.

executed in [15]. The axioms state which primitive actions exist, what their preconditions and
effects are, which fluents exist and the initial state. The program itself contains a set of named
procedures followed by a start procedure. These procedures correspond to composite actions.
Furthermore, the procedures consist of the following complex actions (which corresponds to
composite action components) [15]:

e A test action which creates an action with only preconditions from a boolean formula
9?).

e A sequence of two actions ([ay; a2)).

e A nondeterministic choice of two action ((a1|a2)).

e A nondeterministic choice of argument for an action ((77x)a(x) where 7 is an operand

that selects the argument x nondeterministically and action a is an action which takes

one argument).

Iteration over an action zero or more times (a™*).

Conditions (if ¢ do a; else a endlf).

While-loops (while ¢ do a; endWhile).

Recursion through named procedures (proc 17(x1, x2, ..., x;)a endProc; where a can include

call to 7).

A drawback with the original Golog is that it does not support concurrent actions [2]. How-
ever, a derivation of Golog called ConGolog includes a complex action that does not specify
which of two actions happen first [7]. It was later extended to include a complex action (a1 ||a2)
that allows for two actions to be concurrent in a sense that they can be applied at the same
time or one by one in any order in TConGolog [Z]EI

Procedural domain control knowledge

Based on Golog, Baier, Fritz and Mcllraith defined a language (which was never named but
will be called BEM in this report) for expressing domain knowledge [1]. The domain knowl-
edge in a BEM program can be compiled with a domain written in PDDL2.1 to a new domain
and problem instance in PDDL2.1. This domain and problem instance contain the domain
knowledge expressed in the BFM program and can be used for all the problem instances in
the original domain.

IThe article presenting ConGolog was published in 2000 and the paper describing the TConGolog was pub-
lished in 1999. However, the submission of the article for ConGolog was available in 1999. Hence, TConGolog was
developed later even though it was published earlier.

18

3.2. Composite actions

The syntax of BEM is defined in terms of programs instead of actions [1]. All the compo-
nents (corresponding to composite action components) that a BFM program can consist of [1]
is presented in the following list:

A empty action (nil).

A nondeterministic choice of action (any).

A test action, working in the same way as in Golog (¢?).

A sequence of two actions (a1; a2).

Conditions (if ¢ then ay else ay).

While-loop (while ¢ do a).

Iteration over an action zero or more times (a*).

A nondeterministic choice of two actions (a1]ay).

A nondeterministic choice of an argument with a specified type for an action (7r(x —
T)a(x) where 7 is an operand that selects x nondeterministically from all variables with
the type T).

Temporal composite actions

Temporal Action Logic (henceforth, called TAL) has been extended with composite actions by
Doherty, Kvarnstrom and Szalas [8]]. The extension includes a way of expressing composite
actions with constraints. This is done through defining a composite action as the following
(note that this is an adapted version to describe the concept of the composite action, not the
formal definition):

(t1, B2 (Y1, Y2, - Yi) ~ with X1, X2, ..., Xj do w where ¢

The formula means that w is executed sometime between the time points t; and f;. Fur-
thermore, the variables used in w are the parameters y1, 2, ..., y; and the newly introduced
X1, X2, ey Xj where x1, x7, ..., Xj can be chosen freely from all variables as long as ¢ is true with
the chosen variables. Moreover, w is defined as one of the following (corresponding to com-
posite action components) [8]:

Sequence of actions ((a7; az)).

Concurrent actions ((a1]|az)).

Conditions (if [t]¢ then aj else ay).

While-loops (while [t|¢ do a).

Concurrent loops over variables (foreach x1, xy, ..., x; where [t]¢ do conc a, which means to
do a for each vector of variables x1, xy, ..., x; under which [t]¢ is true).

Recursion trough named composite actions (see the formula above named 7).

e Nondeterministically choose variables ([t1, tz|with x1, X, ..., x; do w where).

e Temporal constraints (see formula above).

Hierarchical task network

Hierarchical task network (henceforth, called HTN) is, as mentioned in the background chap-
ter, a type of planning. Most important for this report is that HTN uses something called high-
level actions (henceforth, called HLA) which is a sequence of primitive actions and HLA [17].
This means that they are essentially using composite actions but only what have been called
sequence of actions in the previous sections

2HTN also includes the possibility of recursion since the HLAs are named. Unfortunately, this was missed and
the mistake was only noticed at the end of the project. Therefore, the recursion is not mentioned before the discussion
in this report.

19

3.3. Understandability measurement

3.3 Understandability measurement

There is no universally accepted definition of what is included in understandability [3].
Therefore, the first section covers a definition of understandability that will be used in this re-
port. Following that is a section covering metrics for measuring understandability. The final
section covers measurements that can be used to measure understandability in experiments.

Defining understandability

The definition used in this report is an adapted version of the definition that Bansiya and
Davis use in their quality model for object-oriented design [3]. The adaptation is a simple
change of words from design properties to domain model, resulting in the following defini-
tion:

Definition 1. Understandability are the properties of the domain model that makes it easy to learn
and understand.

Software metrics

There are a lot of metrics that aim to measure the understandability of software. Hence, it is
not possible to present all of them here. Instead, a selected few are presented in the following
sections.

Quality Model for Object-Oriented Design

Quality Model for Object-Oriented Design (called QMOQD) is a hierarchical model for mea-
suring the software quality of an object-oriented design [3]. The model breaks up software
quality into multiple high-level attributes. Each of the high-level attributes is in turn mapped
to a set of object-oriented design properties. These design properties has a metric that can be
used to measure them. Weighting the metrics together gives a measurement for each of the
high-level attributes [3].

The interesting part for this report is that one high-level quality is understandability. This
quality is measured in the model using the following metrics and weights [3]:

e Abstraction (weight= —0.33): The average number of classes a class inherits information
from.

e Encapsulation (weight= 0.33): The average percentage of all the attributes in a class that
are private or protected.

e Coupling (weight= —0.33): The average count of all classes that are related through at-
tributes and parameters to a class.

e Cohesion (weight= 0.33): The average of the following calculation for all the classes in
the design:

2 Pm

meM
Pxn

Where p;, is the number of distinct parameter types in method m and M is the set of all
the methods. Furthermore, P is the number of distinct parameters for all the methods in
the class and 7 is the number of methods in the class.

e Polymorphism (weight= —0.33): Measured as the average count of polymorphic meth-
ods.

o Complexity (weight= —0.33): Measured as the average of the count of all the methods in
a class.

e Design Size (weight= —0.33): Measured as the number of classes.

20

3.3. Understandability measurement

Code and data spatial complexity

The code and data spatial metrics are based on the limits of the working memory [6]. The
main idea behind the metrics is that it is harder to understand the software if it puts a heavier
load on the working memory. Hence, the longer it is between a definition and the use of a
module (this could for example be a function, method or a sub-program) and the longer it is
between the uses of a data member the harder it becomes to understand [6]. Based on this,
two metrics are proposed (the formula for both can be found in appendix[A.T).

Firstly, the code-spatial complexity metric that aims to measure the effort it takes to under-
stand how the different modules in the software are connected [6]. The metric is calculated
according to the following:

1. Calculate the average distance from module definition to the module use for all the mod-
ules in the software.
2. Calculate the average of all the average distances for all modules.

Secondly, the data-spatial complexity metric that aims to measure the effort it takes to un-
derstand what the value of a data member is. In this metric, it is more interesting to look
for the previous value than the definition since the value of the data member can change [6].
Moreover, Chhabra, Aggarwal and Singh found that local data members within a module do
not have an impact worth mentioning and were therefore excluded [6]. As a result, the metric
is calculated as follows:

1. Calculate the average distance to the use of a global variable from where it was last used
for all global variables.
2. Calculate the average of all the average distances for all the global variables.

Improved cognitive information complexity

The improved cognitive information complexity measure is a metric of software understand-
ability with its root in informatics and cognitive science [13]. It is based on the that software
can be treated as information. Therefore, difficulty in understanding software is equal to diffi-
culty in understanding information. Based on this, the metric is calculated with the following
steps [13] (the exact calculation can be found in appendix[A.2):

1. Calculate the information content based on the operators and identifiers for each code
line.

2. Calculate the effect each code line has on the rest of the software using its line number

and the total number of lines of code.

Sum the impact for all the lines of code.

4. Calculate the sum of the cognitive weight of all the control structures as presented by
Wang and Shao [20].

5. Multiply the summed cognitive weight of the control structures with the summed im-
pact.

w

Experiments

Measuring understandability by performing experiments with users or experts is an alterna-
tive that does not require a validated metric. The following sections cover different types of
measurements that have been used to measure understandability in experiments. Further-
more, there is a section about measuring something through indirect questions.

21

3.3. Understandability measurement

User estimation

One way to measure the understandability of a piece of software is to allow the user to es-
timate the understandability of the software. This has been done by Harrison, Counsell and
Nithi to assess what effect inheritance in object-oriented system has on understandability [[10]
and by Genero, Poels and Piattini to validate metrics for understandability of entity relation-
ship diagram [9].

Both of the above mentioned studies followed similar experimental design. The partici-
pants were presented with some questions aimed at making the participants understand the
code respectively the entity relationship diagram [9, [10]. Thereafter, the users were asked to
estimate how understandable the code respectively the entity relationship diagram using a
labeled scale from one to five. The answer for this is the measurement for understandability.

Time and correct answers

Genero, Poels and Piattini measured the time it took to answer the questions about the entity
relationship diagram that was presented in the experiment mentioned previous section [9].
This was done in addition to having the participants estimate the understandability of the
diagrams. The time was measured by prompting the participants to write down the time
before they started to answer the questions aimed at making them understand the diagrams
and directly after having answered them.

In addition to measuring the time, Genereo, Poels and Piattini used the answers to the
questions to create two more measurements [O]: The number of correct answers; and the
number of correct answers divided by the time the participants took to answer the questions.
These two values were used for the validation of their model, in addition to using the users
estimated understandability.

Expert ranking

A possible to way to measure understandability is to let experts order a set of items (in this
report a set of domains). It is then possible to read if an item is rated as having a higher
understandability than another. This is the method that Bansiya and Davis used to validate
their metric for object-oriented design [3]. In their experiment, they had experts rank 14 de-
signs and used their metric to rank the same designs. The two rankings were then statistically
tested for any correlations.

Indirect questions

The final method that can be used to measure understandability that will be covered is by
measuring it through indirect questions. It is similar to user estimation in most ways. How-
ever, the difference lies in using questions based on the different aspects of understandability
to measure understandability. This is something that the widely used System Usability Scale
uses [5]. Moreover, Boehm, Brown and Lipow identified five aspects of software that affect
understandability [4]. These are presented in table

22

3.3. Understandability measurement

Aspect description

Conciseness The software is concise if it does not contain excessive information.

The software is internally consistent if it has uniform notation and
Consistency terminology and external consistent if the notation and
terminology conform with external requirements.

- The software is legible if its function can be understood from

Legibility L.
reading it.

The software is self-descriptive if it contains enough information to

Self-descriptiveness understand its meta-information (for example its objectives and

assumptions).

Structuredness The software is structured if it is organized according to a pattern.

Table 3.2: Software understandability aspects according to Boehm, Brown and Lipow [4].

23

3.3. Understandability measurement

24

Method

The method chapter is divided into five parts. This is because the first and the third research
questions each has a sub-question that needs to be answered before the research question can
be answered. Hence, the first section describes how it will be decided which composite action
components that are going to be implemented in TFPOP. The section after that covers how the
implementation will be done. Following that is the method for how the questions regarding
search time will be answered. Thereafter, is a section describing how a measurement method
for understandability will be selected. The final section covers the test whether composite
actions can be used to increase the understandability of a domain.

4.1 Composite action component ranking

The question regarding which composite action components to implement must be answered
before the implementation of composite actions can be done. This question will be answered
by categorizing the different composite action components in publications using composite
actions. These categories will then be ranked according to the number of publications that
include a component from that category. The resulting ranked list will be used as a founda-
tion for which composite action components that should be implemented. In addition, the
composite action components in the current implementation of sequence action is prioritized
so that the current functionality will be present in the implementation. Finally, the number
of composite action components that are implemented is restricted by the time frame of the
report.

4.2 Implementation

In the implementation, all the selected composite action components will be implemented.
Moreover, the implementation will aim to be as easy as possible to extend with other com-
posite action components. This is because not all the composite action components will be
implemented. Therefore, it is valuable to make it as easy as possible to extend the implemen-
tation with more composite action components.

25

4.3. Search time

4.3 Search time

There are two sub-questions regarding search time. As a result, two experiments will be
performed. These follow the guidelines presented by Kitchenham et al. [11] with some mod-
ifications. The modifications are justified with that there are no human participants in these
experiments and therefore there is no need to handle any effects that might affect the partici-
pants.

Compared to no guidance

The search time has to be measured in order to answer the question if composite actions can
be used to decrease search time. This will be done by measuring the number of milliseconds
of CPU usage that TFPOP uses to find an optimal solution.

There is one problem with comparing search guidance with composite action to no search
guidance at all. The problem is that the depth first search that TFPOP usually does can in the-
ory take infinite time to conduct. To prevent this, minimal search guidance can be added by
restricting the depth of the search tree. This does not affect the order in which TFPOP selects
the actions that is within the allowed depth. Therefore, the search time when restricting the
depth is less or equal to the search time when doing an unrestricted search. Hence, proving
that using search guidance with composite actions is faster than search guidance that restricts
the depth also proves that it is faster than using no search guidance at all.

Gathering the data will be done by having TFPOP find an optimal solution to a problem
instance (see appendix [B|figure using two different domains. One domain that contains
a composite action (see appendix [B| figure and one domain that does not contain any
extra domain knowledge (see appendix [B| figure [B.). Both domains model the Blocks World
with one primitive action that moves a block from one position (on a block or on the floor)
to another. To enforce that TFPOP uses the composite action, the primitive action has the
onlypart flag in the domain that has a composite action. In addition, the depth for the search
in both cases have been restricted to four (the optimal solution uses three actions).

Data points will be gathered for each domain twenty times in row. This is to generate
a sample for the search time for TFPOP to find an optimal solution to the problem instance
for both domains on the testing computer (MacBook Air running OS X El Capitan, version
10.11.4, with 1.3 GHz dual core and 4GB RAM). Before any data was gathered for a domain
TFPOP will have to solve the same problem instance in that domain twenty times. This will
be done to minimize the effect of that JVM optimization during run-time has on the results.

The analysis of the data will be done with a one-tailed t-test using a between group design.
Levene’s test will be used to test for equal variance and Cohen’s d will be used to measure
the effect. The hypotheses for the test are the following:

e H;: The search time for finding an optimal solution is lower when TFPOP uses the do-
main that has a composite action.

e Hy: The search time for finding and optimal solution is equal or greater for TFPOP when
it uses the domain that has a composite action.

A successful rejection of Hy means that using a composite action is significantly (in the sta-
tistical meaning) faster for this problem instance and thereby allowing the conclusion that
composite actions can be used to decrease search time.

Compared to equivalent guidance

Finding an indication of whether search guidance with composite actions can be as good
as the equivalent search guidance without composite actions will be done using the Blocks
World domain. There are two domain specifications that will be used in this experiment.
Firstly, a domain that uses composite actions which is the same as the one in the previous

26

4.4. Understandability measurement

section (see appendix [B| figure [B.2). Secondly, a domain that has extra domain knowledge
that is equivalent to that of the composite actions used in the first domain (see appendix
figure and [B.4). The equivalence means that extra primitive actions that force TFPOP
to go through the same steps as in the composite actions (check conditions in if and while
and applying primitive actions) are included. In essence, this means that multiple primitive
actions are added to the domain along with fluents and constants that ensure that the extra
actions can only be used in the same order as the composite actions. For this experiment, it
requires that the domain has multiple extra primitive actions and two extra fluents to keep
track of the state of what should be done next and which values to use for the parameters to
the primitive actions. Furthermore, the primitive action will be marked as onlypart in both
cases to ensure that the extra domain knowledge is used by TFPOP.

This experiment will be using 100 problem instances containing between 2 and 101 blocks
(each problem instance has a unique number of blocks). The goal of all the problem instances
is to put all the blocks on the floor and the initial state is partly randomized. The non ran-
domized part is that the initial state will always have the first block placed on the floor and
the second block placed on top of the first to ensure that at least one action is needed. This
will be done since TFPOP does not check if the initial state fulfills the goal. However, the rest
of the blocks will be placed, randomly, on the floor or on any of the previous placed blocks
that still are clear. Moreover, there will be two versions of each problem instance with only
one difference. The difference is that the problem instance for the domain that does not use
composite actions has to initialize its extra fluents. An example of the problems can be found
in appendix [B| figure for guidance with composite actions and figure for equivalent
guidance without composite actions.

The data gathered in the experiment is the search time measured in milliseconds of CPU
usage. Moreover, the recorded data is an average of three consecutive executions for each
problem instance and domain. This will be done to reduce the effect that fluctuations in
search time for a problem instance have on the results. Otherwise, the gathering of data will
be done in the exact same way as in the experiment in the previous section. This includes that
each problem instance has to be solved twenty times for a domain before the data points are
gathered for that problem instance and domain. Hence, each problem instance will be solved
23 times where the three last will be used to measure the average search time for a problem
instance.

The analysis of the results will be an observation of the gathered data points. No further
analysis will be performed since the result is only used as an indication.

4.4 Understandability measurement

A fundamental requirement for being able to evaluate the changes in understandability is to
measure it. There are two major ways of doing this. The first is to calculate the understand-
ability from code and documentation according to some metric and the second is to conduct
an experiment. This part of the report aims to find out how the measurement of understand-
ability is going to be performed in the understandability experiment.

The method for finding measurements is an informal literature study of existing measure-
ments, including but not restricted to metrics and experiments. The requirements for a viable
measurement are the following:

e It is possible to use the measurement on a domain file written in either PDDL or TDDL.
This include measurements that are directly applicable and measurements that can be
adapted without creating validity problems.

e The measurement should be established. This is based on the number of citations the
articles have since this is an indication of how many have used the measurement. The
minimum limit of required citations was decided to be 100.

27

4.5. Understandability experiment

e The measurement needs to be usable with the resources that are available. This includes
time limits and other resource limits.

The search for references will be done through three methods. The first is a simple keyword
search on www.scholar.google.com. This will be done by searching on combinations of key-
words from the categories presented in table The second is to look at the references in
the found articles. These two methods will be used concurrently with the second providing
keywords to the first and the first providing articles to the second. The third method is to
dig a bit deeper in a measurement method that is looking like it can meet the requirements.
This includes looking for the same measurement method when it is not used for measuring
understandability. The whole procedure is described in figure

Category Keyword

Understandability
Maintainability

Readability

Cognitive information complexity

What to measure

Software
Measurement target Program
Code

Metric

Measurement type
yp Measurement

Table 4.1: All the search keywords sorted after categories.

Initial keywords

‘J‘NO{& [Search using keywords]

Me
asurement
S

[Keyword extraction Investigation

E

Figure 4.1: The method for searching for understandability measurements.

The choice of which measurement(s) to use in the understandability experiment is based
on the requirements presented above. In case that multiple measurements meet the require-
ment, a selection based on the popularity of the measurements within the field of planning
and their credibility for this study will be used.

4.5 Understandability experiment

Based on the results for understandability measurements, a user experiment will be con-
ducted to evaluate if understandability can increase by using composite actions in the do-
main model. The experiment has a within-subjects design (compared data points are mea-
surements from the same subject under different conditions) and is based on the guidelines
for empirical research by Kitchenham et al. [11].

The following sections cover the method for the experiment. First is a section that presents
the questionnaire that will be used to gather data. Next is a section describing the experi-
mental unit and the measurements in the experiment. After that is a section covering a pre-
experiment for estimating the needed sample size and to test the questionnaire. Following

28

4.5. Understandability experiment

that, is a description of how the experiment is set up and will be conducted. Thereafter, is a
section about how the data will be analyzed. Finally, there is a section covering how bias and
other unwanted factors that can affect the result are handled.

Questionnaire design

For measuring the understandability there needs to be a medium through which it is mea-
sured. The medium in this experiment is a questionnaire just like in Harrisons, Counsells
and Nithis experiment [10] and Generos, Poels and Piattinis experiment [9] regarding under-
standability in object-oriented system respectively entity-relationship diagrams. The design
of the questionnaire in this study is based on their experiment and on the recommendations
presented by Krosnick and Presser [12] in Questions and Questionnaire Design.

Two decisions that affected the design for the questionnaire were taken. The first is use
PDDL instead of TDDL for the domains (with similar syntax for composite actions). This is
because there is only a handful of persons that know TDDL at the moment and all of them are
involved in this report in some manner. Moreover, both of them are similar so that the results
on PDDL should be applicable on TDDL. The second is to write the questionnaire in Swedish.
This was decided to minimize the effect of any language barrier both when formulating and
interpreting the questionnaire.

The design of the questionnaire is described in the two following sections. The first covers
the general layout of the questionnaire. That includes the order of questions, information
given to the participant, et cetera. The second part covers the formulation of questions that
aim to measure understandability.

Questionnaire layout

The general layout of the questionnaire is based on the questionnaires used by Genero, Poels
and Piattini [9] and Harrison, Counsell and Nithi [10]. Both of these questionnaires presented
the participants with an item (entity relationship diagram respectively c++ code) followed
by some questions that aim to make the participants understand the item. After that, the
participants were presented with a question regarding the understandability of the item. This
layout is adapted to work with the within-subject design of this experiment by presenting two
items to the participants. Moreover, neither of the experiments presented anything unknown
to the participants [9, |10]. Therefore, the layout was modified to include an introduction to
composite actions. This resulted in the following layout for the questionnaire:

1. An introduction to how the experiment is conducted.
2. An introduction to composite actions in PDDL.
3. The first domain file with questions:

a) Instructions for what the participant is supposed to do.

b) A question to fill in the current time.

¢) The PDDL file.

d) Questions aimed to make sure that the participant has understood the PDDL file.
e) A question to fill in the current time.

f) Questions aimed to measure the understandability.

4. The second domain file with questions:

a) Instructions for what the participant is supposed to do.

b) A question to fill in the current time.

¢) The PDDL file.

d) Questions aimed to make sure that the participant has understood the PDDL file.
e) A question to fill in the current time.

f) Questions aimed to measure the understandability.

29

4.5. Understandability experiment

Formulation of understandability questions

The formulation of the questions regarding understandability were based on the recommen-
dations presented by Krosnick and Presser [12]. These recommendations include that the
questions should not be negations and they should not be leading. Furthermore, all data
points on an answer scale should be labeled and have equal distance between them. In ad-
dition, an answering scale of length five has both high validity and reliability [12]. Finally,
using questions that is not agree/disagree questions increase the reliability and validity [12].
Based on this, a fully labeled answering scales of length five are used for all the questions.
Furthermore, non of the questions are agree/disagree questions. Moreover, each question
is used in two versions: one that is formed positively (for example "how easy]...]") with the
negative end of the scale as the first option; and one that is formed negatively (for example
"how misleading]...]") with the positive end of the scale as the first option.

For measuring the understandability both user estimation and indirect questions are used.
The user estimation consists of two questions (one positive and one negative) regarding the
participants” estimation of the understandability. Furthermore, all but one of the aspects of
understandability according to Boehm, Brown and Lipow was used as a basis for the indirect
questions [4]. The aspect that is not used is conciseness since the whole idea with composite
actions is to include more information in the domain. Hence, conciseness could easily be mis-
leading. Nevertheless, the four remaining aspects were used in one positive and one negative
question each. However, it is not validated that these questions measure understandability.
Therefore, the result from the indirect questions will only be used as an indication. Finally,
the order of the questions were shuffled so that no positive and negative question regarding
the same thing was adjacent to each other.

Experimental unit and measurements

The experimental unit for this experiment is the individual. Moreover, for each of the experi-
mental unit two measurements will be calculated. To compute the measurements, all the an-
swers will be given a number from 1 to 5 where 1 corresponds to the most negative response
and 5 to the most positive response. Using these numbering the following measurements will
be calculated:

o Estimated understandability: The participants estimated understandability of a PDDL file.
This is calculated as the average of question 1 and 6. Hence, this value can be between 1
and 5.

o Measured understandability: This variable measures the understandability of the PDDL file
through the indirect questions. The calculation of this is done by taking the average of
questions 2-5 and 7-10. Hence, the measurement has a value between 1 and 5. Note that
this is the non validated indirect questions and therefore this measure will only be used
as an indication.

Pre-experiment

A pre-experiment will be conducted with two purposes. The first is to give an estimation
of the needed sample size for significant result in the experiment as recommended in the
guidelines by Kitchenham et al. [11]. This will be done by calculating the needed sample
size for a paired t-test where the mean and standard deviation are from the gathered data.
Estimating the sample size in this way is not an exact measurement but it gives an indication
of the needed sample size. The second is to evaluate the questionnaire to make sure that the
questions are well formulated as recommended by Krosnick and Presser [12].

The pre-experiment will be conducted by giving the participants a short introduction to
PDDL (see appendix [D). This is done since the participants will be students at Linkoping
University who took a course in artificial intelligence half a year ago. The reason to give them

30

4.5. Understandability experiment

an introduction to PDDL is to allow them to refresh their knowledge about PDDL. Thereafter,
they will be given the questionnaire and asked to fill it out. The questionnaire will have the
domain with composite actions first for every second participant, starting with the first, and
the domain with the composite actions last for the other participants.

Questionnaire updates

The pre-experiment showed that some questions aimed at making the participants under-
stand the domains were hard to understand. As a result, these questions were updated.
Moreover, measuring the time was also removed from the questionnaire.

The experiment

The participants in the experiment will be students at Linkdping University that are currently
taking a course in automated planning and freely agree to participate in the study. Therefore,
the population for the experiment is students at Linkoping University with at least basic
knowledge about planning.

As in the pre-experiment, the different treatments are whether the domain that has com-
posite actions is the first or the second domain in the questionnaire. The treatment that the
participants get only depends on the order in which they participated.

The conduction of the experiment will be done by supplying the participants with a ques-
tionnaire and ask them to fill it out. Unfortunately, there is a risk that the sample size will
be smaller than what the pre-experiment indicates as needed for a significant result. If that
is the case, then the questionnaire will be handed out to the students during lab sessions and
lectures in the course in automated planning. They will be asked to fill it out when they can
but to do it without taking any breaks. The reason to not take any breaks is to minimize the
effect of unknown variables. For example, using different internal scales when answering
questions for the first and the second domain.

Data Evaluation

The results from the questionnaires will be evaluated by testing for a significant difference
in the measurements between the two items. Testing for a significant result will be done
with a one-tailed Wilcoxon signed-rank test. Furthermore, the effect will be measured using
Pearson’s r. The hypotheses for this experiment are the following:

e H,1): The domain file that has composite actions will have a higher understandability
than the equivalent domain without composite actions, using estimated understandability
as a measurement for understandability.

e H(g): The domain file that has composite actions has the same or lower understandabil-
ity as the equivalent domain without composite actions, using estimated understandability
as a measurement for understandability.

e H(,7): The domain file that has composite actions will have a higher understandability
than the equivalent domain without composite actions, using measured understandability
as a measurement for understandability.

e H(gy): The domain file that has composite actions has the same or lower understandabil-
ity as the equivalent domain without composite actions, using measured understandability
as a measurement for understandability.

A successful rejection of H((1) means that the domain file with composite actions has a signif-
icantly higher understandability under the assumption that estimated understandability mea-
sures the understandability of a domain file. In the same manner, a successful rejection of
H) means that the domain file with composite actions has a significantly higher under-
standability given that measured understandability measures understandability.

31

4.5. Understandability experiment

Bias and unwanted effects

All experiments need to handle any potential bias and other unwanted effects that can affect
the result of the experiment. Following the guidelines presented by Kitchenham et al. [11],
the identified factors will be presented in the following paragraphs along with the steps taken
to mitigate them. The different effects are not ordered by the magnitude they can have on the
results.

The first effect that will be presented is the primacy and recency effect of a scale. These
effects state that the participants is more likely to choose an answer that is at the beginning
respectively at the end of the scale. The most common of these two in a questionnaire where
the answer alternatives are presented visually is the primacy effect [12]]. In the questionnaire,
the answer alternatives of a positive and negative question were ordered in opposite ways.
As aresult, the primacy and the recency effects should both affect the result in a positive and
negative way and therefore minimize the magnitude of the effect.

One more effect related to the questions is the response bias towards agreement. That
means that the participants tend to want to agree with a statement more often than they want
to disagree with it [12]. The item reversal method that is used in System Usability Scale [5]
was selected to mitigate the effect of the response bias. Item reversal means that there are
multiple questions that measures the same thing but some of them are reversed in a sense
that agreeing with them give the lowest score instead of the highest.

A long questionnaire is a problem since the participants get more and more exhausted
toward the end of the questionnaire [12]. Both this problem and the learning effect will be
mitigated in the same way. The learning effect is that the participants learn how a task in
an experiment is done and will therefore perform better on similar tasks in the experiment.
Mitigation of these two effects is done by letting half of the participants answer a question-
naire in which the first domain is the one with composite actions and the other half answer a
questionnaire where this is the second domain. The ordering of the two domains is the only
difference between the two questionnaires.

In the analysis there is a bias to find significant result where there is non if the analyzer
has some investment in the experiment [11]. The one who does the analysis of the data in this
experiment is the author who has an obvious investment in the experiment. To prevent this
from affecting the analysis, the methods that are going to be used for analysis were selected
before the experiment was conducted.

32

Results

5.1 Composite action component ranking

The ranking of composite action components based on previous publications are presented
in table The ranking is based on the categorization of composite action components
presented in tables and

All the composite action components that have a ranking of 3 or higher were selected to
be implemented. Furthermore, [to, t1] was selected as well since it is already present in the
implementation of sequence action. No more composite action components were selected
due to the time constraints of the report.

Rank Composite action component

4 (a1;a0; ...; a;)

with x1, Xy, ..., x; where ¢
3 if ¢ then aq else ap

while ¢ do a

¢?
a; € {a...}
2 recursion
(a1llaz||---||a;)
a*
nil
foreach x1,xy, ..., x; where ¢ do conc a
[to, tl]

Table 5.1: The ranking of the composite action components where the rank corresponds to
the number of publications using them.

33

5.2. Implementation

Composite action component (notation) Operator(s)

Test action (¢?) P?

Sequence ((ay; a; ...; a3)) (ay;a7)
Nondeterministic choice from set of action (a; € {a...}) (a1|az)
Nondeterministic variable choice (with x1, X2, ..., x; where ¢) t(x —T)a(x)

Repeat action (a*) a*

Condition (if ¢ then ay else ap) if ag do ay else ap endlf
While-loop (while ¢ do a) while ag do ay endWhile
Recursion (recursion) Recursion
Concurrent actions ((a1||az||---||a;)) (a1]|az)

Table 5.2: The categorization of complex actions in Golog.

Composite action component (notation) Operator(s)
Empty action (nil) nil
Nondeterministic choice from set of action (a; € {a...}) (a1|ay) & any

Test action (¢?) ¢?

Sequence ((ay; ay; ...;a3)) (a1|az)
Conditions (if ¢ then ay else ap) (if ¢ then aq else ap)
While-loop (while ¢ do a) while ¢ do a
Repeat action (a*) a*
Nondeterministic variable choice (with x1, xy, ..., x; where ¢) t(x — T)a(x)

Table 5.3: The categorization of components in BEM.

Composite action component (notation) Operator(s)

Sequence ((a1;az; ...; a;)) (ay;a2)

Concurrent actions ((a1||az|]...||a;)) (a1]|a2)

Condition (if ¢ then aq else ay) if [t]¢ then aq else ap
While-loop (while ¢ do a) while [t|¢ do a

Foreach concurrent (foreach x1, x, ..., x; where ¢ do foreach x1, %3, ., x; where [t do conc a
conc a)

Recursion (recursion) Recursion

Nondeterministic variable choice (with x1, x2, ..., X; With %1, %3, s X; d0 @ where ¢
where ¢)

Time constraints ([to, t1]) Temporal constraints

Table 5.4: The categorization of components in the extension of TAL with composite actions.

5.2 Implementation

Composite actions was implemented similar to the already existing sequence action. That
means that it essentially is an action with a state that keeps track of the current position in
the composite action. The difference between the two types of non-primitive actions are that
composite actions consist of a list of composite action statements (the building blocks of a

Composite action component (notation) Operator(s)

Sequence ((ay; ay; ...; a;)) Tasks

Table 5.5: The categorization of components in HTN.

34

N O U W N =

5.2. Implementation

composite action, which are covered later in the chapter) in addition to primitive actions.
Moreover, the state corresponding to a composite action is different so that it can handle the
new structure.

In addition to implementing composite actions in TFPOP, TDDL has been extended to
support composite actions. The syntax for them was based on the syntax of the sequence
action and is presented in figure In fact, the only thing that is different at this level is that
the ":actions" property is exchanged for the ":body" property. The new property consists of a
list of composite action statements.

((name parameter—list)
(:split-precond)
(:body non—empty—composite—action—statement—list)
<(:stnu)>
<(:always-followed-by)>
<(:definitely-changes)>

Figure 5.1: The syntax for composite actions in TDDL where everything within "<>" is op-
tional.

Introducing the composite actions also introduced more kinds of branch points that TF-
POP needs to handle. These branch points have been categorized into two categories which
will be presented in the following section. The section after that will cover the new state that
keeps track of the evaluation of a composite action. Thereafter, is a section covering how the
different composite action components are implemented in the composite action statements.
Finally, there is a section describing how TFPOP conducts a search with the composite ac-
tions.

Composite action branch points

As mentioned in the previous section there are two different types of branch points that are
present in composite actions. The first type of branch points are those that correspond to a
primitive action and therefore adds nodes to the plan. The second type are branch points that
do not correspond to a primitive action and therefore may not add any nodes to the existing
plan. However, they create causal links and variable bindings that need to be attached to a
node. Moreover, both types can get causal links and variable bindings from previous branch
points.

The first category of branch points is the same as the sequence branch point. In essence,
it finds a set of causal links that ensure that, given a set of causal links and variable bindings
from the previous branch point, all preconditions of the primitive action hold. The resulting
set of causal links is a union of the two sets of causal links. These causal links are thereafter,
attached to an invocation node for the primitive action. Finally, the invocation node and a
corresponding effect node are added to the plan. The steps involved in this are described in
figure

The second category differs in that it only adds nodes to the plan if there are no state-
ments within its scope that is to be evaluated. As a result, a branch point from this category
finds a set of causal links and possibly variable bindings that ensure that the conditions for
the corresponding composite action component hold. The resulting causal links and vari-
able bindings are thereafter, passed to the next branch point along with the input from the
previous branch point if there is a statement to evaluate within its scope. Otherwise, a null
action is created and its corresponding nodes are added to the plan. The null action has no
preconditions or effects and its duration is zero. Finally, the causal links are connected to the
invocation node that corresponds to the null action. The working of the branch points in this
category is shown in figure

35

5.2. Implementation

From previous branch point

C&V

[Create causal links (C’)]

CulC' &V

[Add to plan (C U c’)}

1%

Any statements to be <Yes>V

evaluated in scope?
To next branch point

Figure 5.2: An overview of a composite action branch point that corresponds to a primitive
action. C and C’ are sets of causal links, V is a set of variable bindings and V) is the variable
bindings from the parents scope. Furthermore, "<>" indicates the decision at a decision node.

From previous branch point

C& Ve

<No> V),

[Create causal links and variable bindings (C’ & V’)}

Cul &V,uV

Any statements to be <Yes> CuC'&V UV
evaluated in scope?

Vp

<No>Cu C'&V, uV’

[Add phantom action to plan(C u C’)}

Figure 5.3: An overview of a composite action branch point that does not add any nodes to
the plan. C and C’ are sets of causal links, V and V' are sets of variable bindings and V}, is
the variable bindings from the parents scope. Furthermore, "<>" indicates the decision at a
decision node.

One more thing that should be mentioned about passing causal links and variable bind-
ings is the scope. Each branch point has a scope of composite action statements to which cor-
responding branch points it can pass causal links and variable bindings to. In essence, this
scope includes all composite action statements defined within it. Hence, only the variable
bindings it got from its parent can be passed to branch points that correspond to composite
action statements outside its scope. For example, imagine that a composite action consists
of two composite action statements, x and y. x is the first one and therefore gets the causal

36

5.2. Implementation

links and variable bindings from the precondition and parameter list of the composite action.
Furthermore, x adds some more causal link with a branch point of the second category. How-
ever, the next branch point in the search is the first branch point in y which is outside the
scope of x. Therefore, the branch point in x will create a null action to which the causal links
are added. The corresponding nodes will then be added to the plan. Hence, no causal links
are passed to as input to y.

Composite action state

TFPOP uses a state, called composite action state, to keep track of the evaluation of a com-
posite action. However, this state is more complex than that of the sequence actions. This is
because composite actions has more functionality.

To meet the requirements, the composite action states contain a Composite Action Mem-
ory (henceforth, called CAM) that mirrors the composite action statements in the composite
action and the causal links that is to be given to the next branch point. The causal links is
nothing more than a set of causal links. However, CAM is slightly more complex. In essence,
CAM is a tree structure in which the root corresponds to a composite action and the rest of
the nodes correspond to a composite action statement in the composite action. Information
regarding the state of the evaluation of each composite action statement is stored within its
corresponding node in CAM. This allows the composite action state to use CAM for:

¢ Generating a new branch point for the current state.

o Getting all temporal constraints that should be applied after the current branch point.
Exactly how this works is presented under temporal constraints in the next section.
Querying if there is something left to do in the composite action.

Getting all the variable bindings for the current scope.

Generate labels for the current branch point. This will be covered under labels in the next
section.

Composite action statement

Composite action statements (henceforth, simply called statements) are the building blocks
of composite actions. In essence, they consist of ordered branch points and nested statements
that TFPOP has to search through and evaluate respectively when using a composite action.
In this report, the "if", "while" and "sequence" statements were implemented. Furthermore,
the primitive action from the sequence action is also classified as a statement. The following
sections cover these statements as well as some features that multiple statements can have.
An overview of where the selected composite action components are implemented can be

found in table

Composite action component Implemented in

(al ;a2; ..., ai) The sequence statement

with x1, x7, ..., X; where phi The variable introduction property

if ¢ then aq else ap The if statement

while ¢ do a The while statement

[to, t1] The labels and temporal constraint properties

Table 5.6: A mapping from composite action component to where they are implemented.

Labels

In the sequence action, temporal constraints can be expressed by the index of the primitive
action and with the keywords "#start" and "#end". However, this can be quite bothersome

37

5.2. Implementation

to express for composite actions since they can include repeating structures (for example,
iterations). Therefore, a labeling system was implemented that allows the invocation and
effect nodes associated with a label to be accessed by "label#start" and "label#end" respec-
tively. Those labels are added to a statement in TDDL is done by adding "#label" at the
end of the statement. For example, the primitive action (move ?uav ?thread ?base) from the
people-in-distress domain with the label flyToBase would be written as (move ?uav ?thread
?base)#flyToBase.

Another problem that arise due to the non-linear structure of the composite actions is that
a label can occur multiple times. This is handled by attaching a suffix to each label. The suffix
is generated by traversing CAMs tree structure where each node adds to the suffix according
to table[5.7|until the node corresponding to the statement that has the label is reached.

Memory object Suffix

Composite action "#" + the index of the current statement.

Primitive action statement

"->"; followed by "[extra=(" + all the extra variable bindings
introduced in the statement + ")]" if there are any extra vari-
able bindings were introduced; followed by "[?]" if the con-
dition is not evaluated, "[false]" if the condition is false and
"[true]" if the condition is true; followed by "#" + the index of
the current statement if the condition is evaluated.

If statement

"->"; followed by "[extra=(" + all the extra variable bindings
introduced in the statement + ")]" if there are any extra vari-
able bindings were introduced; followed by "[iter="+ the cur-
rent iteration + "]"; followed by "#cond" if the condition is the
next branch point else "#" + the index of the current state-
ment.

While statement

"->"; followed by "[extra=(" + all the extra variable bindings
introduced in the statement + ")]" if there are any extra vari-
able bindings were introduced; followed by "#" + the index
of the current statement.

Sequence statement

Table 5.7: Label suffix that is added at each memory node depending on what they are asso-
ciated with.

There is one final problem that needs to be covered regarding the labels in composite
actions, labels attached to non-primitive action statements. Time constraints applies to the
nodes in a plan and therefore each label needs to be attached to a node. Hence, statements
that do not directly add a node to the plan need to attach their labels to another statement’s
node instead. This is done by adding the start of a label to the first node that is added within
its scope. The same principle applies for the end of a label except that it is added to the last
node.

Temporal constraints

In composite actions it is not always efficient to apply time constraints after the whole action
is finished since they can generate a long sequence of primitive actions. For example, there
is one composite action that will solve the whole problem instance in the blocks world that
is used in the search time experiments. If one imagine that there is a time constraint for each
move that can never hold then the first move will be impossible and TFPOP will have to
backtrack. However, if the time constraints are checked after the composite action is finished,
then TFPOP will have to add all the primitive actions that the composite action generates

38

U= WN -

5.2. Implementation

before the time constraint for the first fails. Therefore, it is preferable to be able to specify that
time constraints should apply at a certain point in a composite action.

Based on the above reasoning it was decided to implement time constraints similarly to
the introduction of new variable bindings. That is, as an optional property in the if, while
and sequence statements as well as for the composite action as a whole. The syntax of time
constraint in TDDL is the same as in the sequence action except that labels are used instead
of indices. However, it can be written inside the statement or the composite action. Exactly
when a time constraint is checked depends on where it is defined:

e In an if statement: Time constraints are tested when the last of the statements within the
if statement has ended. It does not matter if the condition is true or false. However, the
condition dictates which the last statement is.

o In a while statement: Time constraints are tested when each iteration is finished.

¢ In a sequence statement: Time constraints are tested when the last statement in the se-
quence statement is finished.

e In a Composite action: Time constraints are tested when the last statement in the com-
posite action is finished.

Selecting which nodes belong to a time constraint is done by matching the labels. This is done
be finding all the nodes that the composite action has added so far that have a label, ignoring
suffix, that matches the start or the end label of the time constraint. Thereafter, each of the
selected nodes has its labels distinguishing features, everything within brackets, extracted
from the suffix. Then a search is done through the selected end nodes for each of the start
nodes. The search tries to find a node with the same distinguishing features. If it finds one,
then TFPOP will add the time constraint between those two nodes.

Introduce new variable bindings

Introduction of new variable bindings could be implemented as a separated statement on its
own. However, it was decided to implement it as an optional property for the if, while and
sequence statements since it reduces the needed number of statements. As a result, variables
can be introduced in TDDL within the previously mentioned statements by using the ":with"
and the optional ":where" keywords as shown in figure

(:with (type—1 ?variable-1) (type—2 ?variable-2)...)
<(:where

> condition—1

> condition—2

Figure 5.4: The syntax for variable introduction in TDDL where everything within "<>" is
optional.

During the search for a plan, the variable introduction is the first branch point in all state-
ments that have one. This branch point is called with where branch point and belongs to
the category of branch points that does not correspond to a primitive action. In the branch
point, TFPOP chooses variable bindings satisfying the with clause and causal links satisfying
the where clause (figure |5.5|shows the branches of this branch point). The selected variable
bindings are added to in the scope of the statement and the causal links are passed to the next
branch point in the scope. Note that these causal links will always be used in the scope since
at least one primitive action or null action will be added in the scope. Finally, the conditions
specified with the ":where" keyword are tested in the order in which they are written. As a re-
sult, the order they are defined can affect how fast the search for valid variable bindings and
causal links are. When backtracking in this branch point, a new choice for variable bindings
and/or causal links are chosen.

39

O 0N NU = W=

5.2. Implementation

Figure 5.5: The different branches that a with where branch point has. WWBP stands for
with where branch point and BP stands for a branch point. Furthermore, c; stands for a set
of causal links and v; for a set of variable bindings. C is the set of all ¢; and V is the set of all
;.

If statement

The if statement introduces a way of adding different nodes to the plan depending on a
boolean condition. This is a common term within programming and therefore the keywords
for the if statement in TDDL is chosen to be similar to those that are commonly used (the
syntax is shown in figure 5.6). However, there are two slight differences between the stan-
dard interpretation of an if statement and the one in TDDL. Firstly, instead of having a single
condition, an if statement has a list of conditions where all of them have to be true or false.
Secondly, a condition can be evaluated to both true and false depending on which causal links
are added in some scenarios. The choice of how to make the conditions true or false corre-
sponds to a new branch point, called if branch point, belonging to the category of branch
points that do not correspond to a primitive action.

(:if

(:
(:conditions non—empty—condition—list)
<(:eval-first truth value)>
(:then non—empty—statement—list)
<(:else non—empty—statement—list)>
<(:stnu)>

Figure 5.6: The syntax for an if statement in TDDL where everything within "<>" is optional.

The if branch point consists of two choices, one made by the one who writes the domain
and one that TFPOP makes. Firstly, the choice made by the one who writes the domain is if
TFPOP should try to make the conditions true first or false first. In TDDL, this is written with
the optional option ":eval-first". However, if nothing is specified, then TFPOP will try to make
the conditions true first. Secondly, the choice made by TFPOP is how to make the conditions
true or false. Naturally, it starts with trying to find causal links that ensure that the conditions
have the specified truth value. The selected causal links are the ones that are passed on to the
next branch point within scope or added to the plan by using a null action. However, if no
more causal links can be found that uphold the specified truth value, then TFPOP will try to
make the conditions take to opposite value. When there is no more ways for TFPOP to make
the conditions true or false it has to backtrack from the if branch point. The branches of the if
branch point are illustrated in figure

TFPOP applies an if statement by starting with a with where branch point if one exists.
After that comes the if branch point and following that, it applies the statements for the
selected truth value. All statements for true is specified with the ":then" keyword and the
optional ":else" keyword for false. Note that both the ":then" and ":else" keywords require
at least one statement. Moreover, the if statement is at the end if all the statements for the
current truth value of the conditions has been applied. The whole evaluation procedure of
the if statement is shown in fig

40

5.2. Implementation

BP

Figure 5.7: The branches that an if branch point has. IBP stands for if branch point and BP
stands for a branch point. Furthermore, T is the set of all sets of causal links that make the
conditions frue and t, is set number # in T. F and f, have the same meaning as T and ¢,
except that the causal links make the conditions false.

Statement; 1
Statement; 2

.

T

Statement; n Statementf m
T ATC

Figure 5.8: The evaluation procedure of a if statement. WWBP stands for with where branch
point and IBP for if branch point. Furthermore, ATC stands for apply temporal constraints
and ANA for add null action.

While statement

The while statement is a way of expressing that TFPOP should evaluate a sequence of state-
ments zero or more times. Just like the if statement this is a common programming term.
Therefore, the keywords of the while statement in TDDL are similar to the ones in many
programming language (the syntax in TDDL is shown in figure 5.9). Moreover, the same
differences regarding the conditions as in the if statements applies to the while statements.
However, there are no statements for when the condition is false in the while statement. There-
fore, it has a slightly different branch point for the conditions, called while branch point, that
also belongs to the category of branch points that do not correspond to a primitive action.

TFPOP will try to find a set of causal links that makes the conditions true when in a while
branch point. Moreover, when no previously tried sets can be found, then TFPOP will try
to make the conditions false. Backtracking from a while branch point is done when all the
possible set of causal links for both true and false has been tried. The branches of the while
branch point are illustrated in figure

41

N O U W N

5.2. Implementation

tions non—empty—condition—list)
(:body non—empty—statement—list)
<(:stnu)>

Figure 5.9: The syntax for a while statement in TDDL where everything within "<>" is op-
tional.

BP

Figure 5.10: The different branches that a while branch point has. WBP stands for while
branch point and BP stands for a branch point. Furthermore, T is the set of all sets of causal
links that make the conditions true and t, is set number n in T. F and f, have the same
meaning as T and t, except that the causal links make the conditions false.

When evaluating a while statement, TFPOP starts with a while branch point and if the
condition is evaluated to true then it will evaluate all the statements in the while statement.
This is then repeated starting with new while branch points until one while branch point
makes the conditions false. All of this is shown in figure

WWBP
false (A A
1 ANA End
true

Statement 1
Statement 2

Figure 5.11: The evaluation procedure of a
composite action while statement. WWBP

stands for with where branch point and
WBP for while branch point. Furthermore,

ATC stands for apply temporal constraints
and ANA for add null action.

Sequence statement

The sequence statement is a way of expressing a linear sequence of statements. This type of
statements only differs from sequence actions in that it contains statements instead of prim-
itive actions. The syntax for a sequence statement can be found in and the evaluation

model in figure

42

U W N

5.3. Search time

(:sequence

<(:with)>

<(:where)>

(:body non—empty—statement—list)
<(:stnu)>

Figure 5.12: The syntax for a sequence statement in TDDL where everything within "<>" is
optional.

Statment 1
Statement 2

Statement n

=9
Figure 5.13: The evaluation procedure of a sequence statement. WWBP
stands for with where branch point and ATC stands for apply temporal con-

straints.

Primitive action statement

The primitive action statement is the only branch point for the composite action that belongs
to the category of branch points that add nodes to the plan. These statements find the needed
causal links for the primitive action they correspond to and add the corresponding nodes to
the plan. However, this branch point is just a renaming of the previously existing sequence
branch point to composite action branch point. Moreover, the statement works just like the
evaluation of one primitive action in the sequence statement. Therefore, it will not be covered
any further.

Searching with composite actions

Composite actions are similar to the sequence action when it comes to how they are used by
TFPOP during a search for a plan. Just like the sequence action, they can be selected by an
arbitrary action branch point which takes care of binding the variables in the parameter list
and creating causal links ensuring that the preconditions hold. After that, TFPOP evaluates
all the statements in the composite action. Finally, all time constraints defined within the
composite action is applied. This whole evaluation flow is shown in figure[5.14}

5.3 Search time

Compared to no guidance

The result from the experiment to test if composite actions can decrease the search time is
summarized in table[5.8/and all data points are presented in appendix[E] Moreover, applying
Levene’s test for equality of variance to the data gives that the variance of the two samples

43

5.3. Search time

from AABP

Statement 1

Statement 2

Statement n

N

Figure 5.14: The evaluation procedure of a composite action. TBP
stands for thread branch point, AABP stands for arbitrary action
branch point, and ATC stands for apply temporal constraints.

To new TBP

are not equal (F[19, 19]=31.33, p<.001). Hence, a t-test that does not assume same variance
is used to test for significance. Given the non-equal variance, TFPOP is solving the problem
instance significantly faster (2 650.90 ms faster, 95% CI [2 615.53 ms, 2 686.27 ms]) when using
composite actions to guide the search than when not using composite actions to guide the
search (t(19.00)=156.86, p<.001, d=49.60).

Domain type Mean CPU time (ms) Standard deviation
With composite actions 1.4 0.5
Without composite actions 2652.3 75.58

Table 5.8: Mean and standard deviation for search time measured in milliseconds using the
CPU for the different domains.

Compared to equivalent guidance

[J
@ 800 | ° :
) .
5] ®
< o ©® .
= ® Figure 5.15: The search
5 600 3 | time for solving problem
) . . .
- F 3 instances using different
= ° .
9 ° types of search guidance.
© ° .
Z 400! i | Each dot is one problem
g instance. Furthermore,
:} ® the x-axis is the search
g A time when using guidance
E 200 |- | through composite ac-
= tions and the y-axis is the
® search time when using
equivalent guidance with-
0 : ; ; ; out composite actions.
0 200 400 600 800 The line shows when both

Search time, composite action (ms) axes have the same value.

44

5.4. Understandability measurement

The search times it took to solve the randomized problem instances when guided by com-
posite actions respectively with equivalent guidance without composite actions are shown in
figure Each dot in the graph represents one problem instance where the x value is the
average time it took to create a plan when guided by composite actions and the y value is the
average time it took to create a plan with equal guidance without composite actions. The line
in the graph shows when the search time is equal for the two search guidance alternatives.

5.4 Understandability measurement

Throughout the search for understandability measurements there was only one that met the
requirement. That was to measure understandability as the users’ estimation of understand-
ability in an experiment. Moreover, digging deeper in the field of measuring through asking
questions with an answer scale led to measuring understandability through indirect ques-
tions.

5.5 Understandability experiment

Pre-experiment

There are two types of result from the pre-experiment. The first is an estimation of how large
sample size is needed for a significant result and the second is the feedback from the partici-
pants and observations made during the experiment about the questionnaire. The following
sections present these results.

All the data points from the pre-experiment can be found in appendix [} Moreover, the
mean and standard deviation for estimated understandability and measured understandability is
1.1 and 1.08397 respectively 0.65 and 0.63369. Based on this, the estimated needed sample
size for a significant result is 7 for both of the measurements.

The feedback and observations from the pre-experiment are that the experiment took
slightly longer than 30 minutes and that some questions were hard to understand. Hence,
all but one question were rewritten to make them easier to understand. The last question was
removed from the questionnaire since it was the hardest to understand and would not have
been possible to rewrite without introducing a whole new concept with examples. Moreover,
the time measures were removed due to two reasons. Firstly, it did not give any information
except how long time the experiment took. Secondly, it was observed that some participants
seemed to act a bit stressed for the second domain in the questionnaire if the second took
longer time than the first. As a result, the time questions were removed.

Experiment

It became quite obvious during the conduction of the experiment that there would not
be enough participants to reach the needed sample size that was indicated by the pre-
experiment. Therefore, the questionnaires were handed out to be done outside the experi-
mental setting to increase the sample size according to the method (see section [4.5).

In total there were six participants (all males studying the five year computer engineer-
ing program at Link6ping University). Five of the participants had previously encountered
PDDL and the last stated a familiarity with the syntax through having knowledge about LISP.
Moreover, three of the participants got the questionnaire where the PDDL file with a compos-
ite action was presented first. From the data (all data points are presented in appendix|G), the
following analysis was done using Wilcoxon signed-rank test and Pearson’s r: The PDDL file
with composite actions (median for estimated understandability is 1.5 and .875 for measured un-
derstandability) had a significantly higher estimated understandability (z=-2.06, p=.020, r=-.60)
and a significantly higher measured understandability (z=-2.20, p=.014, r=-.635). In both cases,
the effect was found to be large.

45

5.5. Understandability experiment

46

Discussion

6.1 Results

Composite action component ranking

The results for the composite action component ranking are not surprising. All the com-
ponents except the introduction of new variables are standard concept in imperative pro-
gramming. A composite action is an abstract action defined as an imperative procedure of
primitive actions. Therefore, it is not surprising that the imperative concepts got a high rank.
Moreover, the introduction of new variables is a powerful tool for allowing the planner to
make partial decisions in the composite actions. Allowing for the user to express that it does
not matter which the subject, place and/or object of the action is as long as it is done. Hence,
the results are not unexpected.

One thing that should be mentioned is that BEM is based on Golog [1] which naturally
creates a bias towards the components in Golog. However, this does not affect the decision of
which components to implement since nearly all the composite action components that were
chosen are present in all.

The fact that HTN supports recursion through named HLAs was unfortunately missed
during this part of the report. As a result, recursion was ranked as two instead of three.
This makes it one of the components that should have been implemented. However, the fact
that recursion was not implemented does not affect the results for any of the experiments
conducted in the report.

Implementation

There are some design decisions that are important to discuss and question. To begin with,
the design decision regarding how the suffix of the labels are created and how they are used
to matching the start and end of a time constraint is restricting the expressiveness of time
constraints in TDDL. It was decided that the start and the end of a time constraint must have
the same distinguishing features. This is a wanted feature so that the restrictions within, for
example, a while-loop does not create any unintended time constraints between the itera-
tions. However, this also makes it impossible to write a time constraint for the first statement
in ":then" in an if statement and the statement following the if statement. This is because
the if statement adds a new distinguishing feature ("[true]") when the condition is made true.

47

6.1. Results

Hence, the two statements do not have the same distinguishing features. Therefore, the de-
sign is restricting which time constraints that can be expressed in TDDL. A better solution
would have been to been more restrictive in which features are classified as distinguishing.
Another approach would have been to let the user select how restricting the labeling system
should be by using a flag.

The design decision to attach causal links to the nodes created by a phantom action if there
are no nodes corresponding to a primitive action within the scope has two major implication.
Firstly, this adds extra causal links to the plan which restricts the plan more. Secondly, this
adds extra nodes to the plan. The first one is the worst since it might invalidate some plans
that would otherwise be found. However, these extra causal links enforces the resulting plan
to follow any composite actions that was used in it. Hence, the semantics of the composite
actions become more similar to the one in most programming languages with this decision.
The simplicity of the semantics is the reason for this design decision.

Search time

The result from the experiment regarding if composite actions can reduce the search time is
not surprising. In essence, the composite action used in the experiment gives TFPOP the exact
solution (through a procedure). Hence, only minimal search is required. On the other hand,
when no search guidance is used, TFPOP has to search through the whole state space. This
includes everything that is needed when using composite actions and much more. Therefore,
this result was definitely expected. One should be aware that this is a specific case selected
to show that it is possible to decrease the search time by using composite actions. Hence,
no more general conclusions than that composite actions can decrease the search time can be
drawn from this result.

It is quite easy to explain why guiding TFPOP with composite actions is faster than with
an equivalent search guidance. The first thing to point out is that the equivalent search guid-
ance contains more actions, more fluents and more objects. This results in that there is a larger
state space. However, most of the combinations are not possible to select in a branch point
since the preconditions prevent it. Nevertheless, there are still more branches to consider
even if it is just to reject them. Moreover, the conditions in the while statement are a single
branch point (if the conditions are true, otherwise three) in a composite action which means
that TFPOP only has to expand one search node to finish it. However, the condition corre-
sponds to two primitive actions (one for when the conditions are true and one for exiting the
loop) in the equivalent guidance and one primitive action requires four branch points (see
section 2.2). In summary, using composite actions lead to a smaller state space and fewer
branch points. Given this it is natural that the guidance with composite actions is faster.
However, all these reasons are dependent on the current implementation of TFPOP.

A more interesting thing about the results for the search time that compares search guid-
ance through composite actions with equivalent search guidance is that the difference in
search time is looking linear. Hence, this provides an indication that the search time for both
of them are similar in time complexity. This indicates that the two search guidance methods
are equally fast in theory. However, composite actions provides more expressiveness since it
is, for example, possible to express time constraints over multiple actions.

Understandability measurement

One of the most important results regarding the understandability measurement is that no
metric that is applicable and is well cited was found. There were a lot of metrics that were
studied throughout the report. However, these can be categorized into three different cat-
egories. Those that are well cited but not applicable (for example, QMOQOD), those that
are applicable but not validated for understandability (for example, code and data spatial

48

6.1. Results

complexity) and those that are not well cited (for example, improved cognitive information
complexity). Unfortunately, non of these categories are usable for measuring TDDL.

The metrics that are not applicable make use of some properties that are not present in
TDDL. QMOOD is based on properties of object oriented design [3]. This includes properties
like encapsulation which do not have any corresponding property in TDDL. Hence, it is not
possible to adapt the metric without creating an issue with validity.

Applicable metrics are, on the other hand, based on properties that exist in TDDL. These
properties are, for example, data definition and lines of code. Improved cognitive information
complexity is an example that is applicable. For example, by counting properties in a TDDL
file as variables, boolean operators as operators and variables as variables it is possible to
calculate the cost for each line and thereby the whole metric. However, no metric that was
applicable was found to have enough citations to be considered acceptable.

There are some metrics that have been proposed that are not validated properly. A prime
example of this is the code and data spatial complexity. This metric is validated through its
correlation with maintenance time [6]. However, there is no proof or arguments that under-
standability is the only factor among the different treatments in the experiment that affects
the maintainability [6]. Hence, the experiment is actually validating the metric as a metric
measuring maintainability.

Understandability measurements that can be used in experiments proved to give better
results than the metrics. However, these included some that were not possible to use in this
report. To begin with, all the measurements that needed experts were unfortunately outside
the scope of the resources for the report. Moreover, there were some measurements that are
not validated, just like for the metrics. For example, using time and correct answers on knowl-
edge questions is one measurement that was used [9]. However, this measurement is never
validated as a measurement of understandability in the study using it [9]. Therefore, this is
not an applicable measurement. This leaves two possible measurements: user estimation and
indirect questions.

One major drawback with the indirect questions is that it needs to be validated that they
measure understandability. As a result, this measurement can not be used to draw conclu-
sions in this experiment since no validated set of questions was found. However, it can
be used to get an indication. Moreover, using the aspects of understandability that Boehm,
Brown and Lipow identified [4] as a foundation for the indirect questions increases the cred-
ibility of such an indication.

Understandability experiment

The results showed that the understandability is significantly higher when using composite
actions. From this there are two interesting parts to notice. The first is that it is an indication
that the indirect questions managed to measure the estimated understandability and the sec-
ond is regarding why the result is as it is. Naturally, there are multiple reasons to why the
composite actions have a significantly higher understandability. Firstly, the model that uses
composite actions is smaller and if assuming that the principle that larger designs are harder
to understand [3] applies to a domain model then this helps to explain the result. Secondly,
the participants have been using basic control structures more often than they have been us-
ing PDDL. Hence, the familiarity might explain parts of the result. Finally, composite actions
give a direct description of an abstract action while defining extra primitive actions with ex-
tra preconditions give and indirect description. In addition, a direct description is most likely
easier to understand. Therefore, this also helps to explain the result.

49

6.2. Method

6.2 Method

Composite action components ranking

As written in the delimitations (section [1.4), this study will not research which is the most
important composite actions. Therefore, the only threat to the reliability of the method is the
categories that were identified for the composite action components. Unfortunately, there is
no method for how the categorization is done and therefore the reliability of this part can be
considered low. However, this does not affect the report as a whole since it does not affect the
validity or reliability of the main research questions.

Implementation

The implementation that was done did not follow any specific method or algorithms. More-
over, the source code is not published and therefore every measure based on TFPOP is not
replicable with a high reliability. However, it is possible to replicate since the principles that
TFPOP is built on are published by Kvarnstrém [14] and in this report. However, this im-
plies that the reliability is lowered since it is most likely that there will be differences in the
implementation.

Search time

The method chosen for determining if using composite actions can decrease the search time
is a statistical analysis of samples for proving differences. Hence, it is valid to conclude that
composite actions can decrease the search time in case a significantly (in the statistical mean-
ing) faster result is found. However, "can" is an operative word since no valid conclusions
about a general case can be drawn because only one case is analyzed. The test is determin-
istic and therefore it is also reliable. However, the source code is not publicly available and
therefore it is hard to replicate the experiment (see section[6.2).

The experiment used to get an indication of how well search guidance with composite ac-
tions compare to equivalent search guidance without composite actions inherits the problem
with replicability from the implementation. In addition, the method used for generating the
samples is randomized which makes it possible to get another result. Moreover, the method
to analyze the result does not take this into consideration. Therefore, this experiment has
high problems with validity if a conclusion would be drawn from it. Nevertheless, the aim is
only to get an indication. Hence, that should not be an issue for validity.

Understandability measurement

The method chosen for this part of the report has two major flaws regarding validity. Firstly,
citation is used to measure how established a measurement is. This is a flaw since it is as-
suming that citations are positive. However, this is not always correct. In fact, the opposite
can be true. Secondly, the method is limited to some keyword for searching for measure-
ments. These two flaws potentially exclude measurements that are better than the ones that
was found. These two issues show that it is not valid to draw the conclusion about the best
measurement method. However, they do not invalidate the results as a measurement for
understandability.

One more issue with the method is that the reliability is decreasing with time since the
basis for the search is www.scholar.google.com which constantly gets new publications and the
number of citations constantly changes. As a result, it gets harder to get the same result with
a replicated search for measurement with time even if the limit is increased.

50

6.3. Source criticism

Understandability experiment

There is one error source in the method regarding controlling the variables in the experiment.
This problem occurred when questionnaires were handed out to the participants to fill in
outside the experimental setup. As a result, there is no guarantee that the participants, for
example, did not take any breaks between the two parts of the questionnaire. Therefore,
there might be other causes for the result than using composite actions or not. However, all
the participants signed a consent form that includes that they had understood the instructions
for the experiment. Hence, it is quite safe to assume that this does not prove a huge issue for
the validity.

Using the users estimated understandability as a measurement has one major effect on
any conclusions. The effect is that the estimated understandability is a subjective measure-
ment. This does actually have two major implications. The first is that each participant
may have their own interpretation of the meaning of the alternatives on the answering scale.
Hence, making it hard to infer anything between the domains for each subjects. However, this
is taken care of with the within-subject design which only measures the difference between
each subject. The second problem with the estimated understandability is that it can not be
used to draw any conclusions about an objective understandability. Hence, the conclusions
can only be drawn about the subjective (or felt) understandability.

The fact that the population that the sample was randomized from is students at
Linkoping University with at least basic knowledge about planning affects the conclusions
that can be drawn. However, Kitchenham et al. state that this is not a hinder when it comes
to drawing a conclusion for non-experts [11]. Therefore, this restriction applies to all the con-
clusions that are drawn from this experiment. However, this means that if Kitchenham et al.
is wrong then the all conclusions has to be restricted further so that they only apply to the
population of the sample. Disregarding if Kitchenham et al. is correct or wrong, a significant
result can be seen as an indication of that the understandability is higher for experts as well.

There are some problems with the questionnaire that was used in the experiment. The
problems originate from the need of conducting the experiment in time. As a result, the
questionnaire and updating the questionnaire was not given enough time. Therefore, it con-
tains some language errors in the description. Not large enough to prevent the participants
from understanding but enough to require more effort. Moreover, there are two places where
the participant is asked to write down the current time which should have been removed.
However, no place to write down the time is presented. Nevertheless, non of the found lan-
guage errors are present in the questions or the domain file. Hence, this should not prove
any problem to the validity of the experiment. Moreover, no participant wrote down the
time in any of the places they were asked to. Hence, it is believable that they either missed
it or ignored it. Therefore, this should not be a problem either. As a result, the errors in the
questionnaire should not affect the result.

One final question about the experiment to discuss is regarding how applicable a result
for PDDL is on TDDL. To begin with, both TDDL and PDDL are based on LISP and there-
fore have a strong resemblance with each other. This is a good foundation for claiming that
the results for the experiment can be used to conclude if composite actions can improve the
understandability of TDDL. Furthermore, it is only the difference between using composite
actions and not using them that is measured. Moreover, the composite actions used for PDDL
are designed to be similar to those of TDDL. Hence, the difference between using composite
actions or not should be similar between PDDL and TDDL. These two arguments make a
strong claim that valid conclusions can be drawn for TDDL as well as for PDDL.

6.3 Source criticism

There are two main things to consider regarding the sources used in the report. Firstly, most
of the sources regarding composite actions are around 15 years old. However, this does not

51

6.4. The work in a wider context

affect the report since these are only used for generating an informal ranking of what to
implement and not as basis for any conclusions. Secondly, a few of the cited publications
regarding metrics should be used with caution. The reason for this is that there are multiple
publications that criticize them. Disregarding of the validity of the criticism, these publica-
tions are only used as examples of metrics that is not going to be used. Therefore, this does
not affect the results.

6.4 The work in a wider context

The report aims to extend modeling languages for planners so that parts of the domain be-
come easier to understand. Making them easier to understand is also likely making them
easier to write. As a result, this can affect how easy it is to use a planner, regardless what they
are used for. This includes applications like the people in distress example and the repairs of a
nuclear reactor from the introduction. Unfortunately, this also includes creating autonomous
machines for war. In essence, the result from this report is one step towards making it easier,
but not necessarily more effective, to use planning autonomous systems regardless of their
purpose.

52

Conclusion

7.1 Research questions

From the results in this study the following conclusions can be drawn regarding the research
questions:

1. The implementation proves that composite action components can be implemented in
TFPOP.

2. Composite actions can be used to guide TFPOP when searching for a plan and thereby,
decreasing the search time. Moreover, there are indications that the composite actions
provide search guidance that is as effective as the equivalent search guidance that does
not use composite actions.

3. Using guidance in the form of composite actions makes a domain written in TDDL have
a higher felt understandability for non-expert users than if equivalent guidance was used
in the domain. Moreover, the results indicate that using composite actions increase the
felt understandability for experts compared to using equivalent guidance.

7.2 Further work

Implementation

There are still a lot of work that can be done regarding the implementation when it comes
to composite actions in TFPOP. The most obvious is to implement the rest of the compos-
ite action components identified in this report. A more interesting study is to research the
possibility for the planner to learn and use commonly used composite actions for a problem
instance. Moreover, this can be extended to learn composite actions that are useful for all
problem instances and domains with a set of properties. Finally, it would prove beneficial
in terms of not restricting the resulting plan if it is possible to always attach the causal links
that are enforced by all composite action components at the latest moment they are needed
instead of naively attaching them to the next node that is added to the plan.

53

7.2. Further work

Understandability measurement

The main issue that can be worked with when it comes to understandability measures for
languages like PDDL (declarative languages in general) is the lack of metrics. A metric allows
automatic code reviews of abstract concepts during development. For example, a metric
for understandability could be used to give warnings when a piece of code is considered
unnecessarily hard to understand. Combining this with an expert system that gives hints
about how to improve the understandability could potentially increase the understandability
(and thereby, the maintainability) during the development process. Therefore, the first step
that needs to be taken regarding understandability measurements for this kind of languages
is to develop and validate a metric.

54

Metric formulas

A.1 Code and data spatial complexity

The code-spatial complexity metric is calculated with the following formula [6]:

=

di

0
n

i

I

i
i

3

Where m is the number of modules in the software, #; is the number of uses of module i
and d,-,j is the distance, measured in lines of code, from the definition of module 7 to call j to
module i. When the module is in another file, the distance is defined to be the sum of the
distance from the call to the bottom of that file and the distance from the top of the file that
the module is defined in to the definition of the module [6].

The data-spatial complexity is calculated as follows:

d;

M=

0
P

q

]

I

1

Where g is the number of global data members, p is the number of times that data member
is used and di,]- is the distance to the previous use of the data member, in lines of code, or the
definition if there is no previous use.

A.2 Improved cognitive information complexity

The improved cognitive information complexity metric starts with calculating the informa-
tion content of a line with [13]:

Iy = 4 = Identifiers,) + Identifiers,) + Operatorsy,

Where n is the line number and Identifiers, , is the count of all the identifiers with bad
names (with regard to the domain of the software) on line n. Furthermore, Identifiers, ,) is
the count of all the identifiers with good names on line n and Operators,, is the sum of all the
operators on line 7.

55

A.2. Improved cognitive information complexity

The information content is then used to calculated how much the information will impact
on the following lines according to:

WICL, = I,/ (L —n)

Where L is the number of lines of code in the software. The sum of the impact of all the lines
of code is the weighted information count of the software (WICS).

The next step is to calculated the cognitive weights of the basic control structures (WBCS)
as presented by Wang and Shao [20]:

m
WBCS,, = C(BCS,) * >, WBCS;
i=0
Where C is a function that returns the cost for a basic control structure and the summation it-
erates over all the directly nested basic control structures within BCS;,. Furthermore, WBCS,,
is weighted cost of the basic control structure BCS,,. From this the sum of all basic control
structures (SWBCS) in a piece of software is calculated as [20]:

n
SWBCS = >, WBCS;
i=0
Where the summation iterates over all the non-nested basic control structures.
The final piece of the formula for basic control structure is the function C which simply
maps a basic control structure to a value according to table [20].

0
(=]
2]
-

Control structure

Sequence

If-then(-else)

Case (Switch)

For-loop

Do-While

While

Recursion

Function call

Parallel (e.g. multiple threads)
Interrupt

DN WWWWWN -

Table A.1: The cost for different basic control structures according to Wang and Shao.

The final part of calculating the cognitive information complexity is to combine the cost
for the basic control structures and the weighted information count [[13]:

CIC = WICL « SWBCS

56

O 0N ONUT = WN =

Blocks World

(:tfpop-domain blocks—world

()
((object (block) (ground)) (agent))
((ground floor))
(
(object (on—top block))
(boolean (clear object))
)
((move (agent 2a) (thread ?thread) (object ?from) (block ?b) (object 2to))
(:split-precond
>thread => (:true)
?from => (:true)
?b => d (= (on—top ?b) ?from) (= (clear ?b) true) (not (= ?from ?b)))
2to => (and (or (= (clear ?to) true) (= 2to floor)) (not (= ?from ?to)))
)
(:phase
(:duration 1 1 1)
(:effects
(:= (on—top ?b) ?to)
(:= (clear ?from) true)
)
)
(:always-followed-by)
(:definitely-changes (on—top ?b))
:can-achieve-goal
)

Figure B.1: Blocks world domain without any extra guidance.

57

O O N NUT = WN =

(:tfpop-domain blocks—world

(:71a99)
(:tvpes (object (block) (ground)) (agent))
(:constants (ground floor))
(:fluents
(object (on—top block))
(boolean (clear object))
)
(:c “tor :onlypart (move (agent ?a) (thread ?thread) (object ?from) (block ?b) (object 2to))
(:split-precond
?thread => (:true)
?from => (:true)
?b => (and (= (on—top ?b) ?from) (= (clear ?b) true) (not (= ?from ?b)))
2to => (and (or (= (clear ?to) true) (= 2to floor)) (not (= ?from ?to)))
)
(:phase
(:duration 1 1 1)
(:effects
(:= (on—top ?b) ?to)
(:= (clear ?from) true)
)
)
(:always-followed-by)
(:definitely-changes (on—top ?b))
:can-achieve-goal
)

;; Flattens all towers by setting the blocks on the floor

mpos —op v (flatten—towers (agent ?a) (thread 2thread) (block ?firstBlock)

(block ?firstFrom))
(:split-precond
?thread => (:true)
?firstBlock => (= (clear ?firstBlock) true)
?firstFrom => (= (on—top ?firstBlock) ?firstFrom)

)
(:body
(move ?a ?thread ?firstFrom ?firstBlock floor)
(:while
(:conditions (exists (block ?b) (not (= (on—top ?b) floor))))
(:body
(:sequence
(:with (block ?nextBlock) (block ?nextFrom))
(:where
?nextBlock => (= (clear ?nextBlock) true)
?nextFrom => (= (on—top ?nextBlock) ?nextFrom)
)
(:body
(move ?a ?thread ?nextFrom ?nextBlock floor)
)
)
)
)
)

Figure B.2: Blocks world domain with composite action as extra guidance.

58

O O N ONUT = WN =

(:tfpop-domain blocks—world

()
((object (block) (ground)) (agent) (op))
((ground floor) (op FT—cond) (op FT—while—body))
(
(object (on—top block))
(boolean (clear object))
(boolean (is—current—agent agent))
(boolean (is—current—op op))
)
(:onlypart (move (agent ?a) (thread ?thread) (object ?from) (block ?b) (object 2to))
(:split-precond
?thread => (:true)
?from => (:true)
?b => (and (= (on—top ?b) 2from) (= (clear ?b) true) (not (= 2from ?b)))
?to => (and (or (= (clear ?to) true) (= ?to floor)) (not (= 2?from 2to)))
)
(:phase
(:duration 1 1 1)
(:effects
(:= (on—top ?b) ?to)
(:= (clear ?from) true)
)
)
(:always-followed-by)
(:definitely-changes (on—top ?b))
:can-achieve-goal
)
;; a composite operator expressed as standard operators
((flatten—towers—init (agent 2a) (thread 2thread) (block ?firstBlock) (block ?firstFrom))
(:split-precond
?thread => (:true)
?firstBlock => (= (clear ?firstBlock) true)
?firstFrom => (= (on—top ?firstBlock) ?firstFrom)
)
(:phase
(:duration 1 1 1)
(:effects
(:= (on—top ?firstBlock) floor)
(:= (clear ?firstFrom) true)
(:= (is—current—op FT—cond) true)
(:= (is—current—agent 2a) true)
)
)
(:always-followed-by flatten—towers—while—condition—true flatten—towers—while—condition—false)
(:definitely-changes (on—top ?firstBlock) (clear ?firstFrom) (is—current—op FT—cond))
:can-achieve-goal
)
((flatten—towers—while—condition—true (agent ?a) (thread ?thread) (block b))
(:split-precond
?thread => (and (= (is—current—agent 2a) true) (= (is—current—op FT—cond) true))
?b => (and (= (clear ?b) true) (exists (block ?n) (not (= (on—top ?b) floor))))
)
(:phase
(:duration 1 1 1)
(:effects
(:= (is—current—op FT—while—body) true)
(:= (is—current—op FT—cond) false)
)
)
(:always-followed-by flatten—towers—while—body)
(:definitely-changes (is—current—op FT—while—body) (is—current—op FT—cond))
)

Figure B.3: Blocks world domain with guidance equivalent to the composite action in

part 1.

59

O 0NN U B WN =

(flatten—towers—while—condition—false (agent 2a) (thread ?thread) (block ?b))
(:split-precond

?thread => (and (= (is—current—agent ?a) true) (= (is—current—op FT—cond) true))
?b => (and (= (clear ?b) true) (not (exists (block ?n) (not (= (on—top ?b) floor)))))
)
(:phase
(:duration 1 1 1)
(:effects
(:= (is—current—op FT—cond) false)
(:= (is—current—agent ?a) false)
)
)
(:always-followed-by)
(:definitely-changes (is—current—op FT—cond) (is—current—agent ?a))

(flatten—towers—while—body (agent 2a) (thread 2thread) (block ?b) (block ?from))
(:split-precond
?thread => (and (= (is—current—agent ?a) true) (= (is—current—op FT—while—body) true))
?b => (= (clear ?b) true)
?from => (= (on—top ?b) 2from)

)
(:phase
(:duration 1 1 1)
(:effects
(:= (on—top ?b) floor)
(:= (clear ?from) true)
(:= (is—current—op FT—cond) true)
(:= (is—current—op FT—while—body) false)
)
)
(:always-followed-by flatten—towers—while—condition—true flatten—towers—while—condition—false)

(:definitely-changes (on—top ?b) (clear ?from) (is—current—op FT—cond)
(is—current—op FT—while—body))

:can—achieve-goal

Figure B.4: Blocks world domain with guidance equivalent to the composite action in

part 2.

(:tfpop-problem blocks—1

(
(

(
(

blocks—world)
(agent (arm arm—thread)))

(block A B C D E F))

(= (on—top A) floor)
(= (on—top B) A)
(= (on—top C) B)
(= (on—top D) C)
(= (on—top E) floor)
(= (on—top F) floor)
(= (clear A) false)
(= (clear B) false)
(= (clear C) false)
(= (clear D) true)
(= (clear E) true)
(= (clear F) true)
(= (clear floor) false)

(= (on—top A) floor)
(= (on—top B) floor)
(= (on—top C) floor)
(= (on—top D) floor)
(= (on—top E) floor)
(= (on—top F) floor)

Figure B.5: Blocks world problem used to compare search time when comparing to no guid-

ance.

60

OO NNU B WN =

O 0NN U B WN =

(:tfpop-problem generated—blocks—problem—4—ca
(blocks—world)
((agent (arm arm—thread)))
((block A B C D E))
(

(on—top A) floor)
(on—top B) A)
(on—top C) floor)
(on—top D) B)
(on—top E) floor)
(clear floor) false)
(clear A) false)
(clear B) false)
(clear C) true)
(clear D) true)
(clear E) true)

e e e U D U NP

(on—top A) floor)
(on—top B) floor)
(on—top C) floor)
(on—top D) floor)
(on—top E) floor)

A~~~ o~ o~

Figure B.6: Example problem used for domain with composite action when comparing with
domain using equivalent guidance.

(:tfpop-problem generated—blocks—problem—4—equal
(blocks—world)
((agent (arm arm—thread)))
((block A B C D E))
(

(on—top A) floor)
(on—top B) A)
(on—top C) floor)
(on—top D) B)
(on—top E) floor)
(clear floor) false)
(clear A) false)

(clear B) false)

(clear C) true)

(clear D) true)

(clear E) true)

:all is—current—op false)
:all is—current—agent false)

(= (on—top A) floor)
(= (on—top B) floor)
(= (on—top C) floor)
(= (on—top D) floor)
(= (on—top E) floor)

Figure B.7: Example problem used for domain with composite action when comparing with
domain using equivalent guidance.

61

62

ionnaire

Quest

t

1n experimen

Swedish version used

Forstabarhet hos PDDL

Experimentets utformning

I experimentet kommer du forst att bli ombedd att fylla i lite bakgrundsinformation.
Dérefter far du ldsa en kort introduktion till sammansatta handlingar, en utokning till
PDDL. Utéver introduktionen far du dven en kort beskrivning 6ver doméanen som anvéands
i experimentet samt en graf som beskriver flédet i en sammansatt handling som kommer
anvéindas senare i experimentet. Ryck gérna ut sidan med introduktionen och grafen
och den vid sidan av till resten av experimentet. Efter de ska du studera en utskriven
PDDL-fil och svara pa fragorna om den. Nar du ar fardig ska du svara pa ytterligare
nagra fragor. Processen upprepas dérefter for ytterligare en utskriven PDDL fil.

Medgivande

Jag staller upp pa att vara med pa studien ledd av Erik Hansson for Linkopings Univer-
sitet.

Jag &r fullt medveten om att det &r frivilligt att delta i studien och att jag nér som
helst kan avbryta sessionen om jag kinner mig obekvidm med den. All data som samlas in
kommer vara anonym forutom for deltagarna i forskningsgruppen. Resultatet av studien
ar tillgangligt nar rapporten publiceras. Alla resultatdeltagare har ratten att fa ut data
for sitt egna deltagande.

Vinligen skriv under pa att du har tagit del av och forstatt ovanstaende information
samt att du har fatt svar pa alla fragor om sessionen.

Datum:

Underskrift:

Namnfortydligande:

Tack for att du deltar.

Kontaktinformation:
Erik Hansson

erihal72@student.liu.se

63

Bakgrundsfragor
1. Jag ar:
0 Man O Kvinna
2. Vilket program studerar du vid?
3. Vilken termin ar du registrerad pa?

4. Har du tidigare varit i kontakt med omradet planering inom artificiell intelligens?

0O Ja O Nej

ot

Har du anvant PDDL eller liknande sprak tidigar
O Ja O Nej

Introduktion till sammansatta handlingar

Sammansatta handlingar (en. composite actions) ér ett sitt att uttrycka ett block av
handlingar (en. actions) och av andra block av handlingar som planeraren kan anvinda
tillsammans. Utformningen de har &r lik den i vanliga programmeringssprak. Det kan till
exempel vara en if-sats, while-loop, en sekvens eller en ensam handling. Utformningen
pa en sammansatt handling i PDDL liknar den vanliga handlingen och har formen:

(: name
of varial
(logical expression)
(description of the set of actions)
(logical expression))

(li

De nya elementen &r "body” vilket innehaller ett block av handlingar och andra
block av handlingar samt "pledge” vilket ar ett logiskt uttryck som beskriver vad den
sammansatta handlingen lovar ska vara sant efter att handlingen har utforts. Notera att
det inte &r hela effekten utan mer kan paverkas av den sammansatta handlingen.

Ett block av typen type uttrycks i sin tur pa formen:

(type

< (list of variables)>
<: (logical expression)>
type specific inputs)

Hér dr 7:with” ett icke-deterministiskt val av parametrar som planeraren gor varje
gang blocket utfors och ”:where” ar ett logiskt uttryck som siger vad som maste vara
sant for parametrarna i ”:with”. De bada ar frivilliga att ha med men det finns en del
typspecifika delar som maste vara med. Till exempel maste typen ”sequence” (en linjar
sekvens av handlingar och block) och typen "while” ha ”:body” som listar vilka block
och handlingar den bestar av. Vidare maste typerna ”if” och ”while” ha ”:condition”
som beskriver vad som testas. ”if” maste dven ha ”:then” som &r en lista 6ver block
och handlingar som ska utforas om ”:condition” &r sann. Vidare kan ”if” ha ”:else” som
specificera de block och handlingar som géras om condition &r falsk. En speciell typ &r
"singleAction” som tillater att ”:with” och ”:where” specificeras for en enda handling.
Handlingen i fraga star under ”:do”.

Avancerade predikat

For att abstraherar logiska uttryck och fa en hogre uttryckskraft anvénds utéver de
sammansatta handlingarna lite mer avancerade predikat an de vanliga predikaten i PDDL.
De édr beskrivna pa foljande form:

(: name
(list of variables)
(logical expression))

Likt de vanliga predikaten kan de hir anvéindas i logiska uttryck med namnet och parame-
trarna till predikatet. En fordel med de hér &r att de kan uttrycka sig rekursivt e.g. (
: predicate (and (isTrue ?z) (name ?y))). Utéver det fungerar de exakt som vanliga
predikat som testas genom (name ?xl 722 ... 7an).

goal-funktionen

Nér man skriver en domén-fil 4r det inte ovanligt att man vill vigleda planeraren genom
att tillata doménfilen att referera till malet i problemdefinitionen. Det ar anvandbart

64

eftersom det ar onddigt att utfora en handling om den varken kan ge nya mojligheter
eller om den inte leder till nagot som ar ett mal. For att specificera de sakerna brukar
en goal-funktion anvindas. Den tar en parameter som é&r ett logiskt uttryck och testar
om det logiska uttrycket finns med bland malen i det aktuella problemet. Till exempel
blir predikatet (goal (isTrue ?x)) enbart sant om (isTrue ?z) dr med bland malen i
problemet nar man har ersatt ?z med vérdet det har for narvarande.

PDDL doméanen

I experimentet kommer en och samma domén anvéindas for bada PDDL-filerna. Doménen
ar blocks-world vilken bestar av block, en robotarm och marken. Robotarmen kan
anvandas for att plocka upp block som inte har nagot annat block pa sig samt for att
sitta ner blocken den haller i. Problemen i blocks-world bestar av att bygga ett eller flera
torn utifran ett eller flera torn.

For att hjélpa till att vdgleda planeraren har en sammansatt handling, clearBlock,
lagts till. Handlingen frigor ett block oavsett hur manga block som finns ovanpa det.
Foéljande graf beskriver clearBlocks kontroll flode:

Forsta PDDL filen

Pa kommande sidor kommer du fa se en PDDL fil och pa sidan darefter finns det 4 fragor
angaende PDDL filen. Svara pa fragorna sa exakt du kan. Det &r helt fritt att bladdra
tillbaka till PDDL filen pa nésta sida nir du besvarar fragorna. Glom inte att anteckna
den aktuella tiden innan du bérjar.

wt

65

| This is a domain file modeling the block—world where a robot arm stacks

blocks on the ground and on each other so that desirable towers are created.

(define (domain blocks—world)
(:requireme sstrips :adl :equality)

(:constants GROUND ARM)

All predicates are modeling predicates
prodicates (on 7x 7y) (clear ?x) (block ?x) (holding 7x) (empty 7x))

Internal predicate that checks if ftop is the block that is on top of
the stack ?bottom is in
lefinePredicate topOfStack
:parameter
red 1 t

)

Primitive actions

tion pickUp
: par)

i ion (and (block | GROUND))
(clear 7b) ?on) (empty ARM))
icffect (and (holding ?b) (clear Zom) (not (on 7b 7om))

(not (empty ARM)))

)
(:action putDown
:par er)
sprecondition (and (block 7b) (or (and (block ?on) (clear 7on))
(= 7on GROUND))
(holding 7b) (not (empty ARM)))
ieffect (and (mot (holding 7b)) (on) (mot (clear 7om))
(empty ARM))
)

;:; Composite actions

Clear a block that is supposed to be clear according to the goal but
isn’t at the moment. Puts all the blocks on top on the ground

mposit
)

. (and (block 7b) (not (clear 7b)) (empty ARM)
(goal (clear 7b)))

Ju (not (clear 7b))
Iy (sequence

(topOfStack

(on

shody ((pickUp
(putDown

1T
))

GROUND

)

ipledee (clear

Fragor pa forsta PDDL filen

1. Hur manga handlingar finns det totalt definierade?

2. Hur manga handlingar paverkar minst ett modellerande predikat (se kommentarer
for predikat i PDDL-filen for vilka predikat som ar modellerande)?
1 2 3
O O O

3. Vilka handlingar (en. actions) ir méjliga (ange inte med parametrar) givet foljande
tillstand (allt som inte dr med &r falskt): {(block A), (block B), (goal (clear A)),
(on A GROUND), (on B A), (empty ARM), (clear B)}

4. Hur ser tillstandet { (block A), (block B), (block C), (goal (clear A)), (on A GROUND),
(on B A), (on C B), (empty ARM), (clear C)} ut efter att clearBlock med param-
etern A har utforts (stryk over predikaten som blir falska och skriv upp de som blir
sanna nedan)?

66

Fragor efter forsta PDDL filen

1.

10.

Hur enkelt var det for dig att forsta PDDL-filen?

svart ganska svart varken eller ganska latt latt
m} m} [} m} m}
. Hur svart var det att se vad PDDL-filen modellerade?
enkelt ganska enkelt varken eller ganska svart svart
m} [m} [} m} [m}
. Hur vil strukturerad var PDDL-filen enligt dig?
ostrukturerad ganska varken eller ganska strukturerad
ostrukturerad strukturerad
m} [m} [} m} [m}
. Hur vil var namngivningen kopplad till doménen PDDL-filen modellerar?
bra kopplade ganska bra neutralt ganska daligt daligt kopplade
kopplade kopplade
[} [} [} [} [}

. Hur beskrivande var namngivningen for handlingarna, predikaten, variablerna och kon-

stanterna i PDDL-filen enligt dig?

vilseledande ganska tillférde inget ganska sjalvforklarade
vilseledande sjélforklarande
] O O] O
. Hur svarforstadd var PDDL-filen enligt dig?
lattforstadd ganska varken eller ganska svarforstadd
lattforstadd svarforstadd
O [} O O O
. Hur tydligt var det vilken domén PDDL-filen modellerade?
otydligt ganska otydligt varken eller ganska uppenbart uppenbart
[} [} [} [} 0
. Hur r6rig var PDDL-filen enligt dig?
ordnad ganska ordnad varken eller ganska rorig rorig
[} [} 0 [} [}
. Hur lik var syntaxen for de extra handlingarna och originalhandlingarna?
motstridig ganska motstridig varken endera ganska overstammande
Overstaimmande
) [} [}) [}

Hur missvisande var namnen for handlingarna, predikaten, variablerna och konstanterna
i PDDL-filen enligt dig?

beskrivande ganska inte missvisade ganska missvisande
beskrivande missvisande
] O O] O
8

Andra PDDL filen

Pa kommande sidor kommer du fa se en PDDL fil och pa sidan darefter finns det 4 fragor
angaende PDDL filen. Svara pa fragorna sa exakt du kan. Det &r helt fritt att bladdra
tillbaka till PDDL filen pa nidstkommande sida nir du besvarar fragorna. Glom inte att
anteckna den aktuella tiden innan du bérjar.

67

This is a domain file modeling the blocks—world where a robot arm stacks

blocks on the ground and on each other so that desirable towers are created.

(define (domain blocks—wr

(: requireme istrips

orld)

Constants on second and third row are internal for control structures of
the composite actions
Jistants GROUND ARM
CLEAR_BLOCK_WHILE CLEAR.BLOCK _WHILE_STATEMENT_1
CLEAR_BLOCK_WHILE_STATEMENT_2)

Predicates on first row are modeling predicates

;i Predicates on second row are internal for conmtrol structures of

the composite actions

sredicates (on ?h 7y) (clear 7b) (block 7b) (holding
(clearing 7b) (run Zemd))

) (empty 7a)

Internal predicate that checks if ftop is the block that is on top of
the stack ?bottom is in
topOfStack
meters (?bottom ?top)
(and (block ?bottom) (block Ztop)
(or (on ?top ?bottom)
(exists (?middle)
(and (block ?middle)
(on ?middle ?bottom)
(topOfStack 7middle ?top))

)
)

Internal predicate that checks if the planner is in a composite action
lefinePredicate inCompositeAction
cdicate (or (run CLEAR.BLOCK WHILE)
(run CLEAR BLOCK_WHILE_STATEMENT 1)
(run CLEAR BLOCK_WHILE_STATEMENT 2))

(

;i; Primitive actions ;;;

(:action pickUp

rs (b 7on)
dition (and (block ?b) (or (block Zon) (= Zon GROUND))
(clear 7b) (on 7b 7on) (empty ARM)
(not (inCompositeAction)))
teffect (and (holding 7b) (clear 7on) (mot (on
(not (empty ARM)))

(:action putDown
: para

rs (7b %on)
dition (and (block 7b) (or (and (block 7on) (clear Zon))
(= 7on GROUND))
(holding 7b) (not (empty ARM))
(not (inCompositeAction)))
ieffect (and (mot (holding 7b)) (on 7b %on) (mot (clear 7om))
(empty ARM))
)

;;; Composite actions ;

clearBlock composite action begin ;;
i Clear a block that is supposed to be clear according to the goal but ;
; isn’t at the moment. Puts all the blocks on top on the ground ;

(:action clearBlockEntry
:para s (7b)
dition (and (block ?b) (mot (clear ?b)) (goal (clear 7b))
(not (inCompositeAction)) (empty ARM))
soffect (and (run CLEAR_BLOCK WHILE) (clearing b))

10

111
112
113
114

?b is a block if (clearing ?b) is true since it can only be set to
true for blocks in the previous actions
(:action clearBlockWhileCondTrue

par

(7b)
lition (and (run CLEAR-BLOCK-WHILE) (clearing 7b)
(not (clear 7b)))
ffect (and (mot (run CLEAR-BLOCK WHILE)) (run WHILE.STATEMENT.1))

; action also serves as the ezit of the composite action
?b is a block if (clearing ?b) is true since it can only be set to
true for blocks in the previous actions
tion clearBlockWhileCondFalse
par s (7h)
lition (and (run CLEAR-BLOCK-WHILE) (clearing 7b) (clear
ffect (and (mot (run CLEAR-BLOCKWHILE)) (not (clearing 7b)))

?b is a block if (clearing ?b) is true since it can only be set to
true for blocks in the previous actions
| clearBlockWhileStatement1
r (?b ?onTop ?secondFromTop)
lition (and (run WHILE-STATEMENT.1)
(clearing 7h)
(block ZonTop) (topOfStack ZonTop 7b)
(on ?onTop ?secondFromTop))
¢t (and (not (run WHILESTATEMENT-1)) (run WHILE.STATEMENT-2)
?onTop) (clear ?secondFromTop)

(holding 701
(not (on ZonTop 7secondFromTop)) (mot (empty ARM)))

)

?b is a block if (clearing ?b) is true since it can only be set to

; true for blocks in the previous actions
(:action clearBlockWhileStatement2
par (?onTop)
: lition (and (run WHILESTATEMENT-2) (holding ?onTop))
ffect (and (not (run WHILESTATEMENT_2)) (run CLEARBLOCK_WHILE)
(not (holding ZonTop)) (on ZonTop GROUND) (empty ARM))

;i clearBlock composite action end ;;;

11

68

Fragor pa andra PDDL filen

1. Hur manga handlingar finns det totalt definierade?

2. Hur manga handlingar paverkar minst ett modellerande predikat (se kommentarer
for predikat i PDDL-filen for vilka predikat som dr modellerande)?
4 6 7
O O O

3. Vilka handlingar (en. actions) ar mojliga (ange inte med parametrar) givet foljande
tillstand (allt som inte dr med ér falskt): {(block A), (block B), (goal (clear A)),
(on A GROUND), (on B A), (empty ARM), (clear B)}

4. Hur ser tillstandet { (block A), (block B), (block C), (goal (clear A)), (on A GROUND),

(on B A), (on C B), (empty ARM), (clear C)} ut efter att clearBlockEntry med
parametern A har utforts (stryk ver predikaten som blir falska och skriv upp de
som blir sanna nedan)?

12

Fragor efter andra PDDL filen

1.

Hur enkelt var det for dig att forsta PDDL-filen?

svart ganska svart varken eller ganska latt latt
m} [} O m} [}
Hur svart var det att se vad PDDL-filen modellerade?
enkelt ganska enkelt varken eller ganska svart svart
[m} [} O [m} [}
Hur vél strukturerad var PDDL-filen enligt dig?
ostrukturerad ganska varken eller ganska strukturerad
ostrukturerad strukturerad
[m} [} O [m} [}
Hur vl var namngivningen kopplad till doménen PDDL-filen modellerar?
bra kopplade ganska bra neutralt ganska daligt daligt kopplade
kopplade kopplade
m} [} O [} 0

Hur beskrivande var namngivningen for handlingarna, predikaten, variablerna och kon-
stanterna i PDDL-filen enligt dig?

vilseledande ganska tillférde inget ganska sjalvforklarade
vilseledande sjélforklarande
O O O O O
Hur svarforstadd var PDDL-filen enligt dig?
lattforstadd ganska varken eller ganska svarforstadd
lattforstadd svarforstadd
m} O O m} O
Hur tydligt var det vilken domén PDDL-filen modellerade?
otydligt ganska otydligt varken eller ganska uppenbart uppenbart
O [} O [} [}
Hur rorig var PDDL-filen enligt dig?
ordnad ganska ordnad varken eller ganska rorig rorig
[} 0 0O [} [}
Hur lik var syntaxen for de extra handlingarna och originalhandlingarna?
motstridig ganska motstridig ~ varken endera ganska Overstammande
6verstaimmande
[} [} 0O [} [}

Hur missvisande var namnen for handlingarna, predikaten, variablerna och konstanterna
i PDDL-filen enligt dig?

beskrivande ganska inte missvisade ganska missvisande
beskrivande missvisande
O O O O O

13

69

English translation

Understandability of PDDL

Experiment outline

In the experiment you will be asked to submit some background information. Following
that, you'll read a short introduction about composite actions, an extension to PDDL.
In addition to that, you will be presented with a short description of the domain that
is used in the experiment and a graph describing a composite action that will be used
later on. Feel free to remove the page with the graph and use it as you want during
the experiment. When you have read all the introductions and descriptions you’ll study
a PDDL-file and answer questions about it. Following that is some more questions to
answer. The process will then be repeated for one more PDDL-file.

Consent form

I agree to participate in the study led by Erik Hansson at Linkoping University.

I am fully aware that I am not required to do the experiment and that I can abort
the session at any time if I feel any discomforts during the experiment. All the data the
is gathered will be anonymous for all people outside the research team. The result of the
study will be presented when the report is published. All participants have the right to
get their own results.

Please sing below to state that you have read and understood the information above and
that you have gotten all your questions about the session answered.

Date:

Please sign your name:

Please print your name:

Thank you for participating.

Contact information:
Erik Hansson

erihal72@student.liu.se

Background Questions

1.

o

I am a:
O Man O Woman

Which program do you study?

. Which semester are you registered in?

Have you previously encountered the subject planning within artificial intelligence?
O Yes O No

Have you used PDDL or a similar language before?

O Yes O No

70

Introduction to composite actions

Composite actions is a way to express a block consisting of actions and other blocks of
actions so the planner can use them together. The way of expressing a block is similar
to most programming language. For example, it could be through an if-statement, a
while-loop, a sequence of actions or a single action. The syntax composite actions in
PDDL is similar to the syntax of a standard actions and is as follows:

(: name
: (list of variables)
(logical expression)
tion of the set of actions)
I expression))

The new elements are "body”, which is a block consisting of actions and blocks of
actions, and "pledge” which is a logical expression that describes what the composite
action promises to be true after it has been applied. One should note that the composite
action can change more than what is defined in ”pledge”.

A block of the type type is expressed on the form:

(type

<: (list of variables)>
<: (logical expr
type specific inputs)

Where 7:with” is a non-deterministic choice of parameters that the planner does
every time the block is applied and ”:where” is a logic expression that states what must
be true for the parameters. These two are optional to include. However, there are some
type specific properties that are required. For example, the type ”sequence” (a linear
sequence of actions) and the type "while” both have ”:body” which is a list of actions
blocks of actions. Moreover, the types ”if” and ”"while” need to include ”:condition”
which describes what is tested. ”if” also needs ”:then” which is a block that is to be
applied if ”:condition” is true. In addition, ”if” may also have the ":else” that is a block
that is to be applied if ”:condition” is false. Finally, a special type is the ”singleAction”
which allows for a ”:with” and a ”:where” for a single action specified with ”:do”.

Complex predicates

Complex predicates are introduced in addition to complex action to abstract logical
expressions and to get higher expressiveness than those in PDDL. They have the following
syntax:

(: name
: (list of variables)
(logical expression))

Just like the standard predicates, these can be used in logical expression with the name
and the parameters to the predicate. One benefit with these are that they express recur-
sion. For example, : predicate (and (isTrue ?x) (name ?y))). Otherwise, the work just
like any predicate that is tested trough (name ?x1 722 ... 7an).

The goal function

It is not uncommon to guide a planner through referring to the goal in the problem
definition when writing a domain file. This is useful since it is unnecessary to apply an

action if it neither provides new opportunities nor manages to fulfill something that is a
goal. To specify this, a goal function is usually used. It takes one parameter that is a
logical expression and tests if that exists in the goals for the problem. For example, the
predicate (goal (isTrue ?x)) is only true if (isTrue ?x) is one of the goals in the problem
when ?z is set to the value it has.

The PDDL domain

In the experiment, both PDDL-files will model the same domain. The domain in question
is the blocks-world which consists of block, a robot arm and the ground. The robot arm
can be used to pick up a block that does not have anything on it and to put down the
block it holds. Finally, the problems in the blocks-world consist of building one or more
towers of blocks give one or more towers of blocks.

To guide the planner one composite action, clearBlock, has been added to the domain.
The composite action clears a block by moving all the blocks on top of it. The following
graph describes the control structure of clearBlock.

71

The first PDDL file

On the following side you will be presented with a PDDL file and a page with 4 questions
about the PDDL file. Answer the questions as exactly as you can. You are free to go
back to the PDDL file when answering the questions. Do not forget to write down the
current time before you start.

| This is a domain file modeling the block—world where a robot arm stacks
;| blocks on the ground and on each other so that desirable towers are created.

(define (domain blocks—world)
juirements istrips :

o)

onst GROUND ARM)

All predicates are modeling predicates
dicates (on ?7x 7y) (clear 7x) (block 7x) (holding 7x) (empty 7x))

;i Intermal predicate that checks if ?top is the block that is on top of
the stack ?bottom is in

efinePredicate topOfStack
:parameter
predicate) (block ?top)
(or (on ?top 7bottom)
(exists (7middle)
(and (block dle)
(on ?middle ?bottom
(topOfStack ?middle 7top))
)))
)
Primitive actions

tion pickU
par

lition (and (block ?b) (or (block ?on) (= ?on GROUND))
(clear ?b) (on 7b ?on) (empty ARM))

¢t (and (holding 7b) (clear Zon) (mot (on ?b Zon))

(not (empty ARM)))

s (7b %on)
lition (and (block ?b) (or (and (block Zon) (clear Zon))
1 GROUND))
(holding 7b) (not (empty ARM)))
¢t (and (not (holding ?b)) (on ?b 7on) (not (clear Zon))
(empty ARM))

)

Composite actions

Clear a block that is supposed to be clear according to the goal but

;isn’t at the moment. Puts all the blocks on top on the ground
(: composit on clearBlock
:parameters (?b)
iprec ion (and (block 7b) (not (clear 7b)) (empty ARM)
(goal (clear ?h)))
dy (while
scondition (not (clear 7b))
:body (sequence
I (?onTop ?secondFromTop)
swhere (and (
(: omTop)
(topOfStack 7onTop 7b)
(on ?onTop ?secondFromTop))
:body ((pickUp ZonTop ZsecondFromTop)
(putDown ZonTop GROUND))
)
)
iple (clear 7b)
)
)
6

72

Questions about the first PDDL file

1. How many actions are defined it total?

2. How many actions affect at least one modeling predicate (see the comments in the
PDDL-file for which predicates that are modeling)?
1 2 3
O O O

3. Which actions are possible (don’t supply the parameters) given the following state
(everything that isn’t included is false): {(block A), (block B), (goal (clear A)), (on
A GROUND), (on B A), (empty ARM), (clear B)}

4. Given the state {(block A), (block B), (block C), (goal (clear A)), (on A GROUND),
(on B A), (on C B), (empty ARM), (clear C)}, what will the next state be after
the clearBlock with the parameter A have been applied (cross out the predicates
that change to false in the question text and write down those that become true)?

Post-Questions on the first PDDL file

1. How easy was it for you to understand the PDDL-file?

hard quite hard neither hard nor easy casy
O O O]
2. How hard was it to see what the PDDL-file was modeling?
casy quite casy neither hard nor easy hard
O O O O
3. How good was the structure of the PDDL-file according to you?
bad quite bad neither bad nor good quite good good
O O 0O O O
4. How good was the connection between the naming in the PDDL-file and what it models?
good quite good neither good nor bad quite bad bad
O O O O O

5. How descriptive was the naming of actions, predicates, variables and constants in the
PDDL-file according to you?

quite misguiding neither misg

ng nor quite self explanatory self explanatory

self explanatory

O O O O]
6. How difficult was it to understand the PDDL-file according to you?
casy quite casy neither easy nor hard hard hard
O O O O]
7. How clear was it which domain the PDDL-file modeled?
unclear quite unclear neither clear nor unclear quite clear clear
O O O O O

8. How unstructured were the PDDL-file according to you?
structured quite structured neither unstructured quite unstructured unstructured

nor structured

O O O O]
9. How similar was the syntax for the extra actions to the syntax of the original actions?
conflicting quite conflicting neither consistent nor quite consistent consistent
conflicting
O] O O]

10. How misleading was the names for actions, predicates, variables and constants in the

PDDL-file according to you?

descriptive quite descriptive neither descriptive nor quite deceptive deceptive
deceptive
O O O m] O

73

The second PDDL file

On the following side you will be presented with a PDDL file and a page with 4 questions
about the PDDL file. Answer the questions as exactly as you can. You are free to go
back to the PDDL file when answering the questions. Do not forget to write down the
current time before you start.

This is a domain file modeling the blocks—world where a robol arm stacks

blocks on the ground and on each other so that desirable towers are created.

(define (domain blocks—world)
. Co .

(

lity)

Constants on second and third row are internal for comtrol structures of
the composite actions
onst GROUND ARM
CLEAR_BLOCK WHILE CLEAR_BLOCK_WHILE_STATEMENT.1
CLEAR_BLOCK_WHILE_ STATEMENT_2)

Predicates on first row are modeling predicates

Predicates on second row are internal for control structures of

the composite actions

sredicates (on) (clear 7b) (block 7b) (holding ?b) (empty 7a)
(clearing 7b) (run Zemd))

;: Internal predicate that checks if ?top is the block that is on top of
the stack Zbottom is in

rel icate topOfStack
:parameter 1 7t
ipredicate (and (block 7 (block
(or (on
(and (block
(on
(topOfStack ’top))
)))
)

Internal predicate that checks if the planner is in a composite action
inCompositeAction
spredicate (or (run CLEAR_BLOCK-WHILE)
(run CLEAR_BLOCK _WHILE_STATEMENT_1)
(run CLEAR_BLOCK_WHILE_STATEMENT_2))

)

; Primitive actions

(:action pickUp
:param - ()
ondition (and (block 7b) (or (block ?on) (= ?on GROUND))
(clear 7b) (on 7b 7on) (empty ARM)
(not (inCompositeAction)))
ffect (and (holding 7b) (clear on) (not (on ?))
(not (empty ARM)))

)

(:action putDown
:param - ()
ondition (and (block 7b) (or (and (block 7om) (clear 7om))
(= 7on GROUND))
(holding 7b) (not (empty ARM))
(not (inCompositeAction)))
ffect (and (mot (holding 7b)) (on 7b Zon) (mot (clear
(empty ARM))

)

i:; Composite actions

clearBlock composite action begin ;;
; Clear a block that is supposed to be clear according to the goal but ;
; isn’t at the moment. Puts all the blocks on top on the ground ;

(:action clearBlockEntry
:param (7b)
ccondition (and (block ?b) (not (clear 7b)) (goal (clear b))
(not (inCompositeAction)) (empty ARM))
ffect (and (run CLEAR-BLOCK-WHILE) (clearing 7b))

10

74

105

111
112
113
114

(

?b

is a block if (clearing ?b) is true sin it can only be set to

true for blocks in the previous actions

action also serves as the e

I clearBlockWhileCondTrue
o ers (7b)
dition (and (run CLEAR-BLOCK-WHILE) (clearing 7b)
(not (clear 7b)))
soffect (and (not (run CLEARBLOCK WHILE)) (run WHILESTATEMENT.1))

)

it of the composite action

?b is a block if (clearing ?b) is true since it can only be set to
true for blocks in the previous actions

?b

o1 clearBlockWhileCondFalse
:parameters (?b)
iprecondition (and (run CLEAR-BLOCK-WHILE) (clearing 7b) (clear b))
ieffect (and (mot (run CLEAR-BLOCK WHILE)) (mot (clearing 7b)))

)

is a block if (clearing ?b) is true since it can only be set to

true for blocks in the previous actions

?b

i1 clearBlockWhileStatement
p ?onTo Top)
ion (and (run WHILE-STATEMENT_1)

(clearing
(block 7on (topOfStack 7on'T)
(on % 1F) ")

run WHILE_STATEMENT-1)) (run WHILE-STATEMENT-2)
(clear 7)
)) (not (empty ARM)))

)

is a block if (clearing ?b) is true since it can only be sct to

true for blocks in the previous actions

tion clearBlockWhileStatement2
D)
condition (and (run WHILESTATEMENT-2) (holding ?onTop))
ioffect (and (not (run WHILESTATEMENT2)) (run CLEAR-BLOCK_WHILE)
(not (holding ZonTop)) (on ZonTop GROUND) (empty ARM))

clearBlock composite action end

11

Questions about the second

1. How many actions are defined it total?

2. How many actions affect at least one modeling predicate (see the comments in the
PDDL-file for which predicates that are modeling)?
4 6 7
O O O

3. Which actions are possible (don’t supply the parameters) given the following state
(everything that isn’t included is false): {(block A), (block B), (goal (clear A)), (on
A GROUND), (on B A), (empty ARM), (clear B)}

4. Given the state {(block A), (block B), (block C), (goal (clear A)), (on A GROUND),
(on B A), (on C B), (empty ARM), (clear C)}, what will the next state be after the
clearBlockEntry with the parameter A have been applied (cross out the predicates
that change to false in the question text and write down those that become true)?

12

75

Post-Questions on the second PDDL file

1. How easy was it for you to understand the PDDL-file?

hard quite hard neither hard nor easy quite casy casy
O O O] O
2. How hard was it to see what the PDDL-file was modeling?
easy quite easy neither hard nor easy quite hard hard
] O O] O
3. How good was the structure of the PDDL-file according to you?
bad quite bad neither bad nor good quite good good
] O O] O
4. How good was the connection between the naming in the PDDL-file and what it models?
good quite good neither good nor bad quite bad bad
] O O] O

5. How descriptive was the naming of actions, predicates, variables and constants in the
PDDL-file according to you?

misguiding quite misguiding neither misguiding nor quite self explanatory self explanatory

self explanatory

m} [m} [} m} [m}
6. How difficult was it to understand the PDDL-file according to you?
easy quite easy neither easy nor hard quite hard hard
] O O O O
7. How clear was it which domain the PDDL-file modeled?
unclear quite unclear neither clear nor unclear quite clear clear
O O O] O

8. How unstructured were the PDDL-file according to you?

structured quite structured neither unstructured quite unstructured unstructured

nor structured

] O O] O
9. How similar was the syntax for the extra actions to the syntax of the original actions?
conflicting quite conflicting neither consistent nor quite consistent consistent
conflicting
] O]] O

10. How misleading was the names for actions, predicates, variables and constants in the
PDDL-file according to you?

descriptive quite descriptive neither descriptive nor quite deceptive deceptive
deceptive
O m] O O O

13

76

PDDL Domain Introduction

Swedish version used in the pre-experiment

PDDL kort intro

En beskrivning, i PDDL, till en planerare bestar vanligen av tva filer, en doménfil och
problemfil. Doménfilen som beskriver vad som kan finnas, hur olika objekt kan forhalla sig
till varandra, vilka konstanter som finns i doménen oavsett vilket problem som ska losas
samt vilka handlingar som kan goras i doménen. Problemfilen som beskriver vilka objekt
som finns, hur starttillstandet ser ut och vad maltillstandet dr. Det hédr dokumentet ger
en kort oversikt 6ver hur en doménfil i PDDL &r uppbygd.

Domaénfilens syntax

En doménfil innehaller vanligen fem olika komponenter: namnet pa doménen, de moduler
som anvénds i doménfilen, de konstanta sakerna i doménen, vilka férhallanden som géller
(predikat) samt vilka handlingar som finns. I en PDDL doménfil skrivs det som féljande:

(define (domain name)

(:) ;; modules

(:)

(:) ;i relations between objects
(:) :; one action in the domain

)

Namnet &r en stréing som beskriver vad doménen heter. requirements, constants och
predicates ar listor 6ver moduler, strangar respektive predikat. En action ar aningen mer
komplicerad men vi aterkommer till det lite senare. Forst dr det véart att séga vad ett
predikat &r. I PDDL é&r ett predikat namngivet, har ett godtyckligt antal parametrar och
ar sant eller falskt. Ett exempel &r predikatet

T:i ')

Som modellerar att ett objekt &r en uav (sant) eller inte &r en uav (falskt).

Handlingars syntax

En action &r en handling som kan anvéndas av planeraren for att dndra det nuvarande
tillstandet. De specificeras pa foljande sitt (illustrerat med ett exempel):

(: flyTo
: (?u ?from
(and (uav 7u) (location) (location
(not (= ’to)) (not (isAt 7u
(isAt 7u))
(and (not (isAt 7u ?from)) (isAt 7u %to))
)

Det hér exemplet ar en handling som forflyttar en uav fran en plats till en annan. :pa-
rameters beskriver vilka parametrar som handlingen tar (i det hér fallet tre parametrara).
:precondition beskriver vad som maste vara sant i det nuvarande tillstandet och :effect
ar det som kommer vara sant i tillstandet efter att handlingen har utforts (de som inte
bendmns kommer inte att forindras). Bade :precondition och :effect beskrivs med logiska
uttryck. Formen pa ett logiskt uttryck dr antingen ett predikat eller en funktion som
beskrivs med en parentes dar forsta tokenen dr funktionen som anropas och resterande
token i parentesen dr parametrar (logiska uttryck).

I PDDL kan man anvéinda sig av manga olika logiska funktioner for att specificera ett
logiskt uttryck. Bland de vanligaste &r

77

and: sann om alla parametrar (godtyckligt antal) ir sanna.
or: sann om en av parametrarna (godtyckligt antal) dr sanna.

exists: sann om det existerar variabler (en lista specificerad som forsta parametern)
sa att ett logiskt uttryck blir sant (andra parametern).

forall: sann om ett logiskt uttryck (andra parametern) blir sant for alla mojliga
instanser av en méngd variabler (en lista specificerad som forsta parametern).

=: sann om forsta och andra parametern ar lika.

not: sann om parametern ar falsk.

78

English translation

PDDL short introduction

A description, in PDDL, to a planner usually consists of two files, one domain file and one
problem file. The domain file describes what can exist, how the different objects relate to
each other, which constants exist in the domain for all problems and which actions that
can be applied in the domain. The problem file describes which objects do exist, what
the start state is and what the goal state is. This document gives a short description of
a domain file in PDDL.

The syntax of a domain file

A domain file usually consists of five different components: the name of the domain,
the modules that are used in the domain file, the constant that is in the domain, which
relations exist (predicates) and which actions exist. In PDDL this is expressed in the
following way:

(define (domain name)

(:) ;i modules

(:)

(:) ;; relations between objects
(:) ;i; ome action in the domain

)

The name is a string that describes the name of the domain. requirements, constants and
predicates are lists of modules, strings respectively predicates. An action is a bit more
complex but we will come back to that later. First we will describe what a predicate is.
In PDDL a predicate is named, has an arbitrary amount of parameters and is either true
or false. For example, the following is a predicate that models that an object is a UAV
(true) or not a UAV (false):

7 (uav 7u)

The syntax of an action

An action is something that the planner can apply to change the current state. They are
specified in the following way (illustrated with an example):

(flyTo
: ' 7to)
(and (uav 7u) (location ?from) (location ?
(not ()) (not (isAt ?
(isAt
(and (not (isAt ? (isAt 7u ?to))
)

The example is an action that moves a UAV from one location to another. :parameters
describes the parameters of the action (in this case three parameters). :precondition
describes what must be true in the current state and :effect is what is true in the state
after the action has been applied (everything that is not mentioned will remain as it
was previously). Both :precondition and :effect is described with a logical expression. A
logical expression is either a predicate or a function that is written with a parenthesis in
which the first token is the name of the function that is called and the rest of the tokens
are the arguments (logical expressions).

It is possible to use quite a lot different logical functions to specify a logical expression
in PDDL. Among the most common are:

e and: true if all the parameters (an arbitrary amount) are true.
e or: true if one of the parameters (an arbitrary amount) are true.
. true if there exist variables (a list specified by the first parameter) such that

a logical expression (second parameter) is true.

e forall: true if a logical expression (second parameter) is true for all possible instances
of a list of variables (a list specified by the first paramete

=: true if the first and the second parameter are equal.

not: true if the parameter is false.

79

80

Search Time - Compared to no
Guidance

Execution number Run time on CPU (ms)

1 2
2 2
3 2
4 1
5 2
6 2
7 1
8 2
9 1
10 1
11 2
12 1
13 1
14 1
15 1
16 1
17 1
18 1
19 2
20 1

Table E.1: Run time for domain with composite action

81

Execution number Run time on CPU (ms)

O 0N ONUT = WN -

2643
2708
2718
2578
2625
2610
2621
2740
2708
2532
2667
2734
2815
2672
2650
2684
2522
2533
2660
2626

Table E.2: Run time for domain without any search guidance

82

Data understandability
pre-experiment

Participant Estimated difference Measured difference First domain guidance

1 0.5 0.125 Composite action

2 0.5 0.500 Converted composite action
3 2.5 1.750 Composite actions

4 2.0 0.500 Converted composite action
5 0.0 0.375 Composite action

Table F.1: The data from the understandability pre-experiment. The difference are calculated
by subtracting the measured value for the PDDL file that does not have composite actions
from the PDDL file that has composite actions. The fourth row describes which guidance
method the first PDDL file in their questionnaire had.

83

84

Data understandability
experiment

Participant Estimated difference Measured difference First domain guidance

1 1.5 1.125 Converted composite action
2 2.0 1.250 Composite action
3 .5 375 Converted composite action
4 1.5 500 Converted composite action
5 0.0 1.000 Composite action
6 1.5 .750 Composite action

Table G.1: The data from the understandability experiment. The difference are calculated by
subtracting the measured value for the PDDL file that does not have composite actions from
the PDDL file that has composite actions. The fourth row describes which guidance method
the first PDDL file in their questionnaire had.

85

86

(1]

[10]

[11]

Bibliography

J. A. Baier, C. Fritz, and S. A. Mcllraith, “Exploiting procedural domain control knowl-
edge in state-of-the-art planners”, in ICAPS, 2007, pp. 26-33.

J. Baier and]. Pinto, “Integrating true concurrency into the robot programming lan-
guage golog”, in Computer Science Society, 1999. Proceedings. SCCC’99. XIX International
Conference of the Chilean, IEEE, 1999, pp. 179-186.

J. Bansiya and C. G. Davis, “A hierarchical model for object-oriented design quality
assessment”, Software Engineering, IEEE Transactions on, vol. 28, no. 1, pp. 4-17, 2002.

B. W. Boehm, J. R. Brown, and M. Lipow, “Quantitative evaluation of software quality”,
in Proceedings of the 2nd international conference on Software engineering, IEEE Computer
Society Press, 1976, pp. 592-605.

J. Brooke, “Sus-a quick and dirty usability scale”, in Usability evaluation in industry, Lon-
don: Taylor & Francis, 1996, pp. 189-194.

J. K. Chhabra, K. Aggarwal, and Y. Singh, “Code and data spatial complexity: two im-
portant software understandability measures”, Information and software Technology, vol.
45, no. 8, pp. 539-546, 2003.

G. De Giacomo, Y. Lespérance, and H. J. Levesque, “Congolog, a concurrent program-
ming language based on the situation calculus”, Artificial Intelligence, vol. 121, no. 1,
pp- 109-169, 2000.

P. Doherty, J. Kvarnstrom, and A. Szalas, “Temporal composite actions with con-
straints”, in Proceedings of the 13th International Conference on Principles of Knowledge Rep-
resentation and Reasoning (KR), 2012.

M. Genero, G. Poels, and M. Piattini, “Defining and validating metrics for assessing the
understandability of entity—relationship diagrams”, Data & Knowledge Engineering, vol.
64, no. 3, pp. 534-557, 2008.

R. Harrison, S. Counsell, and R. Nithi, “Experimental assessment of the effect of inheri-
tance on the maintainability of object-oriented systems”, Journal of Systems and Software,
vol. 52, no. 2-3, pp. 173-179, 2000.

B. A. Kitchenham, S. L. Pfleeger, L. M. Pickard, P. W. Jones, D. C. Hoaglin, K. El Emam,
and J. Rosenberg, “Preliminary guidelines for empirical research in software engineer-
ing”, Software Engineering, IEEE Transactions on, vol. 28, no. 8, pp. 721-734, 2002.

87

Bibliography

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

J. A. Krosnick and S. Presser, “Question and questionnaire design”, in Handbook of
survey research, 2nd ed., Emerald Group Publishing Limited Bingley, UK, 2010, ch. 9,
pp. 263-314.

D. S. Kushwaha and A. K. Misra, “Improved cognitive information complexity mea-
sure: a metric that establishes program comprehension effort”, ACM SIGSOFT Software
Engineering Notes, vol. 31, no. 5, pp. 1-7, 2006.

J. Kvarnstrom, “Planning for loosely coupled agents using partial order forward-
chaining”, in Proceedings of the 21st International Conference on Automated Planning and
Scheduling, 2011.

H. J. Levesque, R. Reiter, Y. Lesperance, F. Lin, and R. B. Scherl, “Golog: a logic pro-
gramming language for dynamic domains”, The Journal of Logic Programming, vol. 31,
no. 1, pp. 59-83, 1997.

D. S. Nau, “Current trends in automated planning”, Al magazine, vol. 28, no. 4, p. 43,
2007.

S. Russell and P. Norvig, Artificial Intelligence: A Modern Approach, 3rd ed. Egnlewood
Cliffs: Prentice Hall, 2010.

M. Shah, L. Chrpa, F. Jimoh, D. Kitchin, T. McCluskey, S. Parkinson, and M. Vallati,
“Knowledge engineering tools in planning: state-of-the-art and future challenges”, in
Proceedings of the 4th Workshop on Knowledge Engineering for Planning and Scheduling,
2013, pp. 53-60.

V. Strobel and A. Kirsch, “Planning in the wild: modeling tools for pddl”, in Proceedings
of the 37th German Conference on Artificial Intelligence (KI 2014), Springer, 2014, pp. 273—
284.

Y. Wang and]. Shao, “Measurement of the cognitive functional complexity of software”,
in Proceedings of the Second IEEE International Conference on Cognitive Informatics, Aug.
2003, pp. 67-74.

D. S. Weld, “An introduction to least commitment planning”, Al magazine, vol. 15, no.
4,p.27,19%4.

88

	Abstract
	Acknowledgments
	Contents
	List of Figures
	List of Tables
	Introduction
	Motivation
	Aim
	Research questions
	Delimitations

	Background
	Planning
	Threaded Forward-chaining Partial Order Planner

	Theory
	Definitions and notations
	Composite actions
	Understandability measurement

	Method
	Composite action component ranking
	Implementation
	Search time
	Understandability measurement
	Understandability experiment

	Results
	Composite action component ranking
	Implementation
	Search time
	Understandability measurement
	Understandability experiment

	Discussion
	Results
	Method
	Source criticism
	The work in a wider context

	Conclusion
	Research questions
	Further work

	Metric formulas
	Code and data spatial complexity
	Improved cognitive information complexity

	Blocks World
	Questionnaire
	PDDL Domain Introduction
	Search Time - Compared to no Guidance
	Data understandability pre-experiment
	Data understandability experiment
	Bibliography

