

Master’s Thesis

Domain Knowledge in TALplanner
by

Martin Magnusson

LiTH-IDA-Ex-02/104

2003-01-07

Supervisor: Jonas Kvarnström

Examiner: Patrick Doherty

Abstract

Planning with domain knowledge is a relatively new and growing research area that
allows tackling much larger planning problems than were previously possible. This is
achieved by allowing the encoding of domain knowledge as search control rules or
heuristics, reducing the search space and guiding the search. This thesis describes the
process of creating control rules in a number of different planning domains for a
planner that makes use of domain knowledge, TALplanner. The domains were part of
the 2002 International Planning Competition in which TALplanner participated.
Though no prizes were awarded to TALplanner, it performed very well in competi-
tion with the other planners. Also discussed are the challenges met and the modifica-
tions made to the planner in order to perform efficiently in the domains and comply
with all contest rules.

 i

Contents

1 Introduction...1
1.1 Background . 1
1.2 Purpose . 1
1.3 Limitations . 2
1.4 Structure of the Thesis . 2

2 Planning ...3

2.1 Planning . 3
2.2 Different Approaches to Knowledge in Planning 5

3 TALplanner...7

3.1 TAL . 7
3.2 TALplanner . 8

3.2.1 Pruning Constraints in TALplanner . 8
3.2.2 Basic Algorithm . 8
3.2.3 Input and Output Language . 9

4 IPC02..11

4.1 History . 11
4.2 Domains. 12
4.3 ZenoTravel . 12

4.3.1 Description . 13
4.3.2 Control . 13
4.3.3 SimpleTime . 16
4.3.4 Timed . 20
4.3.5 Discussion . 21

4.4 Depots . 22
4.4.1 Description . 22
4.4.2 Control . 23
4.4.3 SimpleTime . 27
4.4.4 Timed . 27
4.4.5 Discussion . 28

4.5 DriverLog. 28
4.5.1 Description . 28
4.5.2 Control . 29
4.5.3 SimpleTime . 34
4.5.4 Timed . 34

 ii

4.5.5 Discussion . 35
4.6 Rovers . 35

4.6.1 Description . 36
4.6.2 Control . 37
4.6.3 SimpleTime . 41
4.6.4 Timed . 41
4.6.5 Discussion . 43

4.7 Satellite . 44
4.7.1 Description . 45
4.7.2 Control . 45
4.7.3 SimpleTime . 47
4.7.4 Timed . 47
4.7.5 Discussion . 47

4.8 UMTranslog-2 . 48
4.8.1 Description . 50
4.8.2 Control . 50
4.8.3 Discussion . 52

5 Extensions..54

5.1 Operator Duration. 54
5.2 Prevail Conditions . 55
5.3 Committed Macro. 55
5.4 Decimal Time with Sparse States . 56
5.5 Shortest Path. 56
5.6 Heuristics . 57
5.7 Domain Visualization . 57
5.8 Graphical Visualization. 58
5.9 PDDL to TALplanner Translation . 59

6 Experimental Results ...60

6.1 The Competitors . 60
6.1.1 TLPlan . 60
6.1.2 SHOP2 . 60

6.2 Machine Specification. 60
6.3 Graphs of Competition Results . 61
6.4 The Prizes . 67

7 Conclusions..68

7.1 Discussion . 68
7.2 Future Work . 69

A Terminology ...71

B Domain Definitions ..74

B.1 ZenoTravel STRIPS . 74

 iii

B.2 ZenoTravel SimpleTime . 77
B.3 ZenoTravel Timed . 81
B.4 Depots STRIPS. 85
B.5 Depots SimpleTime . 89
B.6 Depots Timed . 93
B.7 DriverLog Strips. 97
B.8 DriverLog SimpleTime . 102
B.9 DriverLog Timed . 107
B.10 Rovers STRIPS. 113
B.11 Rovers SimpleTime . 118
B.12 Rovers Timed . 123
B.13 Satellite STRIPS. 131
B.14 Satellite SimpleTime. 133
B.15 Satellite Timed . 136
B.16 UMTranslog-2 . 139

 iv

List of Figures

Figure 2.1: A classic blocks world problem. 4

Figure 4.1: ZenoTravel contest problem . 13
Figure 4.2: ZenoTravel contest problem with the beginning of a plan marked . . . 15
Figure 4.3: ZenoTravel contest problem with peoples destinations displayed 17
Figure 4.4: Depots contest problem. 23
Figure 4.5: DriverLog contest problem . 29
Figure 4.6: Rovers contest problem. 36
Figure 4.7: Satellite contest problem . 44
Figure 4.8: UMTranslog-2 contest problem. 49

Figure 5.1: Screenshot of the graphical visualization utility 59

Figure 6.1: Cost graph for ZenoTravel Timed . 61
Figure 6.2: Time graph for ZenoTravel Timed . 61
Figure 6.3: Cost graph for Depots Timed . 62
Figure 6.4: Time graph for Depots Timed . 62
Figure 6.5: Cost graph for DriverLog Timed . 63
Figure 6.6: Time graph for DriverLog Timed . 63
Figure 6.7: Cost graph for Rovers Timed . 64
Figure 6.8: Time graph for Rovers Timed . 64
Figure 6.9: Cost graph for Satellite Timed. 65
Figure 6.10: Time graph for Satellite Timed . 65
Figure 6.11: Cost graph for UMTranslog-2 . 66
Figure 6.12: Time graph for UMTranslog-2 . 66

 1

Chapter 1

Introduction

This chapter explains the background of the thesis, its purpose, limitations, and
structure.

1.1 Background
In 1997, Linköping University received funding for the WITAS [14] project with the
long-term goal to develop a fully autonomous unmanned helicopter. As the helicopter
is supposed to make plans by itself, one part of the system is a planner, TALplanner,
developed by Jonas Kvarnström and Patrick Doherty. TALplanner participated in the
2000 International Planning Competition [3] at the Artificial Intelligence Planning
and Scheduling conference [16] and won first prize in the hand-tailored track. The
competition is a biennial event and it was decided that TALplanner would enter again
in 2002. This thesis describes the preparations for and results of that competition.

1.2 Purpose
The goals that we have set up for this thesis are the following:

1. Give an introduction to TAL and TALplanner.

2. Present the domains from the 2002 planning competition.

3. Describe the modeling of these domains.

4. Describe the changes and extensions made to TALplanner in order to perform
well in the domains.

5. Present the competition results.

 2

1.3 Limitations
This thesis focuses upon planning with domain knowledge and some of the content is
applicable to all planners that can make use of such knowledge but much of it is
limited to TALplanner, which is the planner used for all the contest planning prob-
lems. Control rules that are presented for the problem domains often deal with
performance issues only relevant in the context of TALplanner’s implementation
details. Control rules are also not the only possible way to specify domain knowl-
edge. For example, some planners support heuristic rules but no such rules have been
included in the thesis.

Consistent with the nature of domain dependent knowledge, part of the knowledge
formalized as control rules and presented in the thesis is inapplicable to other do-
mains than those it was specifically developed for. This is not true for all the knowl-
edge since many planning domains contain similar objects and actions. For instance,
logistical problems are common and present similar complications and solutions.

1.4 Structure of the Thesis
The thesis is structured as follows:

Chapter 2 introduces planning and some of the terminology used by the planning
community.

Chapter 3 describes TALplanner, its background, and briefly its workings and the
syntax of its use.

Chapter 4 lists each contest planning domain TALplanner participated in, explain-
ing the control rules developed and the reasoning behind them.

Chapter 5 gives a short description of all the modifications and additions made to
TALplanner to enable it to perform efficiently in the planning domains.

Chapter 6 presents the competition results with a number of graphs, making com-
parison between the planners competing in the contest straightforward.

Chapter 7 discusses the insights that have been gained during the work on this
thesis.

Appendix A defines some commonly used terminology.

Appendix B contains the complete domain definitions.

 3

Chapter 2

Planning

This chapter will introduce the basics of planning and some of the terminology used
by the planning community. Also discussed is the important distinction between
domain independent and domain dependent planning.

2.1 Planning
Planning is the process of finding a sequence or set of actions that change parts of a
world from some initial state to a goal state. A planner is a computer program that
uses some form of search to look for such a sequence or set.

The state of the world is represented in some formal way, often by a set of predicates
that express which facts about objects and environment are true. By the closed world
assumption, facts that are not explicitly specified as true are assumed to be false. This
convention avoids the trouble of enumerating all possible predicates in every state
and is intuitively appealing. For example, if one was asked to describe the top desk
drawer, one might enumerate its contents but would certainly not continue, enumerat-
ing every conceivable object that is not in the drawer.

The actions that transform states are specified in the form of operators. An operator
can be split into two parts: the preconditions, which limit the applicability of the
operator to certain states, and the effects, or post conditions, which define the
changes that are made to the state when the operator is applied.

In its simplest form, planning is done in an accessible and deterministic environment.
This means that the planner can check if some predicate is true and treat the result as
a fact, and that the outcome of applying an operator can always be determined in
advance. This can be put into contrast with the real world where no foolproof tests of
facts exist and the outcome of taking action is always uncertain. Note that determin-
ism does not rule out actions with conditional effects that depend on the environment
since finding which of these effects will actually happen is only a matter of testing
the relevant predicates in the, accessible, environment in which the action was
performed. Even in this restricted and somewhat unrealistic environment, planning is
not a simple task.

 4

For research purposes a large number of problem domains that fulfill the constraints
described above have been created, possibly the most (in)famous of these being the
blocks world [15]. To make the concepts above more tangible this problem is used in
an example.

The blocks world domain consists of a set of blocks on a table. The blocks can be
stacked on top of each other, but only in straight towers. A robot arm can pick up and
put down one block at a time but not lift a block which lies underneath another block
without first moving that one. The table is sufficiently large to make room for any
number of blocks.

We can describe the domain using the following constructs. A number of constants,
A, B, C, …, are introduced to represent the blocks and a number of variables, x, y, z,
v, w, are used to refer to any block or the table. The world state is expressed using the
predicate On(x, y), meaning that block x is directly on top off y, where y is either
another block or the table. Finally, an operator Move(x, y, z) is defined with the
meaning move block x from y to z.

Move(x, y, z)
Preconditions: On(x, y)
 Not exists v such that On(v, x)
 Not exists w such that both On(w, z) and z != table
Effects: Not On(x, y)
 On(x, z)

A

B

C B

C

A

Figure 2.1: A classic blocks world problem.

Figure 2.1 is a graphical representation of a small planning problem. There is an
initial state and a goal state, and the task is to find a sequence of Move actions that
rearranges the blocks from the initial state into the goal state. Using the above
representation scheme and, consistent with the closed world assumption, specifying
only positive facts, the initial state is encoded as,

On(A, Table)
On(B, Table)
On(C, A)

The goal state is similarly described as,

 5

On(A, B)
On(B, C)
On(C, Table)

The following action sequence would constitute one solution to the problem:

1. Move(C, A, Table)

2. Move(B, Table, C)

3. Move(A, Table, B)

2.2 Different Approaches to Knowledge in Planning
Much of the early work in planning was directed towards solving problems from any
domain using a minimal amount of knowledge about the domain. This approach only
requires a formalization of the domain operators in the planner’s input language but
severely limits the planner’s ability to solve large problems. The search space grows
exponentially as the problem size increases and it becomes necessary to prune large
parts of the search tree or direct the search in some other way to find a solution.

Minimal knowledge, or fully automated planning as it is sometimes called, is one
extreme and domain dependent planning is the other. A domain dependent planner is
limited to one planning domain or a set of closely related domains. Knowledge about
the domain is present not just in the input to the planner but in the actual implementa-
tion and algorithms of the planner. Domain dependent planners can be very efficient,
but the downside is obvious. They are only special-purpose software and modifying
such a planner to a new application area may require changes in its entire architecture
and involves a lot of work.

TALplanner covers the middle ground between the two extremes, belonging to a
group of planners that might be termed hand-tailored planners. It is domain inde-
pendent and can create plans with only a minimum of domain knowledge but it also
lets the user provide additional information about the domain to help control and limit
the search for solutions. Very refined control knowledge may be added, completely
eliminating the need for search and always forcing the planner to choose an action
that will be part of the final solution. Such strict control brings TALplanner closer to
domain dependence but is not required. Any form of knowledge that will guide or
control the search increases the size of the problems that are possible to solve. An
example of such knowledge for the blocks world example may be an instruction not
to move blocks that are already in a goal state configuration. When confronted with a
real world domain, there are probably experts in the field who already have a lot of
knowledge of how to solve problems in the domain and it makes sense to be able to
use that knowledge when modeling it. Furthermore, creating a planner that supports
the addition of hand tailored domain knowledge allows experimentation with using
various forms of knowledge that might later be generated automatically.

 6

There are of course downsides to using domain specific knowledge in planning. First
of all, finding and encoding the knowledge creates a significant amount of extra
work. Secondly, such knowledge is not always intuitive, or even available at all.
Finally, there is always a risk of providing erroneous information that will actually
hinder or prevent the planner from solving certain problems.

 7

Chapter 3

TALplanner

The planner used throughout this thesis is TALplanner [18] [17][19][2], developed by
Jonas Kvarnström and Patrick Doherty. Its history started in 1999 as part of the
WITAS Unmanned Aerial Vehicle project [14], but has since then grown into a
complete standalone planning project.

This chapter introduces TAL, the formal basis for the planner, TALplanner and some
of its inner workings, and finally describes the function of control rules, the develop-
ment of such rules being the topic of Chapter 4.

3.1 TAL
TAL, an acronym for Temporal Action Logics, is a formalism that uses first and
second order logic to describe actions and change in a world model. It can be used to
reason about actions that have duration, actions that are performed concurrently with
other actions, context-dependent actions and much more. TAL’s expressiveness
provides a suitable formal basis for a planner and is indeed used by TALplanner as
such. It is not necessary to have a formal basis at all to create a planner, and many
planners do not, but it does make it possible to prove correctness of the plans gener-
ated if provided. More information about TAL can be found in Doherty et al. [1].

 8

3.2 TALplanner
As TALplanner is intended to be used in the context of an unmanned helicopter,
certain constraints need to be met. Especially, a plan must be found within some
limited time period, but the problem domain is of limited scope, opening up the
possibility of using domain specific knowledge to help achieve any time constraints.
A survey of the planning research area revealed only one existing planner that was of
interest and fulfilled the constraints. That planner was TLPlan, developed by Bacchus
and Kabanza [9]. TLPlan served as inspiration and together with the experience with
TAL led to the development of a forward chaining logic-based planner where domain
knowledge is expressed as logical formulas, controlling the search for solution plans.
Forward chaining planners start from the initial world state, adding actions to the plan
until the goal is reached. Many other planning algorithms have been developed but
forward chaining has several advantages, among which are ease of world state
representation and use of complex operators. The biggest disadvantage is that no
goal directedness exists and consequently quite elaborate control may have to be
imposed on the search to make the planning process efficient.

3.2.1 Pruning Constraints in TALplanner
The nature of the depth-first search algorithm used by TALplanner essentially means
that, without any control rules, the planner will try all possible instantiations of all the
operators in the order in which they were defined. In a sense, the planner adds an
action, not because it is necessary, but because it is possible. It is therefore essential
to provide domain specific control rules that guide the search in order to achieve any
sort of reasonable efficiency.

TALplanner analyzes the control rules and creates pruning constraints, logic formulas
that must hold in any partial plan, i.e. in any node in the search tree. If the pruning
constraint does not hold, the state node can be pruned, and with it, the entire branch
of the search tree that would stem from that node. The result is a drastic reduction of
the search space, depending on the quality of the control rules, enabling the depth-
first search algorithm, which would ordinarily be totally lost among the vast number
of possible plans, to find a solution. More information about the generation of
pruning constraints is available in [4].

3.2.2 Basic Algorithm
The search algorithm used by TALplanner is a standard depth-first search, although
other strategies, like breadth first search or iterative deepening depth-first search, are
possible and easily implemented through the plug in-like code architecture. The steps
in the algorithm can be listed using pseudo code as follows:

1. procedure TALplan(state)

2. if the control rules are satisfied in the state then

3. if the state is a goal state, return the state.

 9

4. if the state does not constitute a cycle then

5. for every action that is applicable in the state do

6. call TALplan recursively with a new state, which results from
 applying the action to the current state, as an argument.

7. return failure.

A cycle is present if the state has already been visited earlier in the search and cycle
checking is necessary in depth-first searches to prevent the planner from getting
stuck, repeatedly adding actions that cancel each others effects out.

Note that even if the return value is failure, the problem might still be solvable. One
or more of the control rules may be too strict and exclude the branches containing the
solution or solutions from the search.

Presenting the basic search algorithm merely scratches the surface of what TALplan-
ner is. The main body of work lies in all the optimizations that are done on the logical
formulas and the solutions of all the representational issues encountered. As this lies
outside the scope of this thesis, the reader is referred to Kvarnström [4].

3.2.3 Input and Output Language
The syntax of operator definitions is best explained with an example. An operator
drive, which drives an available taxi between two locations, could be declared as
follows:

#operator drive(taxi, location1, location2)
 :at t
 :precond [t] at(taxi, location1) &
 [t] available(taxi)
 :context
 :effects [+1] at(taxi, location1) := false,
 [+10] at(taxi, location2) := true

At instantiation, when the operator is added as an action to the plan, the variable t is
bound to the current time point. The preconditions, represented as a single temporal
logic formula, must hold for the operator to be applicable. In order to drive the taxi
from location1 to location2 at time point t, it must be both at location1 and
available at time point t. Following the precondition is a list of contexts, each of
which can have their own preconditions and effects. The drive operator has only one
context and one list of effects. Consequently it does not need additional preconditions
in that context and always has the same effects when applied. At time point t + 1 the
taxi has left location1, and at t + 10 it has arrived at location2.

Continuing with an example control rule helps explain the control rule syntax.

 10

#control :name "don’t-drive-to-deserted-places"
 forall t, taxi, location [
 [t] !at(taxi, location) &
 ([t+1] at(taxi, location)) ->
 exists person [
 [t] at(person, location)]]

The new control rule is given a name and then defined by a single logical formula.
The formula first quantifies universally over time points, taxis and locations and then,
by means of an implication and an existential quantification over persons, makes sure
that if a taxi arrives at a location, it must be the case that at least one potential
customer is there.

The output plan can be printed in two different formats: a TALplanner native format
and a Planning Domain Definition Language (PDDL) [7][8] format. Here we shall
only be concerned with the latter, once again providing an example.

0 : (drive taxi1 citysquare airport) [10]
10 : (pickup person1 airport) [2]
12 : (drive taxi1 airport suburb) [10]
22 : (dropoff person1 suburb) [4]
;; Plan length 4, maxtime 26

Assuming appropriate definitions of pickup and dropoff , the plan might be a
solution to some simple planning problem. Beginning each row is the time point at
which the action was applied. The instantiated operator is presented in a LISP-like
format for PDDL compatibility and the rows end with the duration of the operator
inside brackets. For convenience, the last row displays the number of steps in the plan
and the time point at which the goals were achieved.

 11

Chapter 4

IPC02

4.1 History
AIPS is a conference on Artificial Intelligence Planning and Scheduling, which is
held every other year since 1998. The conference hosts the International Planning
Competition (IPC) in which TALplanner has previously entered and received awards.

Since the year 2000, the IPC includes both fully automated and hand-tailored plan-
ners (see section 2.2). A set of problem domains and two sets of problems for each
domain are given and a deadline for handing in the solutions is fixed. Hand-tailored
planners are typically much faster and can solve larger problems than the fully
automatic planners. The second sets of problems take this into account, as they are
larger versions of the problems in the first set. The domains are formalized in the
Planning Domain Definition Language (PDDL) [7][8]. PDDL is a currently active
and evolving attempt to standardize planning problems and makes it possible for
different planners to compete against each other by directly supporting PDDL or
translating the PDDL definitions to their respective input language and back again
when a plan has been found. The competitors solve as many problems as they can
before the deadline while timing the planner’s execution. This creates a large set of
data to judge the performance by, including time spent solving the problems, length
of the plans generated and domain specific criteria, e.g. the amount of resources, like
fuel, spent in each problem’s solution plan.

Note that the setup of the competition may change in the future since the group of
people responsible for organizing the competition is not fixed but changes each year
the conference is held.

The latest AIPS conference was held in France 2002. Responsible for the 2002
competition (IPC02) [3] were Derek Long and Maria Fox. This chapter introduces the
2002 domains, explains how we modeled each of them and discusses any particular
difficulties encountered.

 12

4.2 Domains
All competition domains except one have several versions of varying complexity.
The first and simplest is the “STRIPS” version, which is compatible with the STRIPS
planning formalism [6] and therefore also limited to the expressivity of STRIPS,
which among other things excludes actions that have a duration of more than one
time step. The second is “SimpleTime” where actions have a specified constant
duration. In the “Timed” version the duration of actions can be dependent on the
problem instance being solved, e.g. driving a vehicle takes time proportional to the
distance covered. “Numeric” versions have no durative actions but instead introduce
numeric constraints like limiting the loading capacity of a vehicle. Finally some
domains have a fifth “Complex” version that is a combination of Timed and Nu-
meric.

Even though TALplanner is expressive enough to attempt the Numeric and Complex
problems, we decided to take part only in the STRIPS, SimpleTime and Timed
domains and maximize its performance there. The decision ensured that the deadline
was met but was probably suboptimal from a strategic point of view since, after the
contest, it was revealed that an important criterion in the final judgment was overall
problem coverage.

Concurrent planning, where several actions can be performed simultaneously, was
used for all domains except the largest one, which used sequential planning, where
one action has to be completed before the next one can begin.

The rest of this chapter contains descriptions of each domain, the modeling of it to
allow efficient planning using TALplanner and which obstacles we encountered.
Many of the difficulties are not specific for a single domain but appear in several or
all of the domains. These problems are described in depth when first mentioned and
then skipped over to avoid repetition. The sections are therefore not completely
independent and should preferably be read in the order they appear.

The complete domain definitions are quite long and are placed in Appendix B for
reference. Smaller fragments of the formalizations are inserted in the text to illustrate
the concepts and methods used.

4.3 ZenoTravel
The ZenoTravel domain is based on a domain created to illustrate the capabilities of
the Zeno planner [5]. The task is to fly people between different towns using a set of
aircraft.

The complete domain and control rule definitions for the domain are available in
appendices B.1, B.2 and B.3 and can be used as reference while reading the following
description.

 13

4.3.1 Description
Only five actions are available. Persons may board and debark aircraft and aircraft
may fly, zoom and refuel. There are no restrictions on how many people a plane
can carry. Flying and zooming are equivalent except zooming is faster and uses more
fuel.

Figure 4.1 shows an example problem. Part of the solution would involve one of the
planes flying to city0, person1 boarding the plane, the plane flying to city3 and
person1 disembarking.

Figure 4.1: A simple sample problem from IPC02 with arrows pointing out goal locations. A
solution is a plan that puts person1, person3 and person4 in city3 and person2 and
person5 in city1.

4.3.2 Control
The first and most obvious fact we notice is that people who are already at their
destinations do not need to do anything. They are prevented from doing anything by
adding the following control rule or something equivalent:

#control :name "only-board-when-necessary"
 forall t, person, aircraft [
 [t] !in(person, aircraft) &
 ([t+1] in(person, aircraft)) ->
 exists city [
 [t] at(person, city) &
 goal(!at(person, city))]]

The rule says that at all times for all persons and aircraft, if the person boards the
aircraft he must be at one city and have a goal to be at another city.

Think of [t] at(person, city) & goal(!at(person, city)) as short for:

 14

exists city1, city2 [
 [t] at(person, city1) &
 goal(at(person, city2)) &
 city1 != city2]

The statement goal(!at(person, city)) is only true if !at(person, city) is
true in all goal states. It must be the case that there is a goal forcing the person to be
somewhere else, otherwise there would be goal states in which at(person, city)
was true and its negation false.

In reality, planes usually follow predefined routes, but in this simplified model,
planes can fly directly to any other city. A natural extension of the rule is therefore
that people only disembark at their destinations instead of getting off the plane in
random cities.

#control :name "only-debark-when-in-goal-city"
 forall t, person, aircraft [
 [t] in(person, aircraft) ->
 ([t+1] in(person, aircraft)) |
 exists city [
 [t] at(aircraft, city) &
 goal(at(person, city))]]

These two rules help people behave rationally but the aircraft still fly wherever they
can. Three reasons exist for a plane to visit a city: one of the goals asserts that the
aircraft must end up in the city when the plan is complete, there is a person already in
the aircraft that wants to go to the city, or there is a person in the city that wants to
leave. The following rule formalizes these three intuitions:

#control :name "planes-always-fly-to-goal"
 forall t, aircraft, city [
 [t] at(aircraft, city) ->
 ([t+1] at(aircraft, city)) |
 exists city2 [
 city2 != city &
 ([t+1] at(aircraft, city2)) &
 (goal(at(aircraft, city2)) |
 exists person [
 [t] in(person, aircraft) &
 goal(at(person, city2))] |
 exists person [
 [t] at(person, city2) &
 goal(!at(person, city2))])]]

The first criterion proves to be too admissible. A goal stating that the aircraft must be
in a certain city, its goal city, should not really be of concern until all the passengers
have arrived at their destinations. There is no point visiting the goal city in the middle
of the plan, if not to pick up or drop off passengers. We define a new feature to help
decide when to fly the plane to its goal city:

#define [t] all-persons-at-their-destinations:
 forall person, city [
 goal(at(person, city)) -> [t] at(person, city)]

 15

The new feature will become true when all persons that have a goal city have arrived
at it. Adding it as an extra requirement to the first case in the previous rule solves the
problem.

#control :name "planes-always-fly-to-goal"
 forall t, aircraft, city [
 [t] at(aircraft, city) ->
 ([t+1] at(aircraft, city)) |
 exists city2 [
 city2 != city &
 ([t+1] at(aircraft, city2)) &
 ((goal(at(aircraft, city2)) &
 [t] all-persons-at-their-destinations) |
 exists person [
 [t] in(person, aircraft) &
 goal(at(person, city2))] |
 exists person [
 [t] at(person, city2) &
 goal(!at(person, city2))])]]

With these simple rules TALplanner solves all the ZenoTravel contest problems
quickly. Although the solutions are not terribly inefficient, they can be improved by
spotting several problems. For example, many plans involve flying all available
aircraft to pick up one person.

Figure 4.2: Contest problem with the beginning of a plan marked.

Figure 4.2 illustrates this problem. The first steps of the generated solution plan is:

0 : (fly plane1 city0 city1 fl6 fl5) [1]
0 : (fly plane3 city0 city1 fl3 fl2) [1]

 16

But only one of the planes can make itself useful by picking up the lone passenger.
This is a general problem when planning concurrently using a depth-first search
strategy such as TALplanner’s. The planner checks the state at time 0 and looks for
actions that are possible to perform. An action, fly plane1 from city0 to city1 is
added to the plan, but the action does not change the initial state so it is not possible
to write a control rule that in the initial state forbids flying plane3 to the same
location without reference to the next time step, when plane1 has arrived at city1.
That state is still in the future and is unknown since more actions may be added at
time 0 and affect the state at time 1. The rule would be evaluated at time 0 when the
planner tries to fly plane3 but instead of canceling the action, the action will be
added and the control rule queued and evaluated at a later time when the future state
is fully determined. The planner will continue to add actions until the queued rule, at
some later time, forces it to backtrack. Depending on the number of actions added
after the flying of plane3, the time it takes for the planner to realize that this action
was not allowed could be very long.

To prevent this problem we added a committed macro. When the planner decides to
fly plane1 to city1 it registers the fact at(plane1, city1) as committed to be
true in the next state. We can now add the following check to the last case of the
planes-always-fly-to-goal rule that permits flying to a city to pick up someone:

!exists aircraft2 [
 aircraft2 != aircraft &
 $committed(t+1, at(aircraft2, city2), true)]

A plane is not allowed to fly to a city in order to pick up a passenger if there already
exists another plane that has decided to go there.

One final important and peculiar discovery is made when looking at the given
operator definitions for the domain. The only difference between the fly and the
zoom operators is that zoom uses twice as much fuel. Zooming is not faster than
flying in the STRIPS version of the domain where all actions take exactly one time
step. The zoom operator was thus commented out to make sure it is not used.

4.3.3 SimpleTime
The only difference in the given PDDL specification between the SimpleTime and
the STRIPS version is that instead of all actions taking only one time step to perform,
they now have a constant non-zero duration and some of the preconditions must hold
throughout the action’s entire execution period. However, this translates into a
number of changes in the TALplanner formalization to enable almost as fast planning
as with the STRIPS version.

If we try using the same definitions, with durations added and the effects modified to
occur at the end of the duration, we run into problems.

 17

Figure 4.3: Contest problem with peoples destinations displayed.

Let us look at the example in Figure 4.3. The planner starts by adding the following
actions to the plan:

[0,20] board(person1, plane1, city0)
[0,20] board(person2, plane1, city0)
[0,100] fly(plane2, city2, city0, fl5, fl4)
Failed queued constraint from planes-always-fly-to-goal

It is unable to continue due to the planes-always-fly-to-goal rule which now
forbids any flying of planes whatsoever. The explanation for this is in our modified
fly operator:

#operator fly(aircraft, city-from, city-to, flevel1, flevel2)
 :at t
 :precond [t] at(aircraft, city-from) &
 [t] fuel-level(aircraft, flevel1) &
 [t] next(flevel2, flevel1)
 :duration 180
 :context
 :effects [+1] at(aircraft, city-from) := false,
 [+180] at(aircraft, city-to) := true,
 [+1] fuel-level(aircraft, flevel1) := false,
 [+180] fuel-level(aircraft, flevel2) := true

After takeoff, the plane is not at city1 and does not arrive at city2 until 180 steps
later. The definition of planes-always-fly-to-goal states that if the plane leaves
a city at time t, it should be at a meaningful destination at t + 1.

#control :name "planes-always-fly-to-goal"
 forall t, aircraft, city [
 [t] at(aircraft, city) ->
 ([t+1] at(aircraft, city)) |
 exists city2 [
 city2 != city &
 [t+1] at(aircraft, city2) &
 [t] check-if-good-destination(aircraft, city2)]]

Here, the italicized check-if-good-destination(aircraft, city2) is a pseudo
predicate that represents some test to find out if it is reasonable for the aircraft to visit
city2. The complete definitions are available in appendix B.2.

 18

At t + 1, the aircraft is not at any city at all. It is in the air, traveling somewhere. The
rule evaluates to false, meaning the action was not allowed and the planner back-
tracks. The obvious fix would be to change the rule into the following:

#control :name "planes-always-fly-to-goal"
 forall t, aircraft, city [
 [t] at(aircraft, city) ->
 ([t+1] at(aircraft, city)) |
 exists city2 [
 city2 != city &
 [t+180] at(aircraft, city2) &
 [t] check-if-good-destination(aircraft, city2)]]

This would mean that the duration of the flight is encoded directly in the control rule
instead of only in the operator. If the operator’s duration is changed, the rule will
cease to function correctly. In addition, if variable duration operators were used, as in
the Timed version of the domain, the rule would not make sense at all. Instead of
saying, do not be at city2 180 time steps from now if it is not a reasonable destina-
tion, we would like to use the more natural expression, do not fly to city2 if it is not
reasonable. To accomplish this we add a new feature, flying-to(aircraft,

city), which is true while the aircraft is in the air, flying to the city. The
definition is simple:

#feature flying-to(aircraft, city) :domain boolean :injective

To update it we add the following to the effects of the fly operator:

[+1] flying-to(aircraft, city-to) := true,
[+180] flying-to(aircraft, city-to) := false

And almost identical additions to the faster zoom operator:

[+1] flying-to(aircraft, city-to) := true,
[+100] flying-to(aircraft, city-to) := false

It is now possible to change the existential formula in the planes-always-fly-to-

goal rule above as follows:

exists city2 [
 [t+1] flying-to(aircraft, city2) &
 [t] check-if-good-destination(aircraft, city2)]

The same problem arises in planes-always-deliver-passengers-first in
appendix B.2 and again in the planes-always-fly-to-goal rule when it checks if
someone has boarded a plane. They are corrected by adding another helping feature,
boarding(person, aircraft), with the same pattern of use.

 19

Concurrent planning introduces a lot of troubles and it would be easy to feel content
with just generating good sequential plans. But this is not a realistic approach if the
planner is ever going to do any real world tasks. Consider an airline company that can
only schedule one airplane to fly at a time. It might be safe, but not very efficient.
TALplanner tries to find a plan that completes the given task as quickly as possible.
When creating concurrent plans, as many actions as possible are squeezed in to make
the most use of every time step. Relying on the pruning of stupid moves from the
search space, doing several actions will probably bring us closer to the solution than
doing only one action. The following are the first steps of the plan that TALplanner
now generates:

0 : (board person1 plane1 city0) [20]
20 : (fly plane1 city0 city1 fl4 fl3) [180]
20 : (zoom plane1 city0 city1 fl4 fl3 fl2) [100]

Flying and zooming plane1 at the same time should be impossible. The planner does
not detect this since both actions are possible at time 20, and the effects of the actions
do not contradict each other. Only the final fuel levels differ but at different time
points resulting in a fuel level of 2 at time 120 and an increase to fuel level 3 at time
200. We again make use of the $committed macro by adding the following to the
preconditions of fly and zoom:

!$committed(t+1, at(aircraft, city-from), false)

It creates a check that the aircraft has not already committed to leaving the city.
When fly is used, [+1] at(aircraft, city-from) := false is committed,
rendering zooming impossible and vice versa.

Finally TALplanner rewards us with a short and correct solution for the problem in
Figure 4.3.

0 : (board person1 plane1 city0) [20]
20 : (fly plane1 city0 city1 fl4 fl3) [180]
200 : (board person3 plane1 city1) [20]
200 : (debark person1 plane1 city1) [30]
230 : (fly plane1 city1 city0 fl3 fl2) [180]
410 : (debark person3 plane1 city0) [30]
;; Plan length 6, maxtime 440

Can it be improved? Remember that the STRIPS version never made use of the zoom
operator. Simple adding of sums now reveals that fly takes 180 time steps and uses
one unit of fuel, zoom takes 100 time steps and uses two units of fuel, and refueling
takes 73 time units. 180 + 73 is more than 100 + 2 * 73 and therefore we have the
opposite situation – zoom is always better than fly. Commenting out the unwanted
fly operator yields the following plan:

 20

0 : (board person1 plane1 city0) [20]
20 : (zoom plane1 city0 city1 fl4 fl3 fl2) [100]
120 : (board person3 plane1 city1) [20]
120 : (debark person1 plane1 city1) [30]
150 : (zoom plane1 city1 city0 fl2 fl1 fl0) [100]
250 : (debark person3 plane1 city0) [30]
;; Plan length 6, maxtime 280

4.3.4 Timed
The Timed version further complicates the timing of the actions and is the version
that most closely resembles the original ZenoTravel domain, developed by Penberthy
and Weld [5]. Boarding and disembarking times are constant but problem-specific
and defined in the respective problem definition as two new features, boarding-
time and debarking-time. Refueling always fills the plane to its maximum
capacity but consumes time relative to the amount of fuel received and the refuel-
rate of the aircraft. Each aircraft also has a fast-speed and a slow-speed with
corresponding fast-burn and slow-burn fuel consumption. The distances between
cities are encoded using a distance(city1, city2) feature and when an aircraft
uses the zoom operator to travel from city1 to city2, it will reach its destination
after distance(city1, city2) / fast-speed(aircraft) time units and
consume distance(city1, city2) * fast-burn(aircraft) units of fuel. The
same goes for the fly operator except slow-speed and slow-burn are used.

TALplanner would not have any problems handling this added complexity if it was
not for one of the contest rules. Durations have to be correctly calculated with a
precision of three decimals. The whole architecture and semantics of TALplanner
was built on discrete integer time. All durations and time calculations are truncated to
integers. A solution that had previously been thought out was implemented in order
to comply with the precision requirements. Multiply all durations by a factor of a
thousand and, before the final plan is printed to the terminal, bring all the figures
back with a division using the same factor. This way the planner can continue to
work with integer time but present the solution with adequate accuracy. The scale
factor is set at the beginning of the specification with a new statement.

#timescale 0.001

When durations are multiplied, their range extends into the hundreds of thousands of
time steps. This prompted changes in the way TALplanner internally represents states
and integers and these are discussed in more detail in chapter 5.4.

 21

Few changes are now needed to transform the SimpleTime domain to the Timed
version. Some math is necessary to calculate the durations in each operator and,
finally, we find that there is a tradeoff between the fly and the zoom operators.
Depending on the speed and fuel consumption values defined in each problem and
the situation where the operator is used, it is sometimes better to use fly instead of
zoom. We introduce a new feature, fly-better-than-zoom(aircraft, city1,
city2), in the preconditions of fly and its negation in the preconditions of zoom. It
compares the time spent by fly and zoom to reach the destination and includes the
time spent refueling to make up for the fuel loss since zoom requires more fuel. The
calculation is not entirely accurate if it later proves unnecessary to fully compensate
the fuel used. The plane or the other aircraft might have enough fuel to complete the
goals without further refueling. To partly compensate for this, the last clause in the
definition permits flying instead of zooming if that makes it possible to get by with
one less refuel action.

// Fly is better than zoom if:
#define [t] fly-better-than-zoom(aircraft, city1, city2):
 // If it’s faster wrt speed and refueling.
 ([t] (10000 / slow-speed(aircraft) +
 10000 * slow-burn(aircraft) / refuel-rate(aircraft)) <
 (10000 / fast-speed(aircraft) +
 10000 * fast-burn(aircraft) / refuel-rate(aircraft))) |
 // If zoom is impossible across this distance.
 ([t] distance(city1, city2) * fast-burn(aircraft) >
 capacity(aircraft)) |
 // If zoom has to refuel but fly doesn’t.
 ([t] fuel(aircraft) >=
 distance(city1, city2) * slow-burn(aircraft) &
 fuel(aircraft) <
 distance(city1, city2) * fast-burn(aircraft))

4.3.5 Discussion
The ZenoTravel domain is easily solved. There are no risks involved in flying a plane
to pick up passengers since all the passengers will always fit in the plane and refuel-
ing is possible in any city. It is not really possible to get stuck while looking for the
solution. The graph of cities is also fully connected so no route planning is necessary.
A final version of ZenoTravel, called Numeric, was available in the contest but is not
included in the set of domains that we chose to participate in. It is supposedly more
difficult and uses a constraint on the number of passengers that an aircraft can carry.
The constraint is only enforced in the zoom operator but since the numeric domain
does not make use of durational operators, it suffers from the same problem as the
STRIPS zoom operator. It consumes more fuel, limits the number of passengers but
does not deliver any advantages because it is no faster than flying. The real difficulty
in the Numeric version comes from the complex metrics that are specified in each
problem and measures the quality of a solution. E.g. minimize(total-time + 3 *
total-fuel-used). TALplanner currently has no way of handling such instructions.

 22

4.4 Depots
The Depots domain is a combination of two classic planning domains, logistics and
blocksworld. Blocksworld was introduced in Chapter 2 and the logistics domain is
similar to ZenoTravel in that a number of vehicles move objects to specified destina-
tions.

The complete domain and control rule definitions for the domain are available in
appendices B.4, B.5 and B.6.

4.4.1 Description
The world of Depots contains locations, trucks, hoists, crates and pallets. Trucks
move crates between locations using the drive operator. They can move between
any two locations and carry any number of crates at the same time. The hoists are
distributed among the locations and load crates on trucks or stack crates on top of
each other using the four operators load, unload, lift and drop. The crates are
never put on the ground but instead in stacks on the available pallets or loaded into
trucks.

The goal is always to bring the crates into a certain configuration of stacks and is
represented by a list of statements deciding which crates should be on top of each
other and which crates should rest on which pallets. The complication comes from
the fact that if a crate is not at the top of its stack, it cannot be moved until all the
other crates blocking it are moved.

To formalize the stacks the same scheme as in the original blocksworld is used. One
feature, on(crate, surface), represents a crate being directly on top of a surface,
which can be another crate or a pallet, and one feature, clear(surface), states that
nothing is on top of that surface.

 23

Figure 4.4: Contest problem. A solution rearranges the crates into three stacks: crate5
on crate0 on crate1 on pallet2, crate3 on crate2 on pallet0 and crate4 on
pallet1.

4.4.2 Control
The blocksworld is a very well-known domain. Good control rules are already
available and can be reused here. We used a modified version of Bacchus and
Kabanza’s rules [9].

Intuitively, we force the planner into only building stacks of crates that are final and
which will not be needed to tear down again. Denominating these stacks “good
towers”, we adopt a recursive definition where a crate is the top of a good tower if the
following holds:

1. The crate does not have to be moved to fulfill the goals.

2. If the crate is on another crate, that crate is also a good tower.

In the definitions in appendix B.4, keeping track of which crates are parts of good
towers is done in an efficient way by only using the recursive definition to initialize
the goodtower feature and then updating it directly in the effects of the relevant
operators; lift and drop. The initialization is done in two steps. First define another
feature, goodtower-init, and then at time 0, use it to initialize the values of good-

tower.

 24

#define [t] goodtower-init(surface1):
 ([t] !need-to-move(surface1)) &
 forall crate, surface2 [
 (surface1 = crate &
 [t] on(crate, surface2)) ->
 [t] goodtower-init(surface2)]

#dom [0] forall surface [goodtower(surface) <->
 goodtower-init(surface)]

The definition depends on another feature, need-to-move, which is defined simi-
larly. A crate needs to be moved if

1. it is not on its goal surface or

2. it is on top of another crate that needs to be moved or

3. it occupies a space needed by another crate:

#define [t] need-to-move-init(surface1):
 exists crate [
 crate = surface1 &
 (exists surface2 [
 goal(on(crate, surface2)) &
 [t] !on(crate, surface2)] |
 exists crate2 [
 ([t] on(crate, crate2) &
 need-to-move-init(crate2))] |
 exists surface2 [
 ([t] on(crate, surface2)) &
 (exists crate3 [
 goal(on(crate3, surface2)) &
 crate3 != crate])])]

#dom [0] forall surface [need-to-move(surface) <->
 need-to-move-init(surface)]

We have yet to make use of the new features in a control rule. All Depots problems
can be solved without stacking crates in the wrong order and without ever moving
crates that are already stacked in the right order. The defined features do the main
part of the work so the rules will be very simple.

#control :name "only-create-goodtowers"
 forall t, crate, surface [
 [t] !on(crate, surface) &
 [t+1] on(crate, surface) ->
 [t+1] goodtower(crate)]

#control :name "only-move-crates-when-necessary"
 forall t, crate, place1 [
 [t] at(crate, place1) ->
 ([t+1] at(crate, place1)) |
 [t] need-to-move(crate)]

 25

Appendix B.4 contains the first rule embedded in the preconditions of the drop
operator. This avoids unnecessary evaluation of the rule since drop is the only
operator that creates stacks. The second rule will ensure that good towers are not
destroyed. A crate that is part of a good tower cannot be need-to-move and therefore
must remain in its position in the stack.

It might seem impossible to solve the problems without sometimes stacking blocks in
the wrong order. What if one crate needs to be transported to another location but
another crate blocks it? Unlike the original blocksworld, we cannot put the top crate
temporarily on the table while moving the bottom crate, but instead have to use one
of the limited numbers of pallets. If the crate was not supposed to be on that pallet in
the goal state, this would violate the only-create-goodtowers rule. The trick is to
load the top crate into a truck. Trucks can contain any number of crates and the
planner will make heavy use of them as storage while building the stacks.

As in ZenoTravel, we would now like to limit the vehicles’ movements to only those
locations where they can be of any use. Two obviously useful actions are loading
crates that are at the wrong location and unloading crates at the right location. But
figuring out in which location a crate should be is not as easy as in the ZenoTravel
domain where the problem goals simply stated which city a person should end up in.
The goals in Depots only specify the order in which the crates should be stacked. A
crate’s final location depends on the crate beneath it and the crate beneath that crate
and so on. At the bottom of the stack there must be a pallet and pallets cannot be
moved. This is what finally decides the location of the crate and is suitably formal-
ized as another recursive feature, need-to-be-at. Unlike goodtower and need-to-
move, a crate’s final location will not change during planning. The need-to-be-at
feature can be initialized once, before the planning begins, without the need to update
it later.

#define [t] need-to-be-at-init(crate, place):
 exists pallet [
 goal(on(crate, pallet)) &
 [t] at(pallet, place)] |
 exists crate2 [
 goal(on(crate, crate2)) &
 [t] need-to-be-at-init(crate2, place)]

#dom [0] forall crate, place [need-to-be-at(crate, place) <->
 need-to-be-at-init(crate, place)]

We then combine the two suggested controls and the new feature to define a rule.
Trucks can only move to a location where there is a crate that needs to be at another
location or where a crate in the truck needs to be unloaded.

 26

#control :name "trucks-always-move-to-goal"
 forall t, truck, place [
 ([t] at(truck, place)) ->
 ([t+1] at(truck, place)) |
 exists place2 [
 place2 != place &
 ([t+1] at(truck, place2)) &
 (([t] exists crate, place3 [
 generalized-at(crate, place2) &
 ((need-to-be-at(crate, place3) &
 place2 != place3))]) |
 (exists crate [
 ([t] in(crate, truck) &
 need-to-be-at(crate, place2))]))]]

The rule helps the planner solve the problem in Figure 4.4, but it still has consider-
able problems doing so.

Table 4.1: The planner’s attempt at solving a contest problem.

[0,1] Lift(hoist0, crate1, pallet0, depot0)

[0,1] Lift(hoist1, crate4, crate3, distributor0)

[0,1] Lift(hoist2, crate5, crate2, distributor1)

[0,1] Drive(truck0, depot0, distributor0)

[0,1] Drive(truck1, distributor0, depot0)

[1,2] Load(hoist0, crate1, truck1, depot0)

[1,2] Load(hoist1, crate4, truck0, distributor0)

[2,3] Lift(hoist1, crate3, crate0, distributor0)

[2,3] Unload(hoist0, crate1, truck1, depot0)

[2,3] Drive(truck0, distributor0, distributor1)

[3,4] Load(hoist0, crate1, truck1, depot0)

[3,4] Load(hoist2, crate5, truck0, distributor1)

[4,5] Lift(hoist2, crate2, pallet2, distributor1)

[4,5] Unload(hoist0, crate1, truck1, depot0)

[4,5] Drive(truck0, distributor1, distributor0)

[5,6] Load(hoist0, crate1, truck1, depot0)

[5,6] Load(hoist1, crate3, truck0, distributor0)

[6,7] Lift(hoist1, crate0, pallet1, distributor0)

[6,7] Unload(hoist0, crate1, truck1, depot0)

[6,7] Drive(truck0, distributor0, depot0)

[7,8] Load(hoist0, crate1, truck0, depot0)

 27

Take a look at the shaded rows in Table 4.1. They appear to describe a wasteful way
to load crate1 onto a truck and suggest improvements in the control rules. That
crate1 was lifted in the first place must mean that it was in the wrong position or
otherwise only-move-crates-when-necessary would have prohibited that action.
Once lifted, loading it into a truck seems like a good idea since the hoist cannot do
anything else while lifting crate1. Unloading it again without first driving the truck
or correcting the stack of crates seem like a dumb idea, and repeatedly unloading it as
soon as it has been loaded is plain stupid.

Therefore we define a rule forcing a crate loaded into a truck to stay in the truck until
it can be placed on its goal crate or pallet.

#control :name "only-unload-crates-when-necessary"
 forall t, crate, truck [
 [t] in(crate, truck) ->
 ([t+1] in(crate, truck)) |
 exists surface, place [
 goal(on(crate, surface)) &
 [t] at(surface, place) &
 [t] at(truck, place)]]

Combined, these rules solve even the largest contest problems quickly and only
minor fine-tuning makes up the difference between them and the rules in the appen-
dix.

4.4.3 SimpleTime
Minimal changes are necessary to comply with the SimpleTime version specification.
The drive operator has a fixed duration of 10 time steps, load 3 steps and unload 4
steps. This is easily realized although some caution has to be observed when deciding
which effects will take place in the next time step and which are delayed to the end of
the operator duration. For example, the drive operator sets at(truck, place1) to
false after one time step and at(truck, place2) to true after 10 steps.

As in ZenoTravel’s SimpleTime version, we make use of a helper feature that enables
the control rules to check vehicles’ destinations before they have arrived. This time it
is called driving-to. Most rules are only interested in checking if a truck stays put
or drives off. They are not interested in what the destination is and have no use for
the new feature. Only trucks-always-move-to-goal has to be updated.

4.4.4 Timed
The Timed version introduces four new features; distance(place1, place2),
speed(truck), weight(crate) and power(hoist), which are all used when
calculating the operator durations. Driving from one place to another has a duration
of distance(place1, place2) / speed(truck) and loading and unloading
crates have durations of weight(crate) / power(hoist).

 28

To provide adequate precision, we again make use of the multiply by a thousand
solution and the timescale macro. The resulting definitions are available in appen-
dix B.6.

4.4.5 Discussion
The combination of two classic planning domains did not create any new significant
difficulties. Control rules from each were readily combined to create good control for
the resulting domain.

Again, there was another version of the domain that the TALplanner did not compete
in – Depots Numeric version. Load limits have been defined for all trucks, constrict-
ing the use of trucks as temporary crate storages and thereby posing a more severe
challenge to the planner. The initial testing we have done confirms that the current set
of control rules is incapable of solving even smaller problems of the Numeric
version.

4.5 DriverLog
DriverLog is yet another logistics domain, this time introducing the concept of truck
drivers. A number of packages are transported between locations by trucks and two
sets of routes connect the locations. There are links, where trucks travel, and paths,
which drivers can walk along when not driving any truck. A truck can only have one
driver at a time but can load as many packages as is needed.

The complete domain and control rule definitions for the domain are available in
appendices B.7, B.8 and B.9.

4.5.1 Description
In the specification, six operators are defined. Trucks drive between two locations
that are connected by a link with the help of a driver using the drive-truck ope-
rator. Drivers walk between locations connected by a path with the walk operator.
Packages are loaded into and unloaded from trucks with load-truck and unload-
truck. Finally, drivers board and disembark trucks with board-truck and debark-
truck.

 29

Figure 4.5: Contest problem with the goal locations of the objects pointed out. S0, s1, and
s2 are proper locations, connected with roads, while p0-1, p0-2, and p1-2 are only
intermediary nodes, connected with paths.

4.5.2 Control
Using our previously gained experience with logistics domains, we can create and
reuse some control rules right from the start. Only load packages into trucks if they
actually need to be moved to another location and, if they have been loaded, do not
unload them at any other place but their goal destination.

#control :name "only-load-when-necessary"
 forall t, obj, location1 [
 ([t] at(obj, location1)) &
 ([t+1] !at(obj, location1)) ->
 goal(!at(obj, location1))]

#control :name "only-unload-when-necessary"
 forall t, obj, truck [
 [t] in(obj, truck) &
 ([t+1] !in(obj, truck)) ->
 exists location [
 [t] at(truck, location) &
 goal(at(obj, location))]]

 30

The next step in both ZenoTravel and Depots was to limit the vehicles’ movements to
places where they could perform some work by picking up or delivering people or
crates. In DriverLog we would like to write two such rules; one controlling the truck
movements and one controlling the driver movements. The previous solutions were
relatively straightforward: define a feature that evaluates the usefulness of a location
given the current state of the world and only allow vehicles to go to locations that
pass this test. But this approach does not directly transfer to the DriverLog domain.
Since trucks and drivers only travel along certain routes, they may have to pass
through one or several intermediary locations before reaching the destination.
Looking at the contest problems verifies that this is indeed the case. Although most
locations are directly connected by links, not all of them are, and paths never connect
two locations but always go through an extra path node.

Our solution is a feature that given a truck or a driver and its current location returns
the distance to the closest location out of all locations that pass a test. The test will be
the usefulness feature and in the STRIPS version the distance is the number of links
or paths that separate the two locations. We can then make trucks and drivers choose
only destinations that decrease the value of this new feature. These must be locations
that either are, or lies on the way to a location that passed the test.

In the case of the trucks, we define the feature as follows:

#define [t] driving-distance-to-reasonable-destination(truck,
 location):
 value(t, $mmin(<to>,
 [t] reasonable-truck-location(truck, to),
 driving-distance-between(location, to)))

What $mmin does is to iterate over all possible instantiations of to, which has been
defined as a location variable, and for those destinations that are reasonable for the
truck to go to, calculate the distances and return the smallest one.

The reasonable-truck-location test will be defined later but let us start by
looking at driving-distance-between. The locations and the links between them
form a graph so that finding the shortest distance between two locations amounts to
finding the shortest path in a graph. A recursive search would solve the problem:

#define [t] driving-distance-between(from, to):
 $ite(from = to,
 0,
 value(t, 1 + $mmin(<intermediate>,
 [t] link(from, intermediate),
 driving-distance-between(intermediate,
 to)))))

 31

The $ite function corresponds to an if-then-else statement where the first argument
is the test, the second is the value returned if the test is true, and the third is the value
returned if the test is false. In the base case, from and to are both the same location
and the distance must be zero. In the recursive case, we iterate over all locations that
are connected to our current location with a link, calculate the distances from these
intermediary nodes to the destination and return the shortest distance plus one step to
the intermediary node.

This constitutes a depth-first search for the shortest path without any cycle checking.
It will quickly bury itself in recursion by going back and forth between nodes or
round in circles when the graph contains cycles. Introducing a depth limit is a simple
way to prevent this. The longest possible path between locations goes through all
nodes in the graph, so this will be our limit.

#define [t] number-of-locations:
 value(t, $sum(<location>, true, 1))

#define [t] driving-distance-between(from, to):
 value(t, driving-distance-between-internal(from,
 to,
 number-of-locations))

#define [t] driving-distance-between-internal(from, to, limit):
 $ite(limit = 0,
 1,
 $ite(from = to,
 0,
 value(t, 1 +
 $mmin(<intermediate>,
 [t] link(from, intermediate),
 driving-distance-between-internal(intermediate,
 to,
 limit - 1)))))

The internal version of driving-distance-between reduces its extra depth argu-
ment each time it calls itself and stops when the limit reaches zero. Returning 1 when
the limit is exceeded ensures that the distance a failed search branch finally returns
will be greater than any successful path found.

This algorithm works but is very inefficient. Finding the shortest path between two
locations in a graph of places and roads seems like a good thing to be able to do, not
only for this particular domain, and there are much more effective algorithms than
that realized in the formulae above. Therefore such an algorithm was implemented
directly in the planner and it is used through two new feature types, distfeature
and mindistfeature, which are described in detail in chapter 5.5. Throwing out all
the previous work, we finally arrive at the following definition:

#distfeature driving-distance-between(from, to)
 :domain integer :link link

#mindistfeature mindist-driving
 :feature driving-distance-between :domain integer

 32

#define [t] driving-distance-to-reasonable-destination(truck, to):
 value(t, mindist-driving(
 location1,
 to,
 [t] reasonable-truck-location(truck, to)))

These features do the same work much more efficiently and are used in the precondi-
tions of the drive-truck operator. Trucks are only allowed to drive from one loca-
tion to another if the value of driving-distance-to-reasonable-destination
is reduced.

What remains to be done is defining reasonable-truck-location. Ordered as in
the definition below, the reasons for a truck to visit a location are:

1. The truck has packages to deliver there.

2. There is a goal that the truck should be there or there is a goal that the
driver should be there and no goal preventing him from using the truck to
drive there.

3. There are packages to pick up and either the truck is already at the location
or no other trucks are already there or on their way there.

#define [t] reasonable-truck-location(truck, location):
 exists obj [
 [t] in(obj, truck) &
 goal(at(obj, location))] |
 (([t] all-objects-at-their-destinations) &
 (goal(at(truck, location)) |
 (!goal(!at(truck, location)) &
 exists driver [
 [t] driving(driver, truck) &
 goal(at(driver, location))]))) |
 (([t] $available(objects-to-move-at(location)) !== 0) &
 (([t] at(truck, location)) |
 !exists truck2 [
 truck2 != truck &
 [t] !empty(truck2) &
 [t] at(truck2, location)] &
 !exists truck2 [
 truck2 != truck &
 ([t] !empty(truck2)) &
 $committed(t+1, at(truck2, location), true)]))

Two things need further explanation. First, the reason that in the third case, a location
is reasonable even if the truck is already there, is that this prevents the truck from
driving off before loading the packages. No other location can be closer to the truck
so there is no way to reduce the value of driving-distance-to-reasonable-
destination and the drive-truck operator cannot be used. Secondly, objects-
to-move-at(location) is a resource that keeps track of how many packages are
left in the location that needs to be moved to another location. It is initialized once
and reduced by one each time a package at the location is loaded into a truck. The
initialization is done through the following formula:

 33

#dom [0] forall location [
 $init(objects-to-move-at(location)) ==
 $sum(<obj>,
 [0] at(obj, location) &
 goal(!at(obj, location)),
 1) &
 $minimum(objects-to-move-at(location)) == 0 &
 $maximum(objects-to-move-at(location)) == 9999]

If a feature had been used to model the value, problems would have occurred in the
context of concurrent planning. When two trucks load two different packages at the
same location simultaneously the feature would be updated twice by an effect such as
the following:

[+1] objects-to-move-at(location) :=
 value(t, objects-to-move-at(location) - 1)

The fact that the effect happens twice does not matter. The value will still be the old
value reduced by one instead of the old value reduced by one and then reduced by
one again. Fortunately, TALplanner supports true resources [17] that are designed to
handle concurrent updates and will give the resource the correct value (see the term
resource in Appendix A).

The method we have developed works well with the truck drivers too. All that is
needed is a reasonable-driver-location feature. If there are packages left to
deliver, drivers may walk to trucks that have no driver and use them to deliver the
packages. If all packages have been delivered and all the trucks are at their destina-
tions (if they have any), then drivers may walk to their goal destinations. Finally, if
all packages have been delivered but some trucks are at the wrong locations, drivers
can go to them and drive them to the right locations.

#define [t] reasonable-driver-location(driver, location):
 ([t] !all-objects-at-their-destinations) &
 exists truck [
 [t] at(truck, location) &
 ([t] empty(truck)) &
 !$committed(t+1, empty(truck), false)] |
 [t] all-objects-at-their-destinations &
 ([t] all-nondriven-trucks-at-their-destinations-or-have-
 committed-drivers &
 goal(at(driver, location)) |
 ([t] !all-nondriven-trucks-at-their-destinations-or-have-
 committed-drivers) &
 exists truck [
 [t] at(truck, location) &
 goal(!at(truck, location)) &
 !exists driver2 [
 driver2 != driver &
 [t] at(driver2, location) |
 driving(driver2, truck)]])

 34

In the final version of DriverLog STRIPS in appendix B.7, a few steps from the plans
are shaved off by splitting the walk operator into two parts, walk-choosing-desti-
nation and walk-towards-destination. In the first operator the driver chooses
one destination to head for and then uses the second operator to walk all the interme-
diate steps of the path there. The original walk operator did not care which location
the driver was actually heading for as long as walking reduced the distance to it. With
the split walk operator it is possible to ensure that two drivers do not choose to walk
to the same destination since they both make it explicit which location they are
heading towards.

4.5.3 SimpleTime
In the SimpleTime version loading and unloading packages takes 2 time steps, driv-
ing a truck 10 and walking 20. Boarding and disembarking remain unchanged. A
helper feature going-to(locatable, location) was added to represent a driver
or truck going to location but which has yet to arrive. Both reasonable-truck-
location and reasonable-driver-location are updated to use the feature. The
result is available in appendix B.8.

4.5.4 Timed
The Timed version has one interesting change. Two new features, time-to-
walk(location1, location2) and time-to-drive(location1, location2),
specify the duration of walking and driving between any two locations that are
connected by a path or a link. The values are different for each problem, which forces
our shortest path algorithm to handle weighted edges in the graph. A new attribute in
the distfeature feature definition specifies what to use as the cost function.

#distfeature driving-distance-between(from, to)
 :domain integer :link link :cost time-to-drive

#distfeature walking-distance-between(from, to)
 :domain integer :link path :cost time-to-walk

The feature passed with the cost attribute must take two arguments of the same type
as the distfeature.

Remember that in the STRIPS and SimpleTime versions, we only checked that the
value of driving-distance-to-reasonable-destination was reduced when
deciding if a truck was allowed to drive to a location. This does not always work
when links have different costs associated with them. A single drive action may
reduce the distance using an incredibly costly road link, when it could have used a
cheap road link and still reduce it. Instead, we have to make sure that there is no
easier way to get closer to a reasonable truck location by taking the cost of the current
step into account in the drive-truck preconditions:

 35

!exists location3 [
 [t] link(location1, location3) &
 [t] driving-distance-to-reasonable-destination(truck,
 location3) +
 driving-distance-between(location1, location3) <
 driving-distance-to-reasonable-destination(truck,
 location2) +
 driving-distance-between(location1, location2)]

4.5.5 Discussion
DriverLog problems set up a graph of locations and travel routes, which makes the
choice of which routes to use to deliver packages a hard one. The solution was to use
an algorithm to do the work for us. This might seem a bit like cheating but it is not.
The contest rules would even allow custom software being developed for each
problem domain, at least in the hand-tailored planners’ track. Instead, a deadline is
set and the domains handed out in advance to all contestants at the same time. This
gives some measure of how quickly new domains can be mastered by the planner and
thereby how general and flexible it is.

4.6 Rovers
The Rovers domain simulates a simple planetary exploration expedition. A lander
vessel carries a number of rovers to the planet surface and provides a communication
link back to earth. Each rover has a subset of the general capabilities, retrieving soil
samples, retrieving rock samples and capturing images using cameras that support
different imaging modes. The cameras are mounted on the rovers, as are storage
compartments, one for each rover, which can hold one soil sample or one rock
sample. Data from a sample must be sent to the lander by a communication link. All
missions revolve around navigating waypoints on the planets surface to collect
samples and take images of specified objectives that are only visible from certain
waypoints. The terrain may prevent rovers from going directly between two way-
points and different rovers handle different terrain so a list of routes each rover can
use is provided.

The complete domain and control rule definitions for the domain are available in
appendices B.10, B.11 and B.12.

 36

4.6.1 Description
Nine operators makes Rovers the largest domain we have yet come across in the
contest. Two operators, sample_soil and sample_rock, collect a soil sample or
rock sample and pass the store to place the sample in as one of the arguments. The
effects include setting a feature, have_soil_analysis(rover, waypoint) or
have_rock_analysis(rover, waypoint), to true, which is then tested in the pre-
condition of the communicate_soil_data and communicate_rock_data operators
that sends the data to the lander. Similarly, take_image and communicate_image-
_data takes a picture and sends it to the lander, this time including arguments for
which camera to use, the imaging mode and which image objective to target. Every
time a camera is used, it must first be calibrated on a calibration target objective
using calibrate. All rover movements are realized through the navigate operator
that uses the can_traverse(rover, waypoint1, waypoint2) feature to check the
feasibility of the move. Finally a drop action is provided to ready a rover’s storage
for a new soil or rock sample.

Figure 4.6: Contest problem with arrows showing routes that rover1 can navigate. The
goals for this problem are communicated_soil_data(waypoint3), communicated-
_rock_data(waypoint1) and communicated_image_data(objective0,
high_res).

 37

4.6.2 Control
All goals take on the form communicated_soil_data(waypoint), communicated-
_rock_data(waypoint) or communicated_image_data(objective, mode)
meaning that it does not matter which rover does the sampling and imaging as long as
it is done. We therefore create three new features that can be used to prevent a rover
from executing an experiment that another rover has already completed.

#feature someone_has_rock_analysis(waypoint) :domain boolean
#feature someone_has_soil_analysis(waypoint) :domain boolean
#feature someone_has_image(objective, mode) :domain boolean

Following the same control scheme as before, we limit the movements of rovers to
locations that seem reasonable by defining a reasonable-rover-location(rov-
er, waypoint) feature and use it in a control rule. To achieve the goals, waypoints
that have one of the following characteristics have to be visited:

1. A waypoint where some soil or a rock must be sampled.

2. A waypoint that has a clear view of an objective that is to be imaged.
Objectives are only visible from waypoints that have the visible-
_from(objective, waypoint) feature set in the problem specifica-
tion.

3. A waypoint that has a clear view of an objective that is a calibration tar-
get for a camera that must be used to capture an image.

4. A waypoint that is visible from the waypoint where the lander is located.
Data can only be sent to the lander from waypoints that have the
visible(waypoint1, waypoint2) feature set in the problem specifi-
cation.

Collecting all these intuitions into one huge definition yields the following:

 38

// A waypoint is reasonable for a rover if:
#define [t] reasonable-rover-location(rover, waypoint):
 // We need to go get a rock sample.
 (goal(communicated_rock_data(waypoint)) &
 [t] at_rock_sample(waypoint) &
 [t] !someone_has_rock_analysis(waypoint) &
 [t] equipped_for_rock_analysis(rover)) |
 // We need to go get a soil sample.
 (goal(communicated_soil_data(waypoint)) &
 [t] at_soil_sample(waypoint) &
 [t] !someone_has_soil_analysis(waypoint) &
 [t] equipped_for_soil_analysis(rover)) |
 // We need to go take an image.
 exists mode, objective [
 goal(communicated_image_data(objective, mode)) &
 [t] visible_from(objective, waypoint) &
 [t] !someone_has_image(objective, mode) &
 ([t] equipped_for_imaging(rover)) &
 exists camera [
 [t] on_board(camera, rover) &
 [t] supports(camera, mode) &
 [t] calibrated(camera, rover)]] |
 // We need to go calibrate a camera to take an image.
 exists mode, camera, objective [
 goal(communicated_image_data(objective, mode)) &
 [t] !someone_has_image(objective, mode) &
 [t] supports(camera, mode) &
 [t] on_board(camera, rover) &
 [t] !calibrated(camera, rover) &
 [t] calibration_target(camera, objective) &
 [t] visible_from(objective, waypoint)] |
 // We need to go send rock data to lander.
 exists waypoint2, waypoint3, lander [
 [t] have_rock_analysis(rover, waypoint2) &
 [t] !communicated_rock_data(waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] visible(waypoint3, waypoint)] |
 // We need to go send soil data to lander.
 exists waypoint2, waypoint3, lander [
 [t] have_soil_analysis(rover, waypoint2) &
 [t] !communicated_soil_data(waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] visible(waypoint3, waypoint)] |
 // We need to go send image data to lander.
 exists mode, objective, waypoint2, lander [
 [t] have_image(rover, objective, mode) &
 [t] !communicated_image_data(objective, mode) &
 [t] at_lander(lander, waypoint2) &
 [t] visible(waypoint2, waypoint)]

 39

The effect of the rule is that if a rover navigates to a waypoint, it is guaranteed to be
able to do something useful upon arrival. The problem of finding the path from one
waypoint to another still remains and although we solved it in the DriverLog domain,
the solution cannot be directly applied in the Rovers domain since each rover has its
own set of routes between waypoints. Modifying distfeature and
mindistfeature to take an extra argument identifying a rover and applying these to
the Rovers domain results in the following definition:

#distfeature roving-distance-between(rover, waypoint1, waypoint2)
 :domain integer :link can_traverse

#mindistfeature mindist-roving
 :feature roving-distance-between :domain integer

#define [t] roving-distance-to-reasonable-location(rover,
 waypoint1):
 value(t, mindist-roving(
 rover,
 waypoint1,
 waypoint2,
 [t] reasonable-rover-location(rover, waypoint2)))

These tools are used in the same way as in DriverLog. Only allow a rover to navigate
somewhere if it decreases the value of roving-distance-to-reasonable-desti-
nation.

As stated, the rover is now guaranteed to be able to do something useful after
navigating, but it is definitely not guaranteed to actually do something useful.
Looking at some sample output from the planner as it tries solving the problem in
Figure 4.6 it is clear which actions need stricter control. The plan starts by sampling
soil at the wrong waypoint, repeatedly calibrating cameras that are not needed and
taking pictures of objectives that are not even mentioned in the goal. What we want is
to make the plan more efficient by only performing actions that are necessary to
fulfill the goals. Only sample soil or rock at waypoints that are specified in the goal,
only take pictures that are specified in the goal and only calibrate cameras that can
take those pictures.

#control :name "only-sample-goal-soil"
 forall t, waypoint [
 [t] !someone_has_soil_analysis(waypoint) ->
 ([t+1] !someone_has_soil_analysis(waypoint)) |
 goal(communicated_soil_data(waypoint))]

#control :name "only-sample-goal-rock"
 forall t, waypoint [
 [t] !someone_has_rock_analysis(waypoint) ->
 ([t+1] !someone_has_rock_analysis(waypoint)) |
 goal(communicated_rock_data(waypoint))]

#control :name "only-take-goal-images"
 forall t, objective, mode, rover [
 [t] !someone_has_image(objective, mode) ->
 ([t+1] !someone_has_image(objective, mode)) |
 goal(communicated_image_data(objective, mode))]

 40

#control :name "only-calibrate-if-camera-needed"
 forall t, rover, camera [
 [t] !calibrated(camera, rover) ->
 ([t+1] !calibrated(camera, rover)) |
 exists objective, mode [
 [t] supports(camera, mode) &
 goal(communicated_image_data(objective, mode)) &
 [t] !someone_has_image(objective, mode)]]

Finally, some of the drop actions can be skipped. Sampling soil or rock requires free
storage space, which is acquired by dropping the contents of the store, but we can
delay any dropping until we know that a new sample will actually be collected.

#control :name "only-drop-if-neccessary"
 forall t, store [
 [t] full(store) ->
 ([t+1] full(store)) |
 exists rover [
 ([t] store_of(store, rover)) &
 exists waypoint [
 goal(communicated_soil_data(waypoint)) &
 [t] !someone_has_soil_analysis(waypoint) &
 [t] at_soil_sample(waypoint) &
 [t] at(rover, waypoint) &
 [t] equipped_for_soil_analysis(rover)] |
 exists waypoint [
 goal(communicated_rock_data(waypoint)) &
 [t] !someone_has_rock_analysis(waypoint) &
 [t] at_rock_sample(waypoint) &
 [t] at(rover, waypoint) &
 [t] equipped_for_rock_analysis(rover)]]]

The original contest domain specification forces communication with the surface
lander to be serialized. Two rovers cannot send data at the same time. A feature,
channel-free(lander), is supposed to take on the value false when a rover uses
the channel and true when the data has been sent. However, there is no way to make
this work with TALplanner since sending data only takes one time step. TALplanner
does not allow effects to take place at the same time that the action is performed.
Setting channel-free to false must be done one time step later, at the same time
that the channel will be free to use again by some other rover. Instead, a resource is
defined:

#resource sem_communicate_data(lander)
 :domain integer :preference :none

#dom [0] forall lander [
 $init(sem_communicate_data(lander)) == 1 &
 $minimum(sem_communicate_data(lander)) == 0 &
 $maximum(sem_communicate_data(lander)) == 1]

The resource is initialized to one. All send actions then borrow one unit of the
resource during the sending, making other send actions impossible to perform until
that one unit has been returned.

 41

:resources [+1] :borrow sem_communicate_data(lander) :amount 1

4.6.3 SimpleTime
The SimpleTime version changes the durations of all operators except drop. Sam-
pling soil takes 10 time steps, sampling rock 8 and sending the data 10. Calibrating a
camera takes 5 time steps, taking a picture 7 and sending image data 15. Finally, a
rover navigates between two waypoints in 5 time steps.

Only one helper feature, calibrating(camera), was added in order to indicate that
the camera has begun calibrating but not yet finished. The someone_has_rock-
_analysis, someone_has_soil_analysis and someone_has_image features can
be used in a similar way by setting them to true before the action is actually com-
pleted. It does not matter to the rules that use them if some rover has only started to
perform the action or already completed it, e.g. there is no point in a rover navigating
to a waypoint to collect a soil sample if another rover is already there and in the
process of collecting the soil sample.

As with the lander’s communication, a resource, sem_rover(rover), is used to
make sure that the rover does not do several things simultaneously. Unlike the lander
communication, some of the actions are allowed at the same time. Pictures may be
taken while, at the same time, the rover is sampling soil or rock. These actions
borrow sem_rover non-exclusively while the navigate operator borrows the
resource exclusively since the rover is never allowed to drive off during another
action.

The final definitions are available in appendix B.11.

4.6.4 Timed
The Timed version introduces the interesting concept of energy. Each rover has a
limited amount of energy and each action it does consumes some of the energy. The
rovers have been equipped with solar panels that recharge the energy but only some
of the waypoints that a rover can go to are directly exposed to the sun, which is a
requirement for the solar panels to work. This means that a rover can get stuck in the
shade, unable to do anything or go anywhere, if it uses its energy unwisely. If that
rover carried a camera critical to the mission or could navigate to a waypoint no other
rover could get to or if all rovers run out of energy, the goals may be impossible to
achieve and the planner will have to backtrack. In addition, the reasonable-rover-

location definition is now too strict since it does not allow a rover to go to a
waypoint just to recharge. It may thus be impossible to find a solution to the problem.
Either we can relax the rules and let the planner backtrack and search for a better
plan, or we can introduce even stricter rules that keep energy levels in mind when
deciding what a rover is allowed to do. The latter approach is taken below.

 42

A rover’s energy level is represented by a resource, renergy(rover), which is
initialized by an energy(rover) feature from the problem instance. The energy is
reduced when an action is performed. Navigating is the most costly action and uses 8
units of energy while the other actions use between 1 and 7 units. A new operator,
recharge, fully replenishes the energy to the maximum of 80 energy units if the
waypoint where the rover is located has the in_sun(waypoint) feature set. The
duration of the recharge operator depends on how low the energy level was. Again,
the timescale statement proves useful, after multiplying all durations with a
thousand, to bring the numbers back with appropriate accuracy.

The critical point is when a rover does not have enough energy to reach a waypoint in
the sun and recharge. Deciding when this is about to happen requires a new feature
that can tell the distance to the closest waypoint having the in_sun property.

#define [t] roving-distance-to-recharge(rover, waypoint1):
 value(t, mindist-roving(rover,
 waypoint1,
 waypoint2,
 [t] in_sun(waypoint2)))

Checking if a rover can afford to perform a certain action is now possible in a

function that takes the energy cost of the action as an argument.

#define [t] have-enough-energy(rover, fixedpoint):
 exists waypoint [
 [t] at(rover, waypoint) &
 [t] $cast(
 integer,
 fixedpoint,
 value(t,
 roving-distance-to-recharge(rover, waypoint)))
 * 8.0 <
 ($available(renergy(rover)) - fixedpoint)]

Casting the value of roving-distance-to-recharge to a fixed-point value with
four decimals is necessary to reduce rounding errors. Multiplying the distance with 8
results in the energy cost to navigate to a recharge waypoint since each navigation
step consumes 8 energy units. If the total cost is less than the energy available after
performing the action, there is no risk of running out of energy. This test is present in
the preconditions of all operators that use energy except navigate.

The reasonable-rover-location feature that controls rover movements must be
altered to include recharge locations when energy is too low to engage in any other
useful activity. In addition to all waypoints that were previously allowed, it is also
reasonable for a rover to go to a waypoint, to, if that waypoint is exposed to the sun
and either the rover does not have enough energy to perform an action and then go
recharge, or there do not exist any other waypoints that are both affordable and
reasonable to visit.

 43

#define [t] reasonable-rover-location(rover, to):
 exists from [
 [t] at(rover, from) &
 (([t] in_sun(to) &
 (([t] $available(renergy(rover)) <
 $cast(integer,
 fixedpoint,
 value(t, roving-distance-to-
 recharge(rover, from)))
 * 8.0 + 8.0) |
 !exists waypoint3 [
 waypoint3 != to &
 [t] enough-energy-for-
 expedition(rover, from, waypoint3) &
 [t] reasonable-rover-location-
 dont-care-energy(rover, waypoint3)])) |
 ([t] enough-energy-for-expedition(rover, from, to) &
 [t] reasonable-rover-location-
 dont-care-energy(rover, to)))]

The STRIPS and SimpleTime definition of reasonable-rover-location is now
contained in reasonable-rover-location-dont-care-energy but enough-ene-
rgy-for-expedition is a new feature that checks if a rover has enough energy to
go from waypoint from to waypoint to, do any one action and still have energy left
to get to a recharge waypoint, and is defined as follows:

#define [t] enough-energy-for-expedition(rover, from, to):
 [t] $cast(integer,
 fixedpoint,
 value(t, roving-distance-between(rover, from, to) +
 roving-distance-to-recharge(rover, to)))
 * 8.0 + 8.0 <
 $available(renergy(rover))

Again, the multiplication with 8 reflects the cost of navigating and adding 8 to the
result ensures that any action can be performed since the actions require between 1
and 8 energy units.

4.6.5 Discussion
Once again the distfeature and mindistfeature macros are put to great use,
even though the Rovers domain is not a typical logistics problem, suggesting that
implementing the shortest path algorithm directly in the planner was a good idea.

 44

The energy concept, introduced in the Timed version, significantly increased the level
of difficulty for the domain and raised the possibility of reaching a dead end when
searching for a solution plan. Our solution, to avoid getting into such situations by
always keeping an eye on the rovers’ available energy levels and the distance to the
nearest recharge locations, is not complete. E.g., a problem with only one rover that
has enough energy to fulfill all goals but not enough to go to a recharge waypoint
would not be possible to solve with the rules above since they would stop the rover
from doing anything but try reaching a recharge location. Even so, the chosen
solution has several advantages over the second approach, to loosen the restrictions
and let the planner use backtracking to find a correct plan. In general, fewer states
have to be examined leading to shorter execution time for the planner and the
performance is more consistent over a whole set of problems since each action the
planner adds to the plan constitutes steady progress towards achieving the problem
goals. In the choice between allowing more search and possibly optimal plans, and
using stricter control for a more efficient but incomplete search, we chose the latter.

4.7 Satellite
In the Satellite domain a number of satellites orbit the Earth, each equipped with
scientific imaging instruments. The satellites turn in space, targeting stars, planets
and interesting phenomena to capture images of them using the instruments different
operation modes. These modes can include regular or infrared imaging and spectro-
graphic or thermograph readings but are different for each problem. The planner’s
task is to schedule a series of observations so that the satellites are used efficiently.

The complete domain and control rule definitions for the domain are available in
appendices B.13, B.14 and B.15.

Figure 4.7: Contest problem with arrows showing the directions in which the satellites are
initially pointing.

 45

4.7.1 Description
Stars and planets are represented by a direction and the satellites can turn between
any two directions using the turn_to operator. Instruments first need to be activated
using switch_on, then calibrated at a calibration target with the calibrate operator
before they can capture images with take_image. Each satellite has only enough
power to operate one instrument at a time so switching active instruments is always
initiated by the switch_off operator to deactivate the first instrument.

4.7.2 Control
Since the tasks consist of collecting a number of images, we begin by restricting the
use of take_image to images that are mentioned in the goal.

#control :name "only-take-pictures-of-goals"
 forall t, direction, mode [
 [t] !have_image(direction, mode) &
 [t+1] have_image(direction, mode) ->
 goal(have_image(direction, mode))]

The next step is to restrict the directions in which satellites turn to those that may
actually help in collecting the images. The task is split into a control rule, only-
point-in-goal-directions, and a definition of goal directions. A satellite is
allowed to turn towards a direction to take a picture, to calibrate an instrument or if a
goal specifies that the satellite should point in the direction and there is no more work
left to do.

#define [t] goal_direction(satellite, direction):
 ([t] take_image_possible(satellite, direction)) |
 exists instrument [
 [t] calibration_target(instrument, direction) &
 [t] on_board(instrument, satellite) &
 [t] !calibrated(instrument) &
 [t] power_on(instrument)] |
 (goal(pointing(satellite, direction)) &
 [t] all_images_collected)

The take_image_possible feature not only checks if an image in the direction is to
be collected but also that it has not already been taken and that the satellite has the
necessary instrumentation ready. If the active instrument is not calibrated, the satellite
may have to turn towards another direction and calibrate it first.

#define [t] take_image_possible(satellite, direction):
 exists mode [
 goal(have_image(direction, mode)) &
 !$committed(t+1, have_image(direction, mode), true) &
 ([t] !have_image(direction, mode)) &
 exists instrument [
 [t] supports(instrument, mode) &
 [t] on_board(instrument, satellite) &
 [t] power_on(instrument) &
 [t] calibrated(instrument)]]

 46

Both the switch_on and switch_off operators are still not regulated by control
rules and the planner quickly takes up the habit of repeatedly flipping the power to
different instruments on and off. Once an instrument has been powered on and cali-
brated, using it as much as possible before switching to another instrument seems
reasonable. A usefulness feature, putting a value on the usefulness of a particular
instrument, helps decide which instrument to power on first.

#define [t] usefulness(instrument):
 value(t, $sum(<mode>,
 [t] supports(instrument, mode) &
 mode_needed_for_goal(mode),
 1))

#define [t] mode_needed_for_goal(mode):
 exists direction [
 goal(have_image(direction, mode)) &
 [t] !have_image(direction, mode)]

Add one to the usefulness score of an instrument for each imaging mode that it
supports and that is needed in some goal. This score is then used in a control rule that
chooses a satellite’s most useful instrument, if it has any.

#control :name "use-the-most-useful-instrument"
 forall t, instrument [
 [t] !power_on(instrument) ->
 ([t+1] !power_on(instrument)) |
 ([t] usefulness(instrument) > 0) &
 !exists satellite, instrument2 [
 [t] usefulness(instrument2) > usefulness(instrument) &
 [t] on_board(instrument, satellite) &
 [t] on_board(instrument2, satellite)]]

Switching off an instrument is only allowed if it is not needed anymore.

#control :name "don’t-switch-instrument-off-if-you-don’t-have-to"
 forall t, instrument [
 [t] power_on(instrument) ->
 ([t+1] power_on(instrument)) |
 !exists mode [
 [t] supports(instrument, mode) &
 [t] mode_needed_for_goal(mode)]]

Having run out of more or less obvious improvements, analyzing the planner output
may still reveal inefficiencies. The satellites often simultaneously decide to turn to
the same direction and take a picture. Adding a rule making sure that no other
satellite has committed to a certain direction shortens the plans somewhat.

#control :name "don’t-all-point-in-same-direction"
 forall t, satellite, direction [
 [t] !pointing(satellite, direction) ->
 ([t+1] !pointing(satellite, direction)) |
 !exists satellite2 [
 $committed(t+1,
 pointing(satellite2, direction),
 true)]]

 47

4.7.3 SimpleTime
The SimpleTime version change the duration of some operators. Turning takes 5 time
units, switching an instrument on takes 2 units, calibrating it 5 and taking a picture
takes 7 time units. A couple of helper features, turning_towards, calibrating,
power_on_generalized and have_image_generalized keep track of actions that
have begun but not completed. The affected control rules are updated with the new
features.

Appendix B.14 contains the final definition of the SimpleTime version.

4.7.4 Timed
The Timed version includes two new features, calibration_time and slew_time.
The time it takes to calibrate an instrument is specified for each problem, as is the
slew_time feature that represents the time it takes for a satellite to turn between any
two directions. Neither of these prompts any significant changes to the SimpleTime
definition, which is available in appendix B.15.

4.7.5 Discussion
The Satellites domain does not provide a real challenge as long as the planner is only
trying to find a correct plan. Finding a short plan is harder. This is especially true in
the Timed version. Our control rules does not care in which order the images are
collected. The directions and the slew_time between them produce a weighted graph
that can be searched for an optimal, or sufficiently short, hamilton path. The path then
needs to be split and distributed among the satellites to make use of concurrency.
Adding all this as control rules seems a bit like overkill.

After the contest, we discovered that the triangle inequality does not hold when
turning a satellite between two directions. It is often possible to shorten the slew time
by adding turn_to actions to several intermediary directions before turning to the
goal direction instead of turning towards it directly. The automatic problem generator
that created the problem files randomizes the slew times between every pair of
directions and does not check for geometrical consistency that would be present in a
real world situation. This can be taken advantage of by using the mindist feature to
find the sequence of turning actions with the shortest combined slew time. Initial
testing shows that this approach yields significantly shorter plans when plan length is
measured by the time point at which the goals have been fulfilled.

Another improvement would be to change the last clause in the definition of goal-
_direction to allow satellites to turn towards a direction specified in the goals, not
when all images have been collected, but when no images are left to collect since
some other satellite may have already committed to taking the last picture.

 48

4.8 UMTranslog-2
The UMTranslog-2 domain is another logistics domain but its size and complexity is
incomparable to the previously encountered logistics domains in the contest. It is an
extension of the UM Translog domain by Andrews et al [10], which was developed
specifically to create a challenge for modern planning systems.

Trucks, trains or aircraft transport packages between locations but they must follow
strict movement patterns. A few locations are transportation hubs, some are transpor-
tation centers while the rest are ordinary locations. A package is only allowed to
move up and down through this hierarchy once and only move between two locations
in the same layer once. The longest possible route for a package is thus from an
ordinary location to a transportation center to a hub to another hub to a transportation
center and finally to another ordinary location.

The domain groups locations into cities, which are then grouped in regions. Trucks
travel between any two locations in the same city or by an existing road route
between two cities. Trains and planes always use predefined routes between transpor-
tation centers and hubs.

A great number of restrictions further complicate movements. Packages must be
compatible with the vehicle they are loaded into, the vehicle must have enough free
space, not be loaded too heavily and not be wider, longer or higher than the route and
destination location accepts. Finally, the locations, vehicles and routes must all be
available for use.

The complete domain and control rule definitions for the domain are available in
appendix B.16.

 49

Figure 4.8: Contest problem with arrows showing package destinations.

 50

4.8.1 Description
Many operators have roughly the same purpose and can be grouped together in order
to make it easier to get the general idea of the domain. First there are the loading
preparation operators, which are different for different types of vehicles. E.g., before
loading a tanker truck, the connect-hose and open-valve operators are used and
after the loading is complete, the close-valve and disconnect-hose operators are
required before the truck can go anywhere. Next are the loading operators. They also
differ between vehicles and, continuing the tanker truck example, are fill-tank and
empty-tank. The third group is the seven movement operators. Three operators
move trucks within cities, one moves trucks along road routes between cities and the
remaining three move trains and planes along air and train routes. A set of features
keep track of how the packages have been moved between locations to make sure that
the transportation pattern described above is used. Finally, there are a number of
operators that does not fit into any group. The collect-fees operator is used on all
packages that need to be delivered at a location with the deliver operator. After all
packages are delivered, a clean-domain operator checks that all vehicle doors and
valves are closed and that equipment, like hoses, has been disconnected.

4.8.2 Control
The control rules can also be grouped together and correspond to truck movement,
train and plane movement, and package loading and unloading.

As in previous domains, we specify what a reasonable location is and limit vehicle
movements to destinations that are reasonable. A truck might want to pick up or
deliver a package at the location or, if the truck cannot reach the package’s goal
location, unload the package at a transportation center to be picked up by another
vehicle.

#define [t] reasonable-truck-location(vehicle,
 location-from,
 location-to):
 exists package [
 [t] at-packagel-generalized(package, location-to) &
 [t] !over(package)] &
 !exists package [
 [t] at-packagev(package, vehicle)] |
 exists package [
 [t] at-packagev(package, vehicle) &
 goal(delivered(package, location-to))] |
 exists package, location-goal [
 [t] at-packagev(package, vehicle) &
 [t] in-wrong-city(package, location-from) &
 [t] in-same-city(location-from, location-to) &
 ([t] tcenter(location-to)) &
 goal(delivered(package, location-goal)) &
 [t] !can-go-by-truck(vehicle,
 location-from,
 location-goal)]

 51

The at-packagel-generalized is a defined feature that helps when referring to a
package’s location. Unlike at-packagel, which is set to false for a package that is
lifted by a crane even though the crane is at the same location as the package, the
generalized version stays true until the package is loaded into a vehicle.

The definition does not allow trucks to pick up several packages. This makes finding
optimal solutions impossible in the general case but simplifies the search for accept-
able solutions a great deal. There is an imminent risk that any other packages the
truck is carrying will end up at the wrong location if it is allowed to travel about,
picking up more packages along the way. Since all packages must move according to
the specified pattern of transportation centers and hubs, moving a package that has
once arrived at a location that is not a transportation center is not allowed and the
package will be stuck there. Restricting trucks to picking up one package at a time
avoids this problem.

The can-go-by-truck feature is very useful for testing that no fuel, size, weight or
road route restrictions are violated.

#define [t] can-go-by-truck(vehicle, location-from, location-to):
 [t] $available(rgas-left(vehicle)) >=
 distance(location-from, location-to) * gpm(vehicle) &
 [t] height-cap-l(location-to) >= height-v(vehicle) &
 [t] length-cap-l(location-to) >= length-v(vehicle) &
 ([t] width-cap-l(location-to) >= width-v(vehicle)) &
 (exists city [
 [t] in-city(location-from, city) &
 [t] in-city(location-to, city)] |
 exists city-from, city-to [
 [t] in-city(location-from, city-from) &
 ([t] in-city(location-to, city-to)) &
 exists route [
 [t] connect-city(route,
 road-route,
 city-from,
 city-to) &
 [t] availabler(route) &
 [t] height-v(vehicle) <= height-cap-r(route) &
 [t] weight-v(vehicle) +
 $available(rweight-load-v(vehicle)) <=
 weight-cap-r(route)]])

Similar rules are defined for trains and planes and are available in appendix B.16.

The group of loading and unloading restrictions is large but filled with repetitions
containing small deviations for different vehicle types. Once again returning to the
tanker truck example, we define a rule controlling the opening of tanker valves. For
simplicity, the fluids that are transported by tankers are also represented as packages
in the domain. Only open a tanker’s valve if there is a compatible package at the
same location as the tanker that needs to be moved or if the tanker contains a package
that needs to be unloaded there.

 52

#control :name "only-open-valve-if-needed"
 forall t, vehicle [
 [t] !valve-open(vehicle) &
 ([t+1] valve-open(vehicle)) ->
 exists location [
 ([t] at-vehicle(vehicle, location)) &
 (exists package [
 [t] at-packagel-generalized(package, location) &
 [t] package-vehicle-compatible(package, vehicle) &
 need-to-move-package-from(package, location)] |
 exists package [
 [t] at-packagev(package, vehicle) &
 [t] need-to-unload-package-at(package,
 location)])]]

An identical rule, with the exception of a negation of the two inner exist statements,
control the closing of valves. Two similar rules control the connection of hoses and
many more rules control loading and unloading preparations for all other vehicle
types.

Additionally, there is a rule, only-load-packages-into-reasonable-vehicles,
and two definitions of reasonable vehicles, one for trucks and one for trains and
planes, which together makes sure that packages are only loaded into vehicles that are
actually able to take them to a useful location.

4.8.3 Discussion
UMTranslog-2 is by far the largest domain in the IPC02 contest. 38 operators make
the size of the specification intimidating even though there are no SimpleTime or
Timed versions. Creating control rules and meeting the contest deadline left no time
to get the domain working with concurrent planning. Instead, we had to make do with
sequential planning. The situation faced in the contest was not entirely realistic in that
no description of the domain was given except the formalization of the operators.
Writing control rules is not possible until one has some idea of the intended workings
of the domain and therefore time was lost analyzing the functions of peculiar features
and operators. Under more typical circumstances, one would start with a description
of the problem domain and work out the formalization from it.

Of the 15 contest problems provided, all created automatically by a problem genera-
tor, only ten were actually solvable. The remaining five were unsolvable for different,
and often obscure, reasons. This could have been intentional, and the ability of a
planner to terminate in reasonable time given an unsolvable problem is certainly a
valuable quality as many real world problems might be unsolvable, although the
impression given was that even the contest organizers were unaware of the fact until
after the results from the planners had been collected.

 53

Given more time, the set of control rules provided in appendix B.16 could be im-
proved. They solve the (solvable) contest problems but will fail on other valid
problems. If planning speed is less of an issue, more search can be allowed and lower
cost plans generated. More and better problems would be needed as guidelines when
developing better control rules since the contest problems did not make full use of the
intended transportation scheme with transportation centers and hubs.

 54

Chapter 5

Extensions

During the formalization and control rule optimization of the contest domains a
number of changes were made to the TALplanner implementation, some of which
have been mentioned briefly in Chapter 4. Most of the changes had been planned but
not yet implemented due to lack of time, while other changes were prompted by
particular difficulties encountered when modeling the new domains in the IPC02
competition. The changes together with two additions, a translation utility and a
graphical visualization utility, are described in this chapter.

5.1 Operator Duration
There is no real need to explicitly state an operator’s duration since it is implicitly
defined in its effects. The effects take place at different time points relative to the
actions invocation time and the effect with the longest delay will determine the
duration. However, often several effects take place at the end of the duration, which
can be a complex expression that will, in the operator definition, have to be dupli-
cated for each of those effects. To save space and make the definition more readable
and easier to change, an optional duration attribute was added to operator defini-
tions. It accepts a value expression and a variable, which is bound to the value of the
expression. This variable can then be used in place of the expression for all effects
that take place at the end of the operator duration. A possible usage is displayed
below:

#operator Drive(truck, city1, city2)
 :at t
 :precond [t] at(truck, city1)
 :duration value(t, distance(city1, city2) / speed(truck)) :as t2
 :context
 :effects [+1] at(truck, city1) := false,
 [+t2] at(truck, city2) := true

 55

5.2 Prevail Conditions
In the first versions of TALplanner, when all actions spanned exactly one time step,
and later, when durative actions were implemented, the need to support conjunctive
prevail conditions could be met by introducing additional operator effects. If, for
example, a truck must stay put while some cargo is being loaded, a prevailing
precondition would be that the truck is at a specific city. To enforce this, an effect
setting at(truck, city) to true during the action execution is added. If the truck
has moved, that move action would have set at(truck, city) to false, creating a
conflict that the planner detects.

Adding these complementary effects is an efficient but somewhat limited and
unaesthetic way to get around the original problem. Therefore, a prevail attribute
was added to the operator syntax. It receives, as arguments, a logical formula and a
time period during which the formula must hold. These extra conditions are checked
in each new state within the given temporal interval.

5.3 Committed Macro
In Chapter 4, the problem of several vehicles trying to solve the same subtask
simultaneously was repeatedly encountered and was impossible to solve using regular
features in control rules. An action’s effects must take place after the invocation time
point and it is thus impossible to control what other actions are performed concur-
rently by evaluating the state at that time. In other words, the current world state will
not differ before and after an action is added. Only future states are affected.

The committed macro was added as an efficient way of checking a future state
without waiting for the planner to reach it. Each time an action is performed, the
effects are added to a list of committed facts – facts whose future values are already
known. For example if a vehicle, at time t, decides to move from A to B, the fact that
the vehicle, at time t + 1, must be at B is committed. Another vehicle can then, at time
t, decide not to visit B by using the committed macro to check if there exists any
other vehicles that have already committed to being there at t + 1.

The committed macro will not be part of future versions of TALplanner but will be
replaced by some other construction with a similar role but clearer semantics.

 56

5.4 Decimal Time with Sparse States
As mentioned in Chapter 4, some of the contest domains required operator durations
to be calculated with a precision of three decimal digits, which poses a problem for
TALplanner since it uses integer time throughout its implementation. To avoid the
problem, we multiplied durations by a thousand and later divided them to get the
correct figure. This practice introduces another problem. In ZenoTravel for example,
the operators have durations of more than a hundred time units. If multiplied, they
stretch to a hundred thousand. Originally, TALplanner created an array to contain all
the states and allow fast indexing to retrieve any state using a time point. When a
single action spans a hundred thousand time points, and a typical plan several million,
copious amounts of memory would be consumed. At each of the intermittent time
points, some fact about the world state may change as a result of an effect from an
operator. However, most of the time points are not interesting and do not correspond
to a change in the world state.

This problem was solved by implementing an alternative state representation where,
instead of indexing the array with time points, states have an extra field containing
the time, and only interesting states, those where some effect takes place, are stored.
This means that two consecutive states in the array can represent two completely
different time points. All states are still sorted chronologically so if the planner needs
to consult a state at a certain time point, a binary search can be performed to find it.
The new storage scheme trades some of the access efficiency for reasonable memory
use.

5.5 Shortest Path
Several of the contest domains benefited from finding the shortest path between two
nodes in a graph as a way to plan vehicles’ routes between cities or locations. The
well-known Dijkstra algorithm [11] was therefore implemented as a special feature,
the distfeature. Since roads and paths generally will not change their course
during planning, the shortest distances between all nodes in the graph can be pre-
calculated before the planning starts, and saved in a sorted list for each node. The list
for a node will contain that node’s shortest distances to all other nodes in the graph.
The distfeature is efficiently used in combination with the mindistfeature,
which returns the distance from a node to the closest node for which some test,
passed as an argument in the form of a logical formula, returns true. To implement
this the planner need only go through the origin node’s sorted distance list, returning
the first entry that satisfies the given test.

 57

5.6 Heuristics
Planning is a hard task and even supposing sufficient control rules are supplied,
guiding the planner to a solution, the solution actually found may be of inadequate
quality (measured in plan length or by some other estimate). Improving the solution
is left to the work of the search algorithm, backtracking and exploring vast number of
possible plans, trying to find one of higher quality. The planner is still directed by the
control rules, but not all domain knowledge is suitably expressed as absolute rules
that must never be broken. Some rules are only rules of thumb, correct in nine cases
out of ten but failing in special cases. Such rules are called heuristics, and a search
algorithm using them, a heuristic search.

A depth-first heuristic search was implemented in TALplanner but was not put to use
during the contest. Each domain specifies a set of expressions, estimating the cost to
reach the goal. The cost is typically, but not necessarily, the minimum number of
time points needed. All the expressions are combined and added to the accumulated
cost in the current state, creating an estimate of the total cost of a solution plan that
includes the current state. Instead of exploring the states that are possible to reach
from the current state in order, the planner chooses the state with the lowest cost first,
continuing with the next lowest and so on. When the combined estimate is designed
to be admissible, never overestimating the cost to reach the goal, the search consti-
tutes an A* search, which can be proven to be both complete and optimal.

The approach also provides so called anytime planning. After the first solution is
found, the planner can continue to search for better solutions. The best plan found so
far is remembered and can be returned at any time if the search is aborted.

5.7 Domain Visualization
When trying to find inefficiencies in the planner’s performance for a domain, much
time is spent analyzing the output and debug information from the planning process.
The information includes lists of which predicates are true in each state, and these
lists can be both long and difficult to read. To allow the user to tune the output to fit
the domain he is working on, a new TALplanner command line parameter was
defined, which accepts the name of a visualizer that the user has written. If the
parameter is present, instead of printing all state information, the planner makes a call
to a method in the named visualizer, passing the current world state in an internal
data format as a parameter. The method is then free to print whatever information it
sees fits in a more readable format tailored to the current planning domain. Examples
of tailoring for a logistics domain might be ordering all information concerning a city
into one list or grouping packages together with the trucks they are in.

 58

5.8 Graphical Visualization
Taking domain visualization a step further, a common set of tools that are used to
create a customized animated representation of the world state and planning progress
for each domain have been developed. This graphical visualization utility is named
TPVis. Conceptually the display consists of a set of nodes, which can be container
windows or atomic objects, optionally with edges between them. The windows are
suitable for displaying cities or vehicles and can contain other windows or objects
within the window content area. Things like people and equipment are better repre-
sented as atomic objects, which take up less space in the display area. Edges between
nodes can indicate any form of relationship between objects, the most obvious
interpretation being that two locations are connected by some transportation route.

The graphical visualization animates the actual movements of objects between
locations, creating a better instinctive feel for the domain, and the two-dimensional
graph display gives an overview that is difficult to provide using only text output. In
addition to animating a graph, TPVis simultaneously lists the partial plan leading up
to the current state and the problem goals that the planner tries to fulfill.

TPVis also provides a limited form of interactive planning since it, at any point in the
planning process, allows the user to force the planner to backtrack and explore a
different search branch.

The development of TPVis was not initiated until after the planning contest and no
graphical visualization was available during the work on the contest domains.

 59

Figure 5.1: Screenshot showing the graphical visualization utility.

5.9 PDDL to TALplanner Translation
Although it is obvious that an automatic translator from PDDL to TALplanner syntax
would have been useful, we expected that writing this translator would take more
time than translating the competition domains manually and therefore decided to
delay the implementation of this utility until after the competition. After spending
many hours translating the PDDL definition of the UMTranslog-2 domain, this
decision turned out to be questionable. The risk of making an error somewhere in the
translation also becomes imminent when dealing with large domains. Such an error
might be very difficult to detect if the error relaxes a constraint that is hardly ever
used, assuming a finite set of example problems for the domain, and almost impossi-
ble to detect without the use of a plan validation utility that uses the corresponding
PDDL definition as input. The planner will indeed find a plan, but the plan may
violate the constraint that was missed in translation and this fault would have to be
detected by inspection.

The automatic translation program was developed after the competition to lessen the
amount of work involved in the translation process and reduce the risk of introducing
errors in the definition. The program currently does not support the full PDDL syntax
but helps a great deal nonetheless.

 60

Chapter 6

Experimental Results

All the competition results have been compiled in one package and are available at
the competition web page [3]. This chapter provides comparisons between the results
for the three planners that competed in the hand-tailored planning track.

6.1 The Competitors
TALplanner should not need any more introductions, but the other two planners are
briefly described below.

6.1.1 TLPlan
TLPlan, developed by Bacchus and Kabanza [9], was one source of inspiration when
TALplanner was developed. It is a forward chaining planner that uses first order
temporal logic to specify control rules restricting the search. Unlike TALplanner,
TLPlan relies on control formula progression. Instead of evaluating the control
formula when a new state is created, the formula is progressed using a progression
algorithm, making the formula more specific as more actions are added to the plan. If
the formula, as a result of the progression, is reduced to false, that branch of the
search tree is pruned.

6.1.2 SHOP2
SHOP2, developed by Nau et al [13], is a hierarchical task network planner. The
planner first formulates the planning problem as a set of tasks that need to be accom-
plished. The tasks are then repeatedly decomposed into subtasks until primitive tasks,
that can be performed using one of the domain operators, are reached. Domain
specific knowledge can be used to control the search by specifying complex operator
preconditions or by adapting the decomposition of tasks to the domain.

6.2 Machine Specification
All planners used the same machine to generate the plans; a PC supplied by RM plc
[12] as a loan system. It is equipped with an AMD Athlon XP-1800+ CPU, 1Gb
RAM and the operating system is Mandrake Linux.

 61

6.3 Graphs of Competition Results
Following is a collection of graphs showing the planners’ performance. To save
space, only the most complex version, the Timed version, of each domain is included.
Two graphs are presented for each domain. The first shows a measure of plan cost for
the problems and the second shows the time the planners spent generating the
solution for the problem. Plan cost correspond to the time point at which the last
action in the plan has finished executing and the problem goals have been solved. A
lesser value means that the plan accomplishes the goals quicker, for example by
making better use of concurrency. The time is measured in milliseconds and a lesser
value means that the planner found its solution faster.

0

500

1000

1500

2000

2500

3000

3500

4000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

P
la

n
 c

o
st

TALplanner TLplan SHOP2

Figure 6.1: Cost graph for ZenoTravel Timed.

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

M
ill

is
ec

o
n

d
s

TALplanner TLplan SHOP2

Figure 6.2: Time graph for ZenoTravel Timed.

 62

The graphs in Figure 6.1 and Figure 6.2 show that although TALplanner produced
low cost plans, TLPlan matched that cost while solving the problems slightly faster.
The difference in architecture between SHOP2 and the other two planners is hinted at
by the distinct divergence of its time graph relative to the other planners.

0

100

200

300

400

500

600

700

800

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Problem

P
la

n
 c

o
st

TALplanner TLplan SHOP2

Figure 6.3: Cost graph for Depots Timed.

1

10

100

1000

10000

100000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Problem

M
ill

is
ec

o
n

d
s

TALplanner TLplan SHOP2

Figure 6.4: Time graph for Depots Timed.

Figure 6.3 and Figure 6.4 show more encouraging results collected from the Depots
domain. TALplanner produced plans of significantly lower cost and was sometimes
faster than TLPlan.

 63

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

P
la

n
 c

o
st

TALplanner TLplan SHOP2

Figure 6.5: Cost graph for DriverLog Timed.

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

M
ill

is
ec

o
n

d
s

TALplanner TLplan SHOP2

Figure 6.6: Time graph for DriverLog Timed.

In Figure 6.5 and Figure 6.6 TALplanner is in close competition with SHOP2 but
TLPlan leaves them both far behind.

 64

0

50

100

150

200

250

300

350

400

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

P
la

n
 c

o
st

TALplanner TLplan SHOP2

Figure 6.7: Cost graph for Rovers Timed.

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

Problem

M
ill

is
ec

o
n

d
s

TALplanner TLplan SHOP2

Figure 6.8: Time graph for Rovers Timed.

Figure 6.7 shows a remarkable symmetry between the three planners in the Rovers
domain, although TALplanner consistently has slightly lower cost plans. Figure 6.8
clearly indicates TALplanner as the fastest planner in this domain.

 65

0

500

1000

1500

2000

2500

3000

3500

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Problem

P
la

n
 c

o
st

TALplanner TLplan SHOP2

Figure 6.9: Cost graph for Satellite Timed.

1

10

100

1000

10000

100000

1000000

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16

Problem

M
ill

is
ec

o
n

d
s

TALplanner TLplan SHOP2

Figure 6.10: Time graph for Satellite Timed.

The graph in Figure 6.9 displays disastrous cost results for the plans by TALplanner
in the Satellite domain. One can only guess that taking advantage of the fact that the
triangle inequality was not fulfilled when turning the satellites and implementing the
suggestions in section 4.7.5 would improve the figures enough to compete with
TLPlan and SHOP2. Figure 6.10 does not provide much consolation by showing that
the plans were produced quite quickly.

 66

0

20

40

60

80

100

120

1 2 4 6 7 8 9 13 14 15

Problem

P
la

n
 c

o
st

TALplanner SHOP2

Figure 6.11: Cost graph for UMTranslog-2.

1

10

100

1000

10000

100000

1 2 4 6 7 8 9 13 14 15

Problem

M
ill

is
ec

o
n

d
s

TALplanner SHOP2

Figure 6.12: Time graph for UMTranslog-2.

TLPlan chose not to participate in the UMTranslog-2 domain, which might have been
a wise decision. If the time we put into this domain had been spent developing
control rules for the Numeric or Complex versions of the other domains, our problem
coverage would most certainly have been better. The gaps in the numbering of the
problem files correspond to the unsolvable problems mentioned in Chapter 4 and the
gap in TALplanner’s graph is the result of an incorrect plan generated for problem
13. Figure 6.11 shows the close race in plan cost between TALplanner and SHOP2
while Figure 6.12 separates the planners through a huge speed difference. TALplan-
ner is almost a hundred times faster in this domain.

 67

6.4 The Prizes
The contest organizers judged the planners’ performances based on the coverage, i.e.
the number of domains and domain versions each planner entered in the contest, the
cost of the solutions and the speed with which they were generated, and the success
ratio, i.e. the ratio between attempted problems and solved problems. Coverage was
especially important since one of the goals of the competition is to push the capabili-
ties of planning systems forward.

Two prizes were awarded in the hand-tailored competition track based on the above
criteria. TLPlan was recognized as demonstrating distinguished performance of the
first order and SHOP2 as demonstrating distinguished performance.

 68

Chapter 7

Conclusions

This thesis has provided an introduction to TALplanner and the International Plan-
ning Competition, described in detail the modeling of the competition domains for
use by TALplanner, listed the modifications and additions that have been made to the
planner, and presented the competition results. This chapter will conclude with a
discussion of what has been learned in the process and point to future directions of
research in the area of domain dependent planning.

7.1 Discussion
A most interesting observation can be made regarding TLPlan’s and TALplanner’s
use of domain dependent knowledge. Both teams refined the control rules to such a
degree that the planners almost never had to backtrack. Instead of searching for the
solution, strict control directed the planner straight to it. This does not mean that only
one solution can be found. If the user forces the planner to backtrack when the first
plan is complete, on the grounds of inadequate quality or for some other reason, the
planner will backtrack and generate alternative solutions. It does mean that the
planner is guaranteed to find a solution without using any search, acting more like an
algorithm than a planner. This raises the question of which real world problems are
really suitably solved by planning. Domain independent planners are more often than
not too inefficient to handle problems of reasonable size and domain dependent
planners behave like an algorithm, so why not use an algorithm instead? The answer
may be problems where near optimal solutions are needed but no known algorithm
exists which can provide them. In this case, a planner might use a combination of
control rules and heuristics to search for such solutions.

Another observation is the problem of overly specific control rules. When the inten-
tion is to prevent backtracking, the result is often control rules so restrictive that an
optimal solution cannot be achieved. It is too easy to think algorithmically, i.e. how
should the planner solve this problem, and force the planner to follow that algorithm
instead of thinking declaratively, i.e. what sequences of actions are always disadvan-
tageous in this problem domain. Finding the optimal solution is certainly not always
desired and most often intractable anyway, but in those cases where finding it is an
objective, extreme care has to be taken not to write any control rule banning it by
mistake.

 69

7.2 Future Work.
Heuristic search was implemented but not tested in more than a few of the domains.
This situation will have to be corrected by examining the benefits offered by the use
of heuristics in more detail. Also, other search strategies than A* search can be
implemented and tested, hill climbing being a prime candidate.

The most important development would be a way for the planner to discover control
rules by itself. Currently a lot of work needs to be put into the control rules before
good quality plans emerge. Any automation of this process would surely save time
and be of great value, but research on this by others has already begun and it is not
easily done. One approach could be to analyze the domain definition, trying to extract
rules from it. Another approach would be to let the planner solve a set of sample
problems, extracting rules from patterns found in the search process and the solution
plans.

 70

Bibliography

[1] P. Doherty, J. Gustafsson, L. Karlsson and J. Kvarnström, (TAL) Temporal
Action Logics: Language Specification and Tutorial. Electronic Transactions on
Artificial Intelligence, Vol. 2 Issue 3-4: 273-306, 1998.

[2] P. Doherty and J. Kvarnström, TALplanner: A Temporal Logic Based Planner.
AI Magazine, Fall Issue, 2001.

[3] D. Long and M. Fox, International Planning Competition 2002
http://www.dur.ac.uk/d.p.long/competition.html, May 2002.

[4] J. Kvarnström, Applying Domain Analysis Techniques for Domain-Dependent
Control in TALplanner. Proceedings of the Sixth International Conference on
Artificial Intelligence Planning and Scheduling (AIPS-02): 101-110, AAAI
Press, 2002.

[5] J. Penberthy and D. Weld, Temporal Planning with Continuous Change.
Proceedings of the Twelfth National Conference on Artificial Intelligence
(AAAI-94), Vol. 2: 1010-1015, Seattle, Washington, USA. AAAI Press/MIT
Press, 1994.

[6] R. Fikes and N. Nilsson, STRIPS: A New Approach to the Application of
Theorem Proving to Problem Solving. Artificial Intelligence Vol. 2 Issue 3: 189-
208, 1971.

[7] M. Fox and D. Long, An Extension to PDDL for Expressing Temporal Planning
Domains. http://www.dur.ac.uk/d.p.long/pddl2.ps.gz, August 2002.

[8] D. McDermott et al, PDDL – The Planning Domain Definition Language.
ftp://ftp.cs.yale.edu/pub/mcdermott/software/pddl.tar.gz, August 2002.

[9] F. Bacchus and F. Kabanza, Using Temporal Logic to Control Search in a
Forward Chaining Planner. New Directions in AI Planning: 141-153, ISO
Press, 1996.

[10] S. Andrews, B. Kettler, K. Erol and J. Hendler, UM Translog: A Planning
Domain for the Development and Benchmarking of Planning Systems.
http://www.cs.umd.edu/projects/plus/UMT/umt.ps, September 2002.

[11] E. Dijkstra, A Note on Two Problems in Connexion with Graphs, Numerische
Mathematik 1: 269-271, 1959.

[12] RM plc company web page. http://www.rm.com, September 2002.

 71

[13] D. Nau, H. Muñoz-Avila, Y. Cao, A. Lotem, and S. Mitchell. Total-Order
Planning with Partially Ordered Subtasks. Proceedings of the 17th International
Joint Conference on Artificial Intelligence (IJCAI-2001): 425-430, Seattle,
Washington, USA, 1994.

[14] P. Doherty, G. Granlund, K. Kuchcinski, E. Sandewall, K. Nordberg, E.
Skarman, J. Wiklund. The WITAS Unmanned Aerial Vehicle Project.
Proceedings of the 14th European Conference on Artificial Intelligence (ECAI-
00): 747-755, ISO Press, 2000.

[15] R. Fikes, P. Hart, N. Nilsson. Learning and Executing Generalized Robot Plans.
Artificial Intelligence Vol 3, Issue 4: 251-288, 1972.

[16] S. Chien, R. Kambhampati, C. Knoblock, Fifth International Conference on AI
Planning and Scheduling. http://www-aig.jpl.nasa.gov/public/aips00/
aips_home.html, September 2002.

[17] J. Kvarnström, P. Doherty, P. Haslum, Extending TALplanner with Concurrency
and Resources. Proceedings of the 14th European Conference on Artificial
Intelligence (ECAI-00), ISO Press, 2000.

[18] P. Doherty, J.Kvarnström, TALplanner: An Empirical Investigation of a
Temporal Logic-based Forward Chaining Planner. Proceedings of the 6th
International Workshop on the Temporal Representation and Reasoning
(TIME99), Orlando, Florida, 1999.

[19] J. Kvarnström, P. Doherty, TALplanner: A Temporal Logic Based Forward
Chaining Planner. Annals of Mathematics and Artificial Intelligence (AMAI),
Volume 30: 119-169, 2001.

 72

Appendix A

Terminology

Domain
A set of related operators, predicates, and data types make up a planning domain.

Problem
A problem is a set of objects, a list of predicates that specify an initial state by
enumerating the facts that are true before any planning has begun, and a set of goals
that must be fulfilled. The planner receives a domain definition and a problem as
input and generates a solution plan (if possible) as output.

Operator
An operator is a formal definition of an action that is possible to perform in a specific
planning domain. It consists of a set of preconditions, which must hold for the
operator to be applicable, and a set of (possibly conditional) effects, which are
realized if the operator is applied. Operators contain variables that represent objects
in a domain problem. Often these variables are typed and hence limited to a subset of
the objects in the problem, e.g. all vehicles in a logistics problem.

Action
An action is an instantiated operator. All variables in the operator have been instanti-
ated to specific objects in a planning problem.

Plan
In the case of sequential planning where all operators take one time step, a plan is a
sequence of actions. If time is explicit in the operators, a plan must include timed
actions. When concurrent planning is used, a plan is a set of timed actions, not
necessarily in a sequence.

State
A state is a set of assignments of values to state variables and describes the state of
the world at a specific time point. Many planners support only boolean state vari-
ables, which are either true or false, but state variables in TALplanner are based on
TAL and can represent boolean values, objects in the domain, or numeric values. The
only limitation is that the value domain must be finite. E.g. if a state variable is of an
integer type, a lower and an upper bound must be supplied.

 73

Feature
A TALplanner state variable representing an object, a boolean value, or a numeric
value is called a feature.

Resource
Unlike an ordinary feature, a resource, res, has multiple values associated with it: the
amount that has been borrowed in a state ($borrowed(res)), the amount borrowed
nonexclusively ($borrow_nonex(res)), the amount produced ($produced(res)),
and the amount that has been consumed ($consumed(res)). These values are the
sums of the four corresponding types of resource effects that took place in the state.
Given these values and the amount that was initially available ($init(res)), the
planner can automatically calculate how much will be available in the state after all
action effects have taken place ($available(res)). This value must be between the
minimum value allowed ($minimum(res)) and the maximum value allowed
($maximum(res)). When considering only sequential planning, a resource can be
modeled with a regular fluent by assigning new values to it in the effects of an
operator although this method does not work with concurrent planning where proper
resource handling is required.

 74

Appendix B

Domain Definitions

B.1 ZenoTravel STRIPS
#domain thing :elements {}
#domain aircraft :parent thing :elements {}
#domain person :parent thing :elements {}
#domain city :elements {}
#domain flevel :elements {}

#domain integer :integer :lb 0 :ub 10000

#feature at(thing, city) :domain boolean :injective
#feature in(person, aircraft) :domain boolean :injective
#feature fuel-level(aircraft, flevel) :domain boolean :injective
#feature next(flevel, flevel) :domain boolean :double-injective

// An aircraft needs-to-visit a city if:
// 1: It’s a goal.
// 2: It carries a passenger going there.
#feature needs-to-visit(aircraft, city) :domain boolean :noinit
#deffeature in-wrong-city(thing) :domain boolean
#deffeature all-persons-at-their-destinations-or-in-planes :domain boolean

// The following assertions enable the planner to optimize the application of
// some control rules.
// No object can be both a person and an aircraft.
#assert forall person, aircraft [person != aircraft]
// No person can be both in an aircraft and in a city.
#assert forall t, person, aircraft, city [
 [t] in(person, aircraft) -> !at(person, city)]

#operator board(person, aircraft, city)
 :at t
 :precond [t] at(person, city) &
 [t] at(aircraft, city)
 :context
 :effects [+1] at(person, city) := false,
 [+1] in(person, aircraft) := true,
 [+1] at(aircraft, city) := true // Prevail
 :context
 // Loop through all cities and look for the person’s
 // destination. Add that to the places that the aircraft
 // needs to visit.
 :forall city2
 :precond goal(at(person, city2))

 75

 :effects [+1] needs-to-visit(aircraft, city2) := true

#operator debark(person, aircraft, city)
 :at t
 :precond [t] in(person, aircraft) &
 [t] at(aircraft, city)
 :context
 :effects [+1] in(person, aircraft) := false,
 [+1] at(person, city) := true,
 [+1] at(aircraft, city) := true // Prevail
 :context
 // The aircraft has to visit this city again if it’s a goal and
 // it first has to travel somewhere else to drop a passenger
 // off.
 :precond !(goal(at(aircraft, city)) &
 (exists person2 [
 $committed(t+1, in(person2, aircraft), true) &
 goal(!at(person2, city))] |
 exists person2 [
 [t] in(person2, aircraft) &
 goal(!at(person2, city))]))
 :effects [+1] needs-to-visit(aircraft, city) := false

#operator fly(aircraft, city1, city2, flevel1, flevel2)
 :at t
 :precond [t] at(aircraft, city1) &
 [t] fuel-level(aircraft, flevel1) &
 ([t] next(flevel2, flevel1)) &
 // Should be generated automatically:
 !$committed(t+1, at(aircraft, city1), false)
 :context
 :effects [+1] at(aircraft, city1) := false,
 [+1] at(aircraft, city2) := true,
 [+1] fuel-level(aircraft, flevel1) := false,
 [+1] fuel-level(aircraft, flevel2) := true

//#operator zoom(aircraft, city1, city2, flevel1, flevel2, flevel3)
// :at t
// :precond [t] at(aircraft, city1) &
// [t] fuel-level(aircraft, flevel1) &
// [t] next(flevel2, flevel1) &
// [t] next(flevel3, flevel2)
// :context
// :effects [+1] at(aircraft, city1) := false,
// [+1] at(aircraft, city2) := true,
// [+1] fuel-level(aircraft, flevel1) := false,
// [+1] fuel-level(aircraft, flevel3) := true

#operator refuel(aircraft, city, flevel, flevel1)
 :at t
 :precond [t] fuel-level(aircraft, flevel) &
 [t] next(flevel, flevel1) &
 ([t] at(aircraft, city)) &
 [t] $index(flevel) == 0 // Only refuel when empty.
 :context
 :effects [+1] fuel-level(aircraft, flevel) := false,
 [+1] fuel-level(aircraft, flevel1) := true,
 [+1] at(aircraft, city) := true // Prevail

// Initialize the needs-to-visit defined feature, which is later updated in the
// operator definitions.
#dom forall aircraft, city [

 76

 [0] needs-to-visit(aircraft, city) <->
 (goal(at(aircraft, city)) |
 exists person [
 [0] in(person, aircraft) &
 goal(at(person, city))])]

// A plane is allowed to fly to a city if:
// 1: It’s a goal, the plane is empty and no other persons need to be
// transported.
// 2: The plane is carrying a passenger destined for the city.
// 3: A person in the city wants to leave, has not committed to leaving the city
// already,
// no other aircraft has committed to go to the city and either the plane
// "needs-to-visit" the city or there doesn’t exists any aircraft that
// "needs-to-visit" the city and no aircraft that will need to drop someone
// off in the city.
#control :name "planes-always-fly-to-goal"
 forall t, aircraft, city [
 [t] at(aircraft, city) ->
 ([t+1] at(aircraft, city)) |
 exists city2 [
 city2 != city &
 ([t+1] at(aircraft, city2)) &
 ((goal(at(aircraft, city2)) &
 !exists person [
 [t] in(person, aircraft)] &
 [t] all-persons-at-their-destinations-or-in-planes) |
 exists person [
 [t] in(person, aircraft) &
 goal(at(person, city2))] |
 exists person [
 ((([t] at(person, city2)) &
 !$committed(t+1, at(person, city2), false)) &
 [t] in-wrong-city(person)) &
 !exists aircraft2 [
 $committed(t+1,
 at(aircraft2, city2),
 true)] &
 (([t] needs-to-visit(aircraft, city2)) |
 !exists aircraft2 [
 aircraft2 != aircraft &
 [t] needs-to-visit(aircraft2, city2)] &
 !exists aircraft2, person2 [
 aircraft2 != aircraft &
 $committed(t+1,
 in(person2, aircraft2),
 true) &
 goal(at(person2, city2))])])]]

// A plane is not allowed to fly to it’s goal until all it’s passengers that are
// destined for other cities have been delivered.
#control :name "planes-always-deliver-passengers-first"
 forall t, aircraft, city [
 [t] at(aircraft, city) ->
 ([t+1] at(aircraft, city)) |
 exists city2 [
 city2 != city &
 ([t+1] at(aircraft, city2)) &
 (goal(at(aircraft, city2)) ->
 forall person, city3 [
 [t] in(person, aircraft) &
 goal(at(person, city3)) -> city3 = city2])]]

 77

// People only get on planes if they need to go somewhere.
// They only get on a plane if:
// 1: The plane already needs to visit the person’s destination
// 2: There isn’t any other plane that already needs to visit the person’s
// current location and goal.
#control :name "only-board-when-neccessary"
 forall t, person, aircraft [
 ([t] !in(person, aircraft) &
 [t+1] in(person, aircraft)) ->
 exists city1, city2 [
 [t] at(person, city1) &
 goal(at(person, city2)) &
 city1 != city2 &
 ([t] needs-to-visit(aircraft, city2) |
 !exists aircraft2 [
 !at(aircraft, city2) &
 needs-to-visit(aircraft2, city1) &
 needs-to-visit(aircraft2, city2)])]]

// People only debark when they’ve arrived at their destination.
#control :name "only-debark-when-in-goal-city"
 forall t, person, aircraft [
 [t] in(person, aircraft) ->
 ([t+1] in(person, aircraft)) |
 exists city [
 [t] at(aircraft, city) &
 goal(at(person, city))]]

#define [t] all-persons-at-their-destinations-or-in-planes:
 forall person, city [
 goal(at(person, city)) ->
 [t] at(person, city) |
 exists aircraft [in(person, aircraft)]]

#define [t] in-wrong-city(thing):
 exists city1, city2 [
 [t] at(thing, city1) &
 goal(at(thing, city2)) &
 city1 != city2]

B.2 ZenoTravel SimpleTime
#domain integer :integer :lb 0 :ub 10000

#domain thing :elements {}
#domain aircraft :parent thing :elements {}
#domain person :parent thing :elements {}
#domain city :elements {}
#domain flevel :elements {}

#feature at(thing, city) :domain boolean :injective
#feature in(person, aircraft) :domain boolean :injective
#feature fuel-level(aircraft, flevel) :domain boolean :injective
#feature next(flevel, flevel) :domain boolean :double-injective

// Try to limit the number of refuels for each plane using a counter.
#feature number-of-refuels(aircraft) :domain integer :noinit
#feature needs-to-visit(aircraft, city) :domain boolean :noinit

#deffeature in-wrong-city(thing) :domain boolean
#deffeature all-persons-at-their-destinations :domain boolean
#deffeature reasonable-plane-location(aircraft, city) :domain boolean :uncached

 78

// True when the aircraft has taken off but not yet reached it’s destination.
#feature flying-to(aircraft, city) :domain boolean :injective
// True while aircraft has started refueling but not finished.
#feature refueling(aircraft) :domain boolean
// True while person has started boarding but not finished.
#feature boarding(person, aircraft) :domain boolean

// Resource used as a semaphore to indicate that the aircraft is busy.
#resource sem_aircraft(aircraft) :domain integer :preference :none

#assert forall aircraft, person [aircraft != person]

// Initialize the semaphore.
#dom [0] forall aircraft [$init(sem_aircraft(aircraft)) == 1 &
 $minimum(sem_aircraft(aircraft)) == 0 &
 $maximum(sem_aircraft(aircraft)) == 1]

#operator board(person, aircraft, city)
 :at t
 :precond [t] at(person, city) &
 [t] at(aircraft, city)
 :duration 20
 // Borrow this aircrafts semaphore to prevent it from flying off
 // while the passenger boards. :borrow-nonex is non exclusive so
 // that only actions which needs the aircraft exlusively will be
 // forbidden, i.e. zoom.
 :resources [+1,+20] :borrow-nonex sem_aircraft(aircraft) :amount 1
 :context
 :effects [+1] at(person, city) := false,
 [+20] in(person, aircraft) := true,
 [+1,+19] boarding(person, aircraft) := true,
 [+20] boarding(person, aircraft) := false
 :context
 :forall city2
 :precond goal(at(person, city2))
 :effects [+1] needs-to-visit(aircraft, city2) := true

#operator debark(person, aircraft, city)
 :at t
 :precond [t] in(person, aircraft) &
 [t] at(aircraft, city)
 :duration 30
 // Don’t let the plane fly off.
 :resources [+1,+30] :borrow-nonex sem_aircraft(aircraft) :amount 1
 :context
 :effects [+1] in(person, aircraft) := false,
 [+30] at(person, city) := true
 :context
 :precond !(goal(at(aircraft, city)) &
 (exists person2 [
 $committed(t+1, in(person2, aircraft), true) &
 goal(!at(person2, city))] |
 exists person2 [
 [t] in(person2, aircraft) &
 goal(!at(person2, city))]))
 :effects [+1] needs-to-visit(aircraft, city) := false

//#operator fly(aircraft, city1, city2, flevel1, flevel2)
// :at t
// :precond [t] at(aircraft, city1) &
// [t] fuel-level(aircraft, flevel1) &
// [t] next(flevel2, flevel1) &

 79

// city1 != city2 &
// // Should be generated automatically:
// !$committed(t+1, at(aircraft, city1), false)
// :context
// :effects [+1] at(aircraft, city1) := false,
// [+1] flying-to(aircraft, city2) := true,
// [+180] at(aircraft, city2) := true,
// [+180] fuel-level(aircraft, flevel1) := false,
// [+180] fuel-level(aircraft, flevel2) := true,
// [+180] flying-to(aircraft, city2) := false

#operator zoom(aircraft, city1, city2, flevel1, flevel2, flevel3)
 :at t
 :precond [t] at(aircraft, city1) &
 [t] fuel-level(aircraft, flevel1) &
 [t] next(flevel2, flevel1) &
 ([t] next(flevel3, flevel2)) &
 // Should be generated automatically:
 !$committed(t+1, at(aircraft, city1), false)
 :duration 100
 // Borrow this aircraft exclusively. None of the other operators
 // that need the resource can be used at the same time, i.e.
 // board and debark.
 :resources [+1,+100] :borrow sem_aircraft(aircraft) :amount 1
 :context
 :effects [+1] at(aircraft, city1) := false,
 [+1] flying-to(aircraft, city2) := true,
 [+100] at(aircraft, city2) := true,
 [+100] fuel-level(aircraft, flevel1) := false,
 [+100] fuel-level(aircraft, flevel3) := true,
 [+100] flying-to(aircraft, city2) := false,
 // Reset the refuel counter so that the aircraft can refuel when
 // it has arrived.
 [+1] number-of-refuels(aircraft) := 0

#operator refuel(aircraft, city, flevel, flevel1)
 :at t
 :precond [t] fuel-level(aircraft, flevel) &
 [t] next(flevel, flevel1) &
 [t] at(aircraft, city) &
 ([t] !refueling(aircraft)) &
 // An aircraft isn’t allowed to refuel more than once unless
 // there exists a reasonable city for it to travel to.
 (([t] number-of-refuels(aircraft) < 1) |
 exists city2 [
 [t] city2 != city &
 [t] reasonable-plane-location(aircraft, city2)])
 :duration 73
 // Don’t let the plane fly off.
 :resources [+1,+73] :borrow-nonex sem_aircraft(aircraft) :amount 1
 :context
 :effects [+73] fuel-level(aircraft, flevel) := false,
 [+73] fuel-level(aircraft, flevel1) := true,
 // Update the refuel counter.
 [+1] number-of-refuels(aircraft) :=
 value(t, number-of-refuels(aircraft) + 1),
 [+1] refueling(aircraft) := true,
 [+73] refueling(aircraft) := false

// Initialize the refuel counter to zero for all planes.
#dom forall aircraft [[0] number-of-refuels(aircraft) == 0]

 80

#dom forall aircraft, city [
 [0] needs-to-visit(aircraft, city) <->
 (goal(at(aircraft, city)) |
 exists person [
 [0] in(person, aircraft) &
 goal(at(person, city))])]

// Only fly to cities which are reasonable-plane-location’s for this aircraft.
#control :name "planes-always-fly-to-goal"
 forall t, aircraft, city [
 [t] at(aircraft, city) ->
 ([t+1] at(aircraft, city)) |
 exists city2 [
 city2 != city &
 ([t+1] flying-to(aircraft, city2)) &
 [t] reasonable-plane-location(aircraft, city2)]]

// A destination is reasonable for a plane if:
// 1: It’s a goal and no other persons need to be transported.
// 2: The plane is carrying a passenger destined for the city.
// 3: A person in the city wants to leave, has not committed to leaving the city
// already, no other aircraft has committed to go to the city and either the
// plane "needs-to-visit" the city or there doesn’t exists any aircraft that
// "needs-to-visit" the city and no aircraft that will need to drop someone
// off in the city.
#define [t] reasonable-plane-location(aircraft, city):
 ((goal(at(aircraft, city)) &
 [t] all-persons-at-their-destinations) |
 exists person [
 [t] in(person, aircraft) &
 goal(at(person, city))] |
 exists person [
 ((([t] at(person, city)) &
 !$committed(t+1, at(person, city), false)) &
 [t] in-wrong-city(person)) &
 !exists aircraft2 [
 $committed(t+1, flying-to(aircraft2, city), true)] &
 (([t] needs-to-visit(aircraft, city)) |
 !exists aircraft2 [
 aircraft2 != aircraft &
 [t] needs-to-visit(aircraft2, city)] &
 (!exists aircraft2, person2 [
 aircraft2 != aircraft &
 $committed(t+1, boarding(person2, aircraft2), true) &
 goal(at(person2, city))] |
 !exists aircraft2, person2 [
 aircraft2 != aircraft &
 $committed(t+1, in(person2, aircraft2), true) &
 goal(at(person2, city))]))])

#control :name "planes-always-deliver-passengers-first"
 forall t, aircraft, city [
 [t] at(aircraft, city) ->
 ([t+1] at(aircraft, city)) |
 exists city2 [
 city2 != city &
 ([t+1] flying-to(aircraft, city2)) &
 (goal(at(aircraft, city2)) ->
 forall person, city3 [
 [t] in(person, aircraft) &
 goal(at(person, city3)) -> city3 = city2])]]

#control :name "only-board-when-neccessary"
 forall t, person, city1 [

 81

 [t] at(person, city1) ->
 ([t+1] at(person, city1)) |
 exists aircraft, city2 [
 [t] at(person, city1) &
 goal(at(person, city2)) &
 city1 != city2 &
 ([t] needs-to-visit(aircraft, city2) |
 !exists aircraft2 [
 !at(aircraft, city2) &
 needs-to-visit(aircraft2, city1) &
 needs-to-visit(aircraft2, city2)])]]

#control :name "only-debark-when-in-goal-city"
 forall t, person, aircraft [
 [t] in(person, aircraft) ->
 ([t+1] in(person, aircraft)) |
 exists city [
 [t] at(aircraft, city) &
 goal(at(person, city))]]

#define [t] all-persons-at-their-destinations:
 forall person, city [
 goal(at(person, city)) -> [t] at(person, city)]

#define [t] in-wrong-city(thing):
 exists city1, city2 [
 [t] at(thing, city1) &
 goal(at(thing, city2)) &
 city1 != city2]

B.3 ZenoTravel Timed
// Tell the planner to divide all durations by one thousand before they are
// displayed.
#timescale 0.001

#domain integer :integer :lb 0 :ub 100000000

#domain thing :elements {}
#domain aircraft :parent thing :elements {}
#domain person :parent thing :elements {}
#domain city :elements {}

#feature at(thing, city) :domain boolean :injective
#feature in(person, aircraft) :domain boolean :injective
#feature fuel(aircraft) :domain integer
#feature distance(city, city) :domain integer :function
#feature slow-speed(aircraft) :domain integer :function
#feature fast-speed(aircraft) :domain integer :function
#feature slow-burn(aircraft) :domain integer :function
#feature fast-burn(aircraft) :domain integer :function
#feature capacity(aircraft) :domain integer :function
#feature refuel-rate(aircraft) :domain integer :function
// total-fuel-used was meant to be used in optimizing directives
// to the planners. Instead of completing the task as fast as
// possible, they could try to minimize fuel use. This feature
// was never used in the Time version, so it’s commented out.
//#feature total-fuel-used :domain integer
#feature boarding-time :domain integer :function
#feature debarking-time :domain integer :function

#feature needs-to-visit(aircraft, city) :domain boolean :noinit

 82

#deffeature in-wrong-city(thing) :domain boolean
#deffeature all-persons-at-their-destinations :domain boolean
#deffeature reasonable-plane-location(aircraft, city) :domain boolean :uncached
#deffeature fly-better-than-zoom(aircraft, city, city) :domain boolean

#feature flying-to(aircraft, city) :domain boolean :injective
#feature refueling(aircraft) :domain boolean
#feature boarding(person, aircraft) :domain boolean

#resource sem_aircraft(aircraft) :domain integer :preference :none

#assert forall aircraft, person [aircraft != person]

#dom [0] forall aircraft [$init(sem_aircraft(aircraft)) == 1 &
 $minimum(sem_aircraft(aircraft)) == 0 &
 $maximum(sem_aircraft(aircraft)) == 1]

#operator board(person, aircraft, city)
 :at t
 :precond [t] at(person, city) &
 [t] at(aircraft, city)
 // boarding-time specifies the time it takes to board a plane.
 // We multiply it by 1000 since we set the timescale to 0.001.
 // The resulting value is converted to the special time type
 // and the result of the somewhat cumbersome expression is
 // bound to the variable t2 for ease of reference.
 :duration $maketime(value(t, 1000 * boarding-time)) :as t2
 :resources [+1,+t2] :borrow-nonex sem_aircraft(aircraft) :amount 1
 :context
 :effects [+1] at(person, city) := false,
 [+t2] in(person, aircraft) := true,
 [+1,+t2 - 1] boarding(person, aircraft) := true,
 [+t2] boarding(person, aircraft) := false
 :context
 :forall city2
 :precond goal(at(person, city2))
 :effects [+1] needs-to-visit(aircraft, city2) := true

#operator debark(person, aircraft, city)
 :at t
 :precond [t] in(person, aircraft) &
 [t] at(aircraft, city)
 :duration $maketime(value(t, 1000 * debarking-time)) :as t2
 :resources [+1,+t2] :borrow-nonex sem_aircraft(aircraft) :amount 1
 :context
 :effects [+1] in(person, aircraft) := false,
 [+t2] at(person, city) := true
 :context
 :precond !(goal(at(aircraft, city)) &
 (exists person2 [
 $committed(t+1, in(person2, aircraft), true) &
 goal(!at(person2, city))] |
 exists person2 [
 [t] in(person2, aircraft) &
 goal(!at(person2, city))]))
 :effects [+1] needs-to-visit(aircraft, city) := false

#operator fly(aircraft, city1, city2)
 :at t
 :precond [t] at(aircraft, city1) &
 [t] fuel(aircraft) >= distance(city1, city2) *
 slow-burn(aircraft) &

 83

 [t] fly-better-than-zoom(aircraft, city1, city2) &
 city1 != city2
:duration $maketime(value(t, 1000 * distance(city1, city2) /
 slow-speed(aircraft))) :as t2
 :resources [+1,+t2] :borrow sem_aircraft(aircraft) :amount 1
 :context
 :effects [+1] at(aircraft, city1) := false,
 [+1] flying-to(aircraft, city2) := true,
 [+t2] at(aircraft, city2) := true,
 [+t2] flying-to(aircraft, city2) := false,
// [+t2] total-fuel-used := value(t, total-fuel-used +
// distance(city1, city2) *
// slow-burn(aircraft)),
 [+t2] fuel(aircraft) := value(t, fuel(aircraft) -
 distance(city1, city2) *
 slow-burn(aircraft))

#operator zoom(aircraft, city1, city2)
 :at t
 :precond [t] at(aircraft, city1) &
 [t] fuel(aircraft) >= distance(city1, city2) *
 fast-burn(aircraft) &
 [t] !fly-better-than-zoom(aircraft, city1, city2) &
 city1 != city2
 :duration $maketime(value(t, 1000 * distance(city1, city2) /
 fast-speed(aircraft))) :as t2
 :resources [+1,+t2] :borrow sem_aircraft(aircraft) :amount 1
 :context
 :effects [+1] at(aircraft, city1) := false,
 [+1] flying-to(aircraft, city2) := true,
 [+t2] at(aircraft, city2) := true,
 [+t2] flying-to(aircraft, city2) := false,
// [+t2] total-fuel-used := value(t, total-fuel-used -
// distance(city1, city2) *
// fast-burn(aircraft)),
 [+t2] fuel(aircraft) := value(t, fuel(aircraft) -
 distance(city1, city2) *
 fast-burn(aircraft))

#operator refuel(aircraft, city)
 :at t
 :precond [t] capacity(aircraft) > fuel(aircraft) &
 [t] at(aircraft, city) &
 ([t] !refueling(aircraft)) &
 exists city2 [
 [t] reasonable-plane-location(aircraft, city2) &
 city != city2]
 :duration $maketime(value(t, 1000 *
 (capacity(aircraft) - fuel(aircraft)) /
 refuel-rate(aircraft))) :as t2
 :resources [+1,+t2] :borrow-nonex sem_aircraft(aircraft) :amount 1
 :context
 :effects [+1,+t2 - 1] refueling(aircraft) := true,
 [+t2] refueling(aircraft) := false,
 [+t2] fuel(aircraft) := value(t, capacity(aircraft))

#dom forall aircraft, city [
 [0] needs-to-visit(aircraft, city) <->
 (goal(at(aircraft, city)) |
 exists person [
 [0] in(person, aircraft) &
 goal(at(person, city))])]

 84

#control :name "planes-always-fly-to-goal"
 forall t, aircraft, city [
 [t] at(aircraft, city) ->
 ([t+1] at(aircraft, city)) |
 exists city2 [
 city2 != city &
 ([t+1] flying-to(aircraft, city2)) &
 [t] reasonable-plane-location(aircraft, city2)]]

#define [t] reasonable-plane-location(aircraft, city):
 (goal(at(aircraft, city)) &
 [t] all-persons-at-their-destinations) |
 exists person [
 [t] in(person, aircraft) &
 goal(at(person, city))] |
 exists person [
 ((([t] at(person, city)) &
 !$committed(t+1, at(person, city), false)) &
 [t] in-wrong-city(person)) &
 !exists aircraft2 [
 $committed(t+1, flying-to(aircraft2, city), true)] &
 (([t] needs-to-visit(aircraft, city)) |
 !exists aircraft2 [
 aircraft2 != aircraft &
 [t] needs-to-visit(aircraft2, city)] &
 (!exists aircraft2, person2 [
 aircraft2 != aircraft &
 $committed(t+1, boarding(person2, aircraft2), true) &
 goal(at(person2, city))] |
 !exists aircraft2, person2 [
 aircraft2 != aircraft &
 $committed(t+1, in(person2, aircraft2), true) &
 goal(at(person2, city))]))]

#control :name "planes-always-deliver-passengers-first"
 forall t, aircraft, city [
 [t] at(aircraft, city) ->
 ([t+1] at(aircraft, city)) |
 exists city2 [
 city2 != city &
 ([t+1] flying-to(aircraft, city2)) &
 (goal(at(aircraft, city2)) ->
 forall person, city3 [
 [t] in(person, aircraft) &
 goal(at(person, city3)) -> city3 = city2])]]

#control :name "only-board-when-neccessary"
 forall t, person, city1 [
 [t] at(person, city1) ->
 ([t+1] at(person, city1)) |
 exists aircraft, city2 [
 [t] at(person, city1) &
 goal(at(person, city2)) &
 city1 != city2 &
 ([t] needs-to-visit(aircraft, city2) |
 [t] !exists aircraft2 [
 !at(aircraft, city2) &
 needs-to-visit(aircraft2, city1) &
 needs-to-visit(aircraft2, city2)])]]

#control :name "only-debark-when-in-goal-city"
 forall t, person, aircraft [
 [t] in(person, aircraft) ->

 85

 ([t+1] in(person, aircraft)) |
 exists city [
 [t] at(aircraft, city) &
 goal(at(person, city))]]

#define [t] all-persons-at-their-destinations:
 forall person, city [
 goal(at(person, city)) -> [t] at(person, city)]

#define [t] in-wrong-city(thing):
 exists city1, city2 [
 [t] at(thing, city1) &
 goal(at(thing, city2)) &
 city1 != city2]

// An aircraft needs to fly from city1 to city2.
// It should use fly instead of zoom if:
#define [t] fly-better-than-zoom(aircraft, city1, city2):
 // If it’s faster wrt speed and refueling
 ([t] (10000 / slow-speed(aircraft) +
 10000 * slow-burn(aircraft) / refuel-rate(aircraft)) <
 (10000 / fast-speed(aircraft) +
 10000 * fast-burn(aircraft) / refuel-rate(aircraft))) |
 // If zoom is impossible across this distance
 ([t] distance(city1, city2) * fast-burn(aircraft) >
 capacity(aircraft)) |
 // If zoom has to refuel but fly doesn’t
 ([t] fuel(aircraft) >= distance(city1, city2) * slow-burn(aircraft) &
 fuel(aircraft) < distance(city1, city2) * fast-burn(aircraft))

B.4 Depots STRIPS
#domain integer :integer :lb 0 :ub 1000

#domain object :elements {}
#domain place :parent object :elements {}
#domain locatable :parent object :elements {}
#domain depot :parent place :elements {}
#domain distributor :parent place :elements {}
#domain truck :parent locatable :elements {}
#domain hoist :parent locatable :elements {}
#domain surface :parent locatable :elements {}
#domain pallet :parent surface :elements {}
#domain crate :parent surface :elements {}

#feature at(locatable, place) :domain boolean :injective
// generalized-at is true for a crate and a place if the crate is at the place
// or being lifted by a hoist at the place.
#feature generalized-at(crate, place) :domain boolean :injective :noinit
 :secondary
#feature on(crate, surface) :domain boolean :double-injective
#feature in(crate, truck) :domain boolean :injective
#feature lifting(hoist, crate) :domain boolean :double-injective
#feature available(hoist) :domain boolean :secondary
#feature clear(surface) :domain boolean :secondary

#feature need-to-move(surface) :domain boolean :noinit :secondary
#deffeature need-to-move-init(surface) :domain boolean
#feature need-to-be-at(crate, place) :domain boolean :injective :noinit
 :secondary
#deffeature need-to-be-at-init(crate, place) :domain boolean
#feature goodtower(surface) :domain boolean :noinit
#deffeature goodtower-init(surface) :domain boolean

 86

#resource sem_truck(truck) :domain integer :preference :none
#resource sem_crate(crate) :domain integer :preference :none

#assert forall t, crate, surface, hoist [
 [t] on(crate, surface) -> [t] !lifting(hoist, crate)]
#assert forall t, crate, surface, hoist [
 [t] lifting(hoist, crate) -> [t] !on(crate, surface)]
#assert forall t, crate, hoist, truck [
 [t] lifting(hoist, crate) -> [t] !in(crate, truck)]

#dom [0] forall truck [$init(sem_truck(truck)) == 1 &
 $minimum(sem_truck(truck)) == 0 &
 $maximum(sem_truck(truck)) == 1]
#dom [0] forall crate [$init(sem_crate(crate)) == 1 &
 $minimum(sem_crate(crate)) == 0 &
 $maximum(sem_crate(crate)) == 1]

#operator Lift(hoist, crate, surface, place)
 // :iterate changes the order in which TALplanner iterates over the argument
 // domains. Instead of trying all hoists on the first crate, the planner will
 // begin by trying all crates with the first hoist and so on.
 :iterate (crate, hoist, surface, place)
 :at t
 :precond [t] at(hoist, place) &
 [t] available(hoist) &
 [t] at(crate, place) &
 [t] on(crate, surface) &
 ([t] clear(crate))
 :resources [+1] :borrow sem_crate(crate) :amount 1
 :context
 :effects [+1] at(crate, place) := false,
 [+1] lifting(hoist, crate) := true,
 [+1] clear(crate) := false,
 [+1] available(hoist) := false,
 [+1] clear(surface) := true,
 [+1] on(crate, surface) := false,
 [+1] goodtower(crate) := false

#operator Drop(hoist, crate, surface, place)
 :at t
 :precond [t] at(hoist, place) &
 [t] at(surface, place) &
 [t] clear(surface) &
 ([t] lifting(hoist, crate)) &
 // Only create goodtowers.
 forall surface2 [
 goal(on(crate, surface2)) -> surface2 = surface] &
 !([t] need-to-move(surface)) &
 !exists crate2 [
 crate2 != crate & goal(on(crate2, surface))] &
 [t] goodtower(surface)
 :resources [+1] :borrow sem_crate(crate) :amount 1
 :context
 :effects [+1] available(hoist) := true,
 [+1] lifting(hoist, crate) := false,
 [+1] at(crate, place) := true,
 [+1] clear(surface) := false,
 [+1] clear(crate) := true,
 [+1] on(crate, surface) := true,
 // The preconditions make sure that the tower
 // created is a goodtower.

 87

 [+1] need-to-move(crate) := false,
 [+1] goodtower(crate) := true

#operator Load(hoist, crate, truck, place)
 :at t
 :precond [t] at(hoist, place) &
 [t] at(truck, place) &
 ([t] lifting(hoist, crate))
 :resources [+1] :borrow sem_truck(truck) :amount 1,
 [+1] :borrow sem_crate(crate) :amount 1
 :context
 :effects [+1] lifting(hoist, crate) := false,
 [+1] in(crate, truck) := true,
 [+1] available(hoist) := true,
 [+1] generalized-at(crate, place) := false

#operator Unload(hoist, crate, truck, place)
 :iterate (hoist, truck, crate, place)
 :at t
 :precond [t] at(hoist, place) &
 [t] at(truck, place) &
 [t] available(hoist) &
 [t] in(crate, truck)
 :resources [+1] :borrow sem_truck(truck) :amount 1,
 [+1] :borrow sem_crate(crate) :amount 1
 :context
 :effects [+1] in(crate, truck) := false,
 [+1] available(hoist) := false,
 [+1] lifting(hoist, crate) := true,
 [+1] generalized-at(crate, place) := true

#operator Drive(truck, place1, place2)
 :at t
 :precond [t] at(truck, place1)
 :resources [+1] :borrow sem_truck(truck) :amount 1
 :context
 :effects [+1] at(truck, place1) := false,
 [+1] at(truck, place2) := true

#dom [0] forall crate, place [need-to-be-at(crate, place) <->
 need-to-be-at-init(crate, place)]
#dom [0] forall surface [need-to-move(surface) <->
 need-to-move-init(surface)]
#dom [0] forall crate, place [generalized-at(crate, place) <->
 at(crate, place)]
#dom [0] forall surface [goodtower(surface) <->
 goodtower-init(surface)]

// A crate is a goodtower if the crate and the crates below it don’t need to be
// moved to reach the goal.
#define [t] goodtower-init(surface1):
 ([t] !need-to-move(surface1)) &
 forall crate, surface2 [
 (surface1 = crate & [t] on(crate, surface2)) ->
 [t] goodtower-init(surface2)]

// A crate will be moved if:
// 1. It’s not on it’s goal surface or
// 2. It’s on top of another crate that needs to be moved or
// 3. It occupies a space needed by another crate.
#define [t] need-to-move-init(surface1):
 exists crate [

 88

 crate = surface1 &
 (exists surface2 [
 goal(on(crate, surface2)) &
 [t] !on(crate, surface2)] |
 exists crate2 [
 ([t] on(crate, crate2) &
 need-to-move-init(crate2))] |
 exists surface2 [
 ([t] on(crate, surface2)) &
 (exists crate3 [
 goal(on(crate3, surface2)) &
 crate3 != crate])])]

// Trucks stay at a location until there are no more crates there that can be
// loaded and moved.
#control :name "trucks-stay-until-everything-is-done"
 forall t, truck, place [
 ([t] at(truck, place)) ->
 ([t+1] at(truck, place)) |
 !exists crate [
 [t] at(crate, place) &
 clear(crate) &
 need-to-move(crate)]]

// Trucks can only move to a location with a misplaced crate or to a location
// where a crate in the truck must be unloaded.
#control :name "trucks-always-move-to-goal"
 forall t, truck, place [
 ([t] at(truck, place)) ->
 ([t+1] at(truck, place)) |
 exists place2 [
 place2 != place &
 ([t+1] at(truck, place2)) &
 // There is a crate at the destination that either should
 // be at another location or should be stacked
 // differently and there are no other trucks there to do
 // the job.
 (([t] exists crate, place3 [
 generalized-at(crate, place2) &
 ((need-to-be-at(crate, place3) &
 place2 != place3) |
 (need-to-be-at(crate, place2) &
 !goodtower(crate))) &
 !exists truck2 [
 at(truck2, place2)]]) |
 // There is a crate in the truck that needs to be at the
 // destination and the stack that it should be on is
 // already finished and there are no other crates that
 // should be at the destination that the truck could
 // pick up first.
 (exists crate [
 ([t] in(crate, truck) &
 need-to-be-at(crate, place2)) &
 forall crate2 [
 goal(on(crate, crate2)) ->
 [t] goodtower(crate2)]] &
 !([t] exists crate, place3 [
 generalized-at(crate, place3) &
 need-to-be-at(crate, place2) &
 place3 != place2])))]]

// A crate needs to be at a location if the goal puts the crate on a pallet
// there or on another crate which needs to be there.
#define [t] need-to-be-at-init(crate, place):

 89

 exists pallet [
 goal(on(crate, pallet)) &
 [t] at(pallet, place)] |
 exists crate2 [
 goal(on(crate, crate2)) &
 [t] need-to-be-at-init(crate2, place)]

// Don’t lift crates that are part of goodtowers.
#control :name "only-move-crates-when-necessary"
 forall t, crate, place1 [
 [t] at(crate, place1) ->
 ([t+1] at(crate, place1)) |
 [t] need-to-move(crate)]

// Only unload a crate if it can be placed in it’s goal position.
#control :name "only-unload-crates-when-necessary"
 forall t, crate, truck [
 [t] in(crate, truck) ->
 ([t+1] in(crate, truck)) |
 exists surface, place [
 goal(on(crate, surface)) &
 [t] at(surface, place) &
 [t] at(truck, place)]]

B.5 Depots SimpleTime
#domain integer :integer :lb 0 :ub 1000

#domain object :elements {}
#domain place :parent object :elements {}
#domain locatable :parent object :elements {}
#domain depot :parent place :elements {}
#domain distributor :parent place :elements {}
#domain truck :parent locatable :elements {}
#domain hoist :parent locatable :elements {}
#domain surface :parent locatable :elements {}
#domain pallet :parent surface :elements {}
#domain crate :parent surface :elements {}

#feature at(locatable, place) :domain boolean :injective
#feature generalized-at(crate, place) :domain boolean :injective :noinit
:secondary
#feature on(crate, surface) :domain boolean :double-injective
#feature in(crate, truck) :domain boolean :injective
#feature lifting(hoist, crate) :domain boolean :injective
#feature available(hoist) :domain boolean :secondary
#feature clear(surface) :domain boolean :secondary
// The truck has started driving towards the place but not arrived yet.
#feature driving-to(truck, place) :domain boolean :injective

#feature need-to-move(surface) :domain boolean :noinit :secondary
#deffeature need-to-move-init(surface) :domain boolean
#feature need-to-be-at(crate, place) :domain boolean :injective :noinit
 :secondary
#deffeature need-to-be-at-init(crate, place) :domain boolean
#feature goodtower(surface) :domain boolean :noinit
#deffeature goodtower-init(surface) :domain boolean

#resource sem_truck(truck) :domain integer :preference :none
#resource sem_crate(crate) :domain integer :preference :none
#resource sem_hoist(hoist) :domain integer :preference :none

#assert forall t, crate, surface, hoist [

 90

 [t] on(crate, surface) -> [t] !lifting(hoist, crate)]
#assert forall t, crate, surface, hoist [
 [t] lifting(hoist, crate) -> [t] !on(crate, surface)]
#assert forall t, crate, hoist, truck [
 [t] lifting(hoist, crate) -> [t] !in(crate, truck)]

#dom [0] forall truck [$init(sem_truck(truck)) == 1 &
 $minimum(sem_truck(truck)) == 0 &
 $maximum(sem_truck(truck)) == 1]
#dom [0] forall crate [$init(sem_crate(crate)) == 1 &
 $minimum(sem_crate(crate)) == 0 &
 $maximum(sem_crate(crate)) == 1]
#dom [0] forall hoist [$init(sem_hoist(hoist)) == 1 &
 $minimum(sem_hoist(hoist)) == 0 &
 $maximum(sem_hoist(hoist)) == 1]

#operator Lift(hoist, crate, surface, place)
 :iterate (crate, hoist, surface, place)
 :at t
 :precond [t] at(hoist, place) &
 [t] available(hoist) &
 [t] at(crate, place) &
 [t] on(crate, surface) &
 [t] clear(crate)
 :duration 1
 :resources [+1] :borrow sem_crate(crate) :amount 1,
 [+1] :borrow sem_hoist(hoist) :amount 1
 :context
 :effects [+1] at(crate, place) := false,
 [+1] lifting(hoist, crate) := true,
 [+1] clear(crate) := false,
 [+1] available(hoist) := false,
 [+1] clear(surface) := true,
 [+1] on(crate, surface) := false,
 [+1] goodtower(crate) := false

#operator Drop(hoist, crate, surface, place)
 :at t
 :precond [t] at(hoist, place) &
 [t] at(surface, place) &
 [t] clear(surface) &
 ([t] lifting(hoist, crate)) &
 // Only create goodtowers.
 forall surface2 [
 goal(on(crate, surface2)) -> surface2 = surface] &
 !([t] need-to-move(surface)) &
 !exists crate2 [
 crate2 != crate &
 goal(on(crate2, surface))] &
 [t] goodtower(surface)
 :duration 1
 :resources [+1] :borrow sem_crate(crate) :amount 1,
 [+1] :borrow sem_hoist(hoist) :amount 1
 :context
 :effects [+1] available(hoist) := true,
 [+1] lifting(hoist, crate) := false,
 [+1] at(crate, place) := true,
 [+1] clear(surface) := false,
 [+1] clear(crate) := true,
 [+1] on(crate, surface) := true,
 // The preconditions make sure that the tower
 // created is a goodtower.

 91

 [+1] need-to-move(crate) := false,
 [+1] goodtower(crate) := true

#operator Load(hoist, crate, truck, place)
 :at t
 :precond [t] at(hoist, place) &
 [t] at(truck, place) &
 [t] lifting(hoist, crate)
 :duration 3
 :resources [+1,+3] :borrow-nonex sem_truck(truck) :amount 1,
 [+1,+3] :borrow sem_crate(crate) :amount 1,
 [+1,+3] :borrow sem_hoist(hoist) :amount 1
 :context
 :effects [+3] lifting(hoist, crate) := false,
 [+3] in(crate, truck) := true,
 [+3] available(hoist) := true,
 [+3] generalized-at(crate, place) := false

#operator Unload(hoist, crate, truck, place)
 :iterate (hoist, truck, crate, place)
 :at t
 :precond [t] at(hoist, place) &
 [t] at(truck, place) &
 [t] available(hoist) &
 [t] in(crate, truck)
 :duration 4
 :resources [+1,+4] :borrow-nonex sem_truck(truck) :amount 1,
 [+1,+4] :borrow sem_crate(crate) :amount 1,
 [+1,+4] :borrow sem_hoist(hoist) :amount 1
 :context
 :effects [+1] in(crate, truck) := false,
 [+1] available(hoist) := false,
 [+4] lifting(hoist, crate) := true,
 [+1] generalized-at(crate, place) := true

#operator Drive(truck, place1, place2)
 :at t
 :precond [t] at(truck, place1)
 :duration 10
 :resources [+1,+10] :borrow sem_truck(truck) :amount 1
 :context
 :effects [+1] at(truck, place1) := false,
 [+10] at(truck, place2) := true,
 [+1] driving-to(truck, place2) := true,
 [+10] driving-to(truck, place2) := false

#dom [0] forall crate, place [need-to-be-at(crate, place) <->
 need-to-be-at-init(crate, place)]
#dom [0] forall surface [need-to-move(surface) <->
 need-to-move-init(surface)]
#dom [0] forall crate, place [generalized-at(crate, place) <->
 at(crate, place)]
#dom [0] forall surface [goodtower(surface) <->
 goodtower-init(surface)]

#define [t] goodtower-init(surface1):
 ([t] !need-to-move(surface1)) &
 forall crate, surface2 [
 (surface1 = crate & [t] on(crate, surface2)) ->
 [t] goodtower-init(surface2)]

#define [t] need-to-move-init(surface1):

 92

 exists crate [
 crate = surface1 &
 (exists surface2 [
 goal(on(crate, surface2)) &
 [t] !on(crate, surface2)] |
 exists crate2 [
 ([t] on(crate, crate2) &
 need-to-move-init(crate2))] |
 exists surface2 [
 ([t] on(crate, surface2)) &
 (exists crate3 [
 goal(on(crate3, surface2)) &
 crate3 != crate])])]

#control :name "trucks-stay-until-everything-is-done"
 forall t, truck, place [
 ([t] at(truck, place)) ->
 ([t+1] at(truck, place)) |
 !exists crate [
 [t] at(crate, place) &
 clear(crate) &
 need-to-move(crate)]]

#control :name "trucks-always-move-to-goal"
 forall t, truck, place [
 ([t] at(truck, place)) ->
 ([t+1] at(truck, place)) |
 exists place2 [
 place2 != place &
 // The truck is on it’s way to place2.
 ([t+1] driving-to(truck, place2)) &
 (([t] exists crate, place3 [
 generalized-at(crate, place2) &
 ((need-to-be-at(crate, place3) &
 place2 != place3) |
 (need-to-be-at(crate, place2) &
 !goodtower(crate))) &
 !exists truck2 [
 at(truck2, place2)]]) |
 (exists crate [
 ([t] in(crate, truck) &
 need-to-be-at(crate, place2)) &
 forall crate2 [
 goal(on(crate, crate2)) ->
 [t] goodtower(crate2)]] &
 !([t] exists crate, place3 [
 generalized-at(crate, place3) &
 need-to-be-at(crate, place2) &
 place3 != place2])))]]

#define [t] need-to-be-at-init(crate, place):
 exists pallet [
 goal(on(crate, pallet)) &
 [t] at(pallet, place)] |
 exists crate2 [
 goal(on(crate, crate2)) &
 [t] need-to-be-at-init(crate2, place)]

#control :name "only-move-crates-when-necessary"
 forall t, crate, place1 [
 [t] at(crate, place1) ->
 ([t+1] at(crate, place1)) |
 [t] need-to-move(crate)]

 93

#control :name "only-unload-crates-when-necessary"
 forall t, crate, truck [
 [t] in(crate, truck) ->
 ([t+1] in(crate, truck)) |
 exists surface, place [
 goal(on(crate, surface)) &
 [t] at(surface, place) &
 [t] at(truck, place)]]

B.6 Depots Timed
#timescale 0.001

#domain integer :integer :lb 0 :ub 1000000
#domain object :elements {}
#domain place :parent object :elements {}
#domain locatable :parent object :elements {}
#domain depot :parent place :elements {}
#domain distributor :parent place :elements {}
#domain truck :parent locatable :elements {}
#domain hoist :parent locatable :elements {}
#domain surface :parent locatable :elements {}
#domain pallet :parent surface :elements {}
#domain crate :parent surface :elements {}

#feature at(locatable, place) :domain boolean :injective
#feature generalized-at(crate, place) :domain boolean :injective :noinit
#feature on(crate, surface) :domain boolean :double-injective
#feature in(crate, truck) :domain boolean :injective
#feature lifting(hoist, crate) :domain boolean :injective
#feature available(hoist) :domain boolean
#feature clear(surface) :domain boolean

#feature distance(place, place) :domain integer
#feature speed(truck) :domain integer
#feature weight(crate) :domain integer
#feature power(hoist) :domain integer

#feature driving-to(truck, place) :domain boolean :injective
#feature need-to-move(surface) :domain boolean :noinit :secondary
#deffeature need-to-move-init(surface) :domain boolean
#feature need-to-be-at(crate, place) :domain boolean :injective :noinit
 :secondary
#deffeature need-to-be-at-init(crate, place) :domain boolean
#feature goodtower(surface) :domain boolean :noinit
#deffeature goodtower-init(surface) :domain boolean

#resource sem_truck(truck) :domain integer :preference :none
#resource sem_crate(crate) :domain integer :preference :none
#resource sem_hoist(hoist) :domain integer :preference :none

#assert forall t, crate, surface, hoist [
 [t] on(crate, surface) -> [t] !lifting(hoist, crate)]
#assert forall t, crate, surface, hoist [
 [t] lifting(hoist, crate) -> [t] !on(crate, surface)]
#assert forall t, crate, hoist, truck [
 [t] lifting(hoist, crate) -> [t] !in(crate, truck)]

#dom [0] forall truck [$init(sem_truck(truck)) == 1 &
 $minimum(sem_truck(truck)) == 0 &
 $maximum(sem_truck(truck)) == 1]
#dom [0] forall crate [$init(sem_crate(crate)) == 1 &
 $minimum(sem_crate(crate)) == 0 &

 94

 $maximum(sem_crate(crate)) == 1]
#dom [0] forall hoist [$init(sem_hoist(hoist)) == 1 &
 $minimum(sem_hoist(hoist)) == 0 &
 $maximum(sem_hoist(hoist)) == 1]

#operator Lift(hoist, crate, surface, place)
 :iterate (crate, hoist, surface, place)
 :at t
 :precond [t] at(hoist, place) &
 [t] available(hoist) &
 [t] at(crate, place) &
 [t] on(crate, surface) &
 [t] clear(crate)
 :duration 1000
 :resources [+1,+1000] :borrow sem_crate(crate) :amount 1,
 [+1,+1000] :borrow sem_hoist(hoist) :amount 1
 :context
 :effects [+1] at(crate, place) := false,
 [+1000] lifting(hoist, crate) := true,
 [+1] clear(crate) := false,
 [+1] available(hoist) := false,
 [+1000] clear(surface) := true,
 [+1] on(crate, surface) := false,
 [+1000] goodtower(crate) := false

#operator Drop(hoist, crate, surface, place)
 :at t
 :precond [t] at(hoist, place) &
 [t] at(surface, place) &
 [t] clear(surface) &
 ([t] lifting(hoist, crate)) &
 // Only create goodtowers.
 forall surface2 [
 goal(on(crate, surface2)) -> surface2 = surface] &
 !([t] need-to-move(surface)) &
 !exists crate2 [
 crate2 != crate &
 goal(on(crate2, surface))] &
 [t] goodtower(surface))
 :duration 1000
 :resources [+1,+1000] :borrow sem_crate(crate) :amount 1,
 [+1,+1000] :borrow sem_hoist(hoist) :amount 1
 :context
 :effects [+1000] available(hoist) := true,
 [+1000] lifting(hoist, crate) := false,
 [+1000] at(crate, place) := true,
 [+1] clear(surface) := false,
 [+1000] clear(crate) := true,
 [+1000] on(crate, surface) := true,
 [+1000] at(surface, place) := true, // TODO: prevail
 [+1] need-to-move(crate) := false,
 [+1] goodtower(crate) := true

#operator Load(hoist, crate, truck, place)
 :at t
 :precond [t] at(hoist, place) &
 [t] at(truck, place) &
 [t] lifting(hoist, crate)
 // $max ensures that the duration is not less than one.
 :duration $maketime(value(t, $max(1, 1000 * weight(crate) /
 power(hoist)))) :as t2
 :resources [+1,+t2] :borrow-nonex sem_truck(truck) :amount 1,

 95

 [+1,+t2] :borrow sem_crate(crate) :amount 1,
 [+1,+t2] :borrow sem_hoist(hoist) :amount 1
 :context
 :effects [+t2] lifting(hoist, crate) := false,
 [+t2] in(crate, truck) := true,
 [+t2] available(hoist) := true,
 [+t2] generalized-at(crate, place) := false

#operator Unload(hoist, crate, truck, place)
 :iterate (hoist, truck, crate, place)
 :at t
 :precond [t] at(hoist, place) &
 [t] at(truck, place) &
 [t] available(hoist) &
 [t] in(crate, truck)
 :duration $maketime(value(t, $max(1, 1000 * weight(crate) /
power(hoist)))) :as t2
 :resources [+1,+t2] :borrow-nonex sem_truck(truck) :amount 1,
 [+1,+t2] :borrow sem_crate(crate) :amount 1,
 [+1,+t2] :borrow sem_hoist(hoist) :amount 1
 :context
 :effects [+1] in(crate, truck) := false,
 [+1] available(hoist) := false,
 [+t2] lifting(hoist, crate) := true,
 [+1] generalized-at(crate, place) := true

#operator Drive(truck, place1, place2)
 :at t
 :precond [t] at(truck, place1) &
 place1 != place2
 :duration $maketime(value(t, 1000 * distance(place1, place2) /
 speed(truck))) :as t2
 :resources [+1,+t2] :borrow sem_truck(truck) :amount 1
 :context
 :effects [+1] at(truck, place1) := false,
 [+1] driving-to(truck, place2) := true,
 [+t2] at(truck, place2) := true,
 [+t2] driving-to(truck, place2) := false

#dom [0] forall crate, place [need-to-be-at(crate, place) <->
 need-to-be-at-init(crate, place)]
#dom [0] forall surface [need-to-move(surface) <->
 need-to-move-init(surface)]
#dom [0] forall crate, place [generalized-at(crate, place) <->
 at(crate, place)]
#dom [0] forall surface [goodtower(surface) <->
 goodtower-init(surface)]

#define [t] goodtower-init(surface1):
 ([t] !need-to-move(surface1)) &
 forall crate, surface2 [
 (surface1 = crate & [t] on(crate, surface2)) ->
 [t] goodtower-init(surface2)]

#define [t] need-to-move-init(surface1):
 exists crate [
 crate = surface1 &
 (exists surface2 [
 goal(on(crate, surface2)) &
 [t] !on(crate, surface2)] |
 exists crate2 [
 ([t] on(crate, crate2) &

 96

 need-to-move-init(crate2))] |
 exists surface2 [
 ([t] on(crate, surface2)) &
 (exists crate3 [
 goal(on(crate3, surface2)) &
 crate3 != crate])])]

#control :name "trucks-stay-until-everything-is-done"
 forall t, truck, place [
 ([t] at(truck, place)) ->
 ([t+1] at(truck, place)) |
 !exists crate [
 [t] at(crate, place) &
 clear(crate) &
 need-to-move(crate)]]

#control :name "trucks-always-move-to-goal"
 forall t, truck, place [
 ([t] at(truck, place)) ->
 ([t+1] at(truck, place)) |
 exists place2 [
 place2 != place &
 ([t+1] driving-to(truck, place2)) &
 (([t] exists crate, place3 [
 generalized-at(crate, place2) &
 ((need-to-be-at(crate, place3) &
 place2 != place3) |
 (need-to-be-at(crate, place2) &
 !goodtower(crate))) &
 !exists truck2 [
 at(truck2, place2)]]) |
 (exists crate [
 ([t] in(crate, truck) &
 need-to-be-at(crate, place2)) &
 forall crate2 [
 goal(on(crate, crate2)) ->
 [t] goodtower(crate2)]] &
 !([t] exists crate, place3 [
 generalized-at(crate, place3) &
 need-to-be-at(crate, place2) &
 place3 != place2])))]]

#define [t] need-to-be-at-init(crate, place):
 exists pallet [
 goal(on(crate, pallet)) &
 [t] at(pallet, place)] |
 exists crate2 [
 goal(on(crate, crate2)) &
 [t] need-to-be-at-init(crate2, place)]

#control :name "only-move-crates-when-necessary"
 forall t, crate, place1 [
 [t] at(crate, place1) ->
 ([t+1] at(crate, place1)) |
 [t] need-to-move(crate)]

#control :name "only-unload-crates-when-necessary"
 forall t, crate, truck [
 [t] in(crate, truck) ->
 ([t+1] in(crate, truck)) |
 exists surface, place [
 goal(on(crate, surface)) &
 [t] at(surface, place) &
 [t] at(truck, place)]]

 97

B.7 DriverLog Strips
#domain integer :integer :lb 0 :ub 10000

#domain locatable :elements {}
#domain obj :parent locatable :elements {}
#domain location :elements {}
#domain truck :parent locatable :elements {}
#domain driver :parent locatable :elements {}

#feature at(locatable, location) :domain boolean :injective
#feature in(obj, truck) :domain boolean :injective
#feature driving(driver, truck) :domain boolean :double-injective
#feature link(location, location) :domain boolean
#feature path(location, location) :domain boolean
#feature empty(truck) :domain boolean :secondary

// Holds if driver has decided to walk to location (maybe via some other places)
#feature destination(driver, location) :domain boolean :injective
#deffeature reasonable-driver-location(driver, location)
 :domain boolean :uncached
#deffeature driving-distance-to-reasonable-destination(truck, location)
 :domain integer :uncached
#deffeature reasonable-truck-location(truck, location)
 :domain boolean :uncached
#deffeature all-objects-at-their-destinations :domain boolean
#deffeature all-nondriven-trucks-at-their-destinations-or-have-committed-drivers
 :domain boolean

// Define some location variables with more intuitive names than location1,
// location2 and so on.
#valuevar from, to, intermediate, dest :domain location

#distfeature driving-distance-between(from, to) :domain integer :link link
#distfeature walking-distance-between(from, to) :domain integer :link path

#mindistfeature mindist-driving :feature driving-distance-between
 :domain integer
#mindistfeature mindist-walking :feature walking-distance-between
 :domain integer

#resource objects-to-move-at(location) :domain integer :preference :none
#resource sem_truck(truck) :domain integer :preference :none
#resource sem_driver(driver) :domain integer :preference :none

#assert forall t, driver, location, truck [
 [t] driving(driver, truck) -> [t] !at(driver, location)]
#assert forall t, driver, location, truck [
 [t] at(driver, location) -> [t] !driving(driver, truck)]

#dom [0] forall location [$init(objects-to-move-at(location)) ==
 $sum(<obj>, [0] at(obj, location) &
 goal(!at(obj, location)), 1) &
 $minimum(objects-to-move-at(location)) == 0 &
 $maximum(objects-to-move-at(location)) == 9999]
#dom [0] forall truck [$init(sem_truck(truck)) == 1 &
 $minimum(sem_truck(truck)) == 0 &
 $maximum(sem_truck(truck)) == 1]
#dom [0] forall driver [$init(sem_driver(driver)) == 1 &
 $minimum(sem_driver(driver)) == 0 &
 $maximum(sem_driver(driver)) == 1]

 98

#operator board-truck(driver, truck, location)
 :at t
 :precond [t] at(truck, location) &
 [t] at(driver, location) &
 ([t] empty(truck)) &
 // Don’t board the truck if the goal can be reached by staying
 // put.
 ([t] all-nondriven-trucks-at-their-destinations-or-have-
committed-drivers ->
 !goal(at(driver, location)))
 :resources [+1] :borrow-nonex sem_truck(truck) :amount 1,
 [+1] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] at(driver, location) := false,
 [+1] driving(driver, truck) := true,
 [+1] empty(truck) := false

#operator load-truck(obj, truck, location)
 :at t
 :precond [t] at(truck, location) &
 ([t] at(obj, location)) &
 // Don’t load packages into a truck until we are sure that it
 // will have a driver.
 (([t] !empty(truck)) |
 $committed(t+1, empty(truck), false))
 :resources // One less object to load at this location.
 [+1] :consume objects-to-move-at(location) :amount 1,
 [+1] :borrow-nonex sem_truck(truck) :amount 1
 :context
 :effects [+1] at(obj, location) := false,
 [+1] in(obj, truck) := true

#operator unload-truck(obj, truck, location)
 :at t
 :precond [t] at(truck, location) &
 [t] in(obj, truck)
 :resources [+1] :borrow-nonex sem_truck(truck) :amount 1
 :context
 :effects [+1] in(obj, truck) := false,
 [+1] at(obj, location) := true

#operator drive-truck(truck, location1, location2, driver)
 :iterate (truck, driver, location1, location2)
 :at t
 :precond [t] at(truck, location1) &
 [t] driving(driver, truck) &
 ([t] link(location1, location2)) &
 location1 != location2 &
 // Don’t drive if we’re already at a reasonable location (the
 // feature returns 0) or if there are no reasonable locations
 // to go to (the feature returns infinity).
 ([t] driving-distance-to-reasonable-destination(truck,
location1) !== {0, 9999}) &
 // Only drive if it gets us closer to a reasonable location.
 [t] driving-distance-to-reasonable-destination(truck, location1)
>
 driving-distance-to-reasonable-destination(truck, location2)
 :resources [+1] :borrow sem_truck(truck) :amount 1,
 [+1] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] at(truck, location1) := false,
 [+1] at(truck, location2) := true

 99

#operator disembark-truck(driver, truck, location)
 :at t
 :precond [t] at(truck, location) &
 [t] driving(driver, truck)
 :resources [+1] :borrow-nonex sem_truck(truck) :amount 1,
 [+1] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] driving(driver, truck) := false,
 [+1] at(driver, location) := true,
 [+1] empty(truck) := true

#operator walk-choosing-destination(driver, location1, location2, dest)
 // We have to make sure that the generated plan conforms with the given domain
 // specification, which only contains one walk operator. The planner will use
 // both walk-choosing-destination and walk-towards-destination but only print
 // "walk" when the final plan is output.
 :print walk(driver, location1, location2)
 // Begin by choosing a driver and his current location, then choose a
 // destination before deciding on the next immidiate step.
 :iterate (driver, location1, dest, location2)
 :at t
 :precond [t] at(driver, location1) &
 ([t] path(location1, location2)) &
 // We have not already chosen a destination:
 !exists location3 [
 [t] destination(driver, location3)] &
 // Only choose reasonable destinations:
 ([t] reasonable-driver-location(driver, dest)) &
 // It’s the closest reasonable destination:
 ([t] walking-distance-between(location1, dest) ==
 mindist-walking(
 location1,
 to,
 [t] reasonable-driver-location(driver, to))) &
 // We’re not at a reasonable destination right now:
 ([t] !reasonable-driver-location(driver, location1)) &
 // Either noone else has already picked the destination or we
 // are walking to the final goal position:
 (!exists driver2 [
 ([t] destination(driver2, dest)) |
 $committed(t+1, destination(driver2, dest), true)] |
 [t] all-objects-at-their-destinations &
 all-nondriven-trucks-at-their-destinations-or-have-
committed-drivers) &
 // Having chosen a destination, we now need to select an
 // intermediary location2 that is on the way to the
 // destination.
 location1 != location2 &
 ([t] walking-distance-between(location1, dest) >
 walking-distance-between(location2, dest))
 :resources [+1] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] at(driver, location1) := false,
 [+1] at(driver, location2) := true,
 [+1] destination(driver, dest) := true

#operator walk-towards-destination(driver, location1, location2)
 :print walk(driver, location1, location2)
 :at t
 :precond [t] at(driver, location1) &
 ([t] path(location1, location2)) &
 // The step brings us closer to the destination:
 exists dest [
 [t] destination(driver, dest) &

 100

 [t] walking-distance-between(location1, dest) >
 walking-distance-between(location2, dest)] &
 location1 != location2
 :resources [+1] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] at(driver, location1) := false,
 [+1] at(driver, location2) := true
 :context
 :precond // If we have arrived or the destination is no longer
 // reasonable, make the driver free to choose another
 // destination.
 [t] destination(driver, location2) |
 exists dest [
 destination(driver, dest) &
 !reasonable-driver-location(driver, dest)]
 :effects [+1] destination(driver, location2) := false

#define [t] driving-distance-to-reasonable-destination(truck, location):
 value(t, mindist-driving(location,
 to,
 [t] reasonable-truck-location(truck, to)))

// A location is reasonable for a truck if:
#define [t] reasonable-truck-location(truck, location):
 // The truck has objects to deliver there.
 exists obj [
 [t] in(obj, truck) &
 goal(at(obj, location))] |
 (([t] all-objects-at-their-destinations) &
 // There’s a goal that the truck should be there.
 (goal(at(truck, location)) |
 // There’s a goal that the driver should be there and no goal
 // preventing him from using the truck to drive there.
 (!goal(!at(truck, location)) &
 exists driver [
 [t] driving(driver, truck) &
 goal(at(driver, location))]))) |
 // There are objects to pick up and either we are already there or
 // no other trucks are already there or on their way.
 (([t] $available(objects-to-move-at(location)) !== 0) &
 (([t] at(truck, location)) |
 !exists truck2 [
 truck2 != truck &
 [t] !empty(truck2) &
 [t] at(truck2, location)] &
 !exists truck2 [
 truck2 != truck &
 ([t] !empty(truck2)) &
 $committed(t+1, at(truck2, location), true)]))

// A location is reasonable for a driver if:
#define [t] reasonable-driver-location(driver, location):
 // There are packages left to deliver and there is a truck without a
 // driver at the location.
 ([t] !all-objects-at-their-destinations) &
 exists truck [
 [t] at(truck, location) &
 ([t] empty(truck)) &
 !$committed(t+1, empty(truck), false)] |
 // All packages have been delivered and either all trucks are at their
 // goals and the driver is heading for it’s goal location or some trucks
 // still need to be driven to their goals and the driver is heading to

 101

 // one of them.
 [t] all-objects-at-their-destinations &
 ([t] all-nondriven-trucks-at-their-destinations-or-have-committed-
drivers &
 goal(at(driver, location)) |
 ([t] !all-nondriven-trucks-at-their-destinations-or-have-committed-
drivers) &
 exists truck [
 [t] at(truck, location) &
 goal(!at(truck, location)) &
 !exists driver2 [
 driver2 != driver &
 [t] at(driver2, location) |
 driving(driver2, truck)]])

// Only load packages if they aren’t at their goal.
#control :name "only-load-when-necessary"
 forall t, obj, location1 [
 ([t] at(obj, location1)) &
 ([t+1] !at(obj, location1)) ->
 goal(!at(obj, location1))]

// Only unload packages at their goal.
#control :name "only-unload-when-necessary"
 forall t, obj, truck [
 [t] in(obj, truck) &
 ([t+1] !in(obj, truck)) ->
 exists location [
 [t] at(truck, location) &
 goal(at(obj, location))]]

// Load and unload all packages that need to be loaded and unloaded before
// driving to another location.
#control :name "trucks-stay-until-everything-loaded-and-unloaded"
 forall t, truck, location [
 [t] at(truck, location) &
 [t+1] !at(truck, location) ->
 ([t] $available(objects-to-move-at(location)) == 0) &
 !exists obj [
 [t] in(obj, truck) &
 goal(at(obj, location))]]

// Only board a truck if a drive-truck or a load-package will be possible.
// Loading packages are only possible after the driver has boarded the
// truck.
#control :name "only-board-when-necessary"
 forall t, driver, truck, location [
 [t] !driving(driver, truck) &
 at(truck, location) ->
 [t+1] !driving(driver, truck) |
 ([t] driving-distance-to-reasonable-destination(truck, location)
 !== {0, 9999}) |
 exists obj [
 [t] at(obj, location) &
 goal(!at(obj, location))]]

// Don’t disembark if there are packages loaded or being loaded into the truck
// that must be driven somewhere or if the truck has a goal to be somewhere
// else.
#control :name "only-disembark-when-necessary"
 forall t, driver, truck [
 [t] driving(driver, truck) ->
 ([t+1] driving(driver, truck)) |
 exists location [

 102

 ([t] at(truck, location)) &
 (!exists obj [
 goal(!at(obj, location)) &
 $committed(t+1, in(obj, truck), true) |
 [t] in(obj, truck)] &
 !goal(!at(truck, location)))]]

// Only disembark if you have driven to your goal or if there is another truck
// at the location that needs to be driven to its goal.
#control :name "only-disembark-when-you-have-a-goal"
 forall t, driver, truck [
 [t] driving(driver, truck) ->
 ([t+1] driving(driver, truck)) |
 exists location [
 goal(at(driver, location))] |
 exists location, truck2 [
 [t] at(truck, location) &
 at(truck2, location) &
 empty(truck2) &
 !reasonable-truck-location(truck2, location)]]

// True when all packages are at their goal locations.
#define [t] all-objects-at-their-destinations:
 forall obj, location [
 goal(at(obj, location)) -> [t] at(obj, location)]

// True when all trucks without drivers are at their goal locations or have a
// drivers committed to driving them there.
#define [t] all-nondriven-trucks-at-their-destinations-or-have-committed-
drivers:
 forall truck, location [
 ([t] empty(truck) &
 goal(at(truck, location))) ->
 (([t] at(truck, location)) |
 exists location2, driver [
 [t] at(truck, location2) &
 ([t] destination(driver, location2) |
 [t] at(driver, location2) &
 !goal(at(driver, location2)))])]

B.8 DriverLog SimpleTime
#domain integer :integer :lb 0 :ub 10000

#domain locatable :elements {}
#domain obj :parent locatable :elements {}
#domain location :elements {}
#domain truck :parent locatable :elements {}
#domain driver :parent locatable :elements {}

#feature at(locatable, location) :domain boolean :injective
#feature in(obj, truck) :domain boolean :injective
#feature driving(driver, truck) :domain boolean :double-injective
#feature link(location, location) :domain boolean
#feature path(location, location) :domain boolean
#feature empty(truck) :domain boolean :secondary

// True while a driver or a truck is going to a location but hasn’t arrived yet.
#feature going-to(locatable, location) :domain boolean :injective
#feature destination(driver, location) :domain boolean :injective
#deffeature reasonable-driver-location(driver, location)
 :domain boolean :uncached
#deffeature driving-distance-to-reasonable-destination(truck, location)

 103

 :domain integer :uncached
#deffeature reasonable-truck-location(truck, location)
 :domain boolean :uncached
#deffeature reasonable-truck-location-cached(truck, location) :domain boolean
#deffeature all-objects-at-their-destinations :domain boolean
#deffeature all-nondriven-trucks-at-their-destinations-or-have-committed-drivers
 :domain boolean

#valuevar from, to, intermediate, dest :domain location

#distfeature driving-distance-between(from, to) :domain integer :link link
#distfeature walking-distance-between(from, to) :domain integer :link path

#mindistfeature mindist-driving :feature driving-distance-between
 :domain integer
#mindistfeature mindist-walking :feature walking-distance-between
 :domain integer

#resource objects-to-move-at(location) :domain integer :preference :none
#resource sem_truck(truck) :domain integer :preference :none
#resource sem_driver(driver) :domain integer :preference :none

#assert forall t, driver, location, truck [
 [t] driving(driver, truck) -> [t] !at(driver, location)]
#assert forall t, driver, location, truck [
 [t] at(driver, location) -> [t] !driving(driver, truck)]
#assert forall t, driver, location, truck [
 [t] going-to(driver, location) -> [t] !driving(driver, truck)]

#dom [0] forall location [$init(objects-to-move-at(location)) ==
 $sum(<obj>, [0] at(obj, location) &
 goal(!at(obj, location)), 1) &
 $minimum(objects-to-move-at(location)) == 0 &
 $maximum(objects-to-move-at(location)) == 9999]
#dom [0] forall truck [$init(sem_truck(truck)) == 1 &
 $minimum(sem_truck(truck)) == 0 &
 $maximum(sem_truck(truck)) == 1]
#dom [0] forall driver [$init(sem_driver(driver)) == 1 &
 $minimum(sem_driver(driver)) == 0 &
 $maximum(sem_driver(driver)) == 1]

#operator board-truck(driver, truck, location)
 :at t
 :precond [t] at(truck, location) &
 [t] at(driver, location) &
 [t] empty(truck) &
 ([t] all-nondriven-trucks-at-their-destinations-or-have-
committed-drivers ->
 !goal(at(driver, location)))
 :resources [+1] :borrow-nonex sem_truck(truck) :amount 1,
 [+1] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] at(driver, location) := false,
 [+1] driving(driver, truck) := true,
 [+1] empty(truck) := false

#operator load-truck(obj, truck, location)
 :at t
 :precond [t] at(truck, location) &
 [t] at(obj, location) &
 (([t] !empty(truck)) |
 $committed(t+1, empty(truck), false))

 104

 :duration 2
 :resources [+1] :consume objects-to-move-at(location) :amount 1,
 [+1,+2] :borrow-nonex sem_truck(truck) :amount 1
 :context
 :effects [+1] at(obj, location) := false,
 [+2] in(obj, truck) := true

#operator unload-truck(obj, truck, location)
 :at t
 :precond [t] at(truck, location) &
 [t] in(obj, truck)
 :duration 2
 :resources [+1,+2] :borrow-nonex sem_truck(truck) :amount 1
 :context
 :effects [+1] in(obj, truck) := false,
 [+2] at(obj, location) := true

#operator drive-truck(truck, location1, location2, driver)
 :iterate (truck, driver, location1, location2)
 :at t
 :precond [t] at(truck, location1) &
 [t] driving(driver, truck) &
 [t] link(location1, location2) &
 location1 != location2 &
 [t] driving-distance-to-reasonable-destination(truck, location1)
!== {0, 9999} &
 [t] driving-distance-to-reasonable-destination(truck, location1)
>
 driving-distance-to-reasonable-destination(truck, location2)
 :duration 10
 :resources [+1,+10] :borrow sem_truck(truck) :amount 1,
 [+1,+10] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] at(truck, location1) := false,
 [+10] at(truck, location2) := true,
 [+1] going-to(truck, location2) := true,
 [+10] going-to(truck, location2) := false

#operator disembark-truck(driver, truck, location)
 :at t
 :precond [t] at(truck, location) &
 [t] driving(driver, truck)
 :duration 1
 :resources [+1] :borrow-nonex sem_truck(truck) :amount 1,
 [+1] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] driving(driver, truck) := false,
 [+1] at(driver, location) := true,
 [+1] empty(truck) := true

#operator walk-choosing-destination(driver, location1, location2, dest)
 :print walk(driver, location1, location2)
 :iterate (driver, location1, dest, location2)
 :at t
 :precond [t] at(driver, location1) &
 ([t] path(location1, location2)) &
 !exists location3 [
 [t] destination(driver, location3)] &
 ([t] reasonable-driver-location(driver, dest)) &
 ([t] walking-distance-between(location1, dest) ==
 mindist-walking(
 location1,
 to,
 [t] reasonable-driver-location(driver, to))) &

 105

 ([t] !reasonable-driver-location(driver, location1)) &
 (!exists driver2 [
 ([t] destination(driver2, dest)) |
 $committed(t+1, destination(driver2, dest), true)] |
 [t] all-objects-at-their-destinations &
 all-nondriven-trucks-at-their-destinations-or-have-
committed-drivers) &
 location1 != location2 &
 ([t] walking-distance-between(location1, dest) >
 walking-distance-between(location2, dest))
 :duration 20
 :resources [+1,+20] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] at(driver, location1) := false,
 [+20] at(driver, location2) := true,
 [+1] destination(driver, dest) := true,
 [+1,+19] going-to(driver, location2) := true,
 [+20] going-to(driver, location2) := false

#operator walk-towards-destination(driver, location1, location2)
 :print walk(driver, location1, location2)
 :at t
 :precond [t] at(driver, location1) &
 ([t] path(location1, location2)) &
 exists dest [
 [t] destination(driver, dest) &
 [t] walking-distance-between(location1, dest) >
 walking-distance-between(location2, dest)] &
 location1 != location2
 :duration 20
 :resources [+1,+20] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] at(driver, location1) := false,
 [+20] at(driver, location2) := true,
 [+1] going-to(driver, location2) := true,
 [+1,+19] going-to(driver, location2) := true,
 [+20] going-to(driver, location2) := false
 :context
 :precond [t] destination(driver, location2) |
 exists dest [
 destination(driver, dest) &
 !reasonable-driver-location(driver, dest)]
 :effects [+20] destination(driver, location2) := false

#define [t] driving-distance-to-reasonable-destination(truck, location):
 value(t, mindist-driving(location,
 to,
 [t] reasonable-truck-location(truck, to)))

#define [t] reasonable-truck-location(truck, location):
 ([t] reasonable-truck-location-cached(truck, location)) |
 (([t] $available(objects-to-move-at(location)) !== 0) &
 (([t] at(truck, location)) |
 !exists truck2 [
 truck2 != truck &
 [t] !empty(truck2) &
 [t] at(truck2, location)] &
 // Extra case when the truck is going to location but hasn’t arrived.
 !exists truck2 [
 truck2 != truck &
 [t] !empty(truck2) &
 [t] going-to(truck2, location)] &

 106

 !exists truck2 [
 truck2 != truck &
 ([t] !empty(truck2)) &
 $committed(t+1, going-to(truck2, location), true)]))

#define [t] reasonable-truck-location-cached(truck, location):
 exists obj [
 [t] in(obj, truck) &
 goal(at(obj, location))] |
 ([t] all-objects-at-their-destinations &
 (goal(at(truck, location)) |
 (!goal(!at(truck, location)) &
 exists driver [
 [t] driving(driver, truck) &
 goal(at(driver, location))])))

#define [t] reasonable-driver-location(driver, location):
 ([t] !all-objects-at-their-destinations) &
 exists truck [
 [t] at(truck, location) &
 ([t] empty(truck)) &
 !$committed(t+1, empty(truck), false)] |
 [t] all-objects-at-their-destinations &
 ([t] all-nondriven-trucks-at-their-destinations-or-have-committed-
drivers &
 goal(at(driver, location)) |
 ([t] !all-nondriven-trucks-at-their-destinations-or-have-committed-
drivers) &
 exists truck [
 [t] at(truck, location) &
 goal(!at(truck, location)) &
 !exists driver2 [
 driver2 != driver &
 (([t] at(driver2, location)) |
 // Extra case when driver2 is going to location but
 // hasn’t arrived.
 [t] going-to(driver2, location) |
 driving(driver2, truck))]])

#control :name "only-load-when-necessary"
 forall t, obj, location1 [
 ([t] at(obj, location1)) &
 ([t+1] !at(obj, location1)) ->
 goal(!at(obj, location1))]

#control :name "only-unload-when-necessary"
 forall t, obj, truck [
 ([t] in(obj, truck)) &
 ([t+1] !in(obj, truck)) ->
 exists location [
 [t] at(truck, location) &
 goal(at(obj, location))]]

#control :name "trucks-stay-until-everything-loaded-and-unloaded"
 forall t, truck, location [
 [t] at(truck, location) &
 [t+1] !at(truck, location) ->
 ([t] $available(objects-to-move-at(location)) == 0) &
 !exists obj [
 [t] in(obj, truck) &
 goal(at(obj, location))]]

#control :name "only-board-when-necessary"
 forall t, driver, truck, location [

 107

 [t] !driving(driver, truck) &
 at(truck, location) ->
 ([t+1] !driving(driver, truck)) |
 ([t] driving-distance-to-reasonable-destination(truck, location)
 !== {0, 9999}) |
 exists obj [
 [t] at(obj, location) &
 goal(!at(obj, location))]]

#control :name "only-disembark-when-necessary"
 forall t, driver, truck [
 [t] driving(driver, truck) ->
 ([t+1] driving(driver, truck)) |
 exists location [
 ([t] at(truck, location)) &
 (!exists obj [
 goal(!at(obj, location)) &
 $committed(t+1, in(obj, truck), true) |
 [t] in(obj, truck)] &
 !goal(!at(truck, location)))]]

#control :name "only-disembark-when-you-have-a-goal"
 forall t, driver, truck [
 ([t] driving(driver, truck)) ->
 ([t+1] driving(driver, truck)) |
 exists location [
 goal(at(driver, location))] |
 exists location, truck2 [
 [t] at(truck, location) &
 at(truck2, location) &
 empty(truck2) &
 !reasonable-truck-location(truck2, location)]]

#define [t] all-objects-at-their-destinations:
 forall obj, location [
 goal(at(obj, location)) -> [t] at(obj, location)]

#define [t] all-nondriven-trucks-at-their-destinations-or-have-committed-
drivers:
 forall truck, location [
 ([t] empty(truck) &
 goal(at(truck, location))) ->
 (([t] at(truck, location)) |
 exists location2, driver [
 [t] at(truck, location2) &
 ([t] destination(driver, location2) |
 [t] at(driver, location2) &
 !goal(at(driver, location2)))])]

B.9 DriverLog Timed
#domain integer :integer :lb 0 :ub 10000

#domain locatable :elements {}
#domain obj :parent locatable :elements {}
#domain location :elements {}
#domain truck :parent locatable :elements {}
#domain driver :parent locatable :elements {}

#feature at(locatable, location) :domain boolean :injective
#feature in(obj, truck) :domain boolean :injective
#feature driving(driver, truck) :domain boolean :double-injective
#feature link(location, location) :domain boolean

 108

#feature path(location, location) :domain boolean
#feature empty(truck) :domain boolean :secondary

// The walking distance between two locations, specified in the problem files.
#feature time-to-walk(location, location) :domain integer :function
// The driving distance between two locations, specified in the problem files.
#feature time-to-drive(location, location) :domain integer :function

#feature going-to(locatable, location) :domain boolean :injective
#feature destination(driver, location) :domain boolean :injective
#deffeature reasonable-driver-location(driver, location)
 :domain boolean :uncached
#deffeature driving-distance-to-reasonable-destination(truck, location)
 :domain integer :uncached
#deffeature reasonable-truck-location(truck, location)
 :domain boolean :uncached
#deffeature reasonable-truck-location-cached(truck, location) :domain boolean
#deffeature all-objects-at-their-destinations :domain boolean
#deffeature all-nondriven-trucks-at-their-destinations-or-have-committed-drivers
 :domain boolean

#valuevar from, to, intermediate, dest :domain location

#distfeature driving-distance-between(from, to)
 :domain integer :link link :cost time-to-drive
#distfeature walking-distance-between(from, to)
 :domain integer :link path :cost time-to-walk

#mindistfeature mindist-driving :feature driving-distance-between
 :domain integer
#mindistfeature mindist-walking :feature walking-distance-between
 :domain integer

#resource objects-to-move-at(location) :domain integer :preference :none
#resource sem_truck(truck) :domain integer :preference :none
#resource sem_driver(driver) :domain integer :preference :none

#assert forall t, driver, location, truck [
 [t] driving(driver, truck) -> [t] !at(driver, location)]
#assert forall t, driver, location, truck [
 [t] at(driver, location) -> [t] !driving(driver, truck)]
#assert forall t, driver, location, truck [
 [t] going-to(driver, location) -> [t] !driving(driver, truck)]

#dom [0] forall location [$init(objects-to-move-at(location)) ==
 $sum(<obj>, [0] at(obj, location) &
 goal(!at(obj, location)), 1) &
 $minimum(objects-to-move-at(location)) == 0 &
 $maximum(objects-to-move-at(location)) == 9999]
#dom [0] forall truck [$init(sem_truck(truck)) == 1 &
 $minimum(sem_truck(truck)) == 0 &
 $maximum(sem_truck(truck)) == 1]
#dom [0] forall driver [$init(sem_driver(driver)) == 1 &
 $minimum(sem_driver(driver)) == 0 &
 $maximum(sem_driver(driver)) == 1]

#operator board-truck(driver, truck, location)
 :at t
 :precond [t] at(truck, location) &
 [t] at(driver, location) &
 [t] empty(truck) &

 109

 ([t] all-nondriven-trucks-at-their-destinations-or-have-
committed-drivers ->
 !goal(at(driver, location)))
 :resources [+1] :borrow-nonex sem_truck(truck) :amount 1,
 [+1] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] at(driver, location) := false,
 [+1] driving(driver, truck) := true,
 [+1] empty(truck) := false

#operator load-truck(obj, truck, location)
 :at t
 :precond [t] at(truck, location) &
 [t] at(obj, location) &
 (([t] !empty(truck)) |
 $committed(t+1, empty(truck), false))
 :duration 2
 :resources [+1] :consume objects-to-move-at(location) :amount 1,
 [+1,+2] :borrow-nonex sem_truck(truck) :amount 1
 :context
 :effects [+1] at(obj, location) := false,
 [+2] in(obj, truck) := true

#operator unload-truck(obj, truck, location)
 :at t
 :precond [t] at(truck, location) &
 [t] in(obj, truck)
 :duration 2
 :resources [+1,+2] :borrow-nonex sem_truck(truck) :amount 1
 :context
 :effects [+1] in(obj, truck) := false,
 [+2] at(obj, location) := true

#operator drive-truck(truck, location1, location2, driver)
 :iterate (truck, driver, location1, location2)
 :at t
 :precond [t] at(truck, location1) &
 [t] driving(driver, truck) &
 [t] link(location1, location2) &
 location1 != location2 &
 ([t] driving-distance-to-reasonable-destination(truck,
location1) !== {0, 9999}) &
 // There is no cheaper road link that also reduce the value of
 // driving-distance-to-reasonable-destination.
 !exists location3 [
 [t] link(location1, location3) &
 [t] driving-distance-to-reasonable-destination(truck,
location3) +
 driving-distance-between(location1, location3) <
 driving-distance-to-reasonable-destination(truck,
location2) +
 driving-distance-between(location1, location2)]
 :duration $maketime(value(t, time-to-drive(location1, location2))) :as t2
 :resources [+1,+t2] :borrow sem_truck(truck) :amount 1,
 [+1,+t2] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] at(truck, location1) := false,
 [+t2] at(truck, location2) := true,
 [+1,+t2 - 1] going-to(truck, location2) := true,
 [+t2] going-to(truck, location2) := false

#operator disembark-truck(driver, truck, location)
 :at t
 :precond [t] at(truck, location) &

 110

 [t] driving(driver, truck)
 :duration 1
 :resources [+1] :borrow-nonex sem_truck(truck) :amount 1,
 [+1] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] driving(driver, truck) := false,
 [+1] at(driver, location) := true,
 [+1] empty(truck) := true

#operator walk-choosing-destination(driver, location1, location2, dest)
 :print walk(driver, location1, location2)
 :iterate (driver, location1, dest, location2)
 :at t
 :precond [t] at(driver, location1) &
 ([t] path(location1, location2)) &
 !exists location3 [
 [t] destination(driver, location3)] &
 ([t] reasonable-driver-location(driver, dest)) &
 ([t] walking-distance-between(location1, dest) ==
 mindist-walking(
 location1,
 to,
 [t] reasonable-driver-location(driver, to))) &
 ([t] !reasonable-driver-location(driver, location1)) &
 (!exists driver2 [
 ([t] destination(driver2, dest)) |
 $committed(t+1, destination(driver2, dest), true)] |
 [t] all-objects-at-their-destinations &
 all-nondriven-trucks-at-their-destinations-or-have-
committed-drivers) &
 location1 != location2 &
 ([t] walking-distance-between(location1, dest) >
 walking-distance-between(location2, dest))
 :duration $maketime(value(t, time-to-walk(location1, location2))) :as t2
 :resources [+1,+t2] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] at(driver, location1) := false,
 [+t2] at(driver, location2) := true,
 [+1] destination(driver, dest) := true,
 [+1,+t2 - 1] going-to(driver, location2) := true,
 [+t2] going-to(driver, location2) := false

#operator walk-towards-destination(driver, location1, location2)
 :print walk(driver, location1, location2)
 :at t
 :precond [t] at(driver, location1) &
 ([t] path(location1, location2)) &
 exists dest [
 [t] destination(driver, dest) &
 [t] walking-distance-between(location1, dest) >
 walking-distance-between(location2, dest)] &
 location1 != location2
 :duration $maketime(value(t, time-to-walk(location1, location2))) :as t2
 :resources [+1,+t2] :borrow sem_driver(driver) :amount 1
 :context
 :effects [+1] at(driver, location1) := false,
 [+t2] at(driver, location2) := true,
 [+1,+t2 - 1] going-to(driver, location2) := true,
 [+t2] going-to(driver, location2) := false
 :context
 :precond [t] destination(driver, location2) |
 exists dest [
 destination(driver, dest) &
 !reasonable-driver-location(driver, dest)]

 111

 :effects [+t2] destination(driver, location2) := false

#define [t] driving-distance-to-reasonable-destination(truck, location):
 value(t, mindist-driving(location,
 to,
 [t] reasonable-truck-location(truck, to)))

#define [t] reasonable-truck-location(truck, location):
 ([t] reasonable-truck-location-cached(truck, location)) |
 (([t] $available(objects-to-move-at(location)) !== 0) &
 (([t] at(truck, location)) |
 !exists truck2 [
 truck2 != truck &
 [t] !empty(truck2) &
 [t] at(truck2, location)] &
 !exists truck2 [
 truck2 != truck &
 [t] !empty(truck2) &
 [t] going-to(truck2, location)] &
 !exists truck2 [
 truck2 != truck &
 ([t] !empty(truck2)) &
 $committed(t+1, going-to(truck2, location), true)]))

#define [t] reasonable-truck-location-cached(truck, location):
 exists obj [
 [t] in(obj, truck) &
 goal(at(obj, location))] |
 ([t] all-objects-at-their-destinations &
 (goal(at(truck, location)) |
 (!goal(!at(truck, location)) &
 exists driver [
 [t] driving(driver, truck) &
 goal(at(driver, location))])))

#define [t] reasonable-driver-location(driver, location):
 ([t] !all-objects-at-their-destinations) &
 exists truck [
 [t] at(truck, location) &
 ([t] empty(truck)) &
 !$committed(t+1, empty(truck), false)] |
 [t] all-objects-at-their-destinations &
 ([t] all-nondriven-trucks-at-their-destinations-or-have-committed-
drivers &
 goal(at(driver, location)) |
 ([t] !all-nondriven-trucks-at-their-destinations-or-have-committed-
drivers) &
 exists truck [
 [t] at(truck, location) &
 goal(!at(truck, location)) &
 !exists driver2 [
 driver2 != driver &
 ([t] at(driver2, location) |
 going-to(driver2, location) |
 driving(driver2, truck))]])

#control :name "only-load-when-necessary"
 forall t, obj, location1 [
 ([t] at(obj, location1)) &
 ([t+1] !at(obj, location1)) ->
 goal(!at(obj, location1))]

 112

#control :name "only-unload-when-necessary"
 forall t, obj, truck [
 ([t] in(obj, truck)) &
 ([t+1] !in(obj, truck)) ->
 exists location [
 [t] at(truck, location) &
 goal(at(obj, location))]]

#control :name "trucks-stay-until-everything-loaded-and-unloaded"
 forall t, truck, location [
 [t] at(truck, location) &
 [t+1] !at(truck, location) ->
 ([t] $available(objects-to-move-at(location)) == 0) &
 !exists obj [
 [t] in(obj, truck) &
 goal(at(obj, location))]]

#control :name "only-board-when-necessary"
 forall t, driver, truck, location [
 [t] !driving(driver, truck) &
 at(truck, location) ->
 ([t+1] !driving(driver, truck)) |
 ([t] driving-distance-to-reasonable-destination(truck, location)
 !== {0, 9999}) |
 exists obj [
 [t] at(obj, location) &
 goal(!at(obj, location))]]

#control :name "only-disembark-when-necessary"
 forall t, driver, truck [
 [t] driving(driver, truck) ->
 ([t+1] driving(driver, truck)) |
 exists location [
 ([t] at(truck, location)) &
 (!exists obj [
 goal(!at(obj, location)) &
 $committed(t+1, in(obj, truck), true) |
 [t] in(obj, truck)] &
 !goal(!at(truck, location)))]]

#control :name "only-disembark-when-you-have-a-goal"
 forall t, driver, truck [
 ([t] driving(driver, truck)) ->
 ([t+1] driving(driver, truck)) |
 exists location [
 goal(at(driver, location))] |
 exists location, truck2 [
 [t] at(truck, location) &
 at(truck2, location) &
 empty(truck2) &
 !reasonable-truck-location(truck2, location)]]

#define [t] all-objects-at-their-destinations:
 forall obj, location [
 goal(at(obj, location)) -> [t] at(obj, location)]

#define [t] all-nondriven-trucks-at-their-destinations-or-have-committed-
drivers:
 forall truck, location [
 ([t] empty(truck) &
 goal(at(truck, location))) ->
 (([t] at(truck, location)) |
 exists location2, driver [
 [t] at(truck, location2) &

 113

 ([t] destination(driver, location2) |
 [t] at(driver, location2) &
 !goal(at(driver, location2)))])]

B.10 Rovers STRIPS
#domain integer :integer :lb 0 :ub 1000

#domain rover :elements {}
#domain waypoint :elements {}
#domain store :elements {}
#domain camera :elements {}
#domain mode :elements {}
#domain lander :elements {}
#domain objective :elements {}

#feature at(rover, waypoint) :domain boolean :injective
#feature at_lander(lander, waypoint) :domain boolean :injective
#feature can_traverse(rover, waypoint, waypoint) :domain boolean :function
#feature equipped_for_soil_analysis(rover) :domain boolean :function
#feature equipped_for_rock_analysis(rover) :domain boolean :function
#feature equipped_for_imaging(rover) :domain boolean :function
#feature empty(store) :domain boolean
#feature have_rock_analysis(rover, waypoint) :domain boolean
#feature have_soil_analysis(rover, waypoint) :domain boolean
#feature full(store) :domain boolean
#feature calibrated(camera, rover) :domain boolean :injective
#feature supports(camera, mode) :domain boolean :function
#feature available(rover) :domain boolean
#feature visible(waypoint, waypoint) :domain boolean :function
#feature have_image(rover, objective, mode) :domain boolean
#feature communicated_soil_data(waypoint) :domain boolean
#feature communicated_rock_data(waypoint) :domain boolean
#feature communicated_image_data(objective, mode) :domain boolean
#feature at_soil_sample(waypoint) :domain boolean
#feature at_rock_sample(waypoint) :domain boolean
#feature visible_from(objective, waypoint) :domain boolean :function
#feature store_of(store, rover) :domain boolean :injective
#feature calibration_target(camera, objective) :domain boolean :function
#feature on_board(camera, rover) :domain boolean :injective :function
#feature channel_free(lander) :domain boolean

#feature someone_has_rock_analysis(waypoint) :domain boolean
#feature someone_has_soil_analysis(waypoint) :domain boolean
#feature someone_has_image(objective, mode) :domain boolean

#deffeature roving-distance-to-reasonable-location(rover, waypoint)
 :domain integer
#deffeature reasonable-rover-location(rover, waypoint) :domain boolean
#distfeature roving-distance-between(rover, waypoint1, waypoint2)
 :domain integer :link can_traverse
#mindistfeature mindist-roving :feature roving-distance-between :domain integer

// Taking an image destroys the cameras calibration so you can’t take two images
// with one camera at the same time.
#resource sem_take_image(camera) :domain integer :preference :none
// Don’t take two images of the same objective with the same mode at the same
// time becausse it will generate two have_image(rover, objective, mode).
#resource sem_have_image(objective, mode) :domain integer :preference :none
// The lander has only one communication channel.
#resource sem_communicate_data(lander) :domain integer :preference :none
// Don’t do two actions that fills the store of a rover at the same time.
#resource sem_store(store) :domain integer :preference :none

 114

// Don’t sample the same rock or soil twice.
#resource sem_rock_sample(waypoint) :domain integer :preference :none
#resource sem_soil_sample(waypoint) :domain integer :preference :none

#dom [0] forall camera [
 $init(sem_take_image(camera)) == 1 &
 $minimum(sem_take_image(camera)) == 0 &
 $maximum(sem_take_image(camera)) == 1]
#dom [0] forall objective, mode [
 $init(sem_have_image(objective, mode)) == 1 &
 $minimum(sem_have_image(objective, mode)) == 0 &
 $maximum(sem_have_image(objective, mode)) == 1]
#dom [0] forall lander [
 $init(sem_communicate_data(lander)) == 1 &
 $minimum(sem_communicate_data(lander)) == 0 &
 $maximum(sem_communicate_data(lander)) == 1]
#dom [0] forall store [
 $init(sem_store(store)) == 1 &
 $minimum(sem_store(store)) == 0 &
 $maximum(sem_store(store)) == 1]
#dom [0] forall waypoint [
 $init(sem_rock_sample(waypoint)) == 1 &
 $minimum(sem_rock_sample(waypoint)) == 0 &
 $maximum(sem_rock_sample(waypoint)) == 1]
#dom [0] forall waypoint [
 $init(sem_soil_sample(waypoint)) == 1 &
 $minimum(sem_soil_sample(waypoint)) == 0 &
 $maximum(sem_soil_sample(waypoint)) == 1]

#operator sample_soil(rover, store, waypoint)
 :at t
 :precond [t] at(rover, waypoint) &
 [t] at_soil_sample(waypoint) &
 [t] equipped_for_soil_analysis(rover) &
 [t] store_of(store, rover) &
 [t] empty(store)
 :resources [+1] :borrow sem_store(store) :amount 1,
 [+1] :borrow sem_soil_sample(waypoint) :amount 1
 :context
 :effects [+1] empty(store) := false,
 [+1] full(store) := true,
 [+1] have_soil_analysis(rover, waypoint) := true,
 [+1] someone_has_soil_analysis(waypoint) := true,
 [+1] at_soil_sample(waypoint) := false

#operator sample_rock(rover, store, waypoint)
 :at t
 :precond [t] at(rover, waypoint) &
 [t] at_rock_sample(waypoint) &
 [t] equipped_for_rock_analysis(rover) &
 [t] store_of(store, rover) &
 [t] empty(store)
 :resources [+1] :borrow sem_store(store) :amount 1,
 [+1] :borrow sem_rock_sample(waypoint) :amount 1
 :context
 :effects [+1] empty(store) := false,
 [+1] full(store) := true,
 [+1] have_rock_analysis(rover, waypoint) := true,
 [+1] someone_has_rock_analysis(waypoint) := true,
 [+1] at_rock_sample(waypoint) := false

#operator take_image(rover, waypoint, objective, camera, mode)

 115

 :at t
 :precond [t] calibrated(camera, rover) &
 [t] on_board(camera, rover) &
 [t] equipped_for_imaging(rover) &
 [t] supports(camera, mode) &
 [t] visible_from(objective, waypoint) &
 ([t] at(rover, waypoint)) &
 // Don’t take images that you already have.
 [t] !have_image(rover, objective, mode)
 :resources [+1] :borrow sem_take_image(camera) :amount 1,
 [+1] :borrow sem_have_image(objective, mode) :amount 1
 :context
 :effects [+1] have_image(rover, objective, mode) := true,
 [+1] someone_has_image(objective, mode) := true,
 [+1] calibrated(camera, rover) := false,
 // The rover must not have changed location while taking the
 // picture.
 [+1] at(rover, waypoint) := true

#operator communicate_soil_data(rover, lander, waypoint1, waypoint2, waypoint3)
 :at t
 :precond [t] at(rover, waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] have_soil_analysis(rover, waypoint1) &
 [t] visible(waypoint2, waypoint3) &
 [t] available(rover) &
 ([t] channel_free(lander)) &
 // Don’t send data that you’ve already sent.
 [t] !communicated_soil_data(waypoint1)
 :resources [+1] :borrow sem_communicate_data(lander) :amount 1
 :context
 :effects //[+1] channel_free(lander) := false,
 //[+1] channel_free(lander) := true,
 [+1] communicated_soil_data(waypoint1) := true

#operator communicate_rock_data(rover, lander, waypoint1, waypoint2, waypoint3)
 :at t
 :precond [t] at(rover, waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] have_rock_analysis(rover, waypoint1) &
 [t] visible(waypoint2, waypoint3) &
 [t] available(rover) &
 ([t] channel_free(lander)) &
 // Don’t send data that you’ve already sent.
 [t] !communicated_rock_data(waypoint1)
 :resources [+1] :borrow sem_communicate_data(lander) :amount 1
 :context
 :effects //[+1] channel_free(lander) := false,
 //[+1] channel_free(lander) := true,
 [+1] communicated_rock_data(waypoint1) := true

#operator communicate_image_data(rover, lander, objective, mode, waypoint2,
waypoint3)
 :at t
 :precond [t] at(rover, waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] have_image(rover, objective, mode) &
 [t] visible(waypoint2, waypoint3) &
 [t] available(rover) &
 ([t] channel_free(lander)) &
 // Don’t send data that you’ve already sent.
 [t] !communicated_image_data(objective, mode)
 :resources [+1] :borrow sem_communicate_data(lander) :amount 1
 :context

 116

 :effects //[+1] channel_free(lander) := false,
 //[+1] channel_free(lander) := true,
 [+1] communicated_image_data(objective, mode) := true

#operator calibrate(rover, camera, objective, waypoint)
 :at t
 :precond [t] equipped_for_imaging(rover) &
 [t] calibration_target(camera, objective) &
 [t] at(rover, waypoint) &
 [t] visible_from(objective, waypoint) &
 [t] on_board(camera, rover)
 :context
 :effects [+1] calibrated(camera, rover) := true,
 // The rover must not have changed location while calibrating
 // the camera.
 [+1] at(rover, waypoint) := true

#operator drop(rover, store)
 :at t
 :precond [t] store_of(store, rover) &
 [t] full(store)
 :context
 :effects [+1] full(store) := false,
 [+1] empty(store) := true

#operator navigate(rover, waypoint1, waypoint2)
 :at t
 :precond [t] can_traverse(rover, waypoint1, waypoint2) &
 [t] available(rover) &
 [t] at(rover, waypoint1) &
 ([t] visible(waypoint1, waypoint2)) &
 waypoint1 != waypoint2 &
 // Only navigate if we are not at a reasonable location, and
 // there exists a reasonable destination and navigating brings
 // us closer to it.
 [t] roving-distance-to-reasonable-location(rover, waypoint1)
 !== {0, 999} &
 [t] roving-distance-to-reasonable-location(rover, waypoint1) >
 roving-distance-to-reasonable-location(rover, waypoint2)
 :context
 :effects [+1] at(rover, waypoint1) := false,
 [+1] at(rover, waypoint2) := true

// A waypoint is reasonable for a rover if:
#define [t] reasonable-rover-location(rover, waypoint):
 // We need to go get a rock sample.
 (goal(communicated_rock_data(waypoint)) &
 [t] at_rock_sample(waypoint) &
 [t] !someone_has_rock_analysis(waypoint) &
 [t] equipped_for_rock_analysis(rover)) |
 // We need to go get a soil sample.
 (goal(communicated_soil_data(waypoint)) &
 [t] at_soil_sample(waypoint) &
 [t] !someone_has_soil_analysis(waypoint) &
 [t] equipped_for_soil_analysis(rover)) |
 // We need to go take an image of an objective visible from it.
 exists mode, objective [
 goal(communicated_image_data(objective, mode)) &
 [t] visible_from(objective, waypoint) &
 [t] !someone_has_image(objective, mode) &
 ([t] equipped_for_imaging(rover)) &
 exists camera [

 117

 [t] on_board(camera, rover) &
 [t] supports(camera, mode) &
 [t] calibrated(camera, rover)]] |
 // We need to go calibrate a camera to take an image.
 exists mode, camera, objective [
 goal(communicated_image_data(objective, mode)) &
 [t] !someone_has_image(objective, mode) &
 [t] supports(camera, mode) &
 [t] on_board(camera, rover) &
 [t] !calibrated(camera, rover) &
 [t] calibration_target(camera, objective) &
 [t] visible_from(objective, waypoint)] |
 // We need to go send rock data to lander.
 exists waypoint2, waypoint3, lander [
 [t] have_rock_analysis(rover, waypoint2) &
 [t] !communicated_rock_data(waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] visible(waypoint3, waypoint)] |
 // We need to go send soil data to lander.
 exists waypoint2, waypoint3, lander [
 [t] have_soil_analysis(rover, waypoint2) &
 [t] !communicated_soil_data(waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] visible(waypoint3, waypoint)] |
 // We need to go send image data to lander.
 exists mode, objective, waypoint2, lander [
 [t] have_image(rover, objective, mode) &
 [t] !communicated_image_data(objective, mode) &
 [t] at_lander(lander, waypoint2) &
 [t] visible(waypoint2, waypoint)]

#define [t] roving-distance-to-reasonable-location(rover, waypoint1):
 value(t, mindist-roving(rover,
 waypoint1,
 waypoint2,
 [t] reasonable-rover-location(rover, waypoint2)))

// Only sample soil if it’s a goal.
#control :name "only-sample-goal-soil"
 forall t, waypoint [
 [t] !someone_has_soil_analysis(waypoint) ->
 ([t+1] !someone_has_soil_analysis(waypoint)) |
 goal(communicated_soil_data(waypoint))]

// Only sample rock if it’s a goal.
#control :name "only-sample-goal-rock"
 forall t, waypoint [
 [t] !someone_has_rock_analysis(waypoint) ->
 ([t+1] !someone_has_rock_analysis(waypoint)) |
 goal(communicated_rock_data(waypoint))]

// Only take image if it’s a goal.
#control :name "only-take-goal-images"
 forall t, objective, mode, rover [
 [t] !someone_has_image(objective, mode) ->
 ([t+1] !someone_has_image(objective, mode)) |
 goal(communicated_image_data(objective, mode))]

// Only calibrate cameras that can be used to take images that are needed in
// the goal.
#control :name "only-calibrate-if-camera-needed"
 forall t, rover, camera [
 [t] !calibrated(camera, rover) ->
 ([t+1] !calibrated(camera, rover)) |

 118

 exists objective, mode [
 [t] supports(camera, mode) &
 goal(communicated_image_data(objective, mode)) &
 [t] !someone_has_image(objective, mode)]]

// Only empty a store if it’s on a rover that needs it to sample soil or to
// sample rock.
#control :name "only-drop-if-neccessary"
 forall t, store [
 [t] full(store) ->
 ([t+1] full(store)) |
 exists rover [
 ([t] store_of(store, rover)) &
 exists waypoint [
 goal(communicated_soil_data(waypoint)) &
 [t] !someone_has_soil_analysis(waypoint) &
 [t] at_soil_sample(waypoint) &
 [t] at(rover, waypoint) &
 [t] equipped_for_soil_analysis(rover)] |
 exists waypoint [
 goal(communicated_rock_data(waypoint)) &
 [t] !someone_has_rock_analysis(waypoint) &
 [t] at_rock_sample(waypoint) &
 [t] at(rover, waypoint) &
 [t] equipped_for_rock_analysis(rover)]]]

B.11 Rovers SimpleTime
#domain integer :integer :lb 0 :ub 1000

#domain rover :elements {}
#domain waypoint :elements {}
#domain store :elements {}
#domain camera :elements {}
#domain mode :elements {}
#domain lander :elements {}
#domain objective :elements {}

#feature at(rover, waypoint) :domain boolean :injective
#feature at_lander(lander, waypoint) :domain boolean :injective
#feature can_traverse(rover, waypoint, waypoint) :domain boolean :function
#feature equipped_for_soil_analysis(rover) :domain boolean :function
#feature equipped_for_rock_analysis(rover) :domain boolean :function
#feature equipped_for_imaging(rover) :domain boolean :function
#feature empty(store) :domain boolean
#feature have_rock_analysis(rover, waypoint) :domain boolean
#feature have_soil_analysis(rover, waypoint) :domain boolean
#feature full(store) :domain boolean
#feature calibrated(camera, rover) :domain boolean :injective
#feature supports(camera, mode) :domain boolean :function
#feature available(rover) :domain boolean
#feature visible(waypoint, waypoint) :domain boolean :function
#feature have_image(rover, objective, mode) :domain boolean
#feature communicated_soil_data(waypoint) :domain boolean
#feature communicated_rock_data(waypoint) :domain boolean
#feature communicated_image_data(objective, mode) :domain boolean
#feature at_soil_sample(waypoint) :domain boolean
#feature at_rock_sample(waypoint) :domain boolean
#feature visible_from(objective, waypoint) :domain boolean :function
#feature store_of(store, rover) :domain boolean :injective
#feature calibration_target(camera, objective) :domain boolean :function
#feature on_board(camera, rover) :domain boolean :function
#feature channel_free(lander) :domain boolean

 119

// Someone has collected a rock or soil sample or an image or is in the
// process of doing so.
#feature someone_has_rock_analysis(waypoint) :domain boolean
#feature someone_has_soil_analysis(waypoint) :domain boolean
#feature someone_has_image(objective, mode) :domain boolean
// The camera has started calibrating but hasn’t finished yet.
#feature calibrating(camera) :domain boolean

#deffeature roving-distance-to-reasonable-location(rover, waypoint)
 :domain integer
#deffeature reasonable-rover-location(rover, waypoint) :domain boolean
#distfeature roving-distance-between(rover, waypoint1, waypoint2)
 :domain integer :link can_traverse
#mindistfeature mindist-roving :feature roving-distance-between :domain integer

#resource sem_take_image(camera) :domain integer :preference :none
#resource sem_have_image(objective, mode) :domain integer :preference :none
#resource sem_communicate_data(lander) :domain integer :preference :none
#resource sem_store(store) :domain integer :preference :none
#resource sem_rock_sample(waypoint) :domain integer :preference :none
#resource sem_soil_sample(waypoint) :domain integer :preference :none
#resource sem_rover(rover) :domain integer :preference :none

#dom [0] forall camera [
 $init(sem_take_image(camera)) == 1 &
 $minimum(sem_take_image(camera)) == 0 &
 $maximum(sem_take_image(camera)) == 1]
#dom [0] forall objective, mode [
 $init(sem_have_image(objective, mode)) == 1 &
 $minimum(sem_have_image(objective, mode)) == 0 &
 $maximum(sem_have_image(objective, mode)) == 1]
#dom [0] forall lander [
 $init(sem_communicate_data(lander)) == 1 &
 $minimum(sem_communicate_data(lander)) == 0 &
 $maximum(sem_communicate_data(lander)) == 1]
#dom [0] forall store [
 $init(sem_store(store)) == 1 &
 $minimum(sem_store(store)) == 0 &
 $maximum(sem_store(store)) == 1]
#dom [0] forall waypoint [
 $init(sem_rock_sample(waypoint)) == 1 &
 $minimum(sem_rock_sample(waypoint)) == 0 &
 $maximum(sem_rock_sample(waypoint)) == 1]
#dom [0] forall waypoint [
 $init(sem_soil_sample(waypoint)) == 1 &
 $minimum(sem_soil_sample(waypoint)) == 0 &
 $maximum(sem_soil_sample(waypoint)) == 1]
#dom [0] forall rover [
 $init(sem_rover(rover)) == 1 &
 $minimum(sem_rover(rover)) == 0 &
 $maximum(sem_rover(rover)) == 1]

#operator sample_soil(rover, store, waypoint)
 :at t
 :precond [t] at(rover, waypoint) &
 [t] at_soil_sample(waypoint) &
 [t] equipped_for_soil_analysis(rover) &
 [t] store_of(store, rover) &
 [t] empty(store)
 :duration 10
 :resources [+1,+10] :borrow sem_store(store) :amount 1,

 120

 [+1,+10] :borrow sem_soil_sample(waypoint) :amount 1,
 [+1,+10] :borrow-nonex sem_rover(rover) :amount 1
 :context
 :effects [+1] empty(store) := false,
 [+10] full(store) := true,
 [+10] have_soil_analysis(rover, waypoint) := true,
 [+1] someone_has_soil_analysis(waypoint) := true,
 [+1] at_soil_sample(waypoint) := false

#operator sample_rock(rover, store, waypoint)
 :at t
 :precond [t] at(rover, waypoint) &
 [t] at_rock_sample(waypoint) &
 [t] equipped_for_rock_analysis(rover) &
 [t] store_of(store, rover) &
 [t] empty(store)
 :duration 8
 :resources [+1,+8] :borrow sem_store(store) :amount 1,
 [+1,+8] :borrow sem_rock_sample(waypoint) :amount 1,
 [+1,+8] :borrow-nonex sem_rover(rover) :amount 1
 :context
 :effects [+1] empty(store) := false,
 [+8] full(store) := true,
 [+8] have_rock_analysis(rover, waypoint) := true,
 [+1] someone_has_rock_analysis(waypoint) := true,
 [+1] at_rock_sample(waypoint) := false

#operator take_image(rover, waypoint, objective, camera, mode)
 :at t
 :precond [t] calibrated(camera, rover) &
 [t] on_board(camera, rover) &
 [t] equipped_for_imaging(rover) &
 [t] supports(camera, mode) &
 [t] visible_from(objective, waypoint) &
 [t] at(rover, waypoint) &
 [t] !someone_has_image(objective, mode)
 :duration 7
 :resources [+1,+7] :borrow sem_take_image(camera) :amount 1,
 [+1,+7] :borrow sem_have_image(objective, mode) :amount 1,
 [+1,+7] :borrow-nonex sem_rover(rover) :amount 1
 :context
 :effects [+7] have_image(rover, objective, mode) := true,
 [+1] someone_has_image(objective, mode) := true,
 [+7] calibrated(camera, rover) := false,
 [+7] at(rover, waypoint) := true

#operator communicate_soil_data(rover, lander, waypoint1, waypoint2, waypoint3)
 :at t
 :precond [t] at(rover, waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] have_soil_analysis(rover, waypoint1) &
 [t] visible(waypoint2, waypoint3) &
 [t] available(rover) &
 [t] channel_free(lander) &
 [t] !communicated_soil_data(waypoint1)
 :duration 10
 :resources [+1,+10] :borrow sem_communicate_data(lander) :amount 1,
 [+1,+10] :borrow-nonex sem_rover(rover) :amount 1
 :context
 :effects //[+1] channel_free(lander) := false,
 //[+10] channel_free(lander) := true,
 [+10] communicated_soil_data(waypoint1) := true

#operator communicate_rock_data(rover, lander, waypoint1, waypoint2, waypoint3)

 121

 :at t
 :precond [t] at(rover, waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] have_rock_analysis(rover, waypoint1) &
 [t] visible(waypoint2, waypoint3) &
 [t] available(rover) &
 [t] channel_free(lander) &
 [t] !communicated_rock_data(waypoint1)
 :duration 10
 :resources [+1,+10] :borrow sem_communicate_data(lander) :amount 1,
 [+1,+10] :borrow-nonex sem_rover(rover) :amount 1
 :context
 :effects //[+1] channel_free(lander) := false,
 //[+10] channel_free(lander) := true,
 [+10] communicated_rock_data(waypoint1) := true

#operator communicate_image_data(rover, lander, objective, mode, waypoint2,
waypoint3)
 :at t
 :precond [t] at(rover, waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] have_image(rover, objective, mode) &
 [t] visible(waypoint2, waypoint3) &
 [t] available(rover) &
 [t] channel_free(lander) &
 [t] !communicated_image_data(objective, mode)
 :duration 15
 :resources [+1,+15] :borrow sem_communicate_data(lander) :amount 1,
 [+1,+10] :borrow-nonex sem_rover(rover) :amount 1
 :context
 :effects //[+1] channel_free(lander) := false,
 //[+15] channel_free(lander) := true,
 [+15] communicated_image_data(objective, mode) := true

#operator calibrate(rover, camera, objective, waypoint)
 :at t
 :precond [t] equipped_for_imaging(rover) &
 [t] calibration_target(camera, objective) &
 [t] at(rover, waypoint) &
 [t] visible_from(objective, waypoint) &
 [t] on_board(camera, rover) &
 [t] !calibrated(camera, rover) &
 [t] !calibrating(camera)
 :duration 5
 :resources [+1,+5] :borrow-nonex sem_rover(rover) :amount 1
 :context
 :effects [+5] calibrated(camera, rover) := true,
 [+5] at(rover, waypoint) := true,
 [+1] calibrating(camera) := true,
 [+5] calibrating(camera) := false

#operator drop(rover, store)
 :at t
 :precond [t] store_of(store, rover) &
 [t] full(store)
 :context
 :effects [+1] full(store) := false,
 [+1] empty(store) := true

#operator navigate(rover, waypoint1, waypoint2)
 :at t
 :precond [t] can_traverse(rover, waypoint1, waypoint2) &
 [t] available(rover) &
 [t] at(rover, waypoint1) &

 122

 [t] visible(waypoint1, waypoint2) &
 waypoint1 != waypoint2 &
 [t] roving-distance-to-reasonable-location(rover, waypoint1)
 !== {0, 999} &
 [t] roving-distance-to-reasonable-location(rover, waypoint1) >
 roving-distance-to-reasonable-location(rover, waypoint2)
 :duration 5
 :resources [+1,+5] :borrow sem_rover(rover) :amount 1
 :context
 :effects [+1] at(rover, waypoint1) := false,
 [+5] at(rover, waypoint2) := true

#define [t] reasonable-rover-location(rover, waypoint):
 (goal(communicated_rock_data(waypoint)) &
 [t] at_rock_sample(waypoint) &
 [t] !someone_has_rock_analysis(waypoint) &
 [t] equipped_for_rock_analysis(rover)) |
 (goal(communicated_soil_data(waypoint)) &
 [t] at_soil_sample(waypoint) &
 [t] !someone_has_soil_analysis(waypoint) &
 [t] equipped_for_soil_analysis(rover)) |
 exists mode, objective [
 goal(communicated_image_data(objective, mode)) &
 [t] visible_from(objective, waypoint) &
 [t] !someone_has_image(objective, mode) &
 ([t] equipped_for_imaging(rover)) &
 exists camera [
 [t] on_board(camera, rover) &
 [t] supports(camera, mode) &
 [t] calibrated(camera, rover)]] |
 exists mode, camera, objective [
 goal(communicated_image_data(objective, mode)) &
 [t] !someone_has_image(objective, mode) &
 [t] supports(camera, mode) &
 [t] on_board(camera, rover) &
 [t] !calibrated(camera, rover) &
 [t] calibration_target(camera, objective) &
 [t] visible_from(objective, waypoint)] |
 exists waypoint2, waypoint3, lander [
 [t] have_rock_analysis(rover, waypoint2) &
 [t] !communicated_rock_data(waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] visible(waypoint3, waypoint)] |
 exists waypoint2, waypoint3, lander [
 [t] have_soil_analysis(rover, waypoint2) &
 [t] !communicated_soil_data(waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] visible(waypoint3, waypoint)] |
 exists mode, objective, waypoint2, lander [
 [t] have_image(rover, objective, mode) &
 [t] !communicated_image_data(objective, mode) &
 [t] at_lander(lander, waypoint2) &
 [t] visible(waypoint2, waypoint)]

#define [t] roving-distance-to-reasonable-location(rover, waypoint1):
 value(t, mindist-roving(rover,
 waypoint1,
 waypoint2,
 [t] reasonable-rover-location(rover,
waypoint2)))

#control :name "only-sample-goal-soil"

 123

 forall t, waypoint [
 [t] !someone_has_soil_analysis(waypoint) ->
 ([t+1] !someone_has_soil_analysis(waypoint)) |
 goal(communicated_soil_data(waypoint))]

#control :name "only-sample-goal-rock"
 forall t, waypoint [
 [t] !someone_has_rock_analysis(waypoint) ->
 ([t+1] !someone_has_rock_analysis(waypoint)) |
 goal(communicated_rock_data(waypoint))]

#control :name "only-take-goal-images"
 forall t, objective, mode, rover [
 [t] !someone_has_image(objective, mode) ->
 ([t+1] !someone_has_image(objective, mode)) |
 goal(communicated_image_data(objective, mode))]

#control :name "only-calibrate-if-camera-needed"
 forall t, rover, camera [
 [t] !calibrating(camera) &
 ([t+1] calibrating(camera)) ->
 exists objective, mode [
 [t] supports(camera, mode) &
 goal(communicated_image_data(objective, mode)) &
 [t] !someone_has_image(objective, mode)]]

#control :name "only-drop-if-neccessary"
 forall t, store [
 [t] full(store) ->
 ([t+1] full(store)) |
 exists rover [
 ([t] store_of(store, rover)) &
 exists waypoint [
 goal(communicated_soil_data(waypoint)) &
 [t] !someone_has_soil_analysis(waypoint) &
 [t] at_soil_sample(waypoint) &
 [t] at(rover, waypoint) &
 [t] equipped_for_soil_analysis(rover)] |
 exists waypoint [
 goal(communicated_rock_data(waypoint)) &
 [t] !someone_has_rock_analysis(waypoint) &
 [t] at_rock_sample(waypoint) &
 [t] at(rover, waypoint) &
 [t] equipped_for_rock_analysis(rover)]]]

B.12 Rovers Timed
#timescale 0.001

#domain integer :integer :lb 0 :ub 1000000
#domain fixedpoint :fixedpoint :lb 0 :ub 200000 :decimals 4

#domain rover :elements {}
#domain waypoint :elements {}
#domain store :elements {}
#domain camera :elements {}
#domain mode :elements {}
#domain lander :elements {}
#domain objective :elements {}

#feature at(rover, waypoint) :domain boolean :injective
#feature at_lander(lander, waypoint) :domain boolean :injective
#feature can_traverse(rover, waypoint, waypoint) :domain boolean :function

 124

#feature equipped_for_soil_analysis(rover) :domain boolean :function
#feature equipped_for_rock_analysis(rover) :domain boolean :function
#feature equipped_for_imaging(rover) :domain boolean :function
#feature empty(store) :domain boolean
#feature have_rock_analysis(rover, waypoint) :domain boolean
#feature have_soil_analysis(rover, waypoint) :domain boolean
#feature full(store) :domain boolean
#feature calibrated(camera, rover) :domain boolean :injective
#feature supports(camera, mode) :domain boolean :function
#feature available(rover) :domain boolean
#feature visible(waypoint, waypoint) :domain boolean :function
#feature have_image(rover, objective, mode) :domain boolean
#feature communicated_soil_data(waypoint) :domain boolean
#feature communicated_rock_data(waypoint) :domain boolean
#feature communicated_image_data(objective, mode) :domain boolean
#feature at_soil_sample(waypoint) :domain boolean
#feature at_rock_sample(waypoint) :domain boolean
#feature visible_from(objective, waypoint) :domain boolean :function
#feature store_of(store, rover) :domain boolean :injective
#feature calibration_target(camera, objective) :domain boolean :function
#feature on_board(camera, rover) :domain boolean :function
#feature channel_free(lander) :domain boolean

#feature in_sun(waypoint) :domain boolean :function
#feature energy(rover) :domain fixedpoint :function
#resource renergy(rover) :domain fixedpoint :preference :none
#feature recharge-rate(rover) :domain fixedpoint :function

#feature someone_has_rock_analysis(waypoint) :domain boolean
#feature someone_has_soil_analysis(waypoint) :domain boolean
#feature someone_has_image(objective, mode) :domain boolean
#feature calibrating(camera) :domain boolean
#feature recharging(rover) :domain boolean

#valuevar from, to :domain waypoint

#deffeature roving-distance-to-reasonable-location(rover, waypoint) :domain
integer
#deffeature roving-distance-to-recharge(rover, waypoint) :domain integer
#deffeature reasonable-rover-location(rover, waypoint) :domain boolean
#deffeature reasonable-rover-location-dont-care-energy(rover, waypoint) :domain
boolean
#distfeature roving-distance-between(rover, waypoint1, waypoint2) :domain
integer :link can_traverse
#mindistfeature mindist-roving :feature roving-distance-between :domain integer

#deffeature enough-energy-for-expedition(rover, from, to) :domain boolean
#deffeature have-enough-energy(rover, fixedpoint) :domain boolean :uncached

#resource sem_take_image(camera) :domain integer :preference :none
#resource sem_have_image(objective, mode) :domain integer :preference :none
#resource sem_communicate_data(lander) :domain integer :preference :none
#resource sem_store(store) :domain integer :preference :none
#resource sem_rock_sample(waypoint) :domain integer :preference :none
#resource sem_soil_sample(waypoint) :domain integer :preference :none
#resource sem_rover(rover) :domain integer :preference :none
#resource mutex_energy :domain integer :preference :none

#dom [0] forall camera [
 $init(sem_take_image(camera)) == 1 &
 $minimum(sem_take_image(camera)) == 0 &
 $maximum(sem_take_image(camera)) == 1]
#dom [0] forall objective, mode [
 $init(sem_have_image(objective, mode)) == 1 &

 125

 $minimum(sem_have_image(objective, mode)) == 0 &
 $maximum(sem_have_image(objective, mode)) == 1]
#dom [0] forall lander [
 $init(sem_communicate_data(lander)) == 1 &
 $minimum(sem_communicate_data(lander)) == 0 &
 $maximum(sem_communicate_data(lander)) == 1]
#dom [0] forall store [
 $init(sem_store(store)) == 1 &
 $minimum(sem_store(store)) == 0 &
 $maximum(sem_store(store)) == 1]
#dom [0] forall waypoint [
 $init(sem_rock_sample(waypoint)) == 1 &
 $minimum(sem_rock_sample(waypoint)) == 0 &
 $maximum(sem_rock_sample(waypoint)) == 1]
#dom [0] forall waypoint [
 $init(sem_soil_sample(waypoint)) == 1 &
 $minimum(sem_soil_sample(waypoint)) == 0 &
 $maximum(sem_soil_sample(waypoint)) == 1]
#dom [0] forall rover [
 $init(sem_rover(rover)) == 1 &
 $minimum(sem_rover(rover)) == 0 &
 $maximum(sem_rover(rover)) == 1]
#dom [0] forall rover [
 $init(renergy(rover)) == energy(rover) &
 $minimum(renergy(rover)) == 0.0 &
 $maximum(renergy(rover)) == 81.0]
#dom [0] $init(mutex_energy) == 1 &
 $minimum(mutex_energy) == 0 &
 $maximum(mutex_energy) == 1

#operator recharge(rover, waypoint)
 :at t
 :precond [t] at(rover, waypoint) &
 [t] in_sun(waypoint) &
 [t] $available(renergy(rover)) < 80.0 &
 [t] !recharging(rover)
 :duration // Duration is: amount of energy charged / recharge rate of
 // rover. $max to make sure that the duration is not less than
 // one time step (which is not allowed).
 $maketime($cast(fixedpoint,
 integer,
 value(t, $max(1.0,
 1000.0 * (80.0 -
$available(renergy(rover))) / recharge-rate(rover))))) :as t2
 :resources [+1,+t2] :borrow-nonex sem_rover(rover) :amount 1,
 // Recieved energy is: recharge duration * recharge rate of
 // rover.
 [+t2] :produce renergy(rover)
 :amount $makevalue(fixedpoint, t2) *
 recharge-rate(rover) / 1000.0,
 [+1] :borrow mutex_energy :amount 1
 :context
 :effects [+1,+t2 - 1] recharging(rover) := true,
 [+t2] recharging(rover) := false

#operator sample_soil(rover, store, waypoint)
 :at t
 :precond [t] at(rover, waypoint) &
 [t] at_soil_sample(waypoint) &
 [t] equipped_for_soil_analysis(rover) &
 [t] store_of(store, rover) &
 [t] empty(store) &

 126

 [t] have-enough-energy(rover, 3.0)
 :duration 10000 :as t2
 :resources [+1,+t2] :borrow sem_store(store) :amount 1,
 [+1,+t2] :borrow sem_soil_sample(waypoint) :amount 1,
 [+1,+t2] :borrow-nonex sem_rover(rover) :amount 1,
 [+1] :consume renergy(rover) :amount 3.0,
 [+1] :borrow mutex_energy :amount 1
 :context
 :effects [+1] empty(store) := false,
 [+t2] full(store) := true,
 [+t2] have_soil_analysis(rover, waypoint) := true,
 [+1] someone_has_soil_analysis(waypoint) := true,
 [+1] at_soil_sample(waypoint) := false

#operator sample_rock(rover, store, waypoint)
 :at t
 :precond [t] at(rover, waypoint) &
 [t] at_rock_sample(waypoint) &
 [t] equipped_for_rock_analysis(rover) &
 [t] store_of(store, rover) &
 [t] empty(store) &
 [t] have-enough-energy(rover, 5.0)
 :duration 8000 :as t2
 :resources [+1,+t2] :borrow sem_store(store) :amount 1,
 [+1,+t2] :borrow sem_rock_sample(waypoint) :amount 1,
 [+1,+t2] :borrow-nonex sem_rover(rover) :amount 1,
 [+1] :consume renergy(rover) :amount 5.0,
 [+1] :borrow mutex_energy :amount 1
 :context
 :effects [+1] empty(store) := false,
 [+t2] full(store) := true,
 [+t2] have_rock_analysis(rover, waypoint) := true,
 [+1] someone_has_rock_analysis(waypoint) := true,
 [+1] at_rock_sample(waypoint) := false

#operator take_image(rover, waypoint, objective, camera, mode)
 :at t
 :precond [t] calibrated(camera, rover) &
 [t] on_board(camera, rover) &
 [t] equipped_for_imaging(rover) &
 [t] supports(camera, mode) &
 [t] visible_from(objective, waypoint) &
 [t] at(rover, waypoint) &
 ([t] !someone_has_image(objective, mode)) &
 [t] have-enough-energy(rover, 1.0)
 :duration 7000 :as t2
 :resources [+1,+t2] :borrow sem_take_image(camera) :amount 1,
 [+1,+t2] :borrow sem_have_image(objective, mode) :amount 1,
 [+1,+t2] :borrow-nonex sem_rover(rover) :amount 1,
 [+1] :consume renergy(rover) :amount 1.0,
 [+1] :borrow mutex_energy :amount 1
 :context
 :effects [+t2] have_image(rover, objective, mode) := true,
 [+1] someone_has_image(objective, mode) := true,
 [+t2] calibrated(camera, rover) := false,
 [+t2] at(rover, waypoint) := true

#operator communicate_soil_data(rover, lander, waypoint1, waypoint2, waypoint3)
 :at t
 :precond [t] at(rover, waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] have_soil_analysis(rover, waypoint1) &
 [t] visible(waypoint2, waypoint3) &
 [t] available(rover) &

 127

 [t] channel_free(lander) &
 ([t] !communicated_soil_data(waypoint1)) &
 [t] have-enough-energy(rover, 4.0)
 :duration 10000 :as t2
 :resources [+1,+t2] :borrow sem_communicate_data(lander) :amount 1,
 [+1] :consume renergy(rover) :amount 4.0,
 [+1] :borrow mutex_energy :amount 1
 :context
 :effects [+1] available(rover) := false,
 [+1] channel_free(lander) := false,
 [+t2] channel_free(lander) := true,
 [+t2] communicated_soil_data(waypoint1) := true,
 [+t2] available(rover) := true

#operator communicate_rock_data(rover, lander, waypoint1, waypoint2, waypoint3)
 :at t
 :precond [t] at(rover, waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] have_rock_analysis(rover, waypoint1) &
 [t] visible(waypoint2, waypoint3) &
 [t] available(rover) &
 [t] channel_free(lander) &
 ([t] !communicated_rock_data(waypoint1)) &
 [t] have-enough-energy(rover, 4.0)
 :duration 10000 :as t2
 :resources [+1,+t2] :borrow sem_communicate_data(lander) :amount 1,
 [+1] :consume renergy(rover) :amount 4.0,
 [+1] :borrow mutex_energy :amount 1
 :context
 :effects [+1] available(rover) := false,
 [+1] channel_free(lander) := false,
 [+t2] channel_free(lander) := true,
 [+t2] communicated_rock_data(waypoint1) := true,
 [+t2] available(rover) := true

#operator communicate_image_data(rover, lander, objective, mode, waypoint2,
waypoint3)
 :at t
 :precond [t] at(rover, waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] have_image(rover, objective, mode) &
 [t] visible(waypoint2, waypoint3) &
 [t] available(rover) &
 [t] channel_free(lander) &
 ([t] !communicated_image_data(objective, mode)) &
 [t] have-enough-energy(rover, 6.0)
 :duration 15000 :as t2
 :resources [+1,+t2] :borrow sem_communicate_data(lander) :amount 1,
 [+1] :consume renergy(rover) :amount 6.0,
 [+1] :borrow mutex_energy :amount 1
 :context
 :effects [+1] available(rover) := false,
 [+1] channel_free(lander) := false,
 [+t2] channel_free(lander) := true,
 [+t2] communicated_image_data(objective, mode) := true,
 [+t2] available(rover) := true

#operator calibrate(rover, camera, objective, waypoint)
 :at t
 :precond [t] equipped_for_imaging(rover) &
 [t] calibration_target(camera, objective) &
 [t] at(rover, waypoint) &
 [t] visible_from(objective, waypoint) &
 [t] on_board(camera, rover) &

 128

 [t] !calibrated(camera, rover) &
 [t] !calibrating(camera) &
 [t] have-enough-energy(rover, 2.0)
 :duration 5000 :as t2
 :resources [+1,+t2] :borrow-nonex sem_rover(rover) :amount 1,
 [+1] :consume renergy(rover) :amount 2.0,
 [+1] :borrow mutex_energy :amount 1
 :context
 :effects [+t2] calibrated(camera, rover) := true,
 [+t2] at(rover, waypoint) := true,
 [+1] calibrating(camera) := true,
 [+t2] calibrating(camera) := false

#operator drop(rover, store)
 :at t
 :precond [t] store_of(store, rover) &
 [t] full(store)
 :duration 1000 :as t2
 :resources [+1] :borrow mutex_energy :amount 1
 :context
 :effects [+1] full(store) := false,
 [+t2] empty(store) := true

#operator navigate(rover, waypoint1, waypoint2)
 :at t
 :precond [t] can_traverse(rover, waypoint1, waypoint2) &
 [t] available(rover) &
 [t] at(rover, waypoint1) &
 [t] visible(waypoint1, waypoint2) &
 waypoint1 != waypoint2 &
 [t] roving-distance-to-reasonable-location(rover, waypoint1) !==
{0, 999} &
 [t] roving-distance-to-reasonable-location(rover, waypoint1) >
 roving-distance-to-reasonable-location(rover, waypoint2)
 :duration 5000 :as t2
 :resources [+1,+t2] :borrow sem_rover(rover) :amount 1,
 [+1] :consume renergy(rover) :amount 8.0,
 [+1] :borrow mutex_energy :amount 1
 :context
 :effects [+1] at(rover, waypoint1) := false,
 [+t2] at(rover, waypoint2) := true

// Taking energy into account, a location is reasonable for a rover if:
#define [t] reasonable-rover-location(rover, to):
 exists from [
 ([t] at(rover, from)) &
 // It’s a place in the sun and either we don’t have enough energy
 // to do one action and then go recharge or
 // there are no other reasonable locations that we can reach with
 // the available energy.
 (([t] in_sun(to) &
 (([t] $available(renergy(rover)) <
 $cast(integer,
 fixedpoint,
 value(t, roving-distance-to-recharge(rover, from)))
 * 8.0 + 8.0) |
 !exists waypoint3 [
 waypoint3 != to &
 [t] enough-energy-for-expedition(rover, from,
waypoint3) &

 129

 [t] reasonable-rover-location-dont-care-energy(rover,
waypoint3)])) |
 // There is enough energy to go to place, do something and then
 // go recharge and that place is reasonable.
 ([t] enough-energy-for-expedition(rover, from, to) &
 [t] reasonable-rover-location-dont-care-energy(rover, to)))]

// There is enough energy for the rover to go between from and to, perform
// at least one action and still have energy left to reach a recharge location.
#define [t] enough-energy-for-expedition(rover, from, to):
 [t] $cast(integer,
 fixedpoint,
 value(t, roving-distance-between(rover, from, to) +
 roving-distance-to-recharge(rover, to)))
 * 8.0 + 8.0 <
 $available(renergy(rover))

// Without taking energy into account, a location is reasonable for a rover if
// it can perform some action there that helps achieve the goals.
#define [t] reasonable-rover-location-dont-care-energy(rover, waypoint):
 (goal(communicated_rock_data(waypoint)) &
 [t] at_rock_sample(waypoint) &
 [t] !someone_has_rock_analysis(waypoint) &
 [t] equipped_for_rock_analysis(rover)) |
 (goal(communicated_soil_data(waypoint)) &
 [t] at_soil_sample(waypoint) &
 [t] !someone_has_soil_analysis(waypoint) &
 [t] equipped_for_soil_analysis(rover)) |
 exists mode, objective [
 goal(communicated_image_data(objective, mode)) &
 [t] visible_from(objective, waypoint) &
 [t] !someone_has_image(objective, mode) &
 ([t] equipped_for_imaging(rover)) &
 exists camera [
 [t] on_board(camera, rover) &
 [t] supports(camera, mode) &
 [t] calibrated(camera, rover)]] |
 exists mode, camera, objective [
 goal(communicated_image_data(objective, mode)) &
 [t] !someone_has_image(objective, mode) &
 [t] supports(camera, mode) &
 [t] on_board(camera, rover) &
 [t] !calibrated(camera, rover) &
 [t] calibration_target(camera, objective) &
 [t] visible_from(objective, waypoint)] |
 exists waypoint2, waypoint3, lander [
 [t] have_rock_analysis(rover, waypoint2) &
 [t] !communicated_rock_data(waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] visible(waypoint3, waypoint)] |
 exists waypoint2, waypoint3, lander [
 [t] have_soil_analysis(rover, waypoint2) &
 [t] !communicated_soil_data(waypoint2) &
 [t] at_lander(lander, waypoint3) &
 [t] visible(waypoint3, waypoint)] |
 exists mode, objective, waypoint2, lander [
 [t] have_image(rover, objective, mode) &
 [t] !communicated_image_data(objective, mode) &
 [t] at_lander(lander, waypoint2) &
 [t] visible(waypoint2, waypoint)]

#define [t] roving-distance-to-reasonable-location(rover, waypoint1):
 value(t, mindist-roving(rover,
 waypoint1,

 130

 waypoint2,
 [t] reasonable-rover-location(rover, waypoint2)))

// The distance to the closest waypoint that can be used to recharge the rover.
#define [t] roving-distance-to-recharge(rover, waypoint1):
 value(t, mindist-roving(rover,
 waypoint1,
 waypoint2,
 [t] in_sun(waypoint2)))

// A rover has enough energy to do an action that consumes the amount of energy
// passed in the fixedpoint argument if it can do the action and still have
// enough energy to reach a recharge location.
#define [t] have-enough-energy(rover, fixedpoint):
 exists waypoint [
 [t] at(rover, waypoint) &
 [t] $cast(integer,
 fixedpoint,
 value(t, roving-distance-to-recharge(rover, waypoint)))
 * 8.0 <
 ($available(renergy(rover)) - fixedpoint)]

#control :name "only-sample-goal-soil"
 forall t, waypoint [
 [t] !someone_has_soil_analysis(waypoint) ->
 ([t+1] !someone_has_soil_analysis(waypoint)) |
 goal(communicated_soil_data(waypoint))]

#control :name "only-sample-goal-rock"
 forall t, waypoint [
 [t] !someone_has_rock_analysis(waypoint) ->
 ([t+1] !someone_has_rock_analysis(waypoint)) |
 goal(communicated_rock_data(waypoint))]

#control :name "only-take-goal-images"
 forall t, objective, mode, rover [
 [t] !someone_has_image(objective, mode) ->
 ([t+1] !someone_has_image(objective, mode)) |
 goal(communicated_image_data(objective, mode))]

#control :name "only-calibrate-if-camera-needed"
 forall t, rover, camera [
 [t] !calibrating(camera) &
 ([t+1] calibrating(camera)) ->
 exists objective, mode [
 [t] supports(camera, mode) &
 goal(communicated_image_data(objective, mode)) &
 [t] !someone_has_image(objective, mode)]]

#control :name "only-drop-if-neccessary"
 forall t, store [
 [t] full(store) ->
 ([t+1] full(store)) |
 exists rover [
 ([t] store_of(store, rover)) &
 exists waypoint [
 goal(communicated_soil_data(waypoint)) &
 [t] !someone_has_soil_analysis(waypoint) &
 [t] at_soil_sample(waypoint) &
 [t] at(rover, waypoint) &
 [t] equipped_for_soil_analysis(rover)] |
 exists waypoint [
 goal(communicated_rock_data(waypoint)) &
 [t] !someone_has_rock_analysis(waypoint) &

 131

 [t] at_rock_sample(waypoint) &
 [t] at(rover, waypoint) &
 [t] equipped_for_rock_analysis(rover)]]]

B.13 Satellite STRIPS
#domain integer :integer :lb 0 :ub 20

#domain satellite :elements {}
#domain direction :elements {}
#domain instrument :elements {}
#domain mode :elements {}

#valuevar old_direction, new_direction :domain direction

#feature on_board(instrument, satellite) :domain boolean :injective
#feature supports(instrument, mode) :domain boolean :function
#feature pointing(satellite, direction) :domain boolean :injective
#feature power_avail(satellite) :domain boolean
#feature power_on(instrument) :domain boolean
#feature calibrated(instrument) :domain boolean
#feature have_image(direction, mode) :domain boolean
#feature calibration_target(instrument, direction) :domain boolean :function

#deffeature goal_direction(satellite, direction) :domain boolean
#deffeature all_images_collected :domain boolean
#deffeature take_image_possible(satellite, direction) :domain boolean
#deffeature usefulness(instrument) :domain integer
#deffeature mode_needed_for_goal(mode) :domain boolean

#operator take_image(satellite, direction, instrument, mode)
 :at t
 :precond [t] calibrated(instrument) &
 [t] on_board(instrument, satellite) &
 [t] supports(instrument, mode) &
 [t] power_on(instrument) &
 ([t] pointing(satellite, direction)) &
 // Don’t take images that we already have.
 ([t] !have_image(direction, mode)) &
 !$committed(t+1, have_image(direction, mode), true)
 :context
 :effects [+1] have_image(direction, mode) := true,
 // The satellite must not change direction while the picture is
 // being taken.
 [+1] pointing(satellite, direction) := true

#operator switch_on(instrument, satellite)
 :at t
 :precond [t] on_board(instrument, satellite) &
 [t] power_avail(satellite)
 :context
 :effects [+1] power_on(instrument) := true,
 [+1] calibrated(instrument) := false,
 [+1] power_avail(satellite) := false

#operator turn_to(satellite, new_direction, old_direction)
 :at t
 :precond [t] pointing(satellite, old_direction) &
 [t] new_direction != old_direction
 :context
 :effects [+1] pointing(satellite, new_direction) := true,

 132

 [+1] pointing(satellite, old_direction) := false

#operator switch_off(instrument, satellite)
 :at t
 :precond [t] on_board(instrument, satellite) &
 [t] power_on(instrument)
 :context
 :effects [+1] power_on(instrument) := false,
 [+1] power_avail(satellite) := true

#operator calibrate(satellite, instrument, direction)
 :at t
 :precond [t] on_board(instrument, satellite) &
 [t] calibration_target(instrument, direction) &
 [t] pointing(satellite, direction) &
 [t] power_on(instrument) &
 [t] !calibrated(instrument)
 :context
 :effects [+1] calibrated(instrument) := true

#control :name "only-take-pictures-of-goals"
 forall t, direction, mode [
 [t] !have_image(direction, mode) &
 [t+1] have_image(direction, mode) ->
 goal(have_image(direction, mode))]

#control :name "only-point-in-goal-directions"
 forall t, satellite, direction [
 [t] pointing(satellite, direction) ->
 ([t+1] pointing(satellite, direction)) |
 exists new_direction [
 [t+1] pointing(satellite, new_direction) &
 ([t] goal_direction(satellite, new_direction))]]

// It is useful for the satellite to point in the direction if:
#define [t] goal_direction(satellite, direction):
 // An image in the direction is possible and is a goal.
 ([t] take_image_possible(satellite, direction)) |
 // We need to calibrate an instrument.
 exists instrument [
 [t] calibration_target(instrument, direction) &
 [t] on_board(instrument, satellite) &
 [t] !calibrated(instrument) &
 [t] power_on(instrument)] |
 // Pointing in the direction is a goal and all images have been
 // collected.
 (goal(pointing(satellite, direction)) &
 [t] all_images_collected)

// If the satellite points in the direction, the instrumentation is ready to
// take a picture of it, the picture has not been taken and taking the picture
// is a goal.
#define [t] take_image_possible(satellite, direction):
 exists mode [
 goal(have_image(direction, mode)) &
 !$committed(t+1, have_image(direction, mode), true) &
 ([t] !have_image(direction, mode)) &
 exists instrument [
 [t] supports(instrument, mode) &
 [t] on_board(instrument, satellite) &
 [t] power_on(instrument) &
 [t] calibrated(instrument)]]

 133

#define [t] all_images_collected:
 !exists direction, mode [
 goal(have_image(direction, mode)) &
 [t] !have_image(direction, mode)]

// Don’t turn towards a direction that another satellite has already decided
// to turn to.
#control :name "don’t-all-point-in-same-direction"
 forall t, satellite, direction [
 [t] !pointing(satellite, direction) ->
 ([t+1] !pointing(satellite, direction)) |
 !exists satellite2 [
 $committed(t+1, pointing(satellite2, direction), true)]]

// An instrument is more useful the more imaging modes it supports that are
// needed to fulfill the goals.
#define [t] usefulness(instrument):
 value(t, $sum(<mode>,
 [t] supports(instrument, mode) &
 mode_needed_for_goal(mode),
 1))

// A mode is needed if at least one goal is to have an image using that mode
// and we have not yet taken that image.
#define [t] mode_needed_for_goal(mode):
 exists direction [
 goal(have_image(direction, mode)) &
 [t] !have_image(direction, mode)]

// Only power on an instrument if there are no other instruments that are more
// useful or that are already switched on.
#control :name "use-the-most-useful-instrument"
 forall t, instrument [
 [t] !power_on(instrument) ->
 ([t+1] !power_on(instrument)) |
 ([t] usefulness(instrument) > 0) &
 !exists satellite, instrument2 [
 [t] usefulness(instrument2) > usefulness(instrument) &
 [t] on_board(instrument, satellite) &
 [t] on_board(instrument2, satellite)]]

// Only power off an instrument if it is no longer of any use.
#control :name "don’t-switch-instrument-off-if-you-don’t-have-to"
 forall t, instrument [
 [t] power_on(instrument) ->
 ([t+1] power_on(instrument)) |
 !exists mode [
 [t] supports(instrument, mode) &
 [t] mode_needed_for_goal(mode)]]

B.14 Satellite SimpleTime
#domain integer :integer :lb 0 :ub 2000

#domain satellite :elements {}
#domain direction :elements {}
#domain instrument :elements {}
#domain mode :elements {}

#valuevar old_direction, new_direction :domain direction

#feature on_board(instrument, satellite) :domain boolean :function

 134

#feature supports(instrument, mode) :domain boolean :function
#feature pointing(satellite, direction) :domain boolean :injective
#feature power_avail(satellite) :domain boolean
#feature power_on(instrument) :domain boolean
#feature calibrated(instrument) :domain boolean
#feature have_image(direction, mode) :domain boolean
#feature calibration_target(instrument, direction) :domain boolean :function

// Satellite has started turning but not finished.
#feature turning_towards(satellite, direction) :domain boolean :injective
// Someone has taken the image or is in the process of taking it.
#feature have_image_generalized(direction, mode) :domain boolean
// The instrument is powered on or powering on.
#feature power_on_generalized(instrument) :domain boolean
// The instrument has started calibrating but not finished.
#feature calibrating(instrument) :domain boolean

#deffeature goal_direction(satellite, direction) :domain boolean
#deffeature all_images_collected :domain boolean
#deffeature take_image_possible(satellite, direction) :domain boolean
#deffeature usefulness(instrument) :domain integer
#deffeature mode_needed_for_goal(mode) :domain boolean

// Don’t power up two instruments on the same satellite at the same time.
#feature sem_power_on(satellite, instrument) :domain boolean :injective
// If an instrument is power_on it must also be power_on_generalized.
#assert forall t, instrument [
 [t] power_on(instrument) -> power_on_generalized(instrument)]

#operator take_image(satellite, direction, instrument, mode)
 :at t
 :precond [t] calibrated(instrument) &
 [t] on_board(instrument, satellite) &
 [t] supports(instrument, mode) &
 [t] power_on(instrument) &
 [t] pointing(satellite, direction) &
 ([t] !have_image_generalized(direction, mode)) &
 !$committed(t+1, have_image_generalized(direction, mode), true)
 :duration 7
 :context
 :effects [+7] have_image(direction, mode) := true,
 [+1,+7] power_on(instrument) := true,
 [+1,+7] pointing(satellite, direction) := true,
 [+1] have_image_generalized(direction, mode) := true

#operator switch_on(instrument, satellite)
 :at t
 :precond [t] on_board(instrument, satellite) &
 [t] power_avail(satellite) &
 [t] !power_on(instrument) &
 [t] !power_on_generalized(instrument)
 :duration 2
 :context
 :effects [+2] power_on(instrument) := true,
 [+1] calibrated(instrument) := false,
 [+1] power_avail(satellite) := false,
 [+1] power_on_generalized(instrument) := true,
 // Powering on more than one instrument on this satellite
 // at the same time will give sem_power_on conflicting
 // values and is therefore impossible.
 [+1] sem_power_on(satellite, instrument) := true

#operator turn_to(satellite, new_direction, old_direction)
 :iterate (satellite, old_direction, new_direction)

 135

 :at t
 :precond [t] pointing(satellite, old_direction) &
 [t] new_direction != old_direction
 :duration 5
 :context
 :effects [+1] turning_towards(satellite, new_direction) := true,
 [+1] pointing(satellite, old_direction) := false,
 [+5] pointing(satellite, new_direction) := true,
 [+5] turning_towards(satellite, new_direction) := false

#operator switch_off(instrument, satellite)
 :at t
 :precond [t] on_board(instrument, satellite) &
 [t] power_on(instrument) &
 [t] power_on_generalized(instrument)
 :duration 1
 :context
 :effects [+1] power_on(instrument) := false,
 [+1] power_on_generalized(instrument) := false,
 [+1] power_avail(satellite) := true

#operator calibrate(satellite, instrument, direction)
 :at t
 :precond [t] on_board(instrument, satellite) &
 [t] calibration_target(instrument, direction) &
 [t] pointing(satellite, direction) &
 [t] power_on(instrument) &
 [t] !calibrated(instrument) &
 [t] !calibrating(instrument)
 :duration 5
 :context
 :effects [+5] calibrated(instrument) := true,
 [+1,+5] power_on(instrument) := true,
 [+1] calibrating(instrument) := true,
 [+5] calibrating(instrument) := false

#control :name "only-take-pictures-of-goals"
 forall t, direction, mode [
 [t] !have_image_generalized(direction, mode) &
 [t+1] have_image_generalized(direction, mode) ->
 goal(have_image(direction, mode))]

#control :name "only-point-in-goal-directions"
 forall t, satellite, direction [
 [t] pointing(satellite, direction) ->
 ([t+1] pointing(satellite, direction)) |
 exists new_direction [
 [t+1] turning_towards(satellite, new_direction) &
 ([t] goal_direction(satellite, new_direction))]]

#define [t] goal_direction(satellite, direction):
 ([t] take_image_possible(satellite, direction)) |
 exists instrument [
 [t] calibration_target(instrument, direction) &
 [t] on_board(instrument, satellite) &
 [t] !calibrated(instrument) &
 [t] power_on(instrument)] |
 (goal(pointing(satellite, direction)) &
 [t] all_images_collected)

#define [t] take_image_possible(satellite, direction):
 exists mode [

 136

 goal(have_image(direction, mode)) &
 ([t] !have_image(direction, mode)) &
 exists instrument [
 [t] supports(instrument, mode) &
 [t] on_board(instrument, satellite) &
 [t] power_on(instrument) &
 [t] calibrated(instrument)]]

#define [t] all_images_collected:
 !exists direction, mode [
 goal(have_image(direction, mode)) &
 [t] !have_image(direction, mode)]

#control :name "don’t-all-point-in-same-direction"
 forall t, satellite, direction [
 [t] !turning_towards(satellite, direction) ->
 ([t+1] !turning_towards(satellite, direction)) |
 !exists satellite2 [
 $committed(t+1, turning_towards(satellite2, direction),
true)]]

#define [t] usefulness(instrument):
 value(t, $sum(<mode>,
 [t] supports(instrument, mode) &
 mode_needed_for_goal(mode),
 1))

#define [t] mode_needed_for_goal(mode):
 exists direction [
 goal(have_image(direction, mode)) &
 [t] !have_image(direction, mode)]

#control :name "use-the-most-useful-instrument"
 forall t, instrument [
 [t] !power_on_generalized(instrument) ->
 ([t+1] !power_on_generalized(instrument)) |
 ([t] usefulness(instrument) > 0) &
 !exists instrument2 [
 [t] usefulness(instrument2) > usefulness(instrument) |
 [t] power_on(instrument2)]]

#control :name "don’t-switch-instrument-off-if-you-don’t-have-to"
 forall t, instrument [
 [t] power_on_generalized(instrument) ->
 ([t+1] power_on_generalized(instrument)) |
 !exists mode [
 [t] supports(instrument, mode) &
 [t] mode_needed_for_goal(mode)]]

B.15 Satellite Timed
#timescale 0.001

#domain integer :integer :lb 0 :ub 1000000
#domain fixedpoint :fixedpoint :lb 0 :ub 100000 :decimals 4

#domain satellite :elements {}
#domain direction :elements {}
#domain instrument :elements {}
#domain mode :elements {}

#valuevar old_direction, new_direction :domain direction

 137

#feature on_board(instrument, satellite) :domain boolean :function
#feature supports(instrument, mode) :domain boolean :function
#feature pointing(satellite, direction) :domain boolean :injective
#feature power_avail(satellite) :domain boolean
#feature power_on(instrument) :domain boolean
#feature calibrated(instrument) :domain boolean
#feature have_image(direction, mode) :domain boolean
#feature calibration_target(instrument, direction) :domain boolean :function

#feature slew_time(direction, direction) :domain fixedpoint :function
#feature calibration_time(instrument, direction) :domain fixedpoint :function

#feature turning_towards(satellite, direction) :domain boolean :injective
#feature have_image_generalized(direction, mode) :domain boolean
#feature power_on_generalized(instrument) :domain boolean
#feature calibrating(instrument) :domain boolean
#feature sem_power_on(satellite, instrument) :domain boolean :injective

#deffeature goal_direction(satellite, direction) :domain boolean
#deffeature all_images_collected :domain boolean
#deffeature take_image_possible(satellite, direction) :domain boolean
#deffeature usefulness(instrument) :domain integer
#deffeature mode_needed_for_goal(mode) :domain boolean

#resource sem_take_image(instrument, mode) :domain integer :preference :none

#assert forall t, instrument [
 [t] power_on(instrument) -> power_on_generalized(instrument)]
#dom [0] forall instrument, mode [
 $init(sem_take_image(instrument, mode)) == 1 &
 $minimum(sem_take_image(instrument, mode)) == 0 &
 $maximum(sem_take_image(instrument, mode)) == 1]

#operator take_image(satellite, direction, instrument, mode)
 :at t
 :precond [t] calibrated(instrument) &
 [t] on_board(instrument, satellite) &
 [t] supports(instrument, mode) &
 [t] power_on(instrument) &
 [t] pointing(satellite, direction) &
 [t] !have_image_generalized(direction, mode)
 :duration 7000 :as t2
 :resources [+1,+t2] :borrow sem_take_image(instrument, mode) :amount 1
 :context
 :effects [+t2] have_image(direction, mode) := true,
 [+1,+t2] power_on(instrument) := true,
 [+1,+t2] pointing(satellite, direction) := true,
 [+1] have_image_generalized(direction, mode) := true

#operator switch_on(instrument, satellite)
 :at t
 :precond [t] on_board(instrument, satellite) &
 ([t] power_avail(satellite)) &
 ([t] !power_on(instrument)) &
 ([t] !power_on_generalized(instrument))
 :duration 2000 :as t2
 :context
 :effects [+t2] power_on(instrument) := true,
 [+1] calibrated(instrument) := false,
 [+1] power_avail(satellite) := false,
 [+1] power_on_generalized(instrument) := true,
 [+1] sem_power_on(satellite, instrument) := true

 138

#operator turn_to(satellite, new_direction, old_direction)
 :iterate (satellite, old_direction, new_direction)
 :at t
 :precond [t] pointing(satellite, old_direction) &
 [t] new_direction != old_direction
 :duration $maketime($cast(fixedpoint,
 integer,
 value(t, 1000.0 * slew_time(old_direction,
new_direction)))) :as t2
 :context
 :effects [+1] turning_towards(satellite, new_direction) := true,
 [+1] pointing(satellite, old_direction) := false,
 [+t2] pointing(satellite, new_direction) := true,
 [+t2] turning_towards(satellite, new_direction) := false

#operator switch_off(instrument, satellite)
 :at t
 :precond [t] on_board(instrument, satellite) &
 [t] power_on(instrument) &
 [t] power_on_generalized(instrument)
 :duration 1000 :as t2
 :context
 :effects [+t2] power_on(instrument) := false,
 [+1] power_on_generalized(instrument) := false,
 [+t2] power_avail(satellite) := true

#operator calibrate(satellite, instrument, direction)
 :at t
 :precond [t] on_board(instrument, satellite) &
 [t] calibration_target(instrument, direction) &
 [t] pointing(satellite, direction) &
 [t] power_on(instrument) &
 [t] !calibrated(instrument) &
 [t] !calibrating(instrument)
 :duration $maketime($cast(fixedpoint,
 integer,
 value(t, 1000.0 * calibration_time(instrument,
direction)))) :as t2
 :context
 :effects [+t2] calibrated(instrument) := true,
 [+1,+t2] power_on(instrument) := true,
 [+1] calibrating(instrument) := true,
 [+t2] calibrating(instrument) := false

#control :name "only-take-pictures-of-goals2"
 forall t, direction, mode [
 [t] !have_image_generalized(direction, mode) &
 [t+1] have_image_generalized(direction, mode) ->
 goal(have_image(direction, mode))]

#control :name "only-point-in-goal-directions"
 forall t, satellite, direction [
 [t] pointing(satellite, direction) ->
 ([t+1] pointing(satellite, direction)) |
 exists new_direction [
 [t+1] turning_towards(satellite, new_direction) &
 ([t] goal_direction(satellite, new_direction))]]

#define [t] goal_direction(satellite, direction):
 ([t] take_image_possible(satellite, direction)) |
 exists instrument [

 139

 [t] calibration_target(instrument, direction) &
 [t] on_board(instrument, satellite) &
 [t] !calibrated(instrument) &
 [t] power_on(instrument)] |
 (goal(pointing(satellite, direction)) &
 [t] all_images_collected)

#define [t] take_image_possible(satellite, direction):
 exists mode [
 goal(have_image(direction, mode)) &
 ([t] !have_image(direction, mode)) &
 exists instrument [
 [t] supports(instrument, mode) &
 [t] on_board(instrument, satellite) &
 [t] power_on(instrument) &
 [t] calibrated(instrument)]]

#define [t] all_images_collected:
 !exists direction, mode [
 goal(have_image(direction, mode)) &
 [t] !have_image(direction, mode)]

#control :name "don’t-all-point-in-same-direction"
 forall t, satellite, direction [
 [t] !turning_towards(satellite, direction) ->
 ([t+1] !turning_towards(satellite, direction)) |
 !exists satellite2 [
 $committed(t+1,
 turning_towards(satellite2, direction),
 true) |
 [t] turning_towards(satellite2, direction)]]

#define [t] usefulness(instrument):
 value(t, $sum(<mode>,
 [t] supports(instrument, mode) &
 mode_needed_for_goal(mode),
 1))

#define [t] mode_needed_for_goal(mode):
 exists direction [
 goal(have_image(direction, mode)) &
 [t] !have_image(direction, mode)]

#control :name "use-the-most-useful-instrument"
 forall t, instrument [
 [t] !power_on_generalized(instrument) ->
 ([t+1] !power_on_generalized(instrument)) |
 ([t] usefulness(instrument) > 0) &
 !exists instrument2 [
 [t] usefulness(instrument2) > usefulness(instrument) |
 [t] power_on(instrument2)]]

#control :name "don’t-switch-instrument-off-if-you-don’t-have-to"
 forall t, instrument [
 [t] power_on_generalized(instrument) ->
 ([t+1] power_on_generalized(instrument)) |
 !exists mode [
 [t] supports(instrument, mode) &
 [t] mode_needed_for_goal(mode)]]

B.16 UMTranslog-2
#domain integer :integer :lb 0 :ub 10000

 140

#domain object :elements { regularp, bulky, liquid, granular, cars, mail,
 regularv, flatbed, tanker, hopper, auto, air,
 truck, airplane, train,
 road-route, rail-route, air-route,
 airport, train-station }
#domain region :parent object :elements {}
#domain city :parent object :elements {}
#domain location :parent object :elements {}
#domain package :parent object :elements {}
#domain vehicle :parent object :elements {}
#domain route :parent object :elements {}
#domain equipment :parent object :elements {}
// The package types.
#domain ptype :parent object :elements { regularp, bulky, liquid,
 granular, cars, mail }
// The vehicle subtypes.
#domain vtype :parent object :elements { regularv, flatbed, tanker,
 hopper, auto, air }
// The vehicle types.
#domain vptype :parent object :elements { truck, airplane, train }
// The route types.
#domain rtype :parent object :elements { road-route, rail-route, air-route }
// The location types.
#domain ltype :parent object :elements { airport, train-station }
#domain crane :parent equipment :elements {}
#domain plane-ramp :parent equipment :elements {}

#valuevar location-from, location-to, location-goal :domain location
#valuevar city-from, city-to :domain city

#feature at-equipment(equipment, location) :domain boolean :function :injective
#feature at-packagec(package, crane) :domain boolean :injective
#feature at-packagel(package, location) :domain boolean :injective
#feature at-packagev(package, vehicle) :domain boolean :injective
#feature at-vehicle(vehicle, location) :domain boolean :injective
#feature availablel(location) :domain boolean :function
#feature availabler(route) :domain boolean :function
#feature availablev(vehicle) :domain boolean :function
#feature chute-connected(vehicle) :domain boolean
#feature clear :domain boolean
#feature connect-city(route, rtype, city1, city2) :domain boolean :function
#feature connect-loc(route, rtype, location1, location2)
 :domain boolean :function
#feature delivered(package, location) :domain boolean :injective
#feature door-open(vehicle) :domain boolean
#feature empty(crane) :domain boolean
#feature fees-collected(package) :domain boolean
#feature hose-connected(vehicle) :domain boolean
#feature h-start(package) :domain boolean
#feature hub(location) :domain boolean :function
#feature in-city(location, city) :domain boolean :function
#feature in-region(city, region) :domain boolean :function
#feature move(package) :domain boolean
#feature move-emp(vehicle) :domain boolean
#feature over(package) :domain boolean
#feature pv-compatible(ptype, vtype) :domain boolean :function
#feature ramp-connected(vehicle, plane-ramp) :domain boolean :injective
#feature ramp-down(vehicle) :domain boolean
#feature rv-compatible(rtype, vptype) :domain boolean :function
#feature serves(location, region) :domain boolean :function
#feature tcenter(location) :domain boolean :function
#feature t-end(package) :domain boolean
#feature t-start(package) :domain boolean

 141

#feature typel(location, ltype) :domain boolean :function :injective
#feature typep(package, ptype) :domain boolean :function :injective-always
// Vehicle is of subtype vtype.
#feature typev(vehicle, vtype) :domain boolean :function :injective-always
// Vehicle ís of type vptype.
#feature typevp(vehicle, vptype) :domain boolean :function :injective-always
#feature unload(vehicle) :domain boolean
#feature valve-open(vehicle) :domain boolean

#feature distance(location1, location2) :domain integer :function
#feature gas-left(vehicle) :domain integer
#feature gpm(vehicle) :domain integer :function
#feature height-v(vehicle) :domain integer :function
#feature height-cap-l(location) :domain integer :function
#feature height-cap-r(route) :domain integer :function
#feature length-v(vehicle) :domain integer :function
#feature length-cap-l(location) :domain integer :function
#feature local-height(city) :domain integer :function
#feature local-weight(city) :domain integer :function
#feature volume-cap-c(crane) :domain integer :function
#feature volume-cap-l(location) :domain integer :function
#feature volume-cap-v(vehicle) :domain integer :function
#feature volume-load-l(location) :domain integer :function
#feature volume-load-v(vehicle) :domain integer :function
#feature volume-p(package) :domain integer :function
#feature weight-cap-c(crane) :domain integer :function
#feature weight-cap-r(route) :domain integer :function
#feature weight-cap-v(vehicle) :domain integer :function
#feature weight-p(package) :domain integer :function
#feature weight-load-v(vehicle) :domain integer :function
#feature weight-v(vehicle) :domain integer :function
#feature width-v(vehicle) :domain integer :function
#feature width-cap-l(location) :domain integer :function

#deffeature in-wrong-city(package, location) :domain boolean
#deffeature in-same-city(location1, location2) :domain boolean
#deffeature at-packagel-generalized(package, location) :domain boolean

#deffeature package-vehicle-compatible(package, vehicle) :domain boolean
#deffeature need-to-move-package-from(package, location) :domain boolean
#deffeature need-to-unload-package-at(package, location) :domain boolean

#deffeature reasonable-vehicle-for-package(package, vehicle, location)
 :domain boolean :uncached
#deffeature reasonable-nontruck-for-package(package, vehicle, location)
 :domain boolean :uncached
#deffeature reasonable-truck-for-package(package, vehicle, location)
 :domain boolean :uncached
#deffeature reasonable-truck-location(vehicle, location, location)
 :domain boolean :uncached
#deffeature can-go-by-truck(vehicle, location, location)
 :domain boolean :uncached
#deffeature reasonable-nontruck-location(vehicle, location, location)
 :domain boolean :uncached
#deffeature can-go-by-nontruck(vehicle, location, location)
 :domain boolean :uncached

#resource rvolume-load-l(location) :domain integer :preference :none
#resource rvolume-load-v(vehicle) :domain integer :preference :none
#resource rweight-load-v(vehicle) :domain integer :preference :none
#resource rgas-left(vehicle) :domain integer :preference :none

#resource rpackages-to-deliver :domain integer :preference :none

 142

#dom [0] forall location [
 $init(rvolume-load-l(location)) == volume-load-l(location) &
 $minimum(rvolume-load-l(location)) == 0 &
 $maximum(rvolume-load-l(location)) == volume-cap-l(location)]
#dom [0] forall vehicle [
 $init(rvolume-load-v(vehicle)) == volume-load-v(vehicle) &
 $minimum(rvolume-load-v(vehicle)) == 0 &
 $maximum(rvolume-load-v(vehicle)) == volume-cap-v(vehicle)]
#dom [0] forall vehicle [
 $init(rweight-load-v(vehicle)) == weight-load-v(vehicle) &
 $minimum(rweight-load-v(vehicle)) == 0 &
 $maximum(rweight-load-v(vehicle)) == weight-cap-v(vehicle)]
#dom [0] forall vehicle [
 $init(rgas-left(vehicle)) == gas-left(vehicle) &
 $minimum(rgas-left(vehicle)) == 0 &
 $maximum(rgas-left(vehicle)) == 9999]

#dom [0] $init(rpackages-to-deliver) ==
 $sum(<package>,
 exists location [
 goal(delivered(package, location))],
 1) &
 $minimum(rpackages-to-deliver) == 0 &
 $maximum(rpackages-to-deliver) == 9999

#assert forall t, package, location, vehicle [
 [t] at-packagev(package, vehicle) ->
 !at-packagel(package, location)]
#assert forall t, package, location, crane [
 [t] at-packagec(package, crane) ->
 !at-packagel(package, location)]
#assert forall t, package, vehicle, crane [
 [t] at-packagec(package, crane) ->
 !at-packagev(package, vehicle)]
#assert forall t, package, location, location2 [
 [t] delivered(package, location) ->
 !at-packagel(package, location2)]

// When all packages have been delivered, the planner must make sure that all
// vehicle doors and valves are closed and all loading equipment disconnected.
#operator clean-domain
 :at t
 :precond !exists vehicle [
 [t] unload(vehicle) &
 (([t] typev(vehicle, regularv) &
 [t] door-open(vehicle)) |
 ([t] typev(vehicle, hopper) &
 [t] chute-connected(vehicle)) |
 ([t] typev(vehicle, tanker) &
 [t] hose-connected(vehicle)) |
 ([t] typev(vehicle, tanker) &
 [t] valve-open(vehicle)) |
 ([t] typev(vehicle, auto) &
 [t] ramp-down(vehicle)) |
 (([t] typev(vehicle, air)) &
 exists plane-ramp [
 [t] ramp-connected(vehicle, plane-ramp)]) |
 ([t] typev(vehicle, air) &
 [t] door-open(vehicle)))] &
 [t] $available(rpackages-to-deliver) == 0
 :context
 :effects [+1] clear := true

 143

#operator collect-fees(package)
 :at t
 :precond ([t] !fees-collected(package)) &
 !exists location [
 [t] delivered(package, location)]
 :context
 :effects [+1] fees-collected(package) := true

#operator deliver(package, location)
 :at t
 :precond ([t] at-packagel(package, location)) &
 !exists location2 [
 [t] delivered(package, location2)]
 :resources [+1] :consume rvolume-load-l(location) :amount volume-
p(package),
 [+1] :consume rpackages-to-deliver :amount 1
 :context
 :effects [+1] delivered(package, location) := true,
 [+1] at-packagel(package, location) := false

// Regular vehicles must open the door before loading or unloading packages.
#operator open-door-regular(vehicle)
 :at t
 :precond [t] !door-open(vehicle) &
 [t] typev(vehicle, regularv)
 :context
 :effects [+1] door-open(vehicle) := true

// And close the door before going anywhere.
#operator close-door-regular(vehicle)
 :at t
 :precond [t] door-open(vehicle) &
 [t] typev(vehicle, regularv)
 :context
 :effects [+1] door-open(vehicle) := false

// Load a package into a regular vehicle.
#operator load-regular(package, vehicle, location)
 :at t
 :precond [t] at-vehicle(vehicle, location) &
 [t] availablev(vehicle) &
 [t] at-packagel(package, location) &
 ([t] typev(vehicle, regularv)) &
 exists ptype [
 [t] typep(package, ptype) &
 [t] pv-compatible(ptype, regularv)] &
 [t] door-open(vehicle) &
 [t] fees-collected(package)
 :resources [+1] :consume rvolume-load-l(location) :amount volume-
p(package),
 [+1] :produce rweight-load-v(vehicle) :amount weight-p(package),
 [+1] :produce rvolume-load-v(vehicle) :amount volume-p(package)
 :context
 :effects [+1] at-packagev(package, vehicle) := true,
 [+1] at-packagel(package, location) := false

// Unload a package from a regular vehicle.
#operator unload-regular(package, vehicle, location)
 :at t
 :precond [t] at-vehicle(vehicle, location) &
 [t] at-packagev(package, vehicle) &
 [t] typev(vehicle, regularv) &
 [t] door-open(vehicle)

 144

 :resources [+1] :produce rvolume-load-l(location) :amount volume-
p(package),
 [+1] :consume rweight-load-v(vehicle) :amount weight-p(package),
 [+1] :consume rvolume-load-v(vehicle) :amount volume-p(package)
 :context
 :effects [+1] at-packagel(package, location) := true,
 [+1] at-packagev(package, vehicle) := false,
 [+1] move(package) := false,
 [+1] unload(vehicle) := true,
 [+1] clear := false

// Use a crane to pick up a package.
#operator pick-up-package-ground(package, crane, location)
 :at t
 :precond [t] at-equipment(crane, location) &
 [t] at-packagel(package, location) &
 [t] empty(crane) &
 [t] fees-collected(package) &
 [t] weight-p(package) <= weight-cap-c(crane) &
 [t] volume-p(package) <= volume-cap-c(crane)
 :resources [+1] :consume rvolume-load-l(location) :amount volume-p(package)
 :context
 :effects [+1] at-packagec(package, crane) := true,
 [+1] empty(crane) := false,
 [+1] at-packagel(package, location) := false

// Use a crane to load a package on a flatbed vehicle.
#operator put-down-package-vehicle(package, crane, vehicle, location)
 :at t
 :precond [t] at-equipment(crane, location) &
 [t] at-packagec(package, crane) &
 [t] at-vehicle(vehicle, location) &
 [t] typev(vehicle, flatbed) &
 ([t] availablev(vehicle)) &
 exists ptype [
 [t] typep(package, ptype) &
 [t] pv-compatible(ptype, flatbed)] &
 [t] fees-collected(package)
 :resources [+1] :produce rweight-load-v(vehicle) :amount weight-p(package),
 [+1] :produce rvolume-load-v(vehicle) :amount volume-p(package)
 :context
 :effects [+1] empty(crane) := true,
 [+1] at-packagev(package, vehicle) := true,
 [+1] at-packagec(package, crane) := false

// Use a crane to unload a package from a flatbed vehicle.
#operator pick-up-package-vehicle(package, crane, vehicle, location)
 :at t
 :precond [t] empty(crane) &
 [t] at-equipment(crane, location) &
 [t] at-packagev(package, vehicle) &
 [t] at-vehicle(vehicle, location) &
 [t] typev(vehicle, flatbed)
 :resources [+1] :consume rweight-load-v(vehicle) :amount weight-p(package),
 [+1] :consume rvolume-load-v(vehicle) :amount volume-p(package)
 :context
 :effects [+1] at-packagec(package, crane) := true,
 [+1] empty(crane) := false,
 [+1] at-packagev(package, vehicle) := false

// The crane puts the package on the ground.
#operator put-down-package-ground(package, crane, location)
 :at t
 :precond [t] at-equipment(crane, location) &

 145

 [t] at-packagec(package, crane)
 :resources [+1] :produce rvolume-load-l(location) :amount volume-p(package)
 :context
 :effects [+1] at-packagel(package, location) := true,
 [+1] empty(crane) := true,
 [+1] move(package) := false,
 [+1] at-packagec(package, crane) := false

// Hoppers need to connect a chute before loading or unloading packages.
#operator connect-chute(vehicle)
 :at t
 :precond [t] !chute-connected(vehicle) &
 [t] typev(vehicle, hopper)
 :context
 :effects [+1] chute-connected(vehicle) := true

// And disconnect the chute before going anywhere.
#operator disconnect-chute(vehicle)
 :at t
 :precond [t] chute-connected(vehicle) &
 [t] typev(vehicle, hopper)
 :context
 :effects [+1] chute-connected(vehicle) := false

// Load a package into a hopper.
#operator fill-hopper(package, vehicle, location)
 :at t
 :precond [t] chute-connected(vehicle) &
 [t] at-vehicle(vehicle, location) &
 [t] at-packagel(package, location) &
 [t] availablev(vehicle) &
 ([t] typev(vehicle, hopper)) &
 exists ptype [
 [t] typep(package, ptype) &
 [t] pv-compatible(ptype, hopper)] &
 [t] fees-collected(package)
 :resources [+1] :consume rvolume-load-l(location) :amount volume-
p(package),
 [+1] :produce rweight-load-v(vehicle) :amount weight-p(package),
 [+1] :produce rvolume-load-v(vehicle) :amount volume-p(package)
 :context
 :effects [+1] at-packagev(package, vehicle) := true,
 [+1] at-packagel(package, location) := false

// Unload a package from a hopper.
#operator empty-hopper(package, vehicle, location)
 :at t
 :precond [t] chute-connected(vehicle) &
 [t] at-vehicle(vehicle, location) &
 [t] at-packagev(package, vehicle) &
 [t] typev(vehicle, hopper)
 :resources [+1] :produce rvolume-load-l(location) :amount volume-
p(package),
 [+1] :consume rweight-load-v(vehicle) :amount weight-p(package),
 [+1] :consume rvolume-load-v(vehicle) :amount volume-p(package)
 :context
 :effects [+1] at-packagel(package, location) := true,
 [+1] at-packagev(package, vehicle) := false,
 [+1] move(package) := false,
 [+1] unload(vehicle) := true,
 [+1] clear := false

// Tankers need to connect a hose before opening the valve.
#operator connect-hose(vehicle)

 146

 :at t
 :precond [t] !hose-connected(vehicle) &
 [t] typev(vehicle, tanker)
 :context
 :effects [+1] hose-connected(vehicle) := true

// And disconnect the hose before going anywhere.
#operator disconnect-hose(vehicle)
 :at t
 :precond [t] hose-connected(vehicle) &
 [t] !valve-open(vehicle) &
 [t] typev(vehicle, tanker)
 :context
 :effects [+1] hose-connected(vehicle) := false

// Tankers need to open the valve before loading or unloading packages.
#operator open-valve(vehicle)
 :at t
 :precond [t] !valve-open(vehicle) &
 [t] hose-connected(vehicle) &
 [t] typev(vehicle, tanker)
 :context
 :effects [+1] valve-open(vehicle) := true

// And close the valve before disconnecting the hose.
#operator close-valve(vehicle)
 :at t
 :precond [t] valve-open(vehicle) &
 [t] typev(vehicle, tanker)
 :context
 :effects [+1] valve-open(vehicle) := false

// Load a package into a tanker.
#operator fill-tank(package, vehicle, location)
 :at t
 :precond [t] at-vehicle(vehicle, location) &
 [t] at-packagel(package, location) &
 [t] typev(vehicle, tanker) &
 ([t] availablev(vehicle)) &
 exists ptype [
 [t] typep(package, ptype) &
 [t] pv-compatible(ptype, tanker)] &
 [t] valve-open(vehicle) &
 [t] hose-connected(vehicle) &
 [t] fees-collected(package)
 :resources [+1] :consume rvolume-load-l(location) :amount volume-
p(package),
 [+1] :produce rweight-load-v(vehicle) :amount weight-p(package),
 [+1] :produce rvolume-load-v(vehicle) :amount volume-p(package)
 :context
 :effects [+1] at-packagev(package, vehicle) := true,
 [+1] at-packagel(package, location) := false

// Unload a package from a tanker.
#operator empty-tank(package, vehicle, location)
 :at t
 :precond [t] at-vehicle(vehicle, location) &
 [t] at-packagev(package, vehicle) &
 [t] typev(vehicle, tanker) &
 [t] availablev(vehicle) &
 [t] hose-connected(vehicle) &
 [t] valve-open(vehicle)
 :resources [+1] :produce rvolume-load-l(location) :amount volume-
p(package),

 147

 [+1] :consume rweight-load-v(vehicle) :amount weight-p(package),
 [+1] :consume rvolume-load-v(vehicle) :amount volume-p(package)
 :context
 :effects [+1] at-packagel(package, location) := true,
 [+1] at-packagev(package, vehicle) := false,
 [+1] move(package) := false,
 [+1] unload(vehicle) := true,
 [+1] clear := false

// Car transports need to lower the ramp before loading or unloading cars.
#operator lower-ramp(vehicle)
 :at t
 :precond [t] !ramp-down(vehicle) &
 [t] typev(vehicle, auto)
 :context
 :effects [+1] ramp-down(vehicle) := true

// And raise the ramp before going anywhere.
#operator raise-ramp(vehicle)
 :at t
 :precond [t] ramp-down(vehicle) &
 [t] typev(vehicle, auto)
 :context
 :effects [+1] ramp-down(vehicle) := false

// Load a package into a car transport.
#operator load-cars(package, vehicle, location)
 :at t
 :precond ([t] typev(vehicle, auto)) &
 exists ptype [
 [t] typep(package, ptype) &
 [t] pv-compatible(ptype, auto)] &
 [t] availablev(vehicle) &
 [t] at-packagel(package, location) &
 [t] at-vehicle(vehicle, location) &
 [t] ramp-down(vehicle) &
 [t] fees-collected(package)
 :resources [+1] :consume rvolume-load-l(location) :amount volume-
p(package),
 [+1] :produce rweight-load-v(vehicle) :amount weight-p(package),
 [+1] :produce rvolume-load-v(vehicle) :amount volume-p(package)
 :context
 :effects [+1] at-packagev(package, vehicle) := true,
 [+1] at-packagel(package, location) := false

// Unload a package from a car transport.
#operator unload-cars(package, vehicle, location)
 :at t
 :precond [t] at-packagev(package, vehicle) &
 [t] at-vehicle(vehicle, location) &
 [t] typev(vehicle, auto) &
 [t] ramp-down(vehicle)
 :resources [+1] :produce rvolume-load-l(location) :amount volume-
p(package),
 [+1] :consume rweight-load-v(vehicle) :amount weight-p(package),
 [+1] :consume rvolume-load-v(vehicle) :amount volume-p(package)
 :context
 :effects [+1] at-packagel(package, location) := true,
 [+1] at-packagev(package, vehicle) := false,
 [+1] move(package) := false,
 [+1] unload(vehicle) := true,
 [+1] clear := false

// Aircraft need to attach a conveyor ramp before opening the door.

 148

#operator attach-conveyor-ramp(vehicle, plane-ramp, location)
 :at t
 :precond !exists vehicle2 [
 [t] ramp-connected(vehicle2, plane-ramp)] &
 [t] at-equipment(plane-ramp, location) &
 ([t] typev(vehicle, air)) &
 !exists plane-ramp2 [
 [t] ramp-connected(vehicle, plane-ramp2)] &
 [t] at-vehicle(vehicle, location)
 :context
 :effects [+1] ramp-connected(vehicle, plane-ramp) := true

// And detach the ramp before going anywhere.
#operator detach-conveyor-ramp(vehicle, plane-ramp, location)
 :at t
 :precond [t] ramp-connected(vehicle, plane-ramp) &
 [t] at-equipment(plane-ramp, location) &
 [t] at-vehicle(vehicle, location) &
 [t] !door-open(vehicle)
 :context
 :effects [+1] ramp-connected(vehicle, plane-ramp) := false

// Aircraft need to open the door before loading or unloading packages.
#operator open-door-airplane(vehicle)
 :at t
 :precond [t] !door-open(vehicle) &
 ([t] typev(vehicle, air)) &
 exists plane-ramp [
 [t] ramp-connected(vehicle, plane-ramp)]
 :context
 :effects [+1] door-open(vehicle) := true

// Load package into aircraft.
#operator load-airplane(package, vehicle, location)
 :at t
 :precond [t] at-packagel(package, location) &
 [t] at-vehicle(vehicle, location) &
 ([t] availablev(vehicle)) &
 exists ptype [
 [t] typep(package, ptype) &
 [t] pv-compatible(ptype, air)] &
 ([t] door-open(vehicle)) &
 exists plane-ramp [
 [t] ramp-connected(vehicle, plane-ramp)] &
 [t] fees-collected(package)
 :resources [+1] :consume rvolume-load-l(location) :amount volume-
p(package),
 [+1] :produce rweight-load-v(vehicle) :amount weight-p(package),
 [+1] :produce rvolume-load-v(vehicle) :amount volume-p(package)
 :context
 :effects [+1] at-packagev(package, vehicle) := true,
 [+1] at-packagel(package, location) := false

// Unload package from aircraft.
#operator unload-airplane(package, vehicle, location)
 :at t
 :precond [t] typev(vehicle, air) &
 [t] at-packagev(package, vehicle) &
 ([t] at-vehicle(vehicle, location)) &
 exists plane-ramp [
 [t] ramp-connected(vehicle, plane-ramp)] &
 [t] door-open(vehicle)
 :resources [+1] :produce rvolume-load-l(location) :amount volume-
p(package),

 149

 [+1] :consume rweight-load-v(vehicle) :amount weight-p(package),
 [+1] :consume rvolume-load-v(vehicle) :amount volume-p(package)
 :context
 :effects [+1] at-packagel(package, location) := true,
 [+1] at-packagev(package, vehicle) := false,
 [+1] move(package) := false,
 [+1] unload(vehicle) := true,
 [+1] clear := false

// And close the door before detaching the ramp.
#operator close-door-airplane(vehicle)
 :at t
 :precond [t] door-open(vehicle) &
 [t] typev(vehicle, air)
 :context
 :effects [+1] door-open(vehicle) := false

// Move a truck between two locations in the same city.
// Either both or none of the locations are transportation centers.
// All packages in the truck will be over(package) and not allowed to move
// again.
#operator move-vehicle-local-road-route1(vehicle, location-from, location-to,
city)
 :at t
 :precond [t] at-vehicle(vehicle, location-from) &
 [t] location-from != location-to &
 ([t] $available(rvolume-load-v(vehicle)) > 0 |
 [t] !move-emp(vehicle)) &
 (([t] typev(vehicle, regularv) &
 [t] !door-open(vehicle)) |
 ([t] typev(vehicle, hopper) &
 [t] !chute-connected(vehicle)) |
 ([t] typev(vehicle, tanker) &
 [t] !hose-connected(vehicle)) |
 ([t] typev(vehicle, auto) &
 [t] !ramp-down(vehicle)) |
 ([t] typev(vehicle, air) &
 ([t] !door-open(vehicle)) &
 !exists plane-ramp [
 [t] ramp-connected(vehicle, plane-ramp)]) |
 [t] typev(vehicle, flatbed)) &
 [t] height-cap-l(location-to) >= height-v(vehicle) &
 [t] length-cap-l(location-to) >= length-v(vehicle) &
 [t] width-cap-l(location-to) >= width-v(vehicle) &
 [t] typevp(vehicle, truck) &
 [t] in-city(location-from, city) &
 [t] in-city(location-to, city) &
 [t] height-v(vehicle) <= local-height(city) &
 [t] weight-v(vehicle) + weight-load-v(vehicle) <=
 local-weight(city) &
 (([t] tcenter(location-from) &
 [t] tcenter(location-to)) |
 ([t] !tcenter(location-from) &
 [t] !tcenter(location-to))) &
 !exists package [
 [t] at-packagev(package, vehicle) &
 ([t] over(package) |
 [t] move(package) |
 [t] t-start(package) |
 [t] t-end(package) |
 [t] h-start(package))]
 :resources [+1] :consume rgas-left(vehicle)
 :amount gpm(vehicle) * distance(location-from, location-to)
 :context

 150

 :effects [+1] at-vehicle(vehicle, location-from) := false,
 [+1] at-vehicle(vehicle, location-to) := true
 :context
 :precond [t] $available(rvolume-load-v(vehicle)) > 0
 :effects [+1] move-emp(vehicle) := false
 :context
 :precond [t] $available(rvolume-load-v(vehicle)) == 0
 :effects [+1] move-emp(vehicle) := true
 :context
 :forall package
 :precond [t] at-packagev(package, vehicle)
 :effects [+1] move(package) := true,
 [+1] over(package) := true

// Move a truck between two locations in the same city.
// The trip is from a non transportation center to a transportation center.
// All packages in the truck will be t-start(package) and further transportation
// must be by train or plane.
#operator move-vehicle-local-road-route2(vehicle, location-from, location-to,
city)
 :at t
 :precond [t] at-vehicle(vehicle, location-from) &
 [t] location-from != location-to &
 ([t] $available(rvolume-load-v(vehicle)) > 0 |
 [t] !move-emp(vehicle)) &
 (([t] typev(vehicle, regularv) &
 [t] !door-open(vehicle)) |
 ([t] typev(vehicle, hopper) &
 [t] !chute-connected(vehicle)) |
 ([t] typev(vehicle, tanker) &
 [t] !hose-connected(vehicle)) |
 ([t] typev(vehicle, auto) &
 [t] !ramp-down(vehicle)) |
 ([t] typev(vehicle, air) &
 ([t] !door-open(vehicle)) &
 !exists plane-ramp [
 [t] ramp-connected(vehicle, plane-ramp)]) |
 [t] typev(vehicle, flatbed)) &
 [t] height-cap-l(location-to) >= height-v(vehicle) &
 [t] length-cap-l(location-to) >= length-v(vehicle) &
 [t] width-cap-l(location-to) >= width-v(vehicle) &
 [t] typevp(vehicle, truck) &
 [t] in-city(location-from, city) &
 [t] in-city(location-to, city) &
 [t] height-v(vehicle) <= local-height(city) &
 [t] weight-v(vehicle) + weight-load-v(vehicle) <=
 local-weight(city) &
 [t] !tcenter(location-from) &
 ([t] tcenter(location-to)) &
 !exists package [
 [t] at-packagev(package, vehicle) &
 ([t] over(package) |
 [t] move(package) |
 [t] t-start(package) |
 [t] t-end(package) |
 [t] h-start(package))]
 :resources [+1] :consume rgas-left(vehicle)
 :amount gpm(vehicle) * distance(location-from, location-to)
 :context
 :effects [+1] at-vehicle(vehicle, location-from) := false,
 [+1] at-vehicle(vehicle, location-to) := true
 :context
 :precond [t] $available(rvolume-load-v(vehicle)) > 0
 :effects [+1] move-emp(vehicle) := false

 151

 :context
 :precond [t] $available(rvolume-load-v(vehicle)) == 0
 :effects [+1] move-emp(vehicle) := true
 :context
 :forall package
 :precond [t] at-packagev(package, vehicle)
 :effects [+1] move(package) := true,
 [+1] t-start(package) := true

// Move a truck between two locations in the same city.
// The trip is from a transportation center to a non transportation center.
// All packages in the truck will be over(package) and not allowed to move
// again.
#operator move-vehicle-local-road-route3(vehicle, location-from, location-to,
city)
 :at t
 :precond [t] at-vehicle(vehicle, location-from) &
 [t] location-from != location-to &
 ([t] $available(rvolume-load-v(vehicle)) > 0 |
 [t] !move-emp(vehicle)) &
 (([t] typev(vehicle, regularv) &
 [t] !door-open(vehicle)) |
 ([t] typev(vehicle, hopper) &
 [t] !chute-connected(vehicle)) |
 ([t] typev(vehicle, tanker) &
 [t] !hose-connected(vehicle)) |
 ([t] typev(vehicle, auto) &
 [t] !ramp-down(vehicle)) |
 ([t] typev(vehicle, air) &
 ([t] !door-open(vehicle)) &
 !exists plane-ramp [
 [t] ramp-connected(vehicle, plane-ramp)]) |
 [t] typev(vehicle, flatbed)) &
 [t] height-cap-l(location-to) >= height-v(vehicle) &
 [t] length-cap-l(location-to) >= length-v(vehicle) &
 [t] width-cap-l(location-to) >= width-v(vehicle) &
 [t] typevp(vehicle, truck) &
 [t] in-city(location-from, city) &
 [t] in-city(location-to, city) &
 [t] height-v(vehicle) <= local-height(city) &
 [t] weight-v(vehicle) + weight-load-v(vehicle) <=
 local-weight(city) &
 [t] tcenter(location-from) &
 ([t] !tcenter(location-to)) &
 !exists package [
 [t] at-packagev(package, vehicle) &
 ([t] over(package) |
 [t] move(package) |
 [t] t-start(package))]
 :resources [+1] :consume rgas-left(vehicle)
 :amount gpm(vehicle) * distance(location-from, location-to)
 :context
 :effects [+1] at-vehicle(vehicle, location-from) := false,
 [+1] at-vehicle(vehicle, location-to) := true
 :context
 :precond [t] $available(rvolume-load-v(vehicle)) > 0
 :effects [+1] move-emp(vehicle) := false
 :context
 :precond [t] $available(rvolume-load-v(vehicle)) == 0
 :effects [+1] move-emp(vehicle) := true
 :context
 :forall package
 :precond [t] at-packagev(package, vehicle)
 :effects [+1] over(package) := true,

 152

 [+1] move(package) := true,
 [+1] t-end(package) := false,
 [+1] h-start(package) := false

// Move a truck between two locations in different cities using a road route.
// All packages in the truck will be over(package) and not allowed to move
// again.
#operator move-vehicle-road-route-crossCity(vehicle, location-from, location-to,
city-from, city-to, route)
 :at t
 :precond [t] at-vehicle(vehicle, location-from) &
 [t] location-from != location-to &
 ([t] $available(rvolume-load-v(vehicle)) > 0 |
 [t] !move-emp(vehicle)) &
 (([t] typev(vehicle, regularv) &
 [t] !door-open(vehicle)) |
 ([t] typev(vehicle, hopper) &
 [t] !chute-connected(vehicle)) |
 ([t] typev(vehicle, tanker) &
 [t] !hose-connected(vehicle)) |
 ([t] typev(vehicle, auto) &
 [t] !ramp-down(vehicle)) |
 ([t] typev(vehicle, air) &
 ([t] !door-open(vehicle)) &
 !exists plane-ramp [
 [t] ramp-connected(vehicle, plane-ramp)]) |
 [t] typev(vehicle, flatbed)) &
 [t] height-cap-l(location-to) >= height-v(vehicle) &
 [t] length-cap-l(location-to) >= length-v(vehicle) &
 [t] width-cap-l(location-to) >= width-v(vehicle) &
 [t] typevp(vehicle, truck) &
 [t] in-city(location-from, city-from) &
 [t] in-city(location-to, city-to) &
 [t] city-from != city-to &
 [t] connect-city(route, road-route, city-from, city-to) &
 [t] availabler(route) &
 [t] height-v(vehicle) <= height-cap-r(route) &
 ([t] weight-v(vehicle) + weight-load-v(vehicle) <=
 weight-cap-r(route)) &
 !exists package [
 [t] at-packagev(package, vehicle) &
 ([t] over(package) |
 [t] move(package) |
 [t] t-start(package) |
 [t] t-end(package) |
 [t] h-start(package))]
 :resources [+1] :consume rgas-left(vehicle)
 :amount gpm(vehicle) * distance(location-from, location-to)
 :context
 :effects [+1] at-vehicle(vehicle, location-from) := false,
 [+1] at-vehicle(vehicle, location-to) := true
 :context
 :precond [t] $available(rvolume-load-v(vehicle)) > 0
 :effects [+1] move-emp(vehicle) := false
 :context
 :precond [t] $available(rvolume-load-v(vehicle)) == 0
 :effects [+1] move-emp(vehicle) := true
 :context
 :forall package
 :precond [t] at-packagev(package, vehicle)
 :effects [+1] move(package) := true,
 [+1] over(package) := true

// Move a train or plane between two locations using a compatible route.

 153

// Either both or none of the locations are transportation hubs.
// All packages in the truck will be t-end(package) and only allowed to be moved
// by truck to a non transportation center.
#operator move-vehicle-nonroad-route1(vehicle, location-from, location-to,
route)
 :at t
 :precond [t] at-vehicle(vehicle, location-from) &
 [t] location-from != location-to &
 ([t] $available(rvolume-load-v(vehicle)) > 0 |
 [t] !move-emp(vehicle)) &
 (([t] typev(vehicle, regularv) &
 [t] !door-open(vehicle)) |
 ([t] typev(vehicle, hopper) &
 [t] !chute-connected(vehicle)) |
 ([t] typev(vehicle, tanker) &
 [t] !hose-connected(vehicle)) |
 ([t] typev(vehicle, auto) &
 [t] !ramp-down(vehicle)) |
 ([t] typev(vehicle, air) &
 ([t] !door-open(vehicle)) &
 !exists plane-ramp [
 [t] ramp-connected(vehicle, plane-ramp)]) |
 [t] typev(vehicle, flatbed)) &
 [t] height-cap-l(location-to) >= height-v(vehicle) &
 [t] length-cap-l(location-to) >= length-v(vehicle) &
 [t] width-cap-l(location-to) >= width-v(vehicle) &
 [t] !typevp(vehicle, truck) &
 [t] tcenter(location-from) &
 [t] tcenter(location-to) &
 (([t] hub(location-from) &
 [t] hub(location-to)) |
 ([t] !hub(location-from) &
 [t] !hub(location-to))) &
 [t] availablel(location-from) &
 ([t] availablel(location-to)) &
 exists rtype, vptype [
 [t] connect-loc(route,
 rtype,
 location-from,
 location-to) &
 [t] typevp(vehicle, vptype) &
 [t] rv-compatible(rtype, vptype)] &
 [t] availabler(route) &
 [t] height-v(vehicle) <= height-cap-r(route) &
 ([t] weight-v(vehicle) + weight-load-v(vehicle) <=
 weight-cap-r(route)) &
 !exists package [
 [t] at-packagev(package, vehicle) &
 ([t] over(package) |
 [t] move(package) |
 [t] t-end(package) |
 [t] h-start(package))]
 :resources [+1] :consume rgas-left(vehicle)
 :amount gpm(vehicle) * distance(location-from, location-to)
 :context
 :effects [+1] at-vehicle(vehicle, location-from) := false,
 [+1] at-vehicle(vehicle, location-to) := true
 :context
 :precond [t] $available(rvolume-load-v(vehicle)) > 0
 :effects [+1] move-emp(vehicle) := false
 :context
 :precond [t] $available(rvolume-load-v(vehicle)) == 0
 :effects [+1] move-emp(vehicle) := true
 :context

 154

 :forall package
 :precond [t] at-packagev(package, vehicle)
 :effects [+1] t-end(package) := true,
 [+1] t-start(package) := false,
 [+1] move(package) := true

// Move a train or plane between two locations using a compatible route.
// The trip is from a non transportation hub to a transportation hub.
// All packages in the truck will be h-start(package) and only allowed to be
moved
// by truck to a non transportation center or by train or plane to a non
// transportation hub.
#operator move-vehicle-nonroad-route2(vehicle, location-from, location-to,
route)
 :at t
 :precond [t] at-vehicle(vehicle, location-from) &
 [t] location-from != location-to &
 ([t] $available(rvolume-load-v(vehicle)) > 0 |
 [t] !move-emp(vehicle)) &
 (([t] typev(vehicle, regularv) &
 [t] !door-open(vehicle)) |
 ([t] typev(vehicle, hopper) &
 [t] !chute-connected(vehicle)) |
 ([t] typev(vehicle, tanker) &
 [t] !hose-connected(vehicle)) |
 ([t] typev(vehicle, auto) &
 [t] !ramp-down(vehicle)) |
 ([t] typev(vehicle, air) &
 ([t] !door-open(vehicle)) &
 !exists plane-ramp [
 [t] ramp-connected(vehicle, plane-ramp)]) |
 [t] typev(vehicle, flatbed)) &
 [t] height-cap-l(location-to) >= height-v(vehicle) &
 [t] length-cap-l(location-to) >= length-v(vehicle) &
 [t] width-cap-l(location-to) >= width-v(vehicle) &
 [t] !typevp(vehicle, truck) &
 [t] tcenter(location-from) &
 [t] tcenter(location-to) &
 [t] !hub(location-from) &
 [t] hub(location-to) &
 [t] availablel(location-from) &
 ([t] availablel(location-to)) &
 exists rtype, vptype [
 [t] connect-loc(route,
 rtype,
 location-from,
 location-to) &
 [t] typevp(vehicle, vptype) &
 [t] rv-compatible(rtype, vptype)] &
 [t] availabler(route) &
 [t] height-v(vehicle) <= height-cap-r(route) &
 ([t] weight-v(vehicle) + weight-load-v(vehicle) <=
 weight-cap-r(route)) &
 !exists package [
 [t] at-packagev(package, vehicle) &
 ([t] over(package) |
 [t] move(package) |
 [t] t-end(package) |
 [t] h-start(package))]
 :resources [+1] :consume rgas-left(vehicle)
 :amount gpm(vehicle) * distance(location-from, location-to)
 :context
 :effects [+1] at-vehicle(vehicle, location-from) := false,
 [+1] at-vehicle(vehicle, location-to) := true

 155

 :context
 :precond [t] $available(rvolume-load-v(vehicle)) > 0
 :effects [+1] move-emp(vehicle) := false
 :context
 :precond [t] $available(rvolume-load-v(vehicle)) == 0
 :effects [+1] move-emp(vehicle) := true
 :context
 :forall package
 :precond [t] at-packagev(package, vehicle)
 :effects [+1] h-start(package) := true,
 [+1] t-start(package) := false,
 [+1] move(package) := true

// Move a train or plane between two locations using a compatible route.
// The trip is from a transportation hub to a non transportation hub.
// All packages in the truck will be t-end(package) and only allowed to be moved
// by truck to a non transportation center.
#operator move-vehicle-nonroad-route3(vehicle, location-from, location-to,
route)
 :at t
 :precond [t] at-vehicle(vehicle, location-from) &
 [t] location-from != location-to &
 ([t] $available(rvolume-load-v(vehicle)) > 0 |
 [t] !move-emp(vehicle)) &
 (([t] typev(vehicle, regularv) &
 [t] !door-open(vehicle)) |
 ([t] typev(vehicle, hopper) &
 [t] !chute-connected(vehicle)) |
 ([t] typev(vehicle, tanker) &
 [t] !hose-connected(vehicle)) |
 ([t] typev(vehicle, auto) &
 [t] !ramp-down(vehicle)) |
 ([t] typev(vehicle, air) &
 ([t] !door-open(vehicle)) &
 !exists plane-ramp [
 [t] ramp-connected(vehicle, plane-ramp)]) |
 [t] typev(vehicle, flatbed)) &
 [t] height-cap-l(location-to) >= height-v(vehicle) &
 [t] length-cap-l(location-to) >= length-v(vehicle) &
 [t] width-cap-l(location-to) >= width-v(vehicle) &
 [t] !typevp(vehicle, truck) &
 [t] tcenter(location-from) &
 [t] tcenter(location-to) &
 [t] hub(location-from) &
 [t] !hub(location-to) &
 [t] availablel(location-from) &
 ([t] availablel(location-to)) &
 exists rtype, vptype [
 [t] connect-loc(route,
 rtype,
 location-from,
 location-to) &
 [t] typevp(vehicle, vptype) &
 [t] rv-compatible(rtype, vptype)] &
 [t] availabler(route) &
 [t] height-v(vehicle) <= height-cap-r(route) &
 ([t] weight-v(vehicle) + weight-load-v(vehicle) <=
 weight-cap-r(route)) &
 !exists package [
 [t] at-packagev(package, vehicle) &
 ([t] over(package) |
 [t] move(package) |
 [t] t-end(package))]
 :resources [+1] :consume rgas-left(vehicle)

 156

 :amount gpm(vehicle) * distance(location-from, location-to)
 :context
 :effects [+1] at-vehicle(vehicle, location-from) := false,
 [+1] at-vehicle(vehicle, location-to) := true
 :context
 :precond [t] $available(rvolume-load-v(vehicle)) > 0
 :effects [+1] move-emp(vehicle) := false
 :context
 :precond [t] $available(rvolume-load-v(vehicle)) == 0
 :effects [+1] move-emp(vehicle) := true
 :context
 :forall package
 :precond [t] at-packagev(package, vehicle)
 :effects [+1] t-end(package) := true,
 [+1] h-start(package) := false,
 [+1] t-start(package) := false,
 [+1] move(package) := true

// ------------------------ Movement trains and planes ------------------------

// Trains and planes only go to locations that are reasonable-nontruck-location.
#control :name "only-move-nontrucks-to-reasonable-locations"
 forall t, vehicle, location-from [
 [t] !typevp(vehicle, truck) &
 [t] at-vehicle(vehicle, location-from) ->
 ([t+1] at-vehicle(vehicle, location-from)) |
 exists location-to [
 [t+1] at-vehicle(vehicle, location-to) &
 [t] reasonable-nontruck-location(vehicle,
 location-from,
 location-to)]]

// A location is reasonable for a train or plane if:
#define [t] reasonable-nontruck-location(vehicle, location-from, location-to):
 // There’s a package to pick up.
 exists package [
 [t] at-packagel-generalized(package, location-to) &
 [t] !over(package)] |
 // We’re carrying a package that needs to go there.
 exists package [
 [t] at-packagev(package, vehicle) &
 goal(delivered(package, location-to))] |
 // We’re carrying a package going to that city.
 exists package, location-goal [
 [t] at-packagev(package, vehicle) &
 goal(delivered(package, location-goal)) &
 [t] in-same-city(location-goal, location-to) &
 [t] !can-go-by-nontruck(vehicle,
 location-from,
 location-goal)] |
 // We’re carrying a package going to a city we can’t reach so we need
 // to go through an intermediate city.
 exists package, location-goal [
 [t] at-packagev(package, vehicle) &
 goal(delivered(package, location-goal)) &
 ([t] !in-same-city(location-goal, location-to)) &
 [t] !hub(location-from) &
 [t] hub(location-to) &
 ([t] !can-go-by-nontruck(vehicle,
 location-from,
 location-goal)) &
 !exists location3 [

 157

 [t] in-same-city(location3, location-goal) &
 [t] can-go-by-nontruck(vehicle,
 location-from,
 location3)]]

// A train or plane can travel between location-from and location-to if there
// is enough gas, the vehicle meets all size restrictions, both locations are
// available transportation centers and there is an available and compatible
// route to travel by.
#define [t] can-go-by-nontruck(vehicle, location-from, location-to):
 [t] $available(rgas-left(vehicle)) >=
 distance(location-from, location-to) * gpm(vehicle) &
 [t] height-cap-l(location-to) >= height-v(vehicle) &
 [t] length-cap-l(location-to) >= length-v(vehicle) &
 [t] width-cap-l(location-to) >= width-v(vehicle) &
 [t] tcenter(location-from) &
 [t] tcenter(location-to) &
 [t] availablel(location-from) &
 ([t] availablel(location-to)) &
 exists route, rtype, vptype [
 [t] connect-loc(route, rtype, location-from, location-to) &
 [t] typevp(vehicle, vptype) &
 [t] rv-compatible(rtype, vptype) &
 [t] availabler(route) &
 [t] height-v(vehicle) <= height-cap-r(route) &
 ([t] weight-v(vehicle) + $available(rweight-load-v(vehicle)) <=
 weight-cap-r(route))]

// ----------------------------- Movement trucks -----------------------------

// Trucks only go to locations that are reasonable-truck-location.
#control :name "only-move-trucks-to-reasonable-locations"
 forall t, vehicle, location-from [
 [t] typevp(vehicle, truck) &
 [t] at-vehicle(vehicle, location-from) ->
 ([t+1] at-vehicle(vehicle, location-from)) |
 exists location-to [
 [t+1] at-vehicle(vehicle, location-to) &
 [t] reasonable-truck-location(vehicle,
 location-from,
 location-to)]]

// A location is reasonable for a truck if:
#define [t] reasonable-truck-location(vehicle, location-from, location-to):
 // There’s a package to pick up and we’re not carrying a package that
 // needs to go elsewhere (since that package may then be impossible
 // to deliver later).
 exists package [
 [t] at-packagel-generalized(package, location-to) &
 [t] !over(package)] &
 !exists package [
 [t] at-packagev(package, vehicle)] |
 // We’re carrying a package that needs to go there.
 exists package [
 [t] at-packagev(package, vehicle) &
 goal(delivered(package, location-to))] |
 // We’re carrying a package going to another city with no road_route
 // and the location is a tcenter.
 exists package, location-goal [
 [t] at-packagev(package, vehicle) &
 [t] in-wrong-city(package, location-from) &
 [t] in-same-city(location-from, location-to) &
 ([t] tcenter(location-to)) &
 goal(delivered(package, location-goal)) &

 158

 [t] !can-go-by-truck(vehicle, location-from, location-goal)]

// A truck can travel between location-from and location-to if there
// is enough gas, the vehicle meets all size restrictions and both locations
// are in the same city or there is an available intercity road route to use.
#define [t] can-go-by-truck(vehicle, location-from, location-to):
 [t] $available(rgas-left(vehicle)) >=
 distance(location-from, location-to) * gpm(vehicle) &
 [t] height-cap-l(location-to) >= height-v(vehicle) &
 [t] length-cap-l(location-to) >= length-v(vehicle) &
 ([t] width-cap-l(location-to) >= width-v(vehicle)) &
 (exists city [
 [t] in-city(location-from, city) &
 [t] in-city(location-to, city)] |
 exists city-from, city-to [
 [t] in-city(location-from, city-from) &
 ([t] in-city(location-to, city-to)) &
 exists route [
 [t] connect-city(route, road-route, city-from, city-to) &
 [t] availabler(route) &
 [t] height-v(vehicle) <= height-cap-r(route) &
 [t] weight-v(vehicle) +
 $available(rweight-load-v(vehicle)) <=
 weight-cap-r(route)]])

// ----------------------------- Loading packages -----------------------------

#control :name "only-load-packages-into-reasonable-vehicles"
 forall t, package, vehicle [
 [t] !at-packagev(package, vehicle) ->
 ([t+1] !at-packagev(package, vehicle)) |
 exists location [
 [t] at-packagel-generalized(package, location) &
 [t] reasonable-vehicle-for-package(package,
 vehicle,
 location)]]

#define [t] reasonable-vehicle-for-package(package, vehicle, location-from):
 [t] typevp(vehicle, truck) &
 [t] reasonable-truck-for-package(package, vehicle, location-from) |
 [t] !typevp(vehicle, truck) &
 [t] reasonable-nontruck-for-package(package, vehicle, location-from)

// A truck is a reasonable mean of transportation for a package if:
#define [t] reasonable-truck-for-package(package, vehicle, location-from):
 // The package needs to go somewhere and the truck is empty.
 exists location-goal [
 goal(delivered(package, location-goal)) &
 ([t] location-from != location-goal) &
 !exists package2 [
 package2 != package &
 [t] at-packagev(package2, vehicle)] &
 // The truck can deliver it or take it to a transportation center
 // from a non transportation center.
 (([t] can-go-by-truck(vehicle, location-from, location-goal) &
 [t] h-start(package) ->
 tcenter(location-from) & !tcenter(location-goal)) |
 [t] !tcenter(location-from) &
 ([t] !t-end(package)) &
 exists location3 [
 location3 != location-from &
 [t] in-same-city(location3, location-from) &
 [t] tcenter(location3) &
 [t] can-go-by-truck(vehicle, location-from, location3)])]

 159

// A train or plane is a reasonable mean of transportation for a package if:
#define [t] reasonable-nontruck-for-package(package, vehicle, location-from):
 // The package needs to go to a location in the same city which is
 // reachable.
 exists location-goal [
 goal(delivered(package, location-goal)) &
 location-from != location-goal &
 [t] in-same-city(location-from, location-goal) &
 [t] can-go-by-nontruck(vehicle, location-from, location-goal)] |
 // The package needs to go to another city that is reachable.
 exists location-goal, location3 [
 goal(delivered(package, location-goal)) &
 location-from != location-goal &
 [t] !in-same-city(location-from, location-goal) &
 [t] in-same-city(location3, location-goal) &
 [t] can-go-by-nontruck(vehicle, location-from, location3)] |
 // The package needs to go to a third city that is a transportation hub.
 exists location-goal, location3 [
 goal(delivered(package, location-goal)) &
 location-from != location-goal &
 [t] !in-same-city(location-from, location-goal) &
 [t] !in-same-city(location3, location-goal) &
 [t] !hub(location-from) &
 [t] hub(location3) &
 ([t] can-go-by-nontruck(vehicle, location-from, location3)) &
 !exists location4 [
 [t] in-same-city(location4, location-goal) &
 [t] can-go-by-nontruck(vehicle,
 location-from,
 location4)]]

#control :name "only-unload-packages-after-moving-and-at-reasonable-locations"
 forall t, package, vehicle, location [
 [t] at-vehicle(vehicle, location) &
 [t] at-packagev(package, vehicle) &
 ([t+1] !at-packagev(package, vehicle)) ->
 [t] move(package) &
 (goal(delivered(package, location)) |
 [t] tcenter(location))]

#control :name "only-put-down-packages-if-they’ve-moved"
 forall t, package, location [
 [t] !at-packagel(package, location) &
 ([t+1] at-packagel(package, location)) ->
 [t] move(package)]

// If a crane picks up a package from a vehicle, it must then put it on the
// ground instead of loading it into the vehicle again.
#control :name "put-packages-down-after-picking-them-up-from-vehicle"
 forall t, package, crane [
 [t] move(package) &
 [t] at-packagec(package, crane) &
 [t+1] !at-packagec(package, crane) ->
 [t+1] !move(package)]

// Only connect chute if needed to load or unload a package.
#control :name "only-connect-chute-if-needed"
 forall t, vehicle [
 [t] !chute-connected(vehicle) &
 ([t+1] chute-connected(vehicle)) ->
 exists location [
 ([t] at-vehicle(vehicle, location)) &
 (exists package [

 160

 [t] at-packagel-generalized(package, location) &
 [t] package-vehicle-compatible(package, vehicle) &
 need-to-move-package-from(package, location)] |
 exists package [
 [t] at-packagev(package, vehicle) &
 [t] need-to-unload-package-at(package,
 location)])]]

// Only disconnect chute if there are no packages to load.
#control :name "only-disconnect-chute-if-not-needed"
 forall t, vehicle [
 [t] chute-connected(vehicle) &
 ([t+1] !chute-connected(vehicle)) ->
 exists location [
 ([t] at-vehicle(vehicle, location)) &
 !exists package [
 [t] at-packagel-generalized(package, location) &
 [t] package-vehicle-compatible(package, vehicle) &
 need-to-move-package-from(package,
 location)]]]

// Only attach conveyor ramp if needed to load or unload a package.
#control :name "only-attach-conveyor-ramp-if-needed"
 forall t, vehicle, plane-ramp [
 [t] !ramp-connected(vehicle, plane-ramp) &
 ([t+1] ramp-connected(vehicle, plane-ramp)) ->
 exists location [
 ([t] at-vehicle(vehicle, location)) &
 (exists package [
 [t] at-packagel-generalized(package, location) &
 [t] package-vehicle-compatible(package, vehicle) &
 [t] reasonable-nontruck-for-package(package,
 vehicle,
 location)] |
 exists package [
 [t] at-packagev(package, vehicle) &
 [t] need-to-unload-package-at(package,
 location)])]]

// Only lower conveyor ramp if needed to load or unload a package.
#control :name "only-lower-ramp-if-needed"
 forall t, vehicle [
 [t] !ramp-down(vehicle) &
 ([t+1] ramp-down(vehicle)) ->
 exists location [
 ([t] at-vehicle(vehicle, location)) &
 (exists package [
 [t] at-packagel-generalized(package, location) &
 [t] package-vehicle-compatible(package, vehicle) &
 need-to-move-package-from(package, location)] |
 exists package [
 [t] at-packagev(package, vehicle) &
 [t] need-to-unload-package-at(package,
 location)])]]

// Only raise conveyor ramp if there are no packages to load or unload.
#control :name "only-raise-ramp-if-not-needed"
 forall t, vehicle [
 [t] ramp-down(vehicle) &
 ([t+1] !ramp-down(vehicle)) ->
 exists location [
 ([t] at-vehicle(vehicle, location)) &
 !(exists package [
 [t] at-packagel-generalized(package, location) &

 161

 [t] package-vehicle-compatible(package, vehicle) &
 need-to-move-package-from(package, location)] |
 exists package [
 [t] at-packagev(package, vehicle) &
 [t] need-to-unload-package-at(package,
 location)])]]

// Only open vehicle door if needed to load or unload a package.
#control :name "only-open-door-if-needed"
 forall t, vehicle [
 [t] !door-open(vehicle) &
 ([t+1] door-open(vehicle)) ->
 exists location [
 ([t] at-vehicle(vehicle, location)) &
 (exists package [
 [t] at-packagel-generalized(package, location) &
 [t] package-vehicle-compatible(package, vehicle) &
 [t] reasonable-vehicle-for-package(package,
 vehicle,
 location)] |
 exists package [
 [t] at-packagev(package, vehicle) &
 [t] need-to-unload-package-at(package,
 location)])]]

// Only close vehicle door if there are no packages to load or unload.
#control :name "only-close-door-if-not-needed"
 forall t, vehicle [
 [t] door-open(vehicle) &
 ([t+1] !door-open(vehicle)) ->
 exists location [
 ([t] at-vehicle(vehicle, location)) &
 !(exists package [
 [t] at-packagel-generalized(package, location) &
 [t] package-vehicle-compatible(package, vehicle) &
 [t] reasonable-vehicle-for-package(package,
 vehicle,
 location)] |
 exists package [
 [t] at-packagev(package, vehicle) &
 [t] need-to-unload-package-at(package,
 location)])]]

// Only connect hose if needed to load or unload a package.
#control :name "only-connect-hose-if-needed"
 forall t, vehicle [
 [t] !hose-connected(vehicle) &
 ([t+1] hose-connected(vehicle)) ->
 exists location [
 ([t] at-vehicle(vehicle, location)) &
 (exists package [
 [t] at-packagel-generalized(package, location) &
 [t] package-vehicle-compatible(package, vehicle) &
 need-to-move-package-from(package, location)] |
 exists package [
 [t] at-packagev(package, vehicle) &
 [t] need-to-unload-package-at(package,
 location)])]]

// Only disconnect hose if there are no packages to load.
#control :name "only-disconnect-hose-if-not-needed"
 forall t, vehicle [
 [t] hose-connected(vehicle) &
 ([t+1] !hose-connected(vehicle)) ->

 162

 exists location [
 ([t] at-vehicle(vehicle, location)) &
 !exists package [
 [t] at-packagel-generalized(package, location) &
 [t] package-vehicle-compatible(package, vehicle) &
 need-to-move-package-from(package, location)]]]

// Only open tanker valve if needed to load or unload a package.
#control :name "only-open-valve-if-needed"
 forall t, vehicle [
 [t] !valve-open(vehicle) &
 ([t+1] valve-open(vehicle)) ->
 exists location [
 ([t] at-vehicle(vehicle, location)) &
 (exists package [
 [t] at-packagel-generalized(package, location) &
 [t] package-vehicle-compatible(package, vehicle) &
 need-to-move-package-from(package, location)] |
 exists package [
 [t] at-packagev(package, vehicle) &
 [t] need-to-unload-package-at(package,
 location)])]]

// Only close tanker valve if there are no packages to load or unload.
#control :name "only-close-valve-if-not-needed"
 forall t, vehicle [
 [t] valve-open(vehicle) &
 ([t+1] !valve-open(vehicle)) ->
 exists location [
 ([t] at-vehicle(vehicle, location)) &
 !(exists package [
 [t] at-packagel-generalized(package, location) &
 [t] package-vehicle-compatible(package, vehicle) &
 need-to-move-package-from(package, location)] |
 exists package [
 [t] at-packagev(package, vehicle) &
 [t] need-to-unload-package-at(package,
 location)])]]

// --------------------------------- General ---------------------------------

// The package is at the location or being lifted by a crane at the location.
#define [t] at-packagel-generalized(package, location):
 ([t] at-packagel(package, location)) |
 exists crane [
 [t] at-equipment(crane, location) &
 [t] at-packagec(package, crane)]

// The package has a goal to be at another location.
#define [t] in-wrong-city(package, location):
 exists location-to [
 goal(delivered(package, location-to)) &
 !exists city [
 [t] in-city(location, city) &
 [t] in-city(location-to, city)]]

// Location1 and location2 are in the same city.
#define [t] in-same-city(location1, location2):
 exists city [
 [t] in-city(location1, city) &
 [t] in-city(location2, city)]

// The package is compatible with the vechile.
#define [t] package-vehicle-compatible(package, vehicle):

 163

 exists ptype, vtype [
 [t] typep(package, ptype) &
 [t] typev(vehicle, vtype) &
 [t] pv-compatible(ptype, vtype)]

// A goal forces the package to be moved.
#define [t] need-to-move-package-from(package, location):
 exists location2 [
 location != location2 &
 goal(delivered(package, location2))]

// The package has reached its destination or must be unloaded before further
// transportation.
#define [t] need-to-unload-package-at(package, location):
 goal(delivered(package, location)) |
 [t] move(package)

// Packages that are over(package) cannot be moved and should not be loaded
// into a vehicle.
#control :name "Don’t-load-packages-that-are-over"
 forall t, package, vehicle [
 [t] !at-packagev(package, vehicle) ->
 ([t+1] !at-packagev(package, vehicle)) |
 [t] !over(package)]

#control :name "only-deliver-if-goal"
 forall t, package, location [
 [t] !delivered(package, location) &
 [t+1] delivered(package, location) ->
 goal(delivered(package, location))]

