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Abstract

Planning with domain knowledge is a relatively new and growing research area that
allows tackling much larger planning problems than were previously possible. Thisis
achieved by allowing the encoding of domain knowledge as search control rules or
heuristics, reducing the search space and guiding the search. This thesis describes the
process of creating control rules in a number of different planning domains for a
planner that makes use of domain knowledge, TAL planner. The domains were part of
the 2002 International Planning Competition in which TALplanner participated.
Though no prizes were awarded to TALplanner, it performed very well in competi-
tion with the other planners. Also discussed are the challenges met and the modifica-
tions made to the planner in order to perform efficiently in the domains and comply
with all contest rules.
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Chapter 1

| ntroduction

This chapter explains the background of the thesis, its purpose, limitations, and
structure.

1.1 Background

In 1997, Linkdping University received funding for the WITAS [14] project with the
long-term goal to develop a fully autonomous unmanned helicopter. As the helicopter
Is supposed to make plans by itself, one part of the system is a planner, TALplanner,
developed by Jonas Kvarnstrém and Patrick Doherty. TALplanner participated in the
2000 International Planning Competition [3] at the Atrtificial Intelligence Planning
and Scheduling conference [16] and won first prize in the hand-tailored track. The
competition is a biennial event and it was decided that TALplanner would enter again
in 2002. This thesis describes the preparations for and results of that competition.

1.2 Purpose

The goals that we have set up for this thesis are the following:
1. Give an introduction to TAL and TALplanner.
2. Present the domains from the 2002 planning competition.
3. Describe the modeling of these domains.

4. Describe the changes and extensions made to TALplanner in order to perform
well in the domains.

5. Present the competition results.



1.3 Limitations

This thesis focuses upon planning with domain knowledge and some of the content is
applicable to all planners that can make use of such knowledge but much of it is

limited to TALplanner, which is the planner used for al the contest planning prob-

lems. Control rules that are presented for the problem domains often dea with
performance issues only relevant in the context of TALplanner's implementation
details. Control rules are also not the only possible way to specify domain knowl-
edge. For example, some planners support heuristic rules but no such rules have beer
included in the thesis.

Consistent with the nature of domain dependent knowledge, part of the knowledge
formalized as control rules and presented in the thesis is inapplicable to other do-
mains than those it was specifically developed for. This is not true for all the knowl-
edge since many planning domains contain similar objects and actions. For instance,
logistical problems are common and present similar complications and solutions.

1.4 Structureof the Thesis

The thesis is structured as follows:

Chapter 2 introduces planning and some of the terminology used by the planning
community.

Chapter 3 describes TALplanner, its background, and briefly its workings and the
syntax of its use.

Chapter 4 lists each contest planning domain TALplanner participated in, explain-
ing the control rules developed and the reasoning behind them.

Chapter 5 gives a short description of all the modifications and additions made to
TALplanner to enable it to perform efficiently in the planning domains.

Chapter 6 presents the competition results with a number of graphs, making com-
parison between the planners competing in the contest straightforward.

Chapter 7 discusses the insights that have been gained during the work on this
thesis.

Appendix A defines some commonly used terminology.
Appendix B contains the complete domain definitions.



Chapter 2

Planning

This chapter will introduce the basics of planning and some of the terminology used
by the planning community. Also discussed is the important distinction between
domain independent and domain dependent planning.

2.1 Planning

Planning is the process of finding a sequence or set of actions that change parts of a
world from some initia state to a goal state. A planner is a computer program that
uses some form of search to look for such a sequence or set.

The state of the world is represented in some formal way, often by a set of predicates
that express which facts about objects and environment are true. By the closed world
assumption, facts that are not explicitly specified as true are assumed to be false. This
convention avoids the trouble of enumerating al possible predicates in every state
and is intuitively appealing. For example, if one was asked to describe the top desk
drawer, one might enumerate its contents but would certainly not continue, enumerat-
ing every conceivable object that is not in the drawer.

The actions that transform states are specified in the form of operators. An operator
can be split into two parts. the preconditions, which limit the applicability of the
operator to certain states, and the effects, or post conditions, which define the
changes that are made to the state when the operator is applied.

Inits simplest form, planning is done in an accessible and deterministic environment.
This means that the planner can check if some predicate is true and treat the result as
a fact, and that the outcome of applying an operator can always be determined in
advance. This can be put into contrast with the real world where no foolproof tests of
facts exist and the outcome of taking action is always uncertain. Note that determin-
Ism does not rule out actions with conditional effects that depend on the environment
since finding which of these effects will actually happen is only a matter of testing
the relevant predicates in the, accessible, environment in which the action was
performed. Even in this restricted and somewhat unrealistic environment, planning is
not asimple task.



For research purposes a large number of problem domains that fulfill the constraints
described above have been created, possibly the most (in)famous of these being the
blocks world [15]. To make the concepts above more tangible this problem is used in
an example.

The blocks world domain consists of a set of blocks on a table. The blocks can be
stacked on top of each other, but only in straight towers. A robot arm can pick up and
put down one block at atime but not lift a block which lies underneath another block
without first moving that one. The table is sufficiently large to make room for any
number of blocks.

We can describe the domain using the following constructs. A number of constants,

A, B, C, ..., are introduced to represent the blocks and a number of vanalyles,

v, w, are used to refer to any block or the table. The world state is expressed using the
predicate Ory, y), meaning that block is directly on top offy, wherey is either
another block or the table. Finally, an operator Mryvg( z) is defined with the
meaning move blockfromytoz

Move(x, v, 2)
Preconditions: onx(y)

Not existsy such that Ony, x)

Not existsv such that both On( z) andz != table
Effects: Not Onx, y)

Ong, 2)

g » .
|BA %I :

Figure 2.1: A classic blocks world problem.

Figure 2.1 is a graphical representation of a small planning problem. There is an
initial state and a goal state, and the task is to find a sequence of Move actions that
rearranges the blocks from the initial state into the goal state. Using the above
representation scheme and, consistent with the closed world assumption, specifying
only positive facts, the initial state is encoded as,

On(A, Table)
On(B, Table)
Oon(C, A)

The goal state is similarly described as,
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On(A, B)
On(B, C)
On(C, Table)

The following action sequence would constitute one solution to the problem:
1. Move(C, A, Table)
2. Move(B, Table, C)
3. Move(A, Table, B)

2.2 Different Approachesto Knowledgein Planning

Much of the early work in planning was directed towards solving problems from any

domain using a minimal amount of knowledge about the domain. This approach only

requires a formalization of the domain operators in the planner’s input language but
severely limits the planner’s ability to solve large problems. The search space grows
exponentially as the problem size increases and it becomes necessary to prune large
parts of the search tree or direct the search in some other way to find a solution.

Minimal knowledge, or fully automated planning as it is sometimes called, is one
extreme and domain dependent planning is the other. A domain dependent planner is
limited to one planning domain or a set of closely related domains. Knowledge about
the domain is present not just in the input to the planner but in the actual implementa-
tion and algorithms of the planner. Domain dependent planners can be very efficient,
but the downside is obvious. They are only special-purpose software and modifying
such a planner to a new application area may require changes in its entire architecture
and involves a lot of work.

TALplanner covers the middle ground between the two extremes, belonging to a
group of planners that might be termed hand-tailored planners. It is domain inde-
pendent and can create plans with only a minimum of domain knowledge but it also
lets the user provide additional information about the domain to help control and limit
the search for solutions. Very refined control knowledge may be added, completely
eliminating the need for search and always forcing the planner to choose an action
that will be part of the final solution. Such strict control brings TALplanner closer to
domain dependence but is not required. Any form of knowledge that will guide or
control the search increases the size of the problems that are possible to solve. An
example of such knowledge for the blocks world example may be an instruction not
to move blocks that are already in a goal state configuration. When confronted with a
real world domain, there are probably experts in the field who already have a lot of
knowledge of how to solve problems in the domain and it makes sense to be able to
use that knowledge when modeling it. Furthermore, creating a planner that supports
the addition of hand tailored domain knowledge allows experimentation with using
various forms of knowledge that might later be generated automatically.



There are of course downsides to using domain specific knowledge in planning. First
of al, finding and encoding the knowledge creates a significant amount of extra
work. Secondly, such knowledge is not always intuitive, or even available at all.
Finally, there is always a risk of providing erroneous information that will actually
hinder or prevent the planner from solving certain problems.



Chapter 3

TALplanner

The planner used throughout thisthesisis TALplanner [18] [17][19][2], developed by

Jonas Kvarnstrom and Patrick Doherty. Its history started in 1999 as part of the
WITAS Unmanned Aerial Vehicle project [14], but has since then grown into a
complete standalone planning project.

This chapter introduces TAL, the formal basis for the planner, TALplanner and some
of its inner workings, and finally describes the function of control rules, the develop-
ment of such rules being the topic of Chapter 4.

3.1 TAL

TAL, an acronym for Temporal Action Logics, is a formalism that uses first and
second order logic to describe actions and change in a world model. It can be used to
reason about actions that have duration, actions that are performed concurrently with
other actions, context-dependent actions and much more. TAL's expressiveness
provides a suitable formal basis for a planner and is indeed used by TALplanner as
such. It is not necessary to have a formal basis at all to create a planner, and many
planners do not, but it does make it possible to prove correctness of the plans gener-
ated if provided. More information about TAL can be found in Doherty et al. [1].



3.2 TALplanner

As TALplanner is intended to be used in the context of an unmanned helicopter,
certain constraints need to be met. Especidly, a plan must be found within some
limited time period, but the problem domain is of limited scope, opening up the
possibility of using domain specific knowledge to help achieve any time constraints.
A survey of the planning research areareveaed only one existing planner that was of
interest and fulfilled the constraints. That planner was TLPlan, developed by Bacchus
and Kabanza [9]. TLPlan served as inspiration and together with the experience with
TAL led to the development of aforward chaining logic-based planner where domain
knowledge is expressed as logical formulas, controlling the search for solution plans.
Forward chaining planners start from the initial world state, adding actions to the plan
until the goal is reached. Many other planning algorithms have been developed but
forward chaining has several advantages, among which are ease of world state
representation and use of complex operators. The biggest disadvantage is that no
goal directedness exists and consequently quite elaborate control may have to be
imposed on the search to make the planning process efficient.

3.2.1 Pruning Constraintsin TAL planner

The nature of the depth-first search algorithm used by TALplanner essentially means
that, without any control rules, the planner will try all possible instantiations of all the
operators in the order in which they were defined. In a sense, the planner adds an
action, not because it is necessary, but because it is possible. It is therefore essentia
to provide domain specific control rules that guide the search in order to achieve any
sort of reasonable efficiency.

TALplanner analyzes the control rules and creates pruning constraints, logic formulas
that must hold in any partia plan, i.e. in any node in the search tree. If the pruning
constraint does not hold, the state node can be pruned, and with it, the entire branch
of the search tree that would stem from that node. The result is a drastic reduction of
the search space, depending on the quality of the control rules, enabling the depth-
first search agorithm, which would ordinarily be totally lost among the vast number
of possible plans, to find a solution. More information about the generation of
pruning constraintsis availablein [4].

3.2.2 Basic Algorithm

The search algorithm used by TALplanner is a standard depth-first search, athough
other strategies, like breadth first search or iterative degpening depth-first search, are
possible and easily implemented through the plug in-like code architecture. The steps
in the algorithm can be listed using pseudo code as follows:

1. procedure TALplan(state)
2. if the control rules are satisfied in the state then
3. if the stateisagoal state, return the state.
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4. if the state does not constitute a cycle then

o

for every action that is applicable in the state do

6. call TALplan recursively with a new state, which results from
applying the action to the current state, as an argument.

7. return failure.

A cycleis present if the state has already been visited earlier in the search and cycle
checking is necessary in depth-first searches to prevent the planner from getting
stuck, repeatedly adding actions that cancel each others effects out.

Note that even if the return value is failure, the problem might still be solvable. One
or more of the control rules may be too strict and exclude the branches containing the
solution or solutions from the search.

Presenting the basic search agorithm merely scratches the surface of what TALplan-
ner is. The main body of work liesin al the optimizations that are done on the logical
formulas and the solutions of al the representational issues encountered. As thislies
outside the scope of this thesis, the reader is referred to Kvarnstrom [4].

3.2.3 Input and Output L anguage

The syntax of operator definitions is best explained with an example. An operator
drive, which drives an available taxi between two locations, could be declared as
follows:

#operator drive(taxi, locationl, |ocation2)
cat ot
. precond [t] at(taxi, locationl) &
[t] avail abl e(taxi)
: cont ext
ceffects [+1] at(taxi, locationl) := false,

[+10] at(taxi, location2) := true

At instantiation, when the operator is added as an action to the plan, the vargble
bound to the current time point. The preconditions, represented as a single temporal
logic formula, must hold for the operator to be applicable. In order to drive the taxi
from | ocationl to | ocation2 at time point t, it must be both Bbcati on1 and
available at time point t. Following the precondition is a list of contexts, each of
which can have their own preconditions and effects.dfinee operator has only one
context and one list of effects. Consequently it does not need additional preconditions
in that context and always has the same effects when applied. At time point t + 1 the
taxi has left ocati on1, and att + 10 it has arrivediatcat i on2.

Continuing with an example control rule helps explain the control rule syntax.



#control :name "don’t-drive-to-deserted-places”
forall t, taxi, location |
[t] 'at(taxi, location) &
([t+1] at(taxi, location)) ->
exists person [
[t] at(person, location) | |

The new control rule is given a name and then defined by a single logical formula.
The formulafirst quantifies universally over time points, taxis and locations and then,
by means of an implication and an existential quantification over persons, makes sure
that if a taxi arrives at a location, it must be the case that at least one potentia
customer isthere.

The output plan can be printed in two different formats: a TALplanner native format
and a Planning Domain Definition Language (PDDL) [7][8] format. Here we shall
only be concerned with the latter, once again providing an example.

0 : (drive taxil citysquare airport) [ 10 ]

10 : (pickup personl airport) [ 2 ]

12 : (drive taxil airport suburb) [ 10 ]

22 : (dropoff personl suburb) [ 4 ]
;; Plan length 4, maxtime 26

Assuming appropriate definitions of pickup and dropoff , the plan might be a
solution to some simple planning problem. Beginning each row is the time point at
which the action was applied. The instantiated operator is presented in a LISP-like
format for PDDL compatibility and the rows end with the duration of the operator
inside brackets. For convenience, the last row displays the number of stepsin the plan
and the time point at which the goals were achieved.

10



Chapter 4

|PCO2

4.1 History

AIPS is a conference on Artificial Intelligence Planning and Scheduling, which is
held every other year since 1998. The conference hosts the International Planning
Competition (IPC) in which TALplanner has previously entered and received awards.

Since the year 2000, the IPC includes both fully automated and hand-tailored plan-

ners (see section 2.2). A set of problem domains and two sets of problems for each

domain are given and a deadline for handing in the solutions is fixed. Hand-tailored
planners are typically much faster and can solve larger problems than the fully
automatic planners. The second sets of problems take this into account, as they are

larger versions of the problems in the first set. The domains are formalized in the
Planning Domain Definition Language (PDDL) [7][8]. PDDL is a currently active

and evolving attempt to standardize planning problems and makes it possible for
different planners to compete against each other by directly supporting PDDL or
trandating the PDDL definitions to their respective input language and back again

when a plan has been found. The competitors solve as many problems as they can

before the deadline while timing the planner’'s execution. This creates a large set of
data to judge the performance by, including time spent solving the problems, length
of the plans generated and domain specific criteria, e.g. the amount of resources, like
fuel, spent in each problem’s solution plan.

Note that the setup of the competition may change in the future since the group of
people responsible for organizing the competition is not fixed but changes each year
the conference is held.

The latest AIPS conference was held in France 2002. Responsible for the 2002
competition (IPCO02) [3] were Derek Long and Maria Fox. This chapter introduces the
2002 domains, explains how we modeled each of them and discusses any particular
difficulties encountered.

11



4.2 Domains

All competition domains except one have severa versions of varying complexity.

The first and simplest is the “STRIPS” version, which is compatible with the STRIPS
planning formalism [6] and therefore also limited to the expressivity of STRIPS,
which among other things excludes actions that have a duration of more than one
time step. The second is “SimpleTime” where actions have a specified constant
duration. In the “Timed” version the duration of actions can be dependent on the
problem instance being solved, e.g. driving a vehicle takes time proportional to the
distance covered. “Numeric” versions have no durative actions but instead introduce
numeric constraints like limiting the loading capacity of a vehicle. Finally some
domains have a fifth “Complex” version that is a combination of Timed and Nu-
meric.

Even though TALplanner is expressive enough to attempt the Numeric and Complex
problems, we decided to take part only in the STRIPS, SimpleTime and Timed
domains and maximize its performance there. The decision ensured that the deadline
was met but was probably suboptimal from a strategic point of view since, after the
contest, it was revealed that an important criterion in the final judgment was overall
problem coverage.

Concurrent planning, where several actions can be performed simultaneously, was
used for all domains except the largest one, which used sequential planning, where
one action has to be completed before the next one can begin.

The rest of this chapter contains descriptions of each domain, the modeling of it to
allow efficient planning using TALplanner and which obstacles we encountered.
Many of the difficulties are not specific for a single domain but appear in several or
all of the domains. These problems are described in depth when first mentioned and
then skipped over to avoid repetition. The sections are therefore not completely
independent and should preferably be read in the order they appear.

The complete domain definitions are quite long and are placed in Appendix B for
reference. Smaller fragments of the formalizations are inserted in the text to illustrate
the concepts and methods used.

4.3 ZenoTrave

The ZenoTravel domain is based on a domain created to illustrate the capabilities of
the Zeno planner [5]. The task is to fly people between different towns using a set of
aircratft.

The complete domain and control rule definitions for the domain are available in
appendices B.1, B.2 and B.3 and can be used as reference while reading the following
description.

12



4.3.1 Description

Only five actions are available. Persons may boar d and debar k aircraft and aircraft
may fly, zoomand r ef uel . There are no restrictions on how many people a plane
can carry. Flying and zooming are equivaent except zooming is faster and uses more
fud.

Figure 4.1 shows an example problem. Part of the solution would involve one of the
planes flying to ci t y0, per sonl boarding the plane, the plane flying to ci ty3 and
per sonl disembarking.

cityd ity
& personi planez ‘
fuel-level: 13
& person
£ persond \
city2 city3
planel & person3
fuel-level: 4
£ persons

Figure 4.1: A simple sample problem from IPC02 with arrows pointing out goal locations. A
solution is a plan that puts per sonl, per son3 and per son4 inci ty3 and per son2 and
person5incityl.

4.3.2 Control

The first and most obvious fact we notice is that people who are aready at their
destinations do not need to do anything. They are prevented from doing anything by
adding the following control rule or something equival ent:
#control :nanme "only-board-when-necessary"
forall t, person, aircraft [
[t] 'in(person, aircraft) &
([t+1] in(person, aircraft)) ->
exists city |
[t] at(person, city) &
goal (!'at (person, city)) ]]

The rule says that at all times for al persons and aircraft, if the person boards the
aircraft he must be at one city and have agoal to be at another city.

Thinkof [t] at(person, city) & goal (!at(person, city)) asshortfor:

13



exists cityl, city2 |
[t] at(person, cityl) &
goal (at(person, city2)) &
cityl !'=city2 ]

The statement goal (! at (person, city)) isonly trueif ! at (person, city) is
true in al goal states. It must be the case that there is a goa forcing the person to be

somewhere else, otherwise there would be goal states in which at (person, city)
was true and its negation false.

In redlity, planes usually follow predefined routes, but in this simplified model,
planes can fly directly to any other city. A natural extension of the rule is therefore
that people only disembark at their destinations instead of getting off the plane in
random cities.

#control :name "only-debark-when-in-goal-city"
forall t, person, aircraft [
[t] in(person, aircraft) ->
([t+1] in(person, aircraft)) |
exists city |
[t] at(aircraft, city) &
goal (at (person, city)) ] ]

These two rules help people behave rationally but the aircraft still fly wherever they
can. Three reasons exist for a plane to visit a city: one of the goals asserts that the
aircraft must end up in the city when the plan is complete, there is a person already in
the aircraft that wants to go to the city, or there is a person in the city that wants to
leave. The following rule formalizes these three intuitions:

#control :nanme "pl anes-al ways-fly-to-goal"
forall t, aircraft, city [
[t] at(aircraft, city) ->
([t+1] at(aircraft, city)) |
exists city2 |
city2 l=rcity &
([t+1] at(aircraft, city2)) &
(goal (at(aircraft, city2)) |
exi sts person |
[t] in(person, aircraft) &
goal (at (person, city2)) ] |
exi sts person |
[t] at(person, city2) &
goal ('at(person, city2)) 1) ] 1
The first criterion proves to be too admissible. A goa stating that the aircraft must be
In acertain city, its goal city, should not really be of concern until all the passengers
have arrived at their destinations. There is no point visiting the goal city in the middle
of the plan, if not to pick up or drop off passengers. We define a new feature to help
decide when to fly the planeto its goa city:
#define [t] all-persons-at-their-destinations:

forall person, city |
goal (at(person, city)) -> [t] at(person, city) ]

14



The new feature will become true when all persons that have a goal city have arrived
at it. Adding it as an extra requirement to the first case in the previous rule solves the
problem.

#control :name "pl anes-al ways-fly-to-goal"
forall t, aircraft, city [
[t] at(aircraft, city) ->
([t+1] at(aircraft, city)) |
exists city2 |
city2 l=rcity &
([t+1] at(aircraft, city2)) &
((goal (at(aircraft, city2)) &
[t] all-persons-at-their-destinations) |
exi sts person |
[t] in(person, aircraft) &
goal (at (person, city2)) ] |
exi sts person |
[t] at(person, city2) &
goal ('at(person, city2)) 1) ] 1

With these simple rules TALplanner solves all the ZenoTravel contest problems
quickly. Although the solutions are not terribly inefficient, they can be improved by

spotting several problems. For example, many plans involve flying al available
aircraft to pick up one person.

City0 city1 City 2
& personz & personi & person3
£ npersond /
nlaned city3 cityd
fuel-level: i &  persons & persong
flanel plane?
fuel-level: 13 fuel-level: 0

Figure 4.2: Contest problem with the beginning of a plan marked.

Figure 4.2 illustrates this problem. The first steps of the generated solution planis:

O: (fly planel city0O cityl f16 fI5) [ 1]
O0: (fly plane3 city0 cityl fI3 fl2) [ 1]
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But only one of the planes can make itself useful by picking up the lone passenger.

This is a general problem when planning concurrently using a depth-first search
strategy such as TALplanner’s. The planner checks the state at time 0 and looks for
actions that are possible to perform. An action pflgnel fromcity0 tocityl is

added to the plan, but the action does not change the initial state so it is not possible
to write a control rule that in the initial state forbids flyipgane3 to the same
location without reference to the next time step, whleanel has arrived ati t y1.

That state is still in the future and is unknown since more actions may be added at
time 0 and affect the state at time 1. The rule would be evaluated at time O when the
planner tries to flypl ane3 but instead of canceling the action, the action will be
added and the control rule queued and evaluated at a later time when the future state
is fully determined. The planner will continue to add actions until the queued rule, at
some later time, forces it to backtrack. Depending on the number of actions added
after the flying ofpl ane3, the time it takes for the planner to realize that this action
was not allowed could be very long.

To prevent this problem we addeda@ami t t ed macro. When the planner decides to

fly pl anel tocityl it registers the facit (pl anel, cityl) as committed to be

true in the next state. We can now add the following check to the last case of the
pl anes- al ways-fly-to-goal rule that permits flying to a city to pick up someone:
lexists aircraft2 |

aircraft2 I'= aircraft &
$comm tted(t+1, at(aircraft2, city2), true) ]

A plane is not allowed to fly to a city in order to pick up a passenger if there already
exists another plane that has decided to go there.

One final important and peculiar discovery is made when looking at the given
operator definitions for the domain. The only difference betweeri itheand the
zoom operators is thatoom uses twice as much fuel. Zooming is not faster than
flying in the STRIPS version of the domain where all actions take exactly one time
step. Theoomoperator was thus commented out to make sure it is not used.

4.3.3 SimpleTime

The only difference in the given PDDL specification between the SimpleTime and
the STRIPS version is that instead of all actions taking only one time step to perform,
they now have a constant non-zero duration and some of the preconditions must hold
throughout the action’s entire execution period. However, this translates into a
number of changes in the TALplanner formalization to enable almost as fast planning
as with the STRIPS version.

If we try using the same definitions, with durations added and the effects modified to
occur at the end of the duration, we run into problems.
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city0 City1 city

plane ﬁ persond plane
fuel-level: 14 D fuel-level: 15
& person3
£ person? — /
& persont ——

€t

Figure 4.3: Contest problem with peoples destinations displayed.

Let us look at the example in Figure 4.3. The planner starts by adding the following
actions to the plan:

[0, 20] board(personl, planel, cityO0)

[0, 20] board(person2, planel, city0)

[0,100] fly(plane2, city2, city0, fI5, fl4)

Fai | ed queued constraint from pl anes-al ways-fly-to-goal

It is unable to continue due to the pl anes- al ways-fly-to-goal rule which now
forbids any flying of planes whatsoever. The explanation for this is in our modified
f1y operator:

#operator fly(aircraft, city-from city-to, flevell, flevel?2)
cat ot
. precond [t] at(aircraft, city-from &
[t] fuel-level (aircraft, flevell) &
[t] next(flevel2, flevell)
:duration 180

. cont ext
ceffects [+1] at(aircraft, city-from := false,
[+180] at(aircraft, city-to) := true,
[+1] fuel-level (aircraft, flevell) := false,
[+180] fuel-level (aircraft, flevel2) := true

After takeoff, the plane isnot at ci t y1 and does not arrive at ci t y2 until 180 steps
later. The definition of pl anes- al ways-fly-to-goal statesthat if the plane leaves
acity at timet, it should be at a meaningful destination at t + 1.

#control :nanme "pl anes-al ways-fly-to-goal"
forall t, aircraft, city [
[t] at(aircraft, city) ->
([t+1] at(aircraft, city)) |
exists city2 |
city2 '=city &
[t+1] at(aircraft, city2) &
[t] check-if-good-destination(aircraft, city2) | |

Here, theitalicized check-i f - good- desti nation(ai rcraft, city2) isapseudo
predicate that represents some test to find out if it is reasonable for the aircraft to visit
ci ty2. The complete definitions are available in appendix B.2.
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Att+ 1, theaircraftisnot at any city at al. It isin the air, traveling somewhere. The
rule evaluates to false, meaning the action was not alowed and the planner back-
tracks. The obvious fix would be to change the rule into the following:
#control :nanme "pl anes-al ways-fly-to-goal"
forall t, aircraft, city [
[t] at(aircraft, city) ->
([t+1] at(aircraft, city)) |
exists city2 |
city2 '=city &
[t+180] at(aircraft, city2) &
[t] check-if-good-destination(aircraft, city2) | |
This would mean that the duration of the flight is encoded directly in the control rule
instead of only in the operator. If the operator’'s duration is changed, the rule will
cease to function correctly. In addition, if variable duration operators were used, as in
the Timed version of the domain, the rule would not make sense at all. Instead of
saying, do not be at t y2 180 time steps from now if it is not a reasonable destina-
tion, we would like to use the more natural expression, do not #yttp2 if it is not
reasonable. To accomplish this we add a new featurg,ng-to(aircraft,
city), which is true while thaircraft is in the air, flying to thecity. The
definition is simple:
#feature flying-to(aircraft, city) :domain boolean :injective

To update it we add the following to the effects of the fly operator:

[+1] flying-to(aircraft, city-to) := true,

[+180] flying-to(aircraft, city-to) := fal se

And almost identical additions to the faster zoom operator:
[+1] flying-to(aircraft, city-to) := true,

[+100] flying-to(aircraft, city-to) := false

It is now possible to change the existential formula inpthenes- al ways-fly-to-
goal rule above as follows:
exists city2 [

[t+1] flying-to(aircraft, city2) &

[t] check-if-good-destination(aircraft, city2) ]
The same problem arises ipl anes- al ways-del i ver-passengers-first in
appendix B.2 and again in tpeanes- al ways-fly-to-goal rule when it checks if
someone has boarded a plane. They are corrected by adding another helping feature
boar di ng( person, aircraft), with the same pattern of use.
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Concurrent planning introduces a lot of troubles and it would be easy to fedl content
with just generating good sequential plans. But this is not a realistic approach if the
planner is ever going to do any real world tasks. Consider an airline company that can
only schedule one airplane to fly at a time. It might be safe, but not very efficient.
TALplanner tries to find a plan that completes the given task as quickly as possible.
When creating concurrent plans, as many actions as possible are squeezed in to make
the most use of every time step. Relying on the pruning of stupid moves from the
search space, doing severa actions will probably bring us closer to the solution than
doing only one action. The following are the first steps of the plan that TALplanner
Now generates.

0 : (board personl planel city0) [ 20 ]

20 : (fly planel cityO cityl fl4 f13) [ 180 ]
20 : (zoomplanel cityO cityl fl14 fI3 f12) [ 100 ]

Flying and zooming pl anel at the same time should be impossible. The planner does
not detect this since both actions are possible at time 20, and the effects of the actions
do not contradict each other. Only the final fuel levels differ but at different time
points resulting in afuel level of 2 at time 120 and an increase to fuel level 3 at time
200. We again make use of the $conmi tt ed macro by adding the following to the
preconditions of f | y and zoont

I'$Scomm tted(t+1, at(aircraft, city-fron), false)

It creates a check that the aircraft has not already committed to leaving the city.
When fly is used, [+1] at(aircraft, city-fronm) := false iS committed,
rendering zooming impossible and vice versa.

Finally TALplanner rewards us with a short and correct solution for the problem in
Figure 4.3.
0 : (board personl planel city0) [ 20 ]
20 : (fly planel cityO cityl fl4 f13) [ 180 ]
200 : (board person3 planel cityl) [ 20 ]
200 : (debark personl planel cityl) [ 30 ]
230 : (fly planel cityl city0 fI13 fl2) [ 180 ]
410 : (debark person3 planel city0) [ 30 ]
Plan | ength 6, maxtine 440

Can it be improved? Remember that the STRIPS version never made use of the zoom
operator. Simple adding of sums now reveals that fly takes 180 time steps and uses
one unit of fuel, zoom takes 100 time steps and uses two units of fuel, and refueling
takes 73 time units. 180 + 73 is more than 100 + 2 * 73 and therefore we have the
opposite situation — zoom is always better thahl y. Commenting out the unwanted
f |y operator yields the following plan:
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0 : (board personl planel city0) [ 20 ]
20 : (zoomplanel city0O cityl fl4 fI13 fl2) [ 100 ]
120 : (board person3 planel cityl) [ 20 ]
120 : (debark personl planel cityl) [ 30 ]
150 : (zoomplanel cityl city0 fl2 fl1 fl0) [ 100 ]
250 : (debark person3 planel city0) [ 30 ]

Plan Il ength 6, maxtine 280

4.3.4 Timed

The Timed version further complicates the timing of the actions and is the version
that most closely resembles the original ZenoTravel domain, developed by Penberthy
and Weld [5]. Boarding and disembarking times are constant but problem-specific
and defined in the respective problem definition as two new features, boar di ng-
time and debarking-time. Refueling aways fills the plane to its maximum
capaci t y but consumes time relative to the amount of fuel received and ther ef uel -
rat e of the aircraft. Each aircraft also has a f ast - speed and a sl ow speed with
corresponding f ast - bur n and sl ow bur n fuel consumption. The distances between
cities are encoded using a di st ance(cityl, city2) feature and when an aircraft
uses the zoom operator to travel from cityl to city2, it will reach its destination
after distance(cityl, city2) [/ fast-speed(aircraft) time units and
consume di st ance(cityl, city2) * fast-burn(aircraft) unitsof fuel. The
same goes for the f | y operator except sl ow speed and s| ow bur n are used.

TALplanner would not have any problems handling this added complexity if it was
not for one of the contest rules. Durations have to be correctly calculated with a
precision of three decimals. The whole architecture and semantics of TAL planner
was built on discrete integer time. All durations and time cal culations are truncated to
integers. A solution that had previously been thought out was implemented in order
to comply with the precision requirements. Multiply all durations by a factor of a
thousand and, before the final plan is printed to the terminal, bring al the figures
back with a division using the same factor. This way the planner can continue to
work with integer time but present the solution with adequate accuracy. The scale
factor is set at the beginning of the specification with a new statement.

#ti mescal e 0. 001

When durations are multiplied, their range extends into the hundreds of thousands of
time steps. This prompted changes in the way TALplanner internally represents states
and integers and these are discussed in more detail in chapter 5.4.
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Few changes are now needed to transform the SimpleTime domain to the Timed
version. Some math is necessary to calculate the durations in each operator and,
finaly, we find that there is a tradeoff between the f1y and the zoom operators.
Depending on the speed and fuel consumption values defined in each problem and
the situation where the operator is used, it is sometimes better to use f | y instead of
zoom We introduce a new feature, fly-better-than-zoon(aircraft, cityl,
ci ty2), inthe preconditions of f | y and its negation in the preconditions of zoom It
compares the time spent by f 1y and zoomto reach the destination and includes the
time spent refueling to make up for the fuel loss since zoom requires more fuel. The
calculation is not entirely accurate if it later proves unnecessary to fully compensate
the fuel used. The plane or the other aircraft might have enough fuel to complete the
goals without further refueling. To partly compensate for this, the last clause in the
definition permits flying instead of zooming if that makes it possible to get by with
one lessr ef uel action.
/Il Fly is better than zoomif:
#define [t] fly-better-than-zoom(aircraft, cityl, city2):
/1 1f it's faster wt speed and refueling.
([t] (20000 / slow speed(aircraft) +
10000 * slowburn(aircraft) / refuel-rate(aircraft)) <
(10000 / fast-speed(aircraft) +
10000 * fast-burn(aircraft) / refuel-rate(aircraft))) |
/1 1f zoomis inpossible across this distance.
([t] distance(cityl, city2) * fast-burn(aircraft) >
capacity(aircraft)) |
/1 1f zoomhas to refuel but fly doesn’'t.
([t] fuel(aircraft) >=
di stance(cityl, city2) * slowburn(aircraft) &
fuel (aircraft) <
di stance(cityl, city2) * fast-burn(aircraft))

4.3.5 Discussion

The ZenoTravel domain is easily solved. There are no risksinvolved in flying a plane
to pick up passengers since all the passengers will aways fit in the plane and refuel-
ing is possible in any city. It is not really possible to get stuck while looking for the
solution. The graph of citiesis also fully connected so no route planning is necessary.
A fina version of ZenoTravel, called Numeric, was available in the contest but is not
included in the set of domains that we chose to participate in. It is supposedly more
difficult and uses a constraint on the number of passengers that an aircraft can carry.
The constraint is only enforced in the zoom operator but since the numeric domain
does not make use of durational operators, it suffers from the same problem as the
STRIPS zoom operator. It consumes more fuel, limits the number of passengers but
does not deliver any advantages because it is no faster than flying. The real difficulty
in the Numeric version comes from the complex metrics that are specified in each
problem and measures the quality of asolution. E.g. i ni ni ze(total -time + 3 *
t ot al - f uel - used) . TALplanner currently has no way of handling such instructions.
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4.4 Depots

The Depots domain is a combination of two classic planning domains, logistics and
blocksworld. Blocksworld was introduced in Chapter 2 and the logistics domain is
similar to ZenoTravel in that a number of vehicles move objects to specified destina-
tions.

The complete domain and control rule definitions for the domain are available in
appendices B.4, B.5 and B.6.

4.4.1 Description

The world of Depots contains locations, trucks, hoists, crates and pallets. Trucks
move crates between locations using the dri ve operator. They can move between
any two locations and carry any number of crates at the same time. The hoists are
distributed among the locations and load crates on trucks or stack crates on top of
each other using the four operators | oad, unl oad, |ift and drop. The crates are
never put on the ground but instead in stacks on the available pallets or loaded into
trucks.

The godl is aways to bring the crates into a certain configuration of stacks and is
represented by a list of statements deciding which crates should be on top of each
other and which crates should rest on which pallets. The complication comes from
the fact that if a crate is not at the top of its stack, it cannot be moved until al the
other crates blocking it are moved.

To formalize the stacks the same scheme as in the origina blocksworld is used. One
feature, on(crate, surface), represents a crate being directly on top of a surface,
which can be another crate or a pallet, and one feature, cl ear (sur f ace) , states that
nothing is on top of that surface.
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Figure 4.4: Contest problem. A solution rearranges the crates into three stacks: cr at e5
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pal | et 1.

4.4.2 Control

The blocksworld is a very well-known domain. Good control rules are already
available and can be reused here. We used a modified version of Bacchus and
Kabanza’s rules [9].

Intuitively, we force the planner into only building stacks of crates that are final and
which will not be needed to tear down again. Denominating these stacks “good
towers”, we adopt a recursive definition where a crate is the top of a good tower if the
following holds:

1. The crate does not have to be moved to fulfill the goals.
2. If the crate is on another crate, that crate is also a good tower.

In the definitions in appendix B.4, keeping track of which crates are parts of good
towers is done in an efficient way by only using the recursive definition to initialize
the goodt ower feature and then updating it directly in the effects of the relevant
operators] i ft anddr op. The initialization is done in two steps. First define another
feature,goodt ower -i ni t, and then at time 0, use it to initialize the valuegaoofd-

t ower.
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#define [t] goodtower-init(surfacel):
([t] !need-to-nove(surfacel)) &
forall crate, surface2 |
(surfacel = crate &
[t] on(crate, surface2)) ->
[t] goodtower-init(surface2) ]

#dom [ 0] forall surface [ goodtower(surface) <->
goodtower-init(surface) ]

The definition depends on another feature, need- t o- nove, which is defined simi-
larly. A crate needsto be moved if

1. itisnot onitsgoal surface or
2. itisontop of another crate that needs to be moved or

3. it occupies a space needed by another crate:

#define [t] need-to-nove-init(surfacel):
exists crate |
crate = surfacel &
(exists surface2 |
goal (on(crate, surface2)) &
[t] 'on(crate, surface2) ] |
exists crate2 |
([t] on(crate, crate2) &
need-to-nove-init(crate2)) ] |
exi sts surface2 |
([t] on(crate, surface2)) &
(exists crate3 |
goal (on(crate3, surface2)) &
crate3 !'=crate 1) ] )]

#dom [ 0] forall surface [ need-to-nove(surface) <->
need-t o-nmove-init(surface) ]

We have yet to make use of the new features in a control rule. All Depots problems
can be solved without stacking crates in the wrong order and without ever moving
crates that are already stacked in the right order. The defined features do the main
part of the work so the rules will be very simple.

#control :name "only-create-goodt owers”
forall t, crate, surface [
[t] 'on(crate, surface) &
[t+1] on(crate, surface) ->
[t+1] goodtower(crate) ]

#control :name "only-nove-crates-when-necessary"”
forall t, crate, placel |
[t] at(crate, placel) ->
([t+1] at(crate, placel)) |
[t] need-to-nove(crate) |
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Appendix B.4 contains the first rule embedded in the preconditions of the dr op
operator. This avoids unnecessary evaluation of the rule since drop is the only
operator that creates stacks. The second rule will ensure that good towers are not
destroyed. A crate that is part of agood tower cannot be need- t o- nove and therefore
must remain in its position in the stack.

It might seem impossible to solve the problems without sometimes stacking blocksin
the wrong order. What if one crate needs to be transported to another location but
another crate blocks it? Unlike the original blocksworld, we cannot put the top crate
temporarily on the table while moving the bottom crate, but instead have to use one
of the limited numbers of pallets. If the crate was not supposed to be on that pallet in
the goal state, this would violate the onl y- cr eat e- goodt ower s rule. The trick is to
load the top crate into a truck. Trucks can contain any number of crates and the
planner will make heavy use of them as storage while building the stacks.

Asin ZenoTravel, we would now like to limit the vehicles’ movements to only those
locations where they can be of any use. Two obviously useful actions are loading
crates that are at the wrong location and unloading crates at the right location. But
figuring out in which location a crate should be is not as easy as in the ZenoTravel
domain where the problem goals simply stated which city a person should end up in.
The goals in Depots only specify the order in which the crates should be stacked. A
crate’s final location depends on the crate beneath it and the crate beneath that crate
and so on. At the bottom of the stack there must be a pallet and pallets cannot be
moved. This is what finally decides the location of the crate and is suitably formal-
ized as another recursive featureed- t o- be- at . Unlike goodt ower andneed-t o-
nove, a crate’s final location will not change during planning. hbhed- t o- be- at
feature can be initialized once, before the planning begins, without the need to update
it later.
#define [t] need-to-be-at-init(crate, place):
exists pallet |
goal (on(crate, pallet)) &
[t] at(pallet, place) ] |
exists crate2 [

goal (on(crate, crate2)) &
[t] need-to-be-at-init(crate2, place) ]

#dom [ 0] forall crate, place [ need-to-be-at(crate, place) <->
need-to-be-at-init(crate, place) ]

We then combine the two suggested controls and the new feature to define a rule.
Trucks can only move to a location where there is a crate that needs to be at another
location or where a crate in the truck needs to be unloaded.
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#control :name "trucks-al ways-nove-to-goal"

forall

t, truck, place [

([t] at(truck, place)) ->
([t+1] at(truck, place))
exists place2 [

pl ace2 != place &

([t+1] at(truck, place2)) &

(([t] exists crate, place3 |
general i zed-at (crate, place2) &
((need-to-be-at(crate, place3d) &

place2 !'= place3)) ] ) |
(exists crate [
([t] in(crate, truck) &
need-to-be-at(crate, place2)) 1)) 11

The rule helps the planner solve the problem in Figure 4.4, but it till has consider-
able problems doing so.

Table 4.1: The planner’s attempt at solving a contest problem.

[0, 1]
[0, 1]
[0, 1]
[0, 1]
[0, 1]
[1,2]
[1,2]
[2, 3]
[2, 3]
[2, 3]
[3, 4]
[3, 4]
[ 4, 5]
[ 4, 5]
[ 4, 5]
[5, 6]
[5, 6]
[6,7]
[6,7]
[6,7]
[7,8]

Lift(hoistO, cratel, palletO, depotO0)
Lift(hoistl, crate4, crate3, distributor0)
Lift(hoist2, crateb, crate2, distributorl)
Drive(truckO, depotO, distributor0)
Drive(truckl, distributor0O, depotO)
Load(hoi st0, cratel, truckl, depotO)
Load(hoi st1, crate4, truckO, distributor0)
Lift(hoistl, crate3, crate0O, distributorO0)
Unl oad( hoi st0, cratel, truckl, depotO)
Drive(truckO, distributor0O, distributorl)
Load(hoi st0, cratel, truckl, depotO)
Load(hoi st2, crateb, truckO, distributorl)
Lift(hoist2, crate2, pallet2, distributorl)
Unl oad( hoi st0, cratel, truckl, depotO)
Drive(truckO, distributorl, distributorO)
Load(hoi st0, cratel, truckl, depotO)
Load(hoi st1, crate3, truckO, distributor0)
Lift(hoistl, crate0O, palletl, distributorO)
Unl oad( hoi st0, cratel, truckl, depotO)
Drive(truckO, distributor0O, depotO)
Load(hoi st0, cratel, truckO, depotO)
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Take alook at the shaded rows in Table 4.1. They appear to describe a wasteful way
to load cratel onto a truck and suggest improvements in the control rules. That
crat el was lifted in the first place must mean that it was in the wrong position or
otherwise onl y- nove- cr at es- when- necessary would have prohibited that action.
Once lifted, loading it into a truck seems like a good idea since the hoist cannot do
anything else while lifting cr at e1. Unloading it again without first driving the truck
or correcting the stack of crates seem like adumb idea, and repeatedly unloading it as
soon as it has been loaded is plain stupid.

Therefore we define arule forcing a crate loaded into atruck to stay in the truck until
it can be placed on its goal crate or pallet.
#control :name "only-unl oad-crates-when-necessary"
forall t, crate, truck [
[t] in(crate, truck) ->
([t+1] in(crate, truck)) |
exi sts surface, place [
goal (on(crate, surface)) &
[t] at(surface, place) &
[t] at(truck, place) ] ]

Combined, these rules solve even the largest contest problems quickly and only

minor fine-tuning makes up the difference between them and the rules in the appen-
dix.

4.4.3 SimpleTime

Minimal changes are necessary to comply with the SimpleTime version specification.
Thedri ve operator has a fixed duration of 10 time steps, | oad 3 steps and unl oad 4
steps. Thisis easily realized although some caution has to be observed when deciding
which effects will take place in the next time step and which are delayed to the end of
the operator duration. For example, the dri ve operator sets at (truck, placel) to
false after onetime step and at (truck, pl ace2) to true after 10 steps.

As in ZenoTravel’'s SimpleTime version, we make use of a helper feature that enables
the control rules to check vehicles’ destinations before they have arrived. This time it
is calleddri vi ng-t o. Most rules are only interested in checking if a truck stays put
or drives off. They are not interested in what the destination is and have no use for
the new feature. Onlyr ucks- al ways- nove-t o- goal has to be updated.

4.4.4 Timed

The Timed version introduces four new featureéisst ance(pl acel, place2),
speed(truck), weight(crate) and power (hoist), which are all used when
calculating the operator durations. Driving from one place to another has a duration
of distance(placel, place2) / speed(truck) and loading and unloading
crates have durations @éi ght (crate) / power (hoi st).
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To provide adequate precision, we again make use of the multiply by a thousand
solution and the t i mescal e macro. The resulting definitions are available in appen-
dix B.6.

4.4.5 Discussion

The combination of two classic planning domains did not create any new significant
difficulties. Control rules from each were readily combined to create good control for
the resulting domain.

Again, there was another version of the domain that the TAL planner did not compete

in — Depots Numeric version. Load limits have been defined for all trucks, constrict-
ing the use of trucks as temporary crate storages and thereby posing a more severe
challenge to the planner. The initial testing we have done confirms that the current set
of control rules is incapable of solving even smaller problems of the Numeric
version.

45 DriverLog

DriverLog is yet another logistics domain, this time introducing the concept of truck
drivers. A number of packages are transported between locations by trucks and two
sets of routes connect the locations. There are links, where trucks travel, and paths,
which drivers can walk along when not driving any truck. A truck can only have one
driver at a time but can load as many packages as is needed.

The complete domain and control rule definitions for the domain are available in
appendices B.7, B.8 and B.9.

4.5.1 Description

In the specification, six operators are defined. Trucks drive between two locations
that are connected bylank with the help of a driver using thei ve-truck ope-

rator. Drivers walk between locations connected Ipateh with thewal k operator.
Packages are loaded into and unloaded from truckslwitt-t r uck andunl oad-

t ruck. Finally, drivers board and disembark trucks vidlar d-t r uck anddebar k-

truck.
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Figure 4.5: Contest problem with the goal locations of the objects pointed out. SO, s1, and
s2 are proper locations, connected with roads, while p0O- 1, p0- 2, and p1- 2 are only
intermediary nodes, connected with paths.

45.2 Control

Using our previously gained experience with logistics domains, we can create and
reuse some control rules right from the start. Only load packages into trucks if they
actually need to be moved to another location and, if they have been loaded, do not
unload them at any other place but their goal destination.

#control :name "only-I| oad-when-necessary"
forall t, obj, locationl [
([t] at(obj, locationl)) &
([t+1] !'at(obj, locationl)) ->
goal (!'at(obj, locationl)) ]

#control :name "only-unl oad- when- necessary"
forall t, obj, truck |
[t] in(obj, truck) &
([t+1] !'in(obj, truck)) ->
exi sts location [
[t] at(truck, location) &
goal (at(obj, location)) ] ]
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The next step in both ZenoTravel and Depots was to limit the vehicles’ movements to
places where they could perform some work by picking up or delivering people or
crates. In DriverLog we would like to write two such rules; one controlling the truck
movements and one controlling the driver movements. The previous solutions were
relatively straightforward: define a feature that evaluates the usefulness of a location
given the current state of the world and only allow vehicles to go to locations that
pass this test. But this approach does not directly transfer to the DriverLog domain.
Since trucks and drivers only travel along certain routes, they may have to pass
through one or several intermediary locations before reaching the destination.
Looking at the contest problems verifies that this is indeed the case. Although most
locations are directly connected by links, not all of them are, and paths never connect
two locations but always go through an extra path node.

Our solution is a feature that given a truck or a driver and its current location returns
the distance to the closest location out of all locations that pass a test. The test will be
the usefulness feature and in the STRIPS version the distance is the number of links
or paths that separate the two locations. We can then make trucks and drivers choose
only destinations that decrease the value of this new feature. These must be locations
that either are, or lies on the way to a location that passed the test.

In the case of the trucks, we define the feature as follows:

#define [t] driving-distance-to-reasonabl e-destination(truck,
| ocation):
val ue(t, $mm n(<t o>,
[t] reasonabl e-truck-1location(truck, to),
driving-di stance-bet ween(l ocation, to)))

What $nmi n does is to iterate over all possible instantiationsopfwhich has been
defined as a location variable, and for those destinations that are reasonable for the
truck to go to, calculate the distances and return the smallest one.

The reasonabl e-truck-1 ocation test will be defined later but let us start by
looking atdri vi ng- di st ance- bet ween. The locations and the links between them
form a graph so that finding the shortest distance between two locations amounts to
finding the shortest path in a graph. A recursive search would solve the problem:
#define [t] driving-distance-between(from to):
Site(from=to
0,
value(t, 1 + $mm n(<internedi at e>,
[t] ink(from internediate),
drivi ng-di st ance- bet ween(i nt er nedi at e,

to)))))
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The $i t e function corresponds to an if-then-else statement where the first argument
is the test, the second is the value returned if the test is true, and the third is the value
returned if the test is false. In the base case, f romand t o are both the same location
and the distance must be zero. In the recursive case, we iterate over all locations that
are connected to our current location with a link, calculate the distances from these
intermediary nodes to the destination and return the shortest distance plus one step to
the intermediary node.

This constitutes a depth-first search for the shortest path without any cycle checking.
It will quickly bury itself in recursion by going back and forth between nodes or
round in circles when the graph contains cycles. Introducing a depth limit is a simple
way to prevent this. The longest possible path between locations goes through all
nodes in the graph, so thiswill be our limit.
#define [t] nunber-of-Iocations:
val ue(t, $sun(<location>, true, 1))

#define [t] driving-distance-between(from to):

val ue(t, driving-distance-between-internal (from

to,
nunber - of -1 ocati ons))

#define [t] driving-distance-between-internal (from to, limt):
$ite(limt =0,
1,
Site(from=to
0,

val ue(t, 1 +
$mi n( <i nt er medi at e>,
[t] link(from internediate),
drivi ng-di st ance- bet ween-i nt ernal (i nt er nedi at e,
to,
limt - 1)))))
The interna version of dri vi ng- di st ance- bet ween reduces its extra depth argu-
ment each time it calls itself and stops when the limit reaches zero. Returning 1 when
the limit is exceeded ensures that the distance a failed search branch finaly returns
will be greater than any successful path found.

This algorithm works but is very inefficient. Finding the shortest path between two
locations in a graph of places and roads seems like a good thing to be able to do, not
only for this particular domain, and there are much more effective algorithms than
that realized in the formulae above. Therefore such an agorithm was implemented
directly in the planner and it is used through two new feature types, di st f eat ure
and ni ndi st f eat ur e, which are described in detail in chapter 5.5. Throwing out all
the previous work, we finally arrive at the following definition:

#di stfeature driving-di stance-between(from to)

:domain integer :link [ink

#m ndi stfeature m ndi st-driving
:feature driving-di stance-between :donain integer
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#define [t] driving-distance-to-reasonabl e-destination(truck, to):
val ue(t, m ndist-driving(
| ocati onil,
to,
[t] reasonabl e-truck-1location(truck, to)))

These features do the same work much more efficiently and are used in the precondi-
tions of the dri ve-truck operator. Trucks are only allowed to drive from one loca
tion to another if the value of dri vi ng- di st ance-t o-reasonabl e-desti nati on
IS reduced.

What remains to be done is defining r easonabl e-truck-1 ocati on. Ordered as in
the definition below, the reasons for atruck to visit alocation are:

1. Thetruck has packagesto deliver there.

2. There is a godl that the truck should be there or there is a goal that the
driver should be there and no goal preventing him from using the truck to
drive there.

3. There are packages to pick up and either the truck is already at the location
or no other trucks are already there or on their way there.

#define [t] reasonabl e-truck-1ocation(truck, |ocation):
exi sts obj [
[t] in(obj, truck) &
goal (at(obj, location)) ] |
(([t] all-objects-at-their-destinations) &
(goal (at (truck, location))
('goal ('at(truck, location)) &
exi sts driver |
[t] driving(driver, truck) &
goal (at(driver, location)) ]1))) |
(([t] $avail abl e(objects-to-nove-at(location)) !'==0) &
(([t] at(truck, location)) |
lexists truck2 [
truck2 !'= truck &
[t] 'empty(truck2) &
[t] at(truck2, location) ] &
lexists truck2 [
truck2 !'= truck &
([t] 'enpty(truck2)) &
$comm tted(t+1, at(truck2, location), true) ]))

Two things need further explanation. First, the reason that in the third case, alocation
Is reasonable even if the truck is already there, is that this prevents the truck from
driving off before loading the packages. No other location can be closer to the truck
so there is no way to reduce the value of drivi ng-di st ance-to-reasonabl e-
destination and the drive-truck operator cannot be used. Secondly, obj ect s-
t o- nove- at (1 ocati on) is aresource that keeps track of how many packages are
left in the location that needs to be moved to another location. It is initialized once

and reduced by one each time a package at the location is loaded into a truck. The
initialization is done through the following formula:
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#dom [ 0] forall location |
$init(objects-to-nove-at(location)) ==

$sum( <obj >,

[0] at(obj, location) &

goal (!'at (obj, location)),

1) &
$m ni mun( obj ect s-to-nove-at(location)) == 0 &
$maxi mum( obj ect s-t o- nove-at (| ocation)) == 9999 ]

If afeature had been used to model the value, problems would have occurred in the
context of concurrent planning. When two trucks load two different packages at the
same location simultaneously the feature would be updated twice by an effect such as
the following:
[ +1] objects-to-nove-at(location) :=

val ue(t, objects-to-nove-at(location) - 1)
The fact that the effect happens twice does not matter. The vaue will still be the old
value reduced by one instead of the old value reduced by one and then reduced by
one again. Fortunately, TAL planner supports true resources [17] that are designed to
handle concurrent updates and will give the resource the correct vaue (see the term
resource in Appendix A).

The method we have developed works well with the truck drivers too. All that is
needed is a reasonabl e-dri ver-1| ocati on feature. If there are packages left to
deliver, drivers may walk to trucks that have no driver and use them to deliver the
packages. If all packages have been delivered and all the trucks are at their destina-
tions (if they have any), then drivers may walk to their goa destinations. Finaly, if
all packages have been delivered but some trucks are at the wrong locations, drivers
can go to them and drive them to the right locations.

#define [t] reasonable-driver-location(driver, |ocation):
([t] 'all-objects-at-their-destinations) &
exists truck |
[t] at(truck, location) &
([t] empty(truck)) &
I'$comm tted(t+1, enpty(truck), false) ] |
[t] all-objects-at-their-destinations &
([t] all-nondriven-trucks-at-their-destinations-or-have-
commtted-drivers &
goal (at(driver, location)) |
([t] 'all-nondriven-trucks-at-their-destinations-or-have-
commtted-drivers) &
exists truck |
[t] at(truck, location) &
goal ('at(truck, location)) &
lexists driver2 |
driver2 !'= driver &
[t] at(driver2, location) |
driving(driver2, truck) ] ])
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In the final version of DriverLog STRIPS in appendix B.7, afew steps from the plans
are shaved off by splitting the wal k operator into two parts, wal k- choosi ng- dest i -

nat i on and wal k-t owar ds- dest i nati on. In the first operator the driver chooses
one destination to head for and then uses the second operator to walk all the interme-
diate steps of the path there. The original wal k operator did not care which location
the driver was actually heading for as long as walking reduced the distance to it. With
the split wal k operator it is possible to ensure that two drivers do not choose to walk
to the same destination since they both make it explicit which location they are
heading towards.

4.5.3 SimpleTime

In the SimpleTime version loading and unloading packages takes 2 time steps, driv-
ing a truck 10 and walking 20. Boarding and disembarking remain unchanged. A
helper feature goi ng-to(l ocat abl e, | ocation) was added to represent a driver
or truck going to | ocat i on but which has yet to arrive. Both r easonabl e-t r uck-
| ocati on and reasonabl e-dri ver-| ocation are updated to use the feature. The
result is available in appendix B.8.

454 Timed

The Timed version has one interesting change. Two new features, ti me-to-
wal k(| ocationl, location2) and tine-to-drive(locationl, |ocation2),
specify the duration of walking and driving between any two locations that are
connected by a path or alink. The values are different for each problem, which forces
our shortest path algorithm to handle weighted edges in the graph. A new attribute in
the di st f eat ur e feature definition specifies what to use as the cost function.
#di stfeature driving-di stance-between(from to)

:domain integer :link link :cost tine-to-drive
#di st f eat ure wal ki ng-di st ance- between(from to)

:domain integer :link path :cost tine-to-walk
The feature passed with the cost attribute must take two arguments of the same type
asthedi st f eat ure.

Remember that in the STRIPS and SimpleTime versions, we only checked that the
value of driving-di stance-to-reasonabl e-desti nati on was reduced when
deciding if a truck was allowed to drive to a location. This does not always work
when links have different costs associated with them. A single drive action may
reduce the distance using an incredibly costly road link, when it could have used a
cheap road link and still reduce it. Instead, we have to make sure that there is no
easier way to get closer to areasonable truck location by taking the cost of the current
step into account inthedri ve-t r uck preconditions:
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lexists |ocation3 |
[t] Iink(locationl, |ocation3) &
[t] driving-distance-to-reasonabl e-destination(truck,
| ocation3) +
drivi ng-di stance-between(l ocationl, |ocation3) <
drivi ng-di st ance-to-reasonabl e-desti nati on(truck,
| ocation2) +
drivi ng-di st ance- bet ween(l ocationl, |ocation2) ]

4.5.5 Discussion

DriverLog problems set up a graph of locations and travel routes, which makes the

choice of which routes to use to deliver packages a hard one. The solution was to use

an algorithm to do the work for us. This might seem a bit like cheating but it is not.

The contest rules would even alow custom software being developed for each

problem domain, at least in the hand-tailored planners’ track. Instead, a deadline is

set and the domains handed out in advance to all contestants at the same time. This
gives some measure of how quickly new domains can be mastered by the planner and
thereby how general and flexible it is.

4.6 Rovers

The Rovers domain simulates a simple planetary exploration expedition. A lander
vessel carries a number of rovers to the planet surface and provides a communication
link back to earth. Each rover has a subset of the general capabilities, retrieving soil
samples, retrieving rock samples and capturing images using cameras that support
different imaging modes. The cameras are mounted on the rovers, as are storage
compartments, one for each rover, which can hold one soil sample or one rock
sample. Data from a sample must be sent to the lander by a communication link. All
missions revolve around navigating waypoints on the planets surface to collect
samples and take images of specified objectives that are only visible from certain
waypoints. The terrain may prevent rovers from going directly between two way-
points and different rovers handle different terrain so a list of routes each rover can
use is provided.

The complete domain and control rule definitions for the domain are available in
appendices B.10, B.11 and B.12.
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4.6.1 Description

Nine operators makes Rovers the largest domain we have yet come across in the
contest. Two operators, sanpl e_soi | and sanpl e_r ock, collect a soil sample or
rock sample and pass the st or e to place the sample in as one of the arguments. The
effects include setting a feature, have_soil _anal ysi s(rover, waypoint) or
have_rock_anal ysi s(rover, waypoi nt), to true, which is then tested in the pre-
condition of the conmuni cat e_soi | _dat a and conmuni cat e_r ock_dat a operators
that sends the data to the lander. Smilarly, t ake_i mage and conmuni cat e_i mage-
_dat a takes a picture and sends it to the lander, this time including arguments for
which camera to use, the imaging mode and which image objective to target. Every
time a camera is used, it must first be calibrated on a caibration target objective
using cal i brat e. All rover movements are realized through the navi gat e operator
that usesthecan_traverse(rover, waypoi nt1l, waypoi nt?2) featureto check the
feasibility of the move. Finally a dr op action is provided to ready a rover’s storage
for a new soil or rock sample.

iy ainti wraypaintt
at_soil_sample: false -~ at_soil_sample: false
at_rock_sample: false at_rock_sample: true

@ ohjectived
@ ohjective

wayp0int3 waypoint?
at_szoil_sample: true at_s=oil_sample: true
at_rock_sample: frue @ ohjective? at_rock_sample: false

roverd rover
) roverDstore ) rover! store
full: false > - full: false
€ cameral g cameral
calibrated: --- calibrated: ---
€@ cameraz eneral
calibrated: - channel_free: true

Figure 4.6: Contest problem with arrows showing routes that r over 1 can navigate. The
goals for this problem are comruni cat ed_soi | _dat a( waypoi nt 3), communi cat ed-
_rock_dat a(waypoi nt 1) and comruni cat ed_i mage_dat a( obj ecti veO,

hi gh_res).
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4.6.2 Control

All goals take on the form conmuni cat ed_soi | _dat a( waypoi nt), conmuni cat ed-

_rock_data(waypoint) Or conmrunicated_inmage_dat a(obj ecti ve, node)

meaning that it does not matter which rover does the sampling and imaging aslong as
it is done. We therefore create three new features that can be used to prevent a rover
from executing an experiment that another rover has already completed.

#f eat ure sonmeone_has_rock_anal ysi s(waypoi nt) :domain bool ean

#f eat ure soneone_has_soil _anal ysi s(waypoi nt) :domain bool ean
#f eat ure soneone_has_i mage(obj ective, node) :domai n bool ean

Following the same control scheme as before, we limit the movements of rovers to
locations that seem reasonable by defining a r easonabl e-rover -1 ocati on(rov-

er, waypoi nt) feature and use it in a control rule. To achieve the goals, waypoints
that have one of the following characteristics have to be visited:

1. A waypoint where some soil or arock must be sampled.

2. A waypoint that has a clear view of an objective that is to be imaged.
Objectives are only visible from waypoints that have the vi si bl e-
_from(obj ective, waypoint) feature set in the problem specifica-
tion.

3. A waypoint that has a clear view of an objective that is a calibration tar-
get for acamerathat must be used to capture an image.

4. A waypoint that is visible from the waypoint where the lander is |ocated.
Data can only be sent to the lander from waypoints that have the
vi si bl e(waypoi nt 1, waypoi nt 2) feature set in the problem specifi-
cation.

Collecting all these intuitions into one huge definition yields the following:
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/'l A waypoint is reasonable for a rover if:
#define [t] reasonabl e-rover-1location(rover, waypoint):
/1 W need to go get a rock sanpl e.
(goal (comuni cat ed_rock_data(waypoint)) &
[t] at _rock_sanpl e(waypoi nt) &
[t] !soneone_has_rock_anal ysi s(waypoint) &
[t] equi pped for _rock analysis(rover)) |
/1 W need to go get a soil sanple.
(goal (comuni cat ed_soi | _data(waypoint)) &
[t] at_soil _sanpl e(waypoint) &
[t] !soneone_has_soil _anal ysi s(waypoint) &
[t] equi pped_for_soil _analysis(rover)) |
/1 W need to go take an inage.
exi sts node, objective |
goal (conmuni cat ed_i mage_dat a( obj ecti ve, node)) &
[t] visible fromobjective, waypoint) &
[t] !soneone_has_i nage(objective, node) &
([t] equipped for _imaging(rover)) &
exi sts canera |
[t] on_board(camera, rover) &
[t] supports(canmera, node) &
[t] calibrated(canmera, rover) ]] |
/1 W need to go calibrate a canera to take an i mage.
exi sts node, camera, objective [
goal (communi cat ed_i mage_dat a( obj ecti ve, node)) &
[t] !soneone_has_i nage(objective, node) &
[t] supports(canmera, node) &
[t] on_board(camera, rover) &
[t] 'calibrated(canera, rover) &
[t] calibration_target(canera, objective) &
[t] visible fromobjective, waypoint) ] |
/1 W need to go send rock data to | ander.
exi sts waypoi nt 2, waypoi nt3, |ander |
[t] have_rock_anal ysi s(rover, waypoint2) &
[t] !conmunicated rock data(waypoi nt2) &
[t] at | ander(l ander, waypoint3) &
[t] visible(waypoint3, waypoint) ] |
/1 W need to go send soil data to | ander.
exi sts waypoi nt 2, waypoint3, |ander |
[t] have_soil _anal ysis(rover, waypoint2) &
[t] !conmunicated soil data(waypoint2) &
[t] at | ander (| ander, waypoint3) &
[t] visible(waypoint3, waypoint) ] |
/'l W need to go send i mage data to | ander.
exi sts node, objective, waypoint2, |ander [
[t] have_i mage(rover, objective, node) &
[t] !conmmunicated i mage_dat a( obj ective, node) &
[t] at _l|ander (|l ander, waypoint2) &
[t] visible(waypoint2, waypoint) ]
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The effect of the rule is that if a rover navigates to a waypoint, it is guaranteed to be
able to do something useful upon arrival. The problem of finding the path from one
waypoint to another still remains and although we solved it in the DriverLog domain,
the solution cannot be directly applied in the Rovers domain since each rover has its
own set of routes between waypoints. Modifying distfeature and
m ndi st f eat ur e to take an extra argument identifying a rover and applying these to
the Rovers domain results in the following definition:

#di stfeature roving-di stance-between(rover, waypointl, waypoint2)
:domain integer :link can_traverse

#m ndi st feature m ndi st-roving
:feature roving-distance-between :domai n integer
#define [t] roving-distance-to-reasonabl e-1ocation(rover,
waypoi nt 1) :
val ue(t, m ndist-roving(
rover,
waypoi nt 1,
waypoi nt 2,
[t] reasonabl e-rover-1location(rover, waypoint2)))

These tools are used in the same way asin DriverLog. Only allow arover to navigate
somewhere if it decreases the value of r ovi ng- di st ance-t o-r easonabl e- dest i -
nati on.

As stated, the rover is now guaranteed to be able to do something useful after
navigating, but it is definitely not guaranteed to actually do something useful.
Looking at some sample output from the planner as it tries solving the problem in
Figure 4.6 it is clear which actions need stricter control. The plan starts by sampling
soil at the wrong waypoint, repeatedly calibrating cameras that are not needed and
taking pictures of objectives that are not even mentioned in the goal. What we want is
to make the plan more efficient by only performing actions that are necessary to
fulfill the goals. Only sample soil or rock at waypoints that are specified in the goal,
only take pictures that are specified in the goal and only calibrate cameras that can
take those pictures.
#control :name "only-sanpl e-goal -soil"
forall t, waypoint |
[t] !soneone_has_soil _anal ysi s(waypoint) ->
([t+1] !sonmeone_has_soil _anal ysi s(waypoint)) |
goal (conmuni cat ed_soi | _dat a(waypoi nt)) ]
#control :name "only-sanpl e-goal -rock"
forall t, waypoint |
[t] !'soneone_has_rock_anal ysi s(waypoint) ->
([t+1] !sonmeone_has_rock_anal ysi s(waypoint)) |
goal (conmuni cat ed_rock_dat a(waypoi nt)) ]
#control :name "only-take-goal -i nages”
forall t, objective, node, rover |
[t] !soneone_has_i nage(objective, node) ->
([t+1] !someone_has_i mage(objective, node)) |
goal (conmuni cat ed_i mage_dat a( obj ecti ve, node)) ]
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#control :name "only-calibrate-if-camera-needed"
forall t, rover, canera |

[t] !'calibrated(canera, rover) ->

([t+1] !calibrated(canmera, rover))

exi sts objective, node |
[t] supports(camera, node) &
goal (conmuni cat ed_i mage_dat a( obj ecti ve, node)) &
[t] !soneone_has_i nage(objective, node) | ]

Finally, some of the dr op actions can be skipped. Sampling soil or rock requires free
storage space, which is acquired by dropping the contents of the store, but we can
delay any dropping until we know that a new sample will actually be collected.

#control :name "only-drop-if-neccessary”
forall t, store [
[t] full(store) ->
([t+1] full(store))
exi sts rover |
([t] store_of(store, rover)) &
exi sts waypoi nt [
goal (communi cat ed_soi | _dat a(waypoint)) &
[t] !'soneone_has_soil anal ysi s(waypoint) &
[t] at_soil _sanpl e(waypoint) &
[t] at(rover, waypoint) &
[t] equi pped for_soil _analysis(rover) ] |
exi sts waypoi nt [
goal (comuni cat ed_r ock_dat a(waypoint)) &
[t] !'soneone_has _rock _anal ysi s(waypoint) &
[t] at_rock_sanpl e(waypoint) &
[t] at(rover, waypoint) &
[t] equi pped for_rock analysis(rover) ] ] ]

The original contest domain specification forces communication with the surface
lander to be serialized. Two rovers cannot send data at the same time. A feature,
channel -free(l ander), is supposed to take on the value f al se when arover uses
the channel and t r ue when the data has been sent. However, there is no way to make
this work with TALplanner since sending data only takes one time step. TAL planner
does not allow effects to take place at the same time that the action is performed.
Setting channel -free to f al se must be done one time step later, at the same time
that the channel will be free to use again by some other rover. Instead, a resource is
defined:

#resource sem comuni cat e_dat a( |l ander)
:domai n integer :preference :none

#dom [0] forall |ander [
$init(semcomuni cate _data(lander)) == 1 &
$m ni mum(sem _conmuni cat e_dat a(l ander)) == 0 &
$maxi mum( sem conmuni cat e_dat a(l ander)) == 1 ]

The resource is initialized to one. All send actions then borrow one unit of the
resource during the sending, making other send actions impossible to perform until
that one unit has been returned.
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:resources [+1] :borrow sem conmmuni cate_data(l ander) :anount 1

4.6.3 SimpleTime

The SimpleTime version changes the durations of all operators except dr op. Sam-
pling soil takes 10 time steps, sampling rock 8 and sending the data 10. Calibrating a
camera takes 5 time steps, taking a picture 7 and sending image data 15. Finally, a
rover navigates between two waypointsin 5 time steps.

Only one helper feature, cal i br ati ng(caner a) , was added in order to indicate that
the camera has begun calibrating but not yet finished. The someone_has_r ock-
_anal ysi s, someone_has_soi | _anal ysi s and soneone_has_i mage features can
be used in a similar way by setting them to true before the action is actually com-
pleted. It does not matter to the rules that use them if some rover has only started to
perform the action or aready completed it, e.g. thereis no point in arover navigating
to a waypoint to collect a soil sample if another rover is aready there and in the
process of collecting the soil sample.

As with the lander's communication, a resoursem rover (rover), is used to

make sure that the rover does not do several things simultaneously. Unlike the lander
communication, some of the actions are allowed at the same time. Pictures may be
taken while, at the same time, the rover is sampling soil or rock. These actions
borrow sem rover non-exclusively while thenavi gate operator borrows the
resource exclusively since the rover is never allowed to drive off during another
action.

The final definitions are available in appendix B.11.

4.6.4 Timed

The Timed version introduces the interesting concept of energy. Each rover has a
limited amount of energy and each action it does consumes some of the energy. The
rovers have been equipped with solar panels that recharge the energy but only some
of the waypoints that a rover can go to are directly exposed to the sun, which is a
requirement for the solar panels to work. This means that a rover can get stuck in the
shade, unable to do anything or go anywhere, if it uses its energy unwisely. If that
rover carried a camera critical to the mission or could navigate to a waypoint no other
rover could get to or if all rovers run out of energy, the goals may be impossible to
achieve and the planner will have to backtrack. In additiorn,dhgonabl e-r over -

| ocat i on definition is now too strict since it does not allow a rover to go to a
waypoint just to recharge. It may thus be impossible to find a solution to the problem.
Either we can relax the rules and let the planner backtrack and search for a better
plan, or we can introduce even stricter rules that keep energy levels in mind when
deciding what a rover is allowed to do. The latter approach is taken below.
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A rover’s energy level is represented by a resoureaer gy(rover), which is
initialized by anener gy(rover) feature from the problem instance. The energy is
reduced when an action is performed. Navigating is the most costly action and uses 8
units of energy while the other actions use between 1 and 7 units. A new operator,
rechar ge, fully replenishes the energy to the maximum of 80 energy units if the
waypoint where the rover is located has thlesun(waypoi nt) feature set. The
duration of the echar ge operator depends on how low the energy level was. Again,
the ti mescal e statement proves useful, after multiplying all durations with a
thousand, to bring the numbers back with appropriate accuracy.

The critical point is when a rover does not have enough energy to reach a waypoint in
the sun and recharge. Deciding when this is about to happen requires a new feature
that can tell the distance to the closest waypoint havingntheun property.
#define [t] roving-di stance-to-recharge(rover, waypointl):
val ue(t, m ndist-roving(rover,
waypoi nt 1,
waypoi nt 2,
[t] i n_sun(waypoint2)))
Checking if a rover can afford to perform a certain action is now possible in a

function that takes the energy cost of the action as an argument.

#define [t] have-enough-energy(rover, fixedpoint):
exi sts waypoi nt [
[t] at(rover, waypoint) &
[t] $cast(
i nt eger,
fi xedpoi nt,
val ue(t,
rovi ng-di stance-to-recharge(rover, waypoint)))
* 8.0 <
($avai |l abl e(renergy(rover)) - fixedpoint) ]

Casting the value ofovi ng-di st ance-to-recharge to a fixed-point value with

four decimals is necessary to reduce rounding errors. Multiplying the distance with 8
results in the energy cost to navigate to a recharge waypoint since each navigation
step consumes 8 energy units. If the total cost is less than the energy available after
performing the action, there is no risk of running out of energy. This test is present in
the preconditions of all operators that use energy except navigate.

Thereasonabl e-rover-1 ocati on feature that controls rover movements must be
altered to include recharge locations when energy is too low to engage in any other
useful activity. In addition to all waypoints that were previously allowed, it is also
reasonable for a rover to go to a waypaint, if that waypoint is exposed to the sun

and either the rover does not have enough energy to perform an action and then go
recharge, or there do not exist any other waypoints that are both affordable and
reasonable to visit.
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#define [t] reasonabl e-rover-location(rover, to):
exists from|
[t] at(rover, from &
(([t] in_sun(to) &
(([t] %avail abl e(renergy(rover)) <
$cast (i nt eger,
fi xedpoi nt,
val ue(t, roving-distance-to-
recharge(rover, from))
* 8.0 + 8.0) |
l'exi sts waypoi nt3 |
waypoint3 !'=to &
[t] enough-energy-for-
expedi tion(rover, from waypoint3) &
[t] reasonabl e-rover-1location-
dont - car e-energy(rover, waypoint3) ])) |
([t] enough-energy-for-expedition(rover, from to) &
[t] reasonabl e-rover-1location-
dont - care-energy(rover, to))) ]

The STRIPS and SimpleTime definition of r easonabl e-rover-1 ocati on iS now
contained in r easonabl e-rover - | ocat i on- dont - car e- ener gy but enough- ene-
rgy-for-expedition isanew feature that checks if a rover has enough energy to
go from waypoint f r omto waypoint t o, do any one action and still have energy left
to get to arecharge waypoint, and is defined as follows:
#define [t] enough-energy-for-expedition(rover, from to):
[t] $cast(integer,
fi xedpoi nt,
val ue(t, roving-distance-between(rover, from to) +
rovi ng-di stance-to-recharge(rover, to)))
* 8.0+ 8.0 <
$avai | abl e(renergy(rover))

Again, the multiplication with 8 reflects the cost of navigating and adding 8 to the
result ensures that any action can be performed since the actions require between 1
and 8 energy units.

4.6.5 Discussion

Once again the di stfeature and mi ndi stfeature macros are put to great use,
even though the Rovers domain is not a typical logistics problem, suggesting that
implementing the shortest path algorithm directly in the planner was a good idea.
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The energy concept, introduced in the Timed version, significantly increased the level

of difficulty for the domain and raised the possibility of reaching a dead end when
searching for a solution plan. Our solution, to avoid getting into such situations by

always keeping an eye on the rovers’ available energy levels and the distance to the
nearest recharge locations, is not complete. E.g., a problem with only one rover that
has enough energy to fulfill all goals but not enough to go to a recharge waypoint
would not be possible to solve with the rules above since they would stop the rover
from doing anything but try reaching a recharge location. Even so, the chosen
solution has several advantages over the second approach, to loosen the restrictions
and let the planner use backtracking to find a correct plan. In general, fewer states
have to be examined leading to shorter execution time for the planner and the
performance is more consistent over a whole set of problems since each action the
planner adds to the plan constitutes steady progress towards achieving the problem
goals. In the choice between allowing more search and possibly optimal plans, and
using stricter control for a more efficient but incomplete search, we chose the latter.

4.7 Satellite

In the Satellite domain a number of satellites orbit the Earth, each equipped with

scientific imaging instruments. The satellites turn in space, targeting stars, planets
and interesting phenomena to capture images of them using the instruments different
operation modes. These modes can include regular or infrared imaging and spectro-
graphic or thermograph readings but are different for each problem. The planner’s

task is to schedule a series of observations so that the satellites are used efficiently.

The complete domain and control rule definitions for the domain are available in
appendices B.13, B.14 and B.15.
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Figure 4.7: Contest problem with arrows showing the directions in which the satellites are
initially pointing.



4.7.1 Description

Stars and planets are represented by a di rect i on and the satellites can turn between
any two directions using the t ur n_t o operator. Instruments first need to be activated
using swi t ch_on, then calibrated at a calibration target with the cal i br at e operator
before they can capture images with t ake_i mage. Each satellite has only enough
power to operate one instrument at a time so switching active instruments is aways
initiated by the swi t ch_of f operator to deactivate the first instrument.

4.7.2 Control

Since the tasks consist of collecting a number of images, we begin by restricting the
use of t ake_i mage to images that are mentioned in the goal.

#control :name "only-take-pictures-of-goal s"
forall t, direction, node |
[t] !'bhave_inage(direction, node) &
[t+1] have_i mage(direction, node) ->
goal (have_i mage(direction, node)) ]

The next step is to restrict the directions in which satellites turn to those that may
actualy help in collecting the images. The task is split into a control rule, onl y-
poi nt-i n-goal -directions, and a definition of goa directions. A satellite is
allowed to turn towards a direction to take a picture, to calibrate an instrument or if a
goal specifies that the satellite should point in the direction and there is no more work
left to do.

#define [t] goal direction(satellite, direction):

([t] take_inmage_possible(satellite, direction)) |

exi sts instrunment [
[t] calibration_target(instrunent, direction) &
[t] on_board(instrunent, satellite) &
[t] 'calibrated(instrunent) &
[t] power _on(instrument) ] |

(goal (pointing(satellite, direction)) &

[t] all _inages_coll ected)

Thet ake_i mage_possi bl e feature not only checks if an image in the direction isto
be collected but also that it has not already been taken and that the satellite has the
necessary instrumentation ready. If the active instrument is not calibrated, the satellite
may have to turn towards another direction and calibrate it first.

#define [t] take_i mage_possi bl e(satellite, direction):
exi sts node |
goal (have_i mage(direction, node)) &
I'$comm tted(t+1, have_ i mge(direction, node), true) &
([t] !have_i mage(direction, node)) &
exi sts instrunment [
[t] supports(instrunment, node) &
[t] on_board(instrument, satellite) &
[t] power _on(instrunent) &
[t] calibrated(instrunment) ]]
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Both the switch_on and switch_of f operators are still not regulated by control
rules and the planner quickly takes up the habit of repeatedly flipping the power to
different instruments on and off. Once an instrument has been powered on and cali-
brated, using it as much as possible before switching to another instrument seems
reasonable. A usefulness feature, putting a value on the usefulness of a particular
instrument, helps decide which instrument to power on first.

#define [t] useful ness(instrunent):
val ue(t, $sum(<node>,
[t] supports(instrunment, node) &
node_needed_f or _goal (node),

1))

#define [t] node_needed_for _goal (node):
exi sts direction |
goal (have_i mage(direction, node)) &
[t] !'bhave_image(direction, node) ]

Add one to the usefulness score of an instrument for each imaging mode that it
supports and that is needed in some goal. This score is then used in a control rule that
chooses a satellite’s most useful instrument, if it has any.

#control :nanme "use-the-nost-useful -instrunment”
forall t, instrunment |

[t] !power_on(instrunment) ->

([t+1] !power _on(instrunent)) |

([t] useful ness(instrunent) > 0) &

lexists satellite, instrunment2 |
[t] useful ness(instrunent2) > useful ness(instrunment) &
[t] on_board(instrunent, satellite) &
[t] on_board(instrument2, satellite) ] ]

Switching off an instrument is only allowed if it is not needed anymore.

#control :name "don't-switch-instrunent-off-if-you-don’t-have-to"
forall t, instrument |
[t] power _on(instrument) ->
([t+1] power_on(instrunent)) |
lexi sts node |
[t] supports(instrument, node) &
[t] node_needed for _goal (nmode) ] ]

Having run out of more or less obvious improvements, analyzing the planner output
may still reveal inefficiencies. The satellites often simultaneously decide to turn to
the same direction and take a picture. Adding a rule making sure that no other
satellite has committed to a certain direction shortens the plans somewhat.

#control :name "don’t-all-point-in-sane-direction”
forall t, satellite, direction |
[t] !pointing(satellite, direction) ->
([t+1] !pointing(satellite, direction)) |
lexists satellite2 |
$commi tted(t+1,
poi nting(satellite2, direction),
true) ] ]
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4.7.3 SimpleTime

The SimpleTime version change the duration of some operators. Turning takes 5 time
units, switching an instrument on takes 2 units, calibrating it 5 and taking a picture
takes 7 time units. A couple of helper features, t ur ni ng_t owar ds, cal i brati ng,
power _on_general i zed and have_i nage_gener al i zed keep track of actions that
have begun but not completed. The affected control rules are updated with the new
features.

Appendix B.14 contains the final definition of the SimpleTime version.

474 Timed

The Timed version includes two new features, cal i bration_tinme and sl ew ti ne.
The time it takes to calibrate an instrument is specified for each problem, as is the
sl ew ti me feature that represents the time it takes for a satellite to turn between any
two directions. Neither of these prompts any significant changes to the SimpleTime
definition, which is available in appendix B.15.

4.7.5 Discussion

The Satellites domain does not provide areal challenge aslong as the planner is only
trying to find a correct plan. Finding a short plan is harder. Thisis especialy true in
the Timed version. Our control rules does not care in which order the images are
collected. The directions and the sl ew_t i me between them produce a weighted graph
that can be searched for an optimal, or sufficiently short, hamilton path. The path then
needs to be split and distributed among the satellites to make use of concurrency.
Adding al this as control rules seems a bit like overkill.

After the contest, we discovered that the triangle inequality does not hold when
turning a satellite between two directions. It is often possible to shorten the ew time
by adding t urn_t o actions to severa intermediary directions before turning to the
goal direction instead of turning towards it directly. The automatic problem generator
that created the problem files randomizes the slew times between every pair of
directions and does not check for geometrical consistency that would be present in a
real world situation. This can be taken advantage of by using the ni ndi st feature to
find the sequence of turning actions with the shortest combined dew time. Initial
testing shows that this approach yields significantly shorter plans when plan length is
measured by the time point at which the goals have been fulfilled.

Another improvement would be to change the last clause in the definition of goal -
_direction to alow satellites to turn towards a direction specified in the goals, not
when all images have been collected, but when no images are left to collect since
some other satellite may have already committed to taking the last picture.
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4.8 UMTransog-2

The UMTransog-2 domain is another logistics domain but its size and complexity is
incomparable to the previously encountered logistics domains in the contest. It is an
extension of the UM Translog domain by Andrews et a [10], which was developed
specifically to create a challenge for modern planning systems.

Trucks, trains or aircraft transport packages between locations but they must follow
strict movement patterns. A few locations are transportation hubs, some are transpor-
tation centers while the rest are ordinary locations. A package is only allowed to
move up and down through this hierarchy once and only move between two locations
in the same layer once. The longest possible route for a package is thus from an
ordinary location to a transportation center to a hub to another hub to a transportation
center and finally to another ordinary location.

The domain groups locations into cities, which are then grouped in regions. Trucks
travel between any two locations in the same city or by an existing road route
between two cities. Trains and planes always use predefined routes between transpor-
tation centers and hubs.

A great number of restrictions further complicate movements. Packages must be
compatible with the vehicle they are loaded into, the vehicle must have enough free
space, not be loaded too heavily and not be wider, longer or higher than the route and
destination location accepts. Finaly, the locations, vehicles and routes must all be
available for use.

The complete domain and control rule definitions for the domain are available in
appendix B.16.
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4.8.1 Description

Many operators have roughly the same purpose and can be grouped together in order
to make it easier to get the genera idea of the domain. First there are the loading
preparation operators, which are different for different types of vehicles. E.g., before
loading a tanker truck, the connect - hose and open- val ve operators are used and
after the loading is complete, the cl ose- val ve and di sconnect - hose operators are
required before the truck can go anywhere. Next are the loading operators. They also
differ between vehicles and, continuing the tanker truck example, arefil | -t ank and
enpty-tank. The third group is the seven movement operators. Three operators
move trucks within cities, one moves trucks along road routes between cities and the
remaining three move trains and planes along air and train routes. A set of features
keep track of how the packages have been moved between locations to make sure that
the transportation pattern described above is used. Finaly, there are a number of
operators that does not fit into any group. Thecol | ect - f ees operator is used on all
packages that need to be delivered at a location with the del i ver operator. After all
packages are delivered, a cl ean- donai n operator checks that all vehicle doors and
valves are closed and that equipment, like hoses, has been disconnected.

4.8.2 Control

The control rules can aso be grouped together and correspond to truck movement,
train and plane movement, and package loading and unloading.

As in previous domains, we specify what a reasonable location is and limit vehicle
movements to destinations that are reasonable. A truck might want to pick up or

deliver a package at the location or, if the truck cannot reach the package’s goal
location, unload the package at a transportation center to be picked up by another
vehicle.

#define [t] reasonabl e-truck-1ocation(vehicle,
| ocati on-from
| ocation-to):
exi sts package |
[t] at-packagel -generalized(package, |ocation-to) &
[t] !'over(package) ] &
I exi sts package |
[t] at-packagev(package, vehicle) | |
exi sts package |
[t] at-packagev(package, vehicle) &
goal (del i vered(package, location-to)) ] |
exi sts package, |ocation-goal |
[t] at-packagev(package, vehicle) &
[t] in-wong-city(package, |location-from &
[t] in-sane-city(location-from |ocation-to) &
([t] tcenter(location-to)) &
goal (del i vered(package, |ocation-goal)) &
[t] !'can-go-by-truck(vehicle,
| ocation-from
| ocation-goal) ]
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The at - packagel - gener al i zed is a defined feature that helps when referring to a
package’s location. Unliket - packagel , which is set to false for a package that is
lifted by a crane even though the crane is at the same location as the package, the
generalized version stays true until the package is loaded into a vehicle.

The definition does not allow trucks to pick up several packages. This makes finding
optimal solutions impossible in the general case but simplifies the search for accept-
able solutions a great deal. There is an imminent risk that any other packages the
truck is carrying will end up at the wrong location if it is allowed to travel about,
picking up more packages along the way. Since all packages must move according to
the specified pattern of transportation centers and hubs, moving a package that has
once arrived at a location that is not a transportation center is not allowed and the
package will be stuck there. Restricting trucks to picking up one package at a time
avoids this problem.

Thecan- go- by-truck feature is very useful for testing that no fuel, size, weight or
road route restrictions are violated.

#define [t] can-go-by-truck(vehicle, location-from |ocation-to):
[t] $avail abl e(rgas-left(vehicle)) >=
di stance(l ocation-from |ocation-to) * gpmvehicle) &
[t] height-cap-I(location-to) >= height-v(vehicle) &
[t] length-cap-I(location-to) >= length-v(vehicle) &
([t] width-cap-I(location-to) >= width-v(vehicle)) &
(exists city [
[t] in-city(location-from city) &
[t] in-city(location-to, city) ] |
exists city-from city-to |
[t] in-city(location-from city-fronm &
([t] in-city(location-to, city-to)) &
exi sts route |
[t] connect-city(route,
road-rout e,
city-from
city-to) &
[t] availabler(route) &
[t] height-v(vehicle) <= height-cap-r(route) &
[t] weight-v(vehicle) +
$avai | abl e(rwei ght-1o0ad-v(vehicle)) <=
wei ght-cap-r(route) ] ] )

Similar rules are defined for trains and planes and are available in appendix B.16.

The group of loading and unloading restrictions is large but filled with repetitions
containing small deviations for different vehicle types. Once again returning to the
tanker truck example, we define a rule controlling the opening of tanker valves. For
simplicity, the fluids that are transported by tankers are also represented as packages
in the domain. Only open a tanker’s valve if there is a compatible package at the
same location as the tanker that needs to be moved or if the tanker contains a package
that needs to be unloaded there.
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#control :nanme "only-open-val ve-if-needed"
forall t, vehicle |
[t] !val ve-open(vehicle) &
([t+1] val ve-open(vehicle)) ->
exi sts location |
([t] at-vehicle(vehicle, location)) &
(exi sts package [
[t] at-packagel -generalized(package, |ocation) &
[t] package-vehi cl e-conpati bl e(package, vehicle) &
need-t o- nove- package- fron( package, |ocation) ] |
exi sts package |
[t] at-packagev(package, vehicle) &
[t] need-to-unl oad- package- at ( package,
location) 1) ] ]

An identical rule, with the exception of a negation of the two inner exist statements,
control the closing of valves. Two similar rules control the connection of hoses and
many more rules control loading and unloading preparations for all other vehicle
types.

Additionaly, there is arule, onl y-1 oad- packages-i nt o-r easonabl e- vehi cl es,
and two definitions of reasonable vehicles, one for trucks and one for trains and
planes, which together makes sure that packages are only loaded into vehicles that are
actually able to take them to a useful location.

4.8.3 Discussion

UMTranslog-2 is by far the largest domain in the IPCO2 contest. 38 operators make
the size of the specification intimidating even though there are no SimpleTime or
Timed versions. Creating control rules and meeting the contest deadline left no time
to get the domain working with concurrent planning. Instead, we had to make do with
sequential planning. The situation faced in the contest was not entirely realistic in that
no description of the domain was given except the formalization of the operators.
Writing control rulesis not possible until one has some idea of the intended workings
of the domain and therefore time was lost analyzing the functions of peculiar features
and operators. Under more typical circumstances, one would start with a description
of the problem domain and work out the formalization from it.

Of the 15 contest problems provided, all created automatically by a problem genera-
tor, only ten were actually solvable. The remaining five were unsolvable for different,
and often obscure, reasons. This could have been intentional, and the ability of a
planner to terminate in reasonable time given an unsolvable problem is certainly a
valuable quality as many rea world problems might be unsolvable, although the
Impression given was that even the contest organizers were unaware of the fact until
after the results from the planners had been collected.
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Given more time, the set of control rules provided in appendix B.16 could be im-
proved. They solve the (solvable) contest problems but will fail on other valid
problems. If planning speed is less of an issue, more search can be alowed and lower
cost plans generated. More and better problems would be needed as guidelines when
developing better control rules since the contest problems did not make full use of the
intended transportation scheme with transportation centers and hubs.
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Chapter 5

Extensions

During the formalization and control rule optimization of the contest domains a
number of changes were made to the TALplanner implementation, some of which
have been mentioned briefly in Chapter 4. Most of the changes had been planned but
not yet implemented due to lack of time, while other changes were prompted by
particular difficulties encountered when modeling the new domains in the 1PC02
competition. The changes together with two additions, a trandation utility and a
graphical visualization utility, are described in this chapter.

5.1 Operator Duration

There is no real need to explicitly state an operator’s duration since it is implicitly
defined in its effects. The effects take place at different time points relative to the
actions invocation time and the effect with the longest delay will determine the
duration. However, often several effects take place at the end of the duration, which
can be a complex expression that will, in the operator definition, have to be dupli-
cated for each of those effects. To save space and make the definition more readable
and easier to change, an optiodat at i on attribute was added to operator defini-
tions. It accepts a value expression and a variable, which is bound to the value of the
expression. This variable can then be used in place of the expression for all effects
that take place at the end of the operator duration. A possible usage is displayed
below:
#operator Drive(truck, cityl, city2)
cat t
. precond [t] at(truck, cityl)
:duration value(t, distance(cityl, city2) / speed(truck)) :as t2
. cont ext
ceffects [+1] at(truck, cityl) := false,
[+t2] at(truck, city2) :=true
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5.2 Prevail Conditions

In the first versions of TALplanner, when all actions spanned exactly one time step,
and later, when durative actions were implemented, the need to support conjunctive
prevail conditions could be met by introducing additional operator effects. If, for
example, a truck must stay put while some cargo is being loaded, a prevailing
precondition would be that the truck is at a specific ci ty. To enforce this, an effect
setting at (truck, city) to true during the action execution is added. If the truck
has moved, that move action would have set at (truck, city) to false, creating a
conflict that the planner detects.

Adding these complementary effects is an efficient but somewhat limited and
unaesthetic way to get around the original problem. Therefore, a prevai |l attribute
was added to the operator syntax. It receives, as arguments, a logical formula and a
time period during which the formula must hold. These extra conditions are checked
in each new state within the given temporal interval.

5.3 Committed Macro

In Chapter 4, the problem of several vehicles trying to solve the same subtask
simultaneously was repeatedly encountered and was impossible to solve using regular
features in control rules. An action’s effects must take place after the invocation time
point and it is thus impossible to control what other actions are performed concur-
rently by evaluating the state at that time. In other words, the current world state will
not differ before and after an action is added. Only future states are affected.

The committed macro was added as an efficient way of checking a future state
without waiting for the planner to reach it. Each time an action is performed, the
effects are added to a list of committed facts — facts whose future values are already
known. For example if a vehicle, at tihedecides to move from to B, the fact that

the vehicle, at timé+ 1, must be & is committed. Another vehicle can then, at time

t, decide not to visiB by using theconmi tt ed macro to check if there exists any
other vehicles that have already committed to being there &t

Theconmi tt ed macro will not be part of future versions of TALplanner but will be
replaced by some other construction with a similar role but clearer semantics.
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5.4 Decimal Timewith Sparse States

As mentioned in Chapter 4, some of the contest domains required operator durations
to be calculated with a precision of three decimal digits, which poses a problem for
TALplanner since it uses integer time throughout its implementation. To avoid the
problem, we multiplied durations by a thousand and later divided them to get the
correct figure. This practice introduces another problem. In ZenoTravel for example,
the operators have durations of more than a hundred time units. If multiplied, they
stretch to a hundred thousand. Originally, TALplanner created an array to contain all
the states and allow fast indexing to retrieve any state using a time point. When a
single action spans a hundred thousand time points, and atypica plan several million,
copious amounts of memory would be consumed. At each of the intermittent time
points, some fact about the world state may change as a result of an effect from an
operator. However, most of the time points are not interesting and do not correspond
to achangein the world state.

This problem was solved by implementing an aternative state representation where,
instead of indexing the array with time points, states have an extra field containing
the time, and only interesting states, those where some effect takes place, are stored.
This means that two consecutive states in the array can represent two completely
different time points. All states are still sorted chronologically so if the planner needs
to consult a state at a certain time point, a binary search can be performed to find it.
The new storage scheme trades some of the access efficiency for reasonable memory
use.

5.5 Shortest Path

Several of the contest domains benefited from finding the shortest path between two

nodes in a graph as a way to plan vehicles’ routes between cities or locations. The
well-known Dijkstra algorithm [11] was therefore implemented as a special feature,
the di st feature. Since roads and paths generally will not change their course
during planning, the shortest distances between all nodes in the graph can be pre-
calculated before the planning starts, and saved in a sorted list for each node. The list
for a node will contain that node’s shortest distances to all other nodes in the graph.
The di stfeature is efficiently used in combination with th@ ndi st f eat ure,

which returns the distance from a node to the closest node for which some test,
passed as an argument in the form of a logical formula, returns true. To implement
this the planner need only go through the origin node’s sorted distance list, returning
the first entry that satisfies the given test.
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5.6 Heuristics

Planning is a hard task and even supposing sufficient control rules are supplied,
guiding the planner to a solution, the solution actually found may be of inadequate
guality (measured in plan length or by some other estimate). Improving the solution
is left to the work of the search algorithm, backtracking and exploring vast number of
possible plans, trying to find one of higher quality. The planner is still directed by the
control rules, but not all domain knowledge is suitably expressed as absolute rules
that must never be broken. Some rules are only rules of thumb, correct in nine cases
out of ten but failing in special cases. Such rules are called heuristics, and a search
algorithm using them, a heuristic search.

A depth-first heuristic search was implemented in TALplanner but was not put to use
during the contest. Each domain specifies a set of expressions, estimating the cost to
reach the goal. The cost is typically, but not necessarily, the minimum number of
time points needed. All the expressions are combined and added to the accumul ated
cost in the current state, creating an estimate of the total cost of a solution plan that
includes the current state. Instead of exploring the states that are possible to reach
from the current state in order, the planner chooses the state with the lowest cost first,
continuing with the next lowest and so on. When the combined estimate is designed
to be admissible, never overestimating the cost to reach the goal, the search consti-
tutes an A* search, which can be proven to be both complete and optimal.

The approach aso provides so caled anytime planning. After the first solution is
found, the planner can continue to search for better solutions. The best plan found so
far isremembered and can be returned at any time if the search is aborted.

5.7 Domain Visualization

When trying to find inefficiencies in the planner's performance for a domain, much
time is spent analyzing the output and debug information from the planning process.
The information includes lists of which predicates are true in each state, and these
lists can be both long and difficult to read. To allow the user to tune the output to fit
the domain he is working on, a new TALplanner command line parameter was
defined, which accepts the name of a visualizer that the user has written. If the
parameter is present, instead of printing all state information, the planner makes a call
to a method in the named visualizer, passing the current world state in an internal
data format as a parameter. The method is then free to print whatever information it
sees fits in a more readable format tailored to the current planning domain. Examples
of tailoring for a logistics domain might be ordering all information concerning a city
into one list or grouping packages together with the trucks they are in.
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5.8 Graphical Visualization

Taking domain visualization a step further, a common set of tools that are used to
create a customized animated representation of the world state and planning progress
for each domain have been developed. This graphica visualization utility is named
TPVis. Conceptually the display consists of a set of nodes, which can be container
windows or atomic objects, optionally with edges between them. The windows are
suitable for displaying cities or vehicles and can contain other windows or objects
within the window content area. Things like people and equipment are better repre-
sented as atomic objects, which take up less space in the display area. Edges between
nodes can indicate any form of relationship between objects, the most obvious
Interpretation being that two locations are connected by some transportation route.

The graphical visualization animates the actual movements of objects between
locations, creating a better instinctive feel for the domain, and the two-dimensional
graph display gives an overview that is difficult to provide using only text output. In
addition to animating a graph, TPVis simultaneoudly lists the partial plan leading up
to the current state and the problem goals that the planner tries to fulfill.

TPVis aso provides alimited form of interactive planning since it, at any point in the
planning process, allows the user to force the planner to backtrack and explore a
different search branch.

The development of TPVis was not initiated until after the planning contest and no
graphical visualization was available during the work on the contest domains.
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Figure 5.1: Screenshot showing the graphical visualization utility.

5.9 PDDL to TALplanner Trandation

Although it is obvious that an automatic translator from PDDL to TAL planner syntax
would have been useful, we expected that writing this translator would take more
time than trandating the competition domains manually and therefore decided to
delay the implementation of this utility until after the competition. After spending
many hours trandating the PDDL definition of the UMTranslog-2 domain, this
decision turned out to be questionable. The risk of making an error somewhere in the
trandation also becomes imminent when dealing with large domains. Such an error
might be very difficult to detect if the error relaxes a constraint that is hardly ever
used, assuming a finite set of example problems for the domain, and amost impossi-
ble to detect without the use of a plan validation utility that uses the corresponding
PDDL definition as input. The planner will indeed find a plan, but the plan may
violate the constraint that was missed in translation and this fault would have to be
detected by inspection.

The automatic trandation program was developed after the competition to lessen the
amount of work involved in the trandation process and reduce the risk of introducing
errorsin the definition. The program currently does not support the full PDDL syntax
but helps a great deal nonethel ess.
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Chapter 6

Experimental Results

All the competition results have been compiled in one package and are available at
the competition web page [3]. This chapter provides comparisons between the results
for the three planners that competed in the hand-tailored planning track.

6.1 The Competitors

TALplanner should not need any more introductions, but the other two planners are
briefly described below.

6.1.1 TLPlan

TLPlan, developed by Bacchus and Kabanza [9], was one source of inspiration when
TALplanner was developed. It is a forward chaining planner that uses first order
temporal logic to specify control rules restricting the search. Unlike TALplanner,
TLPlan relies on control formula progression. Instead of evaluating the control
formula when a new state is created, the formula is progressed using a progression
algorithm, making the formula more specific as more actions are added to the plan. If
the formula, as a result of the progression, is reduced to false, that branch of the
search treeis pruned.

6.1.2 SHOP2

SHOP2, developed by Nau et a [13], is a hierarchical task network planner. The
planner first formulates the planning problem as a set of tasks that need to be accom-
plished. The tasks are then repeatedly decomposed into subtasks until primitive tasks,
that can be performed using one of the domain operators, are reached. Domain
specific knowledge can be used to control the search by specifying complex operator
preconditions or by adapting the decomposition of tasks to the domain.

6.2 Machine Specification

All planners used the same machine to generate the plans; a PC supplied by RM plc
[12] as a loan system. It is equipped with an AMD Athlon XP-1800+ CPU, 1Gb
RAM and the operating system is Mandrake Linux.
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6.3 Graphsof Competition Results

Following is a collection of graphs showing the planners’ performance. To save
space, only the most complex version, the Timed version, of each domain is included.
Two graphs are presented for each domain. The first shows a measure of plan cost for
the problems and the second shows the time the planners spent generating the
solution for the problem. Plan cost correspond to the time point at which the last
action in the plan has finished executing and the problem goals have been solved. A
lesser value means that the plan accomplishes the goals quicker, for example by
making better use of concurrency. The time is measured in milliseconds and a lesser
value means that the planner found its solution faster.
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Figure 6.1: Cost graph for ZenoTravel Timed.
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Figure 6.2: Time graph for ZenoTravel Timed.
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The graphs in Figure 6.1 and Figure 6.2 show that although TALplanner produced
low cost plans, TLPlan matched that cost while solving the problems dightly faster.
The difference in architecture between SHOPZ2 and the other two plannersis hinted at
by the distinct divergence of its time graph relative to the other planners.

Plan cost
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Figure 6.3: Cost graph for Depots Timed.
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Figure 6.4: Time graph for Depots Timed.

Figure 6.3 and Figure 6.4 show more encouraging results collected from the Depots
domain. TALplanner produced plans of significantly lower cost and was sometimes
faster than TLPlan.
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Figure 6.5: Cost graph for DriverLog Timed.
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Figure 6.6: Time graph for DriverLog Timed.

In Figure 6.5 and Figure 6.6 TALplanner is in close competition with SHOP2 but
TLPan leaves them both far behind.
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Figure 6.7: Cost graph for Rovers Timed.
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Figure 6.8: Time graph for Rovers Timed.

Figure 6.7 shows a remarkable symmetry between the three planners in the Rovers
domain, although TALplanner consistently has sightly lower cost plans. Figure 6.8
clearly indicates TAL planner as the fastest planner in this domain.
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Figure 6.9: Cost graph for Satellite Timed.
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Figure 6.10: Time graph for Satellite Timed.

The graph in Figure 6.9 displays disastrous cost results for the plans by TAL planner
in the Satellite domain. One can only guess that taking advantage of the fact that the
triangle inequality was not fulfilled when turning the satellites and implementing the
suggestions in section 4.7.5 would improve the figures enough to compete with
TLPlan and SHOP2. Figure 6.10 does not provide much consolation by showing that
the plans were produced quite quickly.
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Figure 6.11: Cost graph for UMTranslog-2.
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Figure 6.12: Time graph for UMTranslog-2.

TLPlan chose not to participate in the UM Trand og-2 domain, which might have been

a wise decision. If the time we put into this domain had been spent developing

control rules for the Numeric or Complex versions of the other domains, our problem
coverage would most certainly have been better. The gaps in the numbering of the
problem files correspond to the unsolvable problems mentioned in Chapter 4 and the

gap in TALplanner’'s graph is the result of an incorrect plan generated for problem
13. Figure 6.11 shows the close race in plan cost between TALplanner and SHOP2
while Figure 6.12 separates the planners through a huge speed difference. TALplan-
ner is almost a hundred times faster in this domain.
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6.4 ThePrizes

The contest organizers judged the planners’ performances based on the coverage, i.e
the number of domains and domain versions each planner entered in the contest, the
cost of the solutions and the speed with which they were generated, and the success
ratio, i.e. the ratio between attempted problems and solved problems. Coverage was
especially important since one of the goals of the competition is to push the capabili-
ties of planning systems forward.

Two prizes were awarded in the hand-tailored competition track based on the above
criteria. TLPlan was recognized as demonstratirsjnguished performance of the
first order and SHOP2 as demonstratitigtinguished performance.
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Chapter 7

Conclusions

This thesis has provided an introduction to TALplanner and the International Plan-
ning Competition, described in detaill the modeling of the competition domains for
use by TALplanner, listed the modifications and additions that have been made to the
planner, and presented the competition results. This chapter will conclude with a
discussion of what has been learned in the process and point to future directions of
research in the area of domain dependent planning.

7.1 Discussion

A most interesting observation can be made regarding TLPlan’s and TALplanner’'s
use of domain dependent knowledge. Both teams refined the control rules to such a
degree that the planners almost never had to backtrack. Instead of searching for the
solution, strict control directed the planner straight to it. This does not mean that only
one solution can be found. If the user forces the planner to backtrack when the first
plan is complete, on the grounds of inadequate quality or for some other reason, the
planner will backtrack and generate alternative solutions. It does mean that the
planner is guaranteed to find a solution without using any search, acting more like an
algorithm than a planner. This raises the question of which real world problems are
really suitably solved by planning. Domain independent planners are more often than
not too inefficient to handle problems of reasonable size and domain dependent
planners behave like an algorithm, so why not use an algorithm instead? The answer
may be problems where near optimal solutions are needed but no known algorithm
exists which can provide them. In this case, a planner might use a combination of
control rules and heuristics to search for such solutions.

Another observation is the problem of overly specific control rules. When the inten-
tion is to prevent backtracking, the result is often control rules so restrictive that an
optimal solution cannot be achieved. It is too easy to think algorithmically, i.e. how
should the planner solve this problem, and force the planner to follow that algorithm
instead of thinking declaratively, i.e. what sequences of actions are always disadvan-
tageous in this problem domain. Finding the optimal solution is certainly not always
desired and most often intractable anyway, but in those cases where finding it is an
objective, extreme care has to be taken not to write any control rule banning it by
mistake.
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7.2 FutureWork.

Heuristic search was implemented but not tested in more than a few of the domains.
This situation will have to be corrected by examining the benefits offered by the use
of heuristics in more detail. Also, other search strategies than A* search can be
implemented and tested, hill climbing being a prime candidate.

The most important development would be a way for the planner to discover control
rules by itself. Currently a lot of work needs to be put into the control rules before
good quality plans emerge. Any automation of this process would surely save time
and be of great value, but research on this by others has already begun and it is not
easily done. One approach could be to analyze the domain definition, trying to extract
rules from it. Another approach would be to let the planner solve a set of sample
problems, extracting rules from patterns found in the search process and the solution
plans.
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Appendix A

Terminology

Domain
A set of related operators, predicates, and data types make up a planning domain.

Problem

A problem is a set of objects, a list of predicates that specify an initial state by
enumerating the facts that are true before any planning has begun, and a set of goals
that must be fulfilled. The planner receives a domain definition and a problem as
input and generates a solution plan (if possible) as output.

Operator

An operator isaformal definition of an action that is possible to perform in a specific
planning domain. It consists of a set of preconditions, which must hold for the
operator to be applicable, and a set of (possibly conditiona) effects, which are
realized if the operator is applied. Operators contain variables that represent objects
in adomain problem. Often these variables are typed and hence limited to a subset of
the objects in the problem, e.g. all vehiclesin alogistics problem.

Action
An action is an instantiated operator. All variables in the operator have been instanti-
ated to specific objects in a planning problem.

Plan

In the case of sequentia planning where al operators take one time step, aplanis a
sequence of actions. If time is explicit in the operators, a plan must include timed
actions. When concurrent planning is used, a plan is a set of timed actions, not
necessarily in a sequence.

State

A state is a set of assignments of values to state variables and describes the state of
the world at a specific time point. Many planners support only boolean state vari-
ables, which are either true or fase, but state variables in TALplanner are based on
TAL and can represent boolean values, objects in the domain, or numeric values. The
only limitation is that the value domain must be finite. E.g. if a state variable is of an
integer type, alower and an upper bound must be supplied.
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Feature
A TALplanner state variable representing an object, a boolean value, or a numeric
valueis called afeature.

Resour ce

Unlike an ordinary feature, aresource, r es, has multiple values associated with it: the
amount that has been borrowed in a state ($bor r oned( r es) ), the amount borrowed
nonexclusively ($borrow nonex(res)), the amount produced ($produced(res)),
and the amount that has been consumed ($consuned(res)). These vaues are the
sums of the four corresponding types of resource effects that took place in the state.
Given these values and the amount that was initially available ($init(res)), the
planner can automatically calculate how much will be available in the state after all
action effects have taken place ($avai | abl e(res) ). This value must be between the
minimum value alowed ($mininum(res)) and the maximum vaue allowed
($maxi nun(res) ). When considering only sequentia planning, a resource can be
modeled with a regular fluent by assigning new values to it in the effects of an
operator although this method does not work with concurrent planning where proper
resource handling is required.
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Appendix B

Domain Definitions

B.1 ZenoTravda STRIPS

#domain thing :elenments {}

#domain aircraft :parent thing :elenents {}
#domai n person :parent thing :elenents {}
#domain city :elenments {}

#domai n flevel :elements {}

#domai n integer :integer :1b 0 :ub 10000

#feature at(thing, city) :dommin boolean :injective

#feature in(person, aircraft) :domain boolean :injective
#feature fuel-level (aircraft, flevel) :domain boolean :injective
#feature next(flevel, flevel) :domain bool ean :double-injective

/1 An aircraft needs-to-visit a city if:

/1 1. It’s a goal

/1 2: It carries a passenger going there.

#feature needs-to-visit(aircraft, city) :donain boolean :noinit

#def feature i n-wong-city(thing) :domain bool ean

#deffeature all-persons-at-their-destinations-or-in-planes :donain bool ean

/1 The follow ng assertions enable the planner to optimze the application of
/'l some control rules.
/1l No object can be both a person and an aircraft.
#assert forall person, aircraft [ person != aircraft ]
/1 No person can be both in an aircraft and in a city.
#assert forall t, person, aircraft, city [
[t] in(person, aircraft) -> lat(person, city) ]

#oper ator board(person, aircraft, city)

cat ot
: precond [t] at(person, city) &
[t] at(aircraft, city)
. cont ext
.effects [+1] at(person, city) := fal se
[+1] in(person, aircraft) := true
[+1] at(aircraft, city) :=true // Prevai
: cont ext

/I Loop through all cities and look for the person’s
/I destination. Add that to the places that the aircraft
/I needs to visit.
forall  city2
:precond  goal(at(person, city2))
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ceffects [+1] needs-to-visit(aircraft, city2) := true

#oper at or debark(person, aircraft, city)

rat ot
: precond [t] in(person, aircraft) &
[t] at(aircraft, city)
. cont ext
.effects [+1] in(person, aircraft) := false,
[+1] at(person, city) := true,
[+1] at(aircraft, city) :=true // Prevail
. cont ext

/I The aircraft has to visit this city again if it's a goal and
/I it first has to travel somewhere else to drop a passenger
/I off.
:precond !(goal(at(aircraft, city)) &
(exists person2 [
$committed(t+1, in(person2, aircraft), true) &
goal('at(person2, city)) ] |
exists person2 [
[t] in(person2, aircraft) &
goal('at(person2, city)) 1))
.effects  [+1] needs-to-visit(aircraft, city) := false

#operator fly(aircraft, cityl, city2, flevell, flevel2)
att
:precond [t] at(aircraft, cityl) &
[t] fuel-level(aircraft, flevell) &
([t] next(flevel2, flevell)) &
/l Should be generated automatically:
I$Scommitted(t+1, at(aircraft, cityl), false)
:context
.effects  [+1] at(aircraft, cityl) := false,
[+1] at(aircraft, city2) := true,
[+1] fuel-level(aircraft, flevell) := false,
[+1] fuel-level(aircraft, flevel2) := true

/l#operator zoom(aircraft, cityl, city2, flevell, flevel2, flevel3)

/I :at t

/l :precond [t] at(aircraft, cityl) &

1 [t] fuel-level(aircraft, flevell) &

1 [t] next(flevel2, flevell) &

1 [t] next(flevel3, flevel2)

/I :context

/I effects [+1] at(aircraft, cityl) := false,

I [+1] at(aircraft, city2) := true,

1 [+1] fuel-level(aircraft, flevell) := false,
1 [+1] fuel-level(aircraft, flevel3) := true

#operator refuel(aircraft, city, flevel, flevell)
att
:precond [t] fuel-level(aircraft, flevel) &
[t] next(flevel, flevell) &
([t] at(aircraft, city)) &
[t] $index(flevel) == 0 // Only refuel when empty.
:context
-effects  [+1] fuel-level(aircraft, flevel) := false,
[+1] fuel-level(aircraft, flevell) := true,
[+1] at(aircraft, city) :=true // Prevail

/I Initialize the needs-to-visit defined feature, which is later updated in the
/I operator definitions.
#dom forall aircraft, city [
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[0] needs-to-visit(aircraft, city) <->
(goal (at (aircraft, city))
exi sts person |
[0] in(person, aircraft) &
goal (at (person, city)) 1) 1

A plane is allowed to fly to a city if:

1:

2:
3:

It’s a goal, the plane is enpty and no other persons need to be
transported.

The plane is carrying a passenger destined for the city.

A person in the city wants to | eave, has not conmmitted to |eaving the city
al ready,

no other aircraft has comritted to go to the city and either the plane
"needs-to-visit" the city or there doesn't exists any aircraft that
"needs-to-visit" the city and no aircraft that will need to drop soneone
off inthe city.

#control :nane "pl anes-al ways-fly-to-goal™

forall t, aircraft, city |
[t] at(aircraft, city) ->
([t+1] at(aircraft, city)) |
exists city2 |
city2 !'=rcity &
([t+1] at(aircraft, city2)) &
((goal (at(aircraft, city2)) &
I exists person |
[t] in(person, aircraft) 1] &
[t] all-persons-at-their-destinations-or-in-planes)
exi sts person |
[t] in(person, aircraft) &
goal (at (person, city2)) ] |
exi sts person |
((([t] at(person, city2)) &
I'$comm tted(t+1, at(person, city2), false)) &
[t] in-wong-city(person)) &
lexists aircraft2 |
$conmmi tted(t+1,
at(aircraft2, city2),
true) 1 &
(([t] needs-to-visit(aircraft, city2))
lexists aircraft2 [
aircraft2 !'= aircraft &
[t] needs-to-visit(aircraft2, city2) | &
lexists aircraft2, person2 [
aircraft2 !'= aircraft &
$conmi tted(t +1,
i n(person2, aircraft?2),
true) &
goal (at(person2, city2)) 1) 1) 1 1

/1 A plane is not allowed to fly to it’s goal until all it’'s passengers that are
/1 destined for other cities have been delivered.
#control :nane "planes-al ways-deliver-passengers-first”

forall t, aircraft, city |
[t] at(aircraft, city) ->
([t+1] at(aircraft, city)) |
exists city2 |
city2 '=r—city &
([t+1] at(aircraft, city2)) &
(goal (at(aircraft, city2)) ->
forall person, city3 |
[t] in(person, aircraft) &
goal (at(person, city3)) ->city3 =city2]) 1]
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/'l People only get on planes if they need to go sonewhere.
/1 They only get on a plane if:
/1 1. The plane already needs to visit the person’s destination

/1 2. There isn't any other plane that already needs to visit the person’s

11 current |ocation and goal
#control :nane "only-board-when-neccessary"”
forall t, person, aircraft |
([t] 'in(person, aircraft) &
[t+1] in(person, aircraft)) ->
exists cityl, city2 [
[t] at(person, cityl) &
goal (at(person, city2)) &
cityl !'=city2 &
([t] needs-to-visit(aircraft, city2)
lexists aircraft2 |
lat (aircraft, city2) &
needs-to-visit(aircraft2, cityl) &

needs-to-visit(aircraft2, city2) 1) ] 1]

/'l People only debark when they' ve arrived at their destination
#control :nane "only-debark-when-in-goal-city"
forall t, person, aircraft |
[t] in(person, aircraft) ->
([t+1] in(person, aircraft)) |
exists city [
[t] at(aircraft, city) &
goal (at(person, city)) ] ]

#define [t] all-persons-at-their-destinations-or-in-planes:
forall person, city |
goal (at(person, city)) ->
[t] at(person, city) |
exists aircraft [ in(person, aircraft) ] ]

#define [t] in-wong-city(thing):
exists cityl, city2 [
[t] at(thing, cityl) &
goal (at(thing, city2)) &
cityl I=city2 ]

B.2 ZenoTravel SimpleTime

#domai n integer :integer :1b O :ub 10000

#domai n thing :elenments {}

#domain aircraft :parent thing :elenents {}
#domai n person :parent thing :elenents {}
#domain city :elements {}

#domai n flevel :elements {}

#feature at(thing, city) :dommin boolean :injective

#feature in(person, aircraft) :domain boolean :injective
#feature fuel-level (aircraft, flevel) :domain boolean :injective
#feature next(flevel, flevel) :domain bool ean :double-injective

/[l Try to limt the nunber of refuels for each plane using a counter
#f eat ure nunber-of-refuel s(aircraft) :donmain integer :noinit
#feature needs-to-visit(aircraft, city) :donain boolean :noinit

#deffeature in-wong-city(thing) :domain bool ean

#def feature all -persons-at-their-destinations :domain bool ean
#def f eat ure reasonabl e-pl ane-1 ocation(aircraft, city) :domain bool ean
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/1 True when the aircraft has taken off but not yet reached it’'s destination
#feature flying-to(aircraft, city) :domain boolean :injective

/1 True while aircraft has started refueling but not finished.

#feature refueling(aircraft) :domain bool ean

/1 True while person has started boarding but not finished.

#f eature boardi ng(person, aircraft) :domain bool ean

/1l Resource used as a semaphore to indicate that the aircraft is busy.
#resource semaircraft(aircraft) :dommin integer :preference :none

#assert forall aircraft, person [ aircraft != person ]

// Initialize the semaphore.

#dom [0] forall aircraft [ $init(semaircraft(aircraft)) == 1 &
$mnimum(semaircraft(aircraft)) == 0 &
$maxi mum(sem aircraft(aircraft)) == 1 ]

#operator board(person, aircraft, city)

cat t
. precond [t] at(person, city) &
[t] at(aircraft, city)
:duration 20
/1 Borrow this aircrafts semaphore to prevent it fromflying off
/1 while the passenger boards. :borrow nonex is non exclusive so
/1 that only actions which needs the aircraft exlusively will be
/! forbidden, i.e. zoom
:resources [ +1, +20] : borrow nonex semaircraft(aircraft) :amunt 1
: cont ext
.effects [+1] at(person, city) := fal se
[+20] in(person, aircraft) := true
[ +1, +19] boardi ng(person, aircraft) := true,
[ +20] boardi ng(person, aircraft) := fal se
: cont ext
:forall city2
. precond goal (at (person, city2))
.effects [+1] needs-to-visit(aircraft, city2) := true

#oper at or debark(person, aircraft, city)

cat ot
. precond [t] in(person, aircraft) &
[t] at(aircraft, city)
:duration 30
/] Don't let the plane fly off.
. resources [ +1, +30] :borrow nonex semaircraft(aircraft) :anpount 1
. cont ext
.effects [+1] in(person, aircraft) := false,
[+30] at(person, city) := true
: cont ext
. precond I'(goal (at(aircraft, city)) &
(exi sts person2 |
$committed(t+1, in(person2, aircraft), true) &
goal (!at (person2, city)) 1 |
exi sts person2 [
[t] in(person2, aircraft) &
goal (!at (person2, city)) 1))
.effects [+1] needs-to-visit(aircraft, city) := fal se

/| #operator fly(aircraft, cityl, city2, flevell, flevel?2)

/] rat t

/1 :precond [t] at(aircraft, cityl) &

/1 [t] fuel-level (aircraft, flevell) &
11 [t] next(flevel2, flevell) &
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/1 cityl I=city2 &

/1 /1 Shoul d be generated autonatically:

/1 I'$comm tted(t+1, at(aircraft, cityl), false)
/'l :context

/1 ceffects [+1] at(aircraft, cityl) := fal se

/1 [+1] flying-to(aircraft, city2) := true,

/1 [+180] at(aircraft, city2) := true,

/1 [ +180] fuel-level (aircraft, flevell) := fal se,
/1 [+180] fuel-level (aircraft, flevel2) := true,
11 [+180] flying-to(aircraft, city2) := false

#operator zoom(aircraft, cityl, city2, flevell, flevel2, flevel3)
cat ot

: precond [t] at(aircraft, cityl) &
[t] fuel-level (aircraft, flevell) &
[t] next(flevel2, flevell) &
([t] next(flevel 3, flevel2)) &
/1 Shoul d be generated autonatically:
I'$comm tted(t+1, at(aircraft, cityl), false)

:duration 100
/1 Borrowthis aircraft exclusively. None of the other operators
/1 that need the resource can be used at the sanme tine, i.e.
/1 board and debarKk.

:resources [+1, +100] :borrow semaircraft(aircraft) :amunt 1

: cont ext

.effects [+1] at(aircraft, cityl) := fal se

[+1] flying-to(aircraft, city2) := true,
[+100] at(aircraft, city2) := true,
[ +100] fuel-level (aircraft, flevell) := false,
[ +100] fuel-level (aircraft, flevel 3) := true,

[+100] flying-to(aircraft, city2) := false,

/! Reset the refuel counter so that the aircraft can refuel when
/1 it has arrived.

[+1] nunber-of-refuels(aircraft) :=0

#operator refuel (aircraft, city, flevel, flevell)

cat ot
. precond [t] fuel-level (aircraft, flevel) &
[t] next(flevel, flevell) &
[t] at(aircraft, city) &
([t] !'refueling(aircraft)) &
/1 An aircraft isn’t allowed to refuel nore than once unl ess
/1l there exists a reasonable city for it to travel to.
(([t] nunber-of-refuels(aircraft) < 1) |
exists city2 [
[t] city2 = city &
[t] reasonabl e-plane-location(aircraft, city2) ])
:duration 73
/] Don't let the plane fly off.
:resources [+1, +73] :borrow nonex semaircraft(aircraft) :amunt 1
. cont ext
.effects [+73] fuel-level (aircraft, flevel) := fal se,
[+73] fuel-level (aircraft, flevell) := true,

/1 Update the refuel counter
[+1] nunber-of-refuel s(aircraft) :=
val ue(t, nunber-of-refuels(aircraft) + 1),
[+1] refueling(aircraft) := true,
[+73] refueling(aircraft) := fal se

/1l Initialize the refuel counter to zero for all planes.
#dom forall aircraft [ [0] nunber-of-refuels(aircraft) == 0 ]
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#dom forall aircraft, city [
[0] needs-to-visit(aircraft, city) <->
(goal (at (aircraft, city))
exi sts person [
[0] in(person, aircraft) &
goal (at(person, city)) 1) 1

/!l Only fly to cities which are reasonabl e-pl ane-l1ocation’s for this aircraft.
#control :name "planes-al ways-fly-to-goal"
forall t, aircraft, city [
[t] at(aircraft, city) ->
([t+1] at(aircraft, city))
exists city2 [
city2 I'=city &
([t+1] flying-to(aircraft, city2)) &
[t] reasonabl e-pl ane-location(aircraft, city2) ]]

/!l A destination is reasonable for a plane if:

/1 1. 1t’s a goal and no other persons need to be transported.

/1 2. The plane is carrying a passenger destined for the city.

/1 3. Apersoninthe city wants to | eave, has not committed to leaving the city
/1 al ready, no other aircraft has comritted to go to the city and either the
/1 pl ane "needs-to-visit" the city or there doesn’t exists any aircraft that

11 "needs-to-visit" the city and no aircraft that will need to drop soneone

11 off inthe city.
#define [t] reasonabl e-pl ane-location(aircraft, city):
((goal (at(aircraft, city)) &
[t] all-persons-at-their-destinations) |
exi sts person [
[t] in(person, aircraft) &
goal (at (person, city)) ] |
exi sts person |
((([t] at(person, city)) &
I'$comm tted(t+1, at(person, city), false)) &
[t] in-wong-city(person)) &
lexists aircraft2 [
$committed(t+1, flying-to(aircraft2, city), true) ] &
(([t] needs-to-visit(aircraft, city)) |
lexists aircraft2 |
aircraft2 !'= aircraft &
[t] needs-to-visit(aircraft2, city) ] &
('exists aircraft2, person2 |
aircraft2 !'= aircraft &
$commi tted(t+1, boarding(person2, aircraft2), true) &
goal (at (person2, city)) ] |
lexists aircraft2, person2 |
aircraft2 !'= aircraft &
$committed(t+1, in(person2, aircraft2), true) &

goal (at (person2, city)) 1)) 1)

#control :nane "planes-al ways-deliver-passengers-first"”
forall t, aircraft, city |
[t] at(aircraft, city) ->
([t+1] at(aircraft, city)) |
exists city2 [
city2 '=rcity &
([t+1] flying-to(aircraft, city2)) &
(goal (at(aircraft, city2)) ->
forall person, city3 |
[t] in(person, aircraft) &
goal (at(person, city3)) ->city3 =city2]) 1]

#control :nane "only-board-when-neccessary"”
forall t, person, cityl |
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[t] at(person, cityl) ->
([t+1] at(person, cityl))
exists aircraft, city2 [
[t] at(person, cityl) &
goal (at (person, city2)) &
cityl !'=city2 &
([t] needs-to-visit(aircraft, city2)
lexists aircraft2 [
lat(aircraft, city2) &
needs-to-visit(aircraft2, cityl) &
needs-to-visit(aircraft2, city2) 1) ] ]

#control :nane "only-debark-when-in-goal -city"
forall t, person, aircraft [
[t] in(person, aircraft) ->
([t+1] in(person, aircraft)) |
exists city [
[t] at(aircraft, city) &
goal (at (person, city)) ] ]

#define [t] all-persons-at-their-destinations:
forall person, city [
goal (at(person, city)) -> [t] at(person, city) ]

#define [t] in-wong-city(thing):
exists cityl, city2 |
[t] at(thing, cityl) &
goal (at(thing, city2)) &
cityl I=city2 ]

B.3 ZenoTravd Timed

/1 Tell the planner to divide all durations by one thousand before they are
/1 displayed.
#tinmescal e 0. 001

#domain integer :integer :lb O :ub 100000000

#domai n thing :elenments {}

#domai n aircraft :parent thing :elenents {}
#domai n person :parent thing :elenents {}
#domain city :elenments {}

#feature at(thing, city) :dommin boolean :injective

#feature in(person, aircraft) :domain boolean :injective
#feature fuel (aircraft) :donmain integer

#feature distance(city, city) :dommin integer :function
#feature sl ow speed(aircraft) :donmain integer :function
#feature fast-speed(aircraft) :donmain integer :function
#feature slow burn(aircraft) :domain integer :function
#feature fast-burn(aircraft) :domain integer :function
#feature capacity(aircraft) :dommin integer :function

#feature refuel-rate(aircraft) :domain integer :function

/1 total-fuel -used was neant to be used in optimzing directives
/1l to the planners. Instead of conpleting the task as fast as
/1 possible, they could try to mininize fuel use. This feature
/1l was never used in the Tine version, so it’s commented out.
//#feature total -fuel -used :domain integer

#f eature boarding-tinme :domain integer :function

#f eature debarking-tinme :domain integer :function

#f eature needs-to-visit(aircraft, city) :domain boolean :noinit
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#def feature i n-wong-city(thing) :domain bool ean
#deffeature all-persons-at-their-destinations :donmain bool ean

#def f eat ure reasonabl e-pl ane-location(aircraft, city) :domai n bool ean :uncached

#def feature fly-better-than-zoom(aircraft, city, city) :domain bool ean
#feature flying-to(aircraft, city) :domain boolean :injective

#feature refueling(aircraft) :domai n bool ean

#f eat ure boardi ng(person, aircraft) :domain bool ean

#resource semaircraft(aircraft) :dommin integer :preference :none

#assert forall aircraft, person [ aircraft != person ]

#dom [0] forall aircraft [ $init(semaircraft(aircraft)) == 1 &
$mnimum(semaircraft(aircraft)) == 0 &
$maxi mum(sem aircraft(aircraft)) == 1 ]

#operator board(person, aircraft, city)

cat t
. precond [t] at(person, city) &
[t] at(aircraft, city)
/1 boarding-time specifies the tinme it takes to board a pl ane.
/1 W& multiply it by 1000 since we set the tinescale to 0.001
/1 The resulting value is converted to the special tinme type
/1 and the result of the sonewhat cunbersone expression is
/1 bound to the variable t2 for ease of reference.
:duration $maketi me(val ue(t, 1000 * boarding-tine)) :as t2
:resources [+1, +t 2] :borrow nonex semaircraft(aircraft) :amunt 1
. cont ext
.effects [+1] at(person, city) := false
[+t2] in(person, aircraft) := true
[+1, +t2 - 1] boarding(person, aircraft) := true,
[+t 2] boarding(person, aircraft) := false
. cont ext
:forall city2
. precond goal (at (person, city2))
ceffects [+1] needs-to-visit(aircraft, city2) := true

#oper at or debark(person, aircraft, city)

cat ot
. precond [t] in(person, aircraft) &
[t] at(aircraft, city)
:duration $maketi me(val ue(t, 1000 * debarking-tine)) :as t2
. resources [+1, +t2] :borrow nonex semaircraft(aircraft) :anount 1
. cont ext
.effects [+1] in(person, aircraft) := false,
[+t2] at(person, city) := true
: cont ext
. precond I'(goal (at(aircraft, city)) &
(exi sts person2 |
$committed(t+1, in(person2, aircraft), true) &
goal (!at (person2, city)) 1 |
exi sts person2 [
[t] in(person2, aircraft) &
goal (!at (person2, city)) 1))
.effects [+1] needs-to-visit(aircraft, city) := fal se

#operator fly(aircraft, cityl, city2)
cat t
. precond [t] at(aircraft, cityl) &
[t] fuel (aircraft) >= distance(cityl, city2) *
sl owburn(aircraft) &
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[t] fly-better-than-zoonm(aircraft, cityl, city2) &
cityl !'=city2

:duration $maketi me(val ue(t, 1000 * distance(cityl, city2) /
sl ow speed(aircraft))) :as t2
:resources [+1, +t 2] :borrow semaircraft(aircraft) :anpunt 1
. cont ext
.effects [+1] at(aircraft, cityl) := fal se
[+1] flying-to(aircraft, city2) := true,
[+t2] at(aircraft, city2) := true
[+t2] flying-to(aircraft, city2) := false
/1 [+t2] total-fuel-used := value(t, total-fuel-used +
/1 di stance(cityl, city2) *
/1 sl ow burn(aircraft)),
[+t2] fuel(aircraft) := value(t, fuel (aircraft) -

di stance(cityl, city2) *
sl ow burn(aircraft))

#operator zoom(aircraft, cityl, city2)

cat ot
: precond [t] at(aircraft, cityl) &
[t] fuel (aircraft) >= distance(cityl, city2) *
fast-burn(aircraft) &
[t] 'fly-better-than-zoom(aircraft, cityl, city2) &
cityl I=city2
:duration $maketi me(val ue(t, 1000 * distance(cityl, city2) /
fast-speed(aircraft))) :as t2
. resources [+1, +t2] :borrow semaircraft(aircraft) :anount 1
. cont ext
ceffects [+1] at(aircraft, cityl) := fal se
[+1] flying-to(aircraft, city2) := true,
[+t2] at(aircraft, city2) := true
[+t2] flying-to(aircraft, city2) := fal se
/1 [+t2] total-fuel-used := value(t, total-fuel-used -
11 di stance(cityl, city2) *
11 fast-burn(aircraft)),
[+t2] fuel (aircraft) := value(t, fuel (aircraft) -

di stance(cityl, city2) *
fast-burn(aircraft))

#operator refuel (aircraft, city)
cat ot
. precond [t] capacity(aircraft) > fuel (aircraft) &
[t] at(aircraft, city) &
([t] 'refueling(aircraft)) &
exists city2 [
[t] reasonabl e-pl ane-location(aircraft, city2) &
city !'=rcity2 ]
:duration $maket i me(val ue(t, 1000 *
(capacity(aircraft) - fuel (aircraft)) /
refuel -rate(aircraft))) :as t2

. resources [+1, +t2] :borrow nonex semaircraft(aircraft) :anpunt 1
. cont ext
.effects [+1,+t2 - 1] refueling(aircraft) := true,
[+t2] refueling(aircraft) := false
[+t2] fuel (aircraft) := value(t, capacity(aircraft))

#dom forall aircraft, city [
[0] needs-to-visit(aircraft, city) <->
(goal (at (aircraft, city))
exi sts person |
[0] in(person, aircraft) &
goal (at (person, city)) 1) 1
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#control :nane "planes-al ways-fly-to-goal™
forall t, aircraft, city |

[t] at(aircraft, city) ->

([t+1] at(aircraft, city)) |

exists city2 |
city2 !'=rcity &
([t+1] flying-to(aircraft, city2)) &
[t] reasonabl e-pl ane-location(aircraft, city2) ]]

#define [t] reasonabl e-pl ane-location(aircraft, city):
(goal (at (aircraft, city)) &
[t] all-persons-at-their-destinations) |
exi sts person [
[t] in(person, aircraft) &
goal (at (person, city)) ] |
exi sts person |
((([t] at(person, city)) &
I'$commi tted(t+1, at(person, city), false)) &
[t] in-wong-city(person)) &
lexists aircraft2 [
$committed(t+1, flying-to(aircraft2, city), true) ] &
(([t] needs-to-visit(aircraft, city)) |
lexists aircraft2 |
aircraft2 !'= aircraft &
[t] needs-to-visit(aircraft2, city) ] &
('exists aircraft2, person2 |
aircraft2 !'= aircraft &
$committed(t+1, boarding(person2, aircraft2), true) &
goal (at (person2, city)) ] |
lexists aircraft2, person2 |
aircraft2 !'= aircraft &
$committed(t+1, in(person2, aircraft2), true) &
goal (at (person2, city)) 1)) 1

#control :nane "planes-al ways-deliver-passengers-first”
forall t, aircraft, city |
[t] at(aircraft, city) ->
([t+1] at(aircraft, city)) |
exists city2 [
city2 !'=rcity &
([t+1] flying-to(aircraft, city2)) &
(goal (at(aircraft, city2)) ->
forall person, city3 |
[t] in(person, aircraft) &
goal (at(person, city3)) ->city3 =city2]) 1]

#control :nane "only-board-when-neccessary"”
forall t, person, cityl |
[t] at(person, cityl) ->
([t+1] at(person, cityl))
exists aircraft, city2 [
[t] at(person, cityl) &
goal (at (person, city2)) &
cityl I=city2 &
([t] needs-to-visit(aircraft, city2)
[t] 'exists aircraft2 |
lat(aircraft, city2) &
needs-to-visit(aircraft2, cityl) &
needs-to-visit(aircraft2, city2) 1) ] 1]

#control :nane "only-debark-when-in-goal -city"
forall t, person, aircraft |
[t] in(person, aircraft) ->
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([t+1] in(person, aircraft)) |
exists city |
[t] at(aircraft, city) &
goal (at(person, city)) ] ]

#define [t] all-persons-at-their-destinations:
forall person, city [
goal (at(person, city)) -> [t] at(person, city) ]

#define [t] in-wong-city(thing):
exists cityl, city2 [
[t] at(thing, cityl) &
goal (at(thing, city2)) &
cityl I=city2 ]

/1 An aircraft needs to fly fromcityl to city2
/1l 1t should use fly instead of zoomif:
#define [t] fly-better-than-zoom(aircraft, cityl, city2):
/1 1f it's faster wt speed and refueling
([t] (10000 / slowspeed(aircraft) +
10000 * slowburn(aircraft) / refuel-rate(aircraft)) <
(10000 / fast-speed(aircraft) +
10000 * fast-burn(aircraft) / refuel-rate(aircraft))) |
/1 If zoomis inpossible across this distance
([t] distance(cityl, city2) * fast-burn(aircraft) >
capacity(aircraft)) |
/1 1f zoomhas to refuel but fly doesn't
([t] fuel(aircraft) >= distance(cityl, city2) * slowburn(aircraft) &
fuel (aircraft) < distance(cityl, city2) * fast-burn(aircraft))

B.4 Depots STRIPS

#domai n integer :integer :Ib O :ub 1000

#domai n obj ect :elenments {}

#domai n pl ace : parent object :elenents {}
#domai n | ocat abl e : parent object :elenents {}
#domai n depot :parent place :elenments {}
#domai n di stributor :parent place :elenments {}
#domai n truck :parent |ocatable :elements {}
#domai n hoi st :parent |ocatable :elenments {}
#domai n surface :parent |ocatable :elenents {}
#domai n pal l et :parent surface :elenents {}
#domai n crate :parent surface :elements {}

#feature at(l ocatable, place) :domain boolean :injective
/1l generalized-at is true for a crate and a place if the crate is at the place
/1l or being lifted by a hoist at the place.
#feature generalized-at(crate, place) :donain boolean :injective :noinit
. secondary
#feature on(crate, surface) :domain bool ean :doubl e-injective
#feature in(crate, truck) :domain boolean :injective
#feature lifting(hoist, crate) :domain boolean :double-injective
#f eature avail abl e(hoi st) :domain bool ean :secondary
#f eature cl ear(surface) :domain bool ean :secondary

#f eat ure need-to-nove(surface) :domain boolean :noinit :secondary

#def f eat ure need-to-nove-init(surface) :domain bool ean

#f eature need-to-be-at(crate, place) :domain boolean :injective :noinit
:secondary

#def feature need-to-be-at-init(crate, place) :domain bool ean

#f eat ure goodt ower (surface) :domai n bool ean :noinit

#def f eat ure goodt ower-init(surface) :domain bool ean
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#resource semtruck(truck)
#resource semcrate(crate)

. domai n i nt eger
. domai n i nt eger

. preference :none
. preference :none

#assert forall t, crate, surface, hoist |
[t] on(crate, surface) -> [t] !lifting(hoist, crate) ]
#assert forall t, crate, surface, hoist |
[t] lifting(hoist, crate) -> [t] 'on(crate, surface) ]
#assert forall t, crate, hoist, truck [
[t] lifting(hoist, crate) -> [t] !in(crate, truck) ]
#dom [0] forall truck [ $init(semtruck(truck)) ==1 &
$mi ni mun(sem truck(truck)) == 0 &
$maxi mun(sem truck(truck)) == 1]
#dom [0] forall crate [ $init(semcrate(crate)) == 1 &
$m ni mum(sem crate(crate)) == 0 &
$maxi munm(sem crate(crate)) == 1 ]

#operator Lift(hoist,

crate, surface, place)

/1 :iterate changes the order
/!l domains. Instead of trying
/'l begin by trying al

citerate (crate, hoist,

i n which TALpl anner
al

pl ace)

hoi sts on the first crate,
crates with the first hoist and so on
surf ace,

cat t
. precond

I resources
: cont ext
.effects

#oper at or
cat ot
: precond

. resources
: cont ext
effects

Drop( hoi st

[t] at(hoist, place) &

[t] avail abl e(hoist) &

[t] at(crate, place) &

[t] on(crate, surface) &

([t] clear(crate))

[+1] :borrow semcrate(crate)
[+1]
[+1]
[ +1]
[ +1]
[ +1]
[+1]
[+1]

at(crate, place) := fal se
[ifting(hoist, crate)
clear(crate) := fal se,
avai l abl e(hoist) := fal se,
clear(surface) := true
on(crate, surface)
goodt ower (crate) := fal se
crate, surface, place)
[t] at(hoist, place) &
[t] at(surface, place) &
[t] clear(surface) &
([t] lifting(hoist, crate)) &
/1 Only create goodtowers.
forall surface2 |
goal (on(crate
I'([t] need-to-nmove(surface)) &
lexists crate2 |

crate2 != crate & goal (on(crate2,

[t] goodtower(surface)
[+1] :borrow semcrate(crate)

[+1]
[+1]
[+1]
[ +1]
[+1]
[+1]

avai l abl e(hoi st) := true,
lifting(hoist, crate)
at(crate, place) := true,
cl ear(surface) := fal se,
clear(crate) := true,
on(crate, surface)

surface?2))

1= true,

1= true,

= fal se,

-> surface2 =

iterates over the argunent
the planner wll

canmpunt 1

surface ] &

surface)) ] &

anmount 1

;= fal se,

/1 The preconditions nmake sure that the tower

/1 created is a goodtower.
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[+1] need-to-nove(crate) := false,
[ +1] goodtower(crate) := true

#operator Load(hoist, crate, truck, place)

rat ot

. precond [t] at(hoist, place) &
[t] at(truck, place) &
([t] lifting(hoist, crate))

:resources [+1] :borrow semtruck(truck) :amount 1,
[+1] :borrow semcrate(crate) :anmount 1

. cont ext

.effects [+1] lifting(hoist, crate) := fal se,

[+1] in(crate, truck) := true
[+1] avail abl e(hoist) := true,
[+1] generalized-at(crate, place) := fal se

#operator Unl oad(hoi st, crate, truck, place)

.iterate (hoist, truck, crate, place)

cat ot

: precond [t] at(hoist, place) &
[t] at(truck, place) &
[t] avail abl e(hoist) &
[t] in(crate, truck)

:resources [+1] :borrow semtruck(truck) :amount 1,
[+1] :borrow semcrate(crate) :anmount 1

. cont ext
.effects [+1] in(crate, truck) := false
[ +1] avail abl e(hoist) := fal se,
[+1] lifting(hoist, crate) := true,
[+1] generalized-at(crate, place) := true
#operator Drive(truck, placel, place2)
cat ot
: precond [t] at(truck, placel)
:resources [+1] :borrow semtruck(truck) :amount 1
. cont ext
.effects [+1] at(truck, placel) := fal se
[+1] at(truck, place2) := true

#dom [0] forall crate, place [ need-to-be-at(crate, place) <->
need-to-be-at-init(crate, place) ]
#dom [0] forall surface [ need-to-nmove(surface) <->
need-t o- nove-init(surface) ]
#dom [0] forall crate, place [ generalized-at(crate, place) <->
at (crate, place) ]
#dom [ 0] forall surface [ goodtower(surface) <->
goodt ower -i nit(surface) |

/!l A crate is a goodtower if the crate and the crates below it don’'t need to be
/!l moved to reach the goal
#define [t] goodtower-init(surfacel):
([t] !'need-to-nove(surfacel)) &
forall crate, surface2 |
(surfacel = crate & [t] on(crate, surface2)) ->
[t] goodtower-init(surface2) ]

/1 Acrate will be noved if:
/1 1. 1t’s not on it's goal surface or
/1l 2. 1t’s on top of another crate that needs to be noved or
/1 3. It occupies a space needed by another crate.
#define [t] need-to-nove-init(surfacel):
exists crate |
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crate = surfacel &
(exists surface2 |
goal (on(crate, surface2)) &
[t] 'on(crate, surface2) ] |
exists crate2 |
([t] on(crate, crate2) &
need-to-nove-init(crate2)) ] |
exi sts surface2 |
([t] on(crate, surface2)) &
(exists crate3 |
goal (on(crate3, surface2)) &
crate3 !=crate ]) ] )]

/1 Trucks stay at a location until there are no nore crates there that can be
/'l 1 oaded and noved.
#control :nane "trucks-stay-until-everything-is-done”
forall t, truck, place |
([t] at(truck, place)) ->
([t+1] at(truck, place)) |
lexists crate |
[t] at(crate, place) &
clear(crate) &
need-to-nmove(crate) ] ]

/1 Trucks can only nove to a location with a msplaced crate or to a |ocation
/1 where a crate in the truck must be unl oaded.
#control :nane "trucks-al ways- nove-to-goal "
forall t, truck, place |
([t] at(truck, place)) ->
([t+1] at(truck, place)) |
exi sts place2 |
pl ace2 != place &
([t+1] at(truck, place2)) &
/1l There is a crate at the destination that either should
/1 be at another |ocation or should be stacked
/1l differently and there are no other trucks there to do
/'l the job.
(([t] exists crate, place3 |
generalized-at(crate, place2) &
((need-to-be-at(crate, place3d) &
pl ace2 ! = pl ace3) |
(need-to-be-at(crate, place2) &
I goodtower (crate))) &
lexists truck2 [
at(truck2, place2) 1 1) |
/1l There is a crate in the truck that needs to be at the
/1 destination and the stack that it should be on is
/1 already finished and there are no other crates that
/1 should be at the destination that the truck could
/1 pick up first.
(exists crate [
([t] in(crate, truck) &
need-to-be-at(crate, place2)) &
forall crate2 [
goal (on(crate, crate2)) ->
[t] goodtower(crate2) ] ] &
I'([t] exists crate, place3 |
general i zed-at(crate, place3d) &
need-to- be-at(crate, place2) &
place3 !=place2 ]1))) 1 1]

/!l A crate needs to be at a location if the goal puts the crate on a pallet
/1 there or on another crate which needs to be there.
#define [t] need-to-be-at-init(crate, place):
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exists pallet |
goal (on(crate, pallet)) &
[t] at(pallet, place) ] |
exists crate2 |
goal (on(crate, crate2)) &
[t] need-to-be-at-init(crate2, place) ]

// Don’t lift crates that are part of goodtowers.
#control :name "only-nmove-crates-when-necessary"
forall t, crate, placel |
[t] at(crate, placel) ->
([t+1] at(crate, placel)) |
[t] need-to-nove(crate) ]

/'l Only unload a crate if it can be placed in it’'s goal position
#control :nane "only-unl oad-crat es- when-necessary”
forall t, crate, truck |
[t] in(crate, truck) ->
([t+1] in(crate, truck)) |
exi sts surface, place |
goal (on(crate, surface)) &
[t] at(surface, place) &
[t] at(truck, place) ] ]

B.5 Depots SimpleTime

#domain integer :integer :Ib O :ub 1000

#domai n obj ect :elenments {}

#domai n pl ace : parent object :elenents {}
#domai n | ocat abl e : parent object :elenents {}
#domai n depot :parent place :elenents {}
#domai n di stributor :parent place :elenments {}
#domai n truck :parent |ocatable :elements {}
#domai n hoi st :parent |ocatable :elements {}
#domai n surface :parent |ocatable :elenents {}
#domai n pall et :parent surface :elenents {}
#domai n crate :parent surface :elements {}

#feature at(locatable, place) :domain boolean :injective

#f eature generalized-at(crate, place) :domain boolean :injective :noinit
: secondary

#feature on(crate, surface) :domain bool ean :doubl e-injective

#feature in(crate, truck) :domain boolean :injective

#feature lifting(hoist, crate) :domain boolean :injective

#f eat ure avail abl e(hoi st) :domai n bool ean : secondary

#feature clear(surface) :donmain bool ean : secondary

/1l The truck has started driving towards the place but not arrived yet.
#feature driving-to(truck, place) :donmain boolean :injective

#f eat ure need-to-nove(surface) :domain boolean :noinit :secondary

#def f eat ure need-to-nove-init(surface) :domain bool ean

#f eature need-to-be-at(crate, place) :domain boolean :injective :noinit
. secondary

#deffeature need-to-be-at-init(crate, place) :domain bool ean

#f eat ure goodt ower (surface) :domain bool ean :noinit

#def f eat ure goodtower-init(surface) :donmain bool ean

#resource semtruck(truck) :dommin integer :preference :none
#resource semcrate(crate) :dommin integer :preference :none
#resource sem hoi st (hoist) :donain integer :preference :none

#assert forall t, crate, surface, hoist |
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[t] on(crate, surface) -> [t] !lifting(hoist, crate) ]
#assert forall t, crate, surface, hoist |

[t] lifting(hoist, crate) -> [t] 'on(crate, surface) ]
#assert forall t, crate, hoist, truck [

[t] lifting(hoist, crate) -> [t] !in(crate, truck) ]

#dom [0] forall truck [ $init(semtruck(truck)) ==1 &
$mi ni mum(sem truck(truck)) == 0 &
$maxi munm(sem truck(truck)) == 1 ]

#dom [0] forall crate [ $init(semcrate(crate)) == 1 &
$mininunm(sem crate(crate)) == 0 &
$maxi munm(sem crate(crate)) == 1 ]

#dom [0] forall hoist [ $init(semhoist(hoist)) == 1 &

$mi ni mun(sem hoi st (hoist)) == 0 &
$maxi mun(sem hoi st (hoist)) == 1 ]

#operator Lift(hoist, crate, surface, place)
citerate (crate, hoist, surface, place)

cat t
. precond [t] at(hoist, place) &
[t] avail abl e(hoist) &
[t] at(crate, place) &
[t] on(crate, surface) &
[t] clear(crate)
:duration 1
. resources [+1] :borrow semcrate(crate) :anmount 1,
[+1] :borrow sem hoist(hoist) :anount 1
: cont ext
.effects [+1] at(crate, place) := fal se,
[+1] lifting(hoist, crate) := true,
[+1] clear(crate) := false,
[+1] avail abl e(hoist) := false,
[+1] clear(surface) := true,
[+1] on(crate, surface) := fal se,
[ +1] goodtower(crate) := fal se

#operator Drop(hoist, crate, surface, place)
cat ot
. precond [t] at(hoist, place) &
[t] at(surface, place) &
[t] clear(surface) &
([t] lifting(hoist, crate)) &
/1 Only create goodtowers.
forall surface2 |
goal (on(crate, surface2)) -> surface2 = surface | &
I'([t] need-to-nmove(surface)) &
lexists crate2 |
crate2 != crate &
goal (on(crate2, surface)) ] &
[t] goodtower(surface)
:duration 1
:resources [+1] :borrow semcrate(crate) :amount 1,
[+1] :borrow sem hoi st (hoist) :amunt 1
. cont ext
.effects [ +1] avail abl e(hoist) := true,
[+1] lifting(hoist, crate) := false,
[+1] at(crate, place) := true
[+1] clear(surface) := fal se
[+1] clear(crate) := true,
[+1] on(crate, surface) := true,
/1 The preconditions nmake sure that the tower
/1 created is a goodtower.
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[+1] need-to-nove(crate) := false,
[ +1] goodtower(crate) := true

#operator Load(hoist, crate, truck, place)

rat ot
. precond [t] at(hoist, place) &
[t] at(truck, place) &
[t] lifting(hoist, crate)
:duration 3
:resources [+1, +3] :borrow nonex semtruck(truck) :amunt 1
[+1, +3] :borrow semcrate(crate) :amunt 1,
[+1, +3] :borrow sem hoi st (hoist) :anmount 1
. cont ext
ceffects [+3] lifting(hoist, crate) := false,
[+3] in(crate, truck) := true
[+3] avail abl e(hoist) := true,
[ +3] generalized-at(crate, place) := fal se

#oper ator Unl oad(hoi st, crate, truck, place)
citerate (hoist, truck, crate, place)

cat t
. precond [t] at(hoist, place) &
[t] at(truck, place) &
[t] avail abl e(hoist) &
[t] in(crate, truck)
:duration 4
. resources [ +1, +4] : borrow nonex semtruck(truck) :amount 1
[+1, +4] :borrow semcrate(crate) :amunt 1,
[+1, +4] :borrow sem hoi st (hoi st) :anmount 1
: cont ext
.effects [+1] in(crate, truck) := fal se
[ +1] avail abl e(hoist) := fal se,
[+4] lifting(hoist, crate) := true,
[+1] generalized-at(crate, place) := true
#operator Drive(truck, placel, place2)
cat ot
. precond [t] at(truck, placel)
:duration 10
:resources [+1, +10] :borrow semtruck(truck) :amunt 1
. cont ext
.effects [+1] at(truck, placel) := fal se
[+10] at(truck, place2) := true,
[+1] driving-to(truck, place2) := true,
[+10] driving-to(truck, place2) := false
#dom [0] forall crate, place [ need-to-be-at(crate, place) <->
need-to-be-at-init(crate, place) ]
#dom [0] forall surface [ need-to-nove(surface) <->
need-to-nmove-init(surface) ]
#dom [0] forall crate, place [ generalized-at(crate, place) <->
at(crate, place) ]
#dom [0] forall surface [ goodtower(surface) <->
goodtower-init(surface) ]
#define [t] goodtower-init(surfacel):
([t] !'need-to-nove(surfacel)) &
forall crate, surface2 |
(surfacel = crate & [t] on(crate, surface2)) ->
[t] goodtower-init(surface2) ]
#define [t] need-to-nove-init(surfacel):
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exists crate |
crate = surfacel &
(exists surface2 |
goal (on(crate, surface?)) &
[t] 'on(crate, surface2) ] |
exists crate2 |
([t] on(crate, crate2) &
need-to-nove-init(crate2)) ] |
exi sts surface2 [
([t] on(crate, surface2)) &
(exists crate3 |
goal (on(crate3, surface2)) &
crate3 !=crate ]) ] )]

#control :name "trucks-stay-until-everything-is-done"
forall t, truck, place |

([t] at(truck, place)) ->

([t+1] at(truck, place))

lexists crate |

[t] at(crate, place) &

clear(crate) &
need-to-nmove(crate) ] ]

#control :name "trucks-al ways- nove-to-goal"
forall t, truck, place |
([t] at(truck, place)) ->
([t+1] at(truck, place))
exi sts place2 |

pl ace2 != place &

/1 The truck is onit's way to place2.

([t+1] driving-to(truck, place2)) &

(([t] exists crate, place3 |
general i zed-at(crate, place2) &
((need-to-be-at(crate, place3d) &

pl ace2 ! = pl ace3) |
(need-to-be-at(crate, place2) &
I goodtower (crate))) &
lexists truck2 [
at(truck2, place2) 1 1) |
(exists crate [
([t] in(crate, truck) &
need-to-be-at(crate, place2)) &
forall crate2 [
goal (on(crate, crate2)) ->
[t] goodtower(crate2) ] ] &
I'([t] exists crate, place3 |
general i zed-at(crate, place3d) &
need-to-be-at(crate, place2) &
place3 !=place2 ]1))) 1 1]

#define [t] need-to-be-at-init(crate, place):
exists pallet |
goal (on(crate, pallet)) &
[t] at(pallet, place) ] |
exists crate2 |
goal (on(crate, crate2)) &
[t] need-to-be-at-init(crate2, place) ]

#control :name "only-nove-crates-when-necessary"
forall t, crate, placel |
[t] at(crate, placel) ->
([t+1] at(crate, placel)) |
[t] need-to-nove(crate) ]
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#control :name "only-unl oad-crat es-when-necessary"
forall t, crate, truck |

[t] in(crate, truck) ->

([t+1] in(crate, truck)) |

exi sts surface, place |
goal (on(crate, surface)) &
[t] at(surface, place) &
[t] at(truck, place) ] ]

B.6 Depots Timed

#ti mescal e 0.001

#domai n integer :integer :1b O :ub 1000000
#domai n obj ect :elenments {}

#domai n pl ace : parent object :elenents {}
#domai n | ocat abl e : parent object :elenents {}
#domai n depot :parent place :elenments {}
#domai n di stributor :parent place :elenments {}
#domai n truck :parent |ocatable :elements {}
#domai n hoi st :parent |ocatable :elenments {}
#domai n surface :parent |ocatable :elenents {}
#domai n pal l et :parent surface :elenents {}
#domai n crate :parent surface :elements {}

#feature at(l ocatable, place) :domain boolean :injective

#f eature generalized-at(crate, place) :domain boolean :injective :noinit

#feature on(crate, surface) :domain bool ean :doubl e-injective

#feature in(crate, truck) :domain boolean :injective
#feature lifting(hoist, crate) :domain boolean :injective
#f eat ure avail abl e(hoi st) :domai n bool ean

#feature clear(surface) :donmain bool ean

#f eature di stance(pl ace, place) :donain integer
#f eature speed(truck) :domain integer
#f eature wei ght (crate) :domain integer
#f eat ure power (hoi st) :donmin integer

#feature driving-to(truck, place) :donmain boolean :injective
#f eature need-to-nmove(surface) :domain boolean :noinit :secondary

#def f eat ure need-to-nove-init(surface) :domain bool ean

#f eat ure need-to-be-at(crate, place) :domain boolean :injective :noinit

. secondary

#deffeature need-to-be-at-init(crate, place) :domain bool ean

#f eat ure goodt ower (surface) :domain bool ean : noinit
#def f eat ure goodtower-init(surface) :donmain bool ean

#resource semtruck(truck) :dommin integer :preference :none
#resource semcrate(crate) :dommin integer :preference :none
#resource sem hoi st (hoist) :domain integer :preference :none

#assert forall t, crate, surface, hoist |

[t] on(crate, surface) -> [t] !lifting(hoist, crate) ]

#assert forall t, crate, surface, hoist |

[t] lifting(hoist, crate) -> [t] !'on(crate,
#assert forall t, crate, hoist, truck [

[t] lifting(hoist, crate) -> [t] !in(crate,

#dom [0] forall truck [ $init(semtruck(truck)) ==1 &
$mi ni munm(sem truck(truck)) == 0 &
$maxi munm(sem truck(truck)) == 1 ]

#dom [0] forall crate [ $init(semcrate(crate)) == 1 &
$mininunm(semcrate(crate)) == 0 &
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$maxi mun(sem crate(crate)) == 1 ]
#dom [0] forall hoist [ $init(semhoist(hoist)) == 1 &

$mi ni munm(sem hoi st (hoist)) == 0 &

$maxi num(sem hoi st (hoist)) == 1 ]

#operator Lift(hoist, crate, surface, place)
citerate (crate, hoist, surface, place)

rat ot
. precond [t] at(hoist, place) &
[t] avail abl e(hoist) &
[t] at(crate, place) &
[t] on(crate, surface) &
[t] clear(crate)
:duration 1000
. resources [ +1, +1000] :borrow semcrate(crate) :anount 1
[ +1, +1000] : borrow sem hoi st (hoist) :anmpbunt 1
: cont ext
ceffects [+1] at(crate, place) := false,
[ +1000] lifting(hoist, crate) := true,
[+1] clear(crate) := false,
[ +1] avail abl e(hoist) := fal se,
[ +1000] clear(surface) := true,
[+1] on(crate, surface) := fal se,
[ +1000] goodtower(crate) := fal se

#operator Drop(hoist, crate, surface, place)
cat ot
: precond [t] at(hoist, place) &
[t] at(surface, place) &
[t] clear(surface) &
([t] lifting(hoist, crate)) &
/1 Only create goodtowers.
forall surface2 |
goal (on(crate, surface2)) -> surface2 = surface | &
I'([t] need-to-nmove(surface)) &
lexists crate2 |
crate2 != crate &
goal (on(crate2, surface)) ] &
[t] goodtower(surface))
:duration 1000
. resources [ +1, +1000] :borrow semcrate(crate) :anount 1
[ +1, +1000] : borrow sem hoi st (hoist) :amunt 1
: cont ext
.effects [ +1000] avail abl e(hoist) := true,
[ +1000] lifting(hoist, crate) := false,
[ +1000] at(crate, place) := true,
[+1] clear(surface) := fal se
[ +1000] clear(crate) := true,
[ +1000] on(crate, surface) := true,
[ +1000] at(surface, place) :=true, // TODO prevai
[ +1] need-to-nove(crate) := false,
[ +1] goodtower(crate) := true

#operator Load(hoist, crate, truck, place)

cat ot
. precond [t] at(hoist, place) &

[t] at(truck, place) &

[t] lifting(hoist, crate)

/1 $max ensures that the duration is not |ess than one.
:duration $maketi me(val ue(t, $max(1, 1000 * weight(crate) /

power (hoist)))) :as t2

: resources [+1, +t 2] :borrow nonex semtruck(truck) :anount 1
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[+1, +t 2] :borrow semcrate(crate) :anount 1,
[+1, +t 2] :borrow sem hoi st (hoist) :anmpbunt 1

. cont ext
ceffects [+t2] lifting(hoist, crate) := fal se,
[+t2] in(crate, truck) := true
[+t 2] avail abl e(hoist) := true,
[+t 2] generalized-at(crate, place) := fal se

#operator Unl oad(hoi st, crate, truck, place)
citerate (hoist, truck, crate, place)

cat ot

. precond [t] at(hoist, place) &
[t] at(truck, place) &
[t] avail abl e(hoist) &
[t] in(crate, truck)

:duration $maketi me(val ue(t, $max(1, 1000 * weight(crate) /

power (hoist)))) :as t2

. resources [+1, +t 2] :borrow nonex semtruck(truck) :anount 1
[+1, +t 2] :borrow semcrate(crate) :anount 1,
[+1, +t 2] :borrow sem hoi st (hoist) :amunt 1

. cont ext

.effects [+1] in(crate, truck) := false

[ +1] avail abl e(hoist) := fal se,
[+t2] lifting(hoist, crate) := true,
[+1] generalized-at(crate, place) := true

#operator Drive(truck, placel, place2)

cat ot
: precond [t] at(truck, placel) &
pl acel != pl ace2
;duration $maketi me(val ue(t, 1000 * distance(pl acel, place2)
speed(truck))) :as t2
. resources [+1, +t 2] :borrow semtruck(truck) :anmpount 1
: cont ext
ceffects [+1] at(truck, placel) := fal se
[+1] driving-to(truck, place2) := true,
[+t2] at(truck, place2) := true
[+t2] driving-to(truck, place2) := false

#dom [0] forall crate, place [ need-to-be-at(crate, place) <->
need-to-be-at-init(crate, place) ]
#dom [0] forall surface [ need-to-nmove(surface) <->
need-t o- nove-init(surface) ]
#dom [0] forall crate, place [ generalized-at(crate, place) <->
at (crate, place) ]
#dom [ 0] forall surface [ goodtower(surface) <->
goodt ower -i nit(surface) |

#define [t] goodtower-init(surfacel):
([t] !need-to-nove(surfacel)) &
forall crate, surface2 |
(surfacel = crate & [t] on(crate, surface2)) ->
[t] goodtower-init(surface2) ]

#define [t] need-to-nove-init(surfacel):
exists crate |

crate = surfacel &

(exists surface2 [
goal (on(crate, surface2)) &
[t] Ton(crate, surface2) ] |

exists crate2 |
([t] on(crate, crate?2) &
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need-to-nove-init(crate2)) ] |
exi sts surface2 |
([t] on(crate, surface2)) &
(exists crate3 |
goal (on(crate3, surface2)) &
crate3 !=crate ]) ] )]

#control :nane "trucks-stay-until-everything-is-done”
forall t, truck, place |

([t] at(truck, place)) ->

([t+1] at(truck, place))

lexists crate [

[t] at(crate, place) &

clear(crate) &
need-to-nove(crate) ] |

#control :nane "trucks-al ways- nove-to-goal "
forall t, truck, place |
([t] at(truck, place)) ->
([t+1] at(truck, place)) |
exi sts place2 |

pl ace2 != place &

([t+1] driving-to(truck, place2)) &

(([t] exists crate, place3 |
generalized-at(crate, place2) &
((need-to-be-at(crate, placel3) &

pl ace2 ! = pl ace3) |
(need-to-be-at(crate, place2) &
I goodtower(crate))) &
lexists truck2 [
at (truck2, place2) 1 1) |
(exists crate [
([t] in(crate, truck) &
need-to-be-at(crate, place2)) &
forall crate2 [
goal (on(crate, crate2)) ->
[t] goodtower(crate2) ] ] &
I'([t] exists crate, place3 |
general i zed-at(crate, place3d) &
need-to-be-at(crate, place2) &
place3 != place2 1))) 1 1]

#define [t] need-to-be-at-init(crate, place):
exists pallet |
goal (on(crate, pallet)) &
[t] at(pallet, place) ] |
exists crate2 |
goal (on(crate, crate2)) &
[t] need-to-be-at-init(crate2, place) ]

#control :nane "only-nove-crates-when-necessary”
forall t, crate, placel |
[t] at(crate, placel) ->
([t+1] at(crate, placel)) |
[t] need-to-nove(crate) ]

#control :nane "only-unl oad-crat es- when-necessary”
forall t, crate, truck |

[t] in(crate, truck) ->

([t+1] in(crate, truck)) |

exi sts surface, place [
goal (on(crate, surface)) &
[t] at(surface, place) &
[t] at(truck, place) ] ]
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B.7 DriverLog Strips

#domai n integer :integer :1b O :ub 10000

#domai n | ocatable :elenents {}

#domai n obj :parent |ocatable :elenments {}
#domai n | ocation :elenments {}

#domai n truck :parent |ocatable :elements {}
#domai n driver :parent |ocatable :elenents {}

#feature at(l ocatable, |ocation) :domain boolean :injective
#feature in(obj, truck) :domain boolean :injective

#feature driving(driver, truck) :donmain bool ean :double-injective
#feature link(location, |ocation) :domain bool ean

#f eature path(location, |ocation) :domain bool ean

#f eature enpty(truck) :donain bool ean :secondary

/!l Holds if driver has decided to walk to location (naybe via some other places)
#feature destination(driver, |ocation) :domain boolean :injective
#def f eat ure reasonabl e-driver-Ilocation(driver, |ocation)
:donai n bool ean :uncached
#def f eature driving-di stance-to-reasonabl e-destination(truck, |ocation)
:dormai n integer :uncached
#def f eat ure reasonabl e-truck-1ocati on(truck, |ocation)
: donai n bool ean :uncached
#def feature all-objects-at-their-destinations :domain bool ean
#def feature all-nondriven-trucks-at-their-destinations-or-have-commtted-drivers
:domai n bool ean

// Define sone |ocation variables with nore intuitive names than | ocationl
/'l location2 and so on.
#val uevar from to, internedi ate, dest :domain |ocation

#di stfeature driving-distance-between(from to) :domain integer :link |ink
#di st f eat ure wal ki ng- di stance- between(from to) :domain integer :link path

#m ndi stfeature mndist-driving :feature driving-di stance-between
. domai n i nt eger

#m ndi stfeature m ndi st-wal ki ng : feature wal ki ng-di stance-between
: domai n integer

#resource objects-to-nove-at(location) :domain integer :preference :none
#resource semtruck(truck) :domain integer :preference :none
#resource semdriver(driver) :domain integer :preference :none

#assert forall t, driver, location, truck [

[t] driving(driver, truck) -> [t] lat(driver, location) ]
#assert forall t, driver, location, truck |

[t] at(driver, location) -> [t] !driving(driver, truck) ]

#dom [0] forall location [ $init(objects-to-nove-at(location)) ==
$sum(<obj >, [0] at(obj, location) &
goal (lat(obj, location)), 1) &
$m ni nunm( obj ects-to-nove-at(location)) == 0 &
$maxi mum( obj ect s-t o- nove-at (1 ocation)) == 9999 ]
#dom [0] forall truck [ $init(semtruck(truck)) == 1 &
$mi ni munm(sem truck(truck)) == 0 &
$maxi mun(sem truck(truck)) == 1]
#dom [0] forall driver [ $init(semdriver(driver)) ==1 &
$m ni mum(semdriver(driver)) == 0 &
$maxi num(semdriver(driver)) == 1]
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#operator board-truck(driver, truck, |ocation)
cat ot
: precond [t] at(truck, location) &
[t] at(driver, location) &
([t] empty(truck)) &
/1 Don’t board the truck if the goal can be reached by staying
/'l put.
([t] all-nondriven-trucks-at-their-destinations-or-have-
committed-drivers ->
I'goal (at(driver, location)))
. resources [ +1] :borrow nonex semtruck(truck) :anmount 1
[+1] :borrow semdriver(driver) :anount 1
: cont ext
reffects [+1] at(driver, location) := fal se,
[+1] driving(driver, truck) := true,
[+1] empty(truck) := false

#operator |oad-truck(obj, truck, |ocation)

cat ot

. precond [t] at(truck, location) &
([t] at(obj, location)) &
/1 Don’t |oad packages into a truck until we are sure that it
/1 will have a driver.
(([t] lenmpty(truck)) |
$committed(t+1, enpty(truck), false))

. resources /1 One less object to load at this | ocation
[ +1] :consune objects-to-nove-at(location) :anmount 1
[+1] :borrow nonex semtruck(truck) :amunt 1

: cont ext
.effects [+1] at(obj, location) := false,
[+1] in(obj, truck) := true
#oper at or unl oad-truck(obj, truck, |ocation)
cat ot
. precond [t] at(truck, location) &
[t] in(obj, truck)
. resources [ +1] :borrow nonex semtruck(truck) :anmount 1
: cont ext
ceffects [+1] in(obj, truck) := false
[+1] at(obj, location) := true

#operator drive-truck(truck, locationl, |ocation2, driver)
citerate (truck, driver, locationl, |ocation2)
rat ot
. precond [t] at(truck, locationl) &
[t] driving(driver, truck) &
([t] link(locationl, |ocation2)) &
| ocationl !'= location2 &
/1 Don't drive if we're already at a reasonable |ocation (the
/1l feature returns 0) or if there are no reasonabl e | ocations
/1 to go to (the feature returns infinity).
([t] driving-distance-to-reasonabl e-destination(truck
| ocationl) !'== {0, 9999}) &
/1 Only drive if it gets us closer to a reasonable |ocation
[t] driving-distance-to-reasonabl e-destination(truck, |ocationl)

drivi ng-di stance-t o-reasonabl e-destinati on(truck, |ocation2)
: resources [+1] :borrow semtruck(truck) :anount 1,
[+1] :borrow semdriver(driver) :anount 1
. cont ext
.effects [+1] at(truck, |ocationl)
[+1] at(truck, |ocation2)

fal se,
true
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#oper at or di senbark-truck(driver, truck, |ocation)

rat ot

. precond [t] at(truck, location) &
[t] driving(driver, truck)

:resources [+1] :borrow nonex semtruck(truck) :amunt 1
[+1] :borrow semdriver(driver) :anount 1

. cont ext

.effects [ +1] driving(driver, truck) := false,

[+1] at(driver, location) := true,

[+1] enmpty(truck) := true

#oper at or wal k- choosi ng-desti nati on(driver, |ocationl, |ocation2, dest)
/1 W have to nmake sure that the generated plan conforns with the given domain
/'l specification, which only contains one wal k operator. The planner will use
/' both wal k- choosi ng-destination and wal k-t owar ds-desti nation but only print
/1 "wal k" when the final plan is output.
cprint wal k(driver, locationl, |ocation2)
/1 Begin by choosing a driver and his current |ocation, then choose a
/'l destination before deciding on the next inmidiate step
citerate (driver, locationl, dest, |ocation2)
cat t
. precond t] at(driver, locationl) &
[t] path(locationl, |location2)) &
/ W have not already chosen a destination
exi sts location3 |
[t] destination(driver, location3) ] &
/1 Only choose reasonabl e destinations:
([t] reasonabl e-driver-location(driver, dest)) &
/1 1t’s the closest reasonabl e destination
([t] wal ki ng-di stance-between(l ocationl, dest) ==
m ndi st - wal ki ng(
| ocationl,
to,
[t] reasonabl e-driver-1location(driver, to))) &
/1 W’'re not at a reasonabl e destination right now
([t] !reasonabl e-driver-location(driver, locationl)) &
/1l Either noone el se has already picked the destination or we
/1l are walking to the final goal position
('exists driver2 [
([t] destination(driver2, dest)) |
$committed(t+1, destination(driver2, dest), true) ] |
[t] all-objects-at-their-destinations &
al I -nondriven-trucks-at-their-destinations-or-have-
committed-drivers) &
/1 Having chosen a destination, we now need to select an
/1l internmediary |ocation2 that is on the way to the
/1 destination.
| ocationl !'= [ocation2 &
([t] wal ki ng-di stance-between(l ocationl, dest) >
wal ki ng- di st ance-bet ween( | ocati on2, dest))

. resources [+1] :borrow semdriver(driver) :anount 1
. cont ext
.effects [+1] at(driver, locationl) := false,
[+1] at(driver, location2) := true,
[+1] destination(driver, dest) := true

#oper at or wal k-t owards-destination(driver, |ocationl, |ocation2)
cprint wal k(driver, |ocationl, |ocation2)
cat ot
: precond [t] at(driver, locationl) &
([t] path(locationl, l|ocation2)) &
/1 The step brings us closer to the destination
exi sts dest |
[t] destination(driver, dest) &
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[t] wal ki ng-di stance-between(l ocationl, dest) >
wal ki ng-di stance-bet ween(l ocation2, dest) ] &

| ocationl !'= | ocation2
:resources [+1] :borrow semdriver(driver) :anount 1
: cont ext
.effects [+1] at(driver, locationl) := false,
[+1] at(driver, location2) := true
. cont ext
: precond /1 If we have arrived or the destination is no | onger
/1 reasonable, make the driver free to choose another
/1 destination.
[t] destination(driver, |ocation2) |
exi sts dest |
destination(driver, dest) &
I reasonabl e-driver-location(driver, dest) ]
.effects [ +1] destination(driver, |ocation2) := false

#define [t] driving-distance-to-reasonabl e-destination(truck, |ocation):
val ue(t, mndist-driving(location,
to,
[t] reasonabl e-truck-location(truck, to)))

/1 Alocation is reasonable for a truck if:
#define [t] reasonabl e-truck-location(truck, |ocation):
/1 The truck has objects to deliver there.
exi sts obj |
[t] in(obj, truck) &
goal (at(obj, location)) ] |
(([t] all-objects-at-their-destinations) &
/1l There’'s a goal that the truck should be there.
(goal (at (truck, location))
/1 There's a goal that the driver should be there and no goa
/1 preventing himfromusing the truck to drive there.
('goal ('at(truck, location)) &
exi sts driver |
[t] driving(driver, truck) &
goal (at(driver, location)) ]1))) |
/1 There are objects to pick up and either we are already there or
/1 no other trucks are already there or on their way.
(([t] $avail abl e(obj ects-to-nove-at(location)) !==0) &
(([t] at(truck, location))
lexists truck2 [
truck2 !'= truck &
[t] 'empty(truck2) &
[t] at(truck2, location) | &
lexists truck2 |
truck2 !'= truck &
([t] 'enpty(truck2)) &
$committed(t+1, at(truck2, location), true) ]))

/1 Alocation is reasonable for a driver if:
#define [t] reasonabl e-driver-location(driver, |ocation):
/1 There are packages left to deliver and there is a truck w thout a
/1 driver at the |ocation
([t] 'all-objects-at-their-destinations) &
exists truck [
[t] at(truck, location) &
([t] empty(truck)) &
I'$comm tted(t+1, enpty(truck), false) ] |
/1 Al'l packages have been delivered and either all trucks are at their
/1l goals and the driver is heading for it’s goal |ocation or some trucks
/1 still need to be driven to their goals and the driver is heading to
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/1 one of them
[t] all-objects-at-their-destinations &
([t] all-nondriven-trucks-at-their-destinations-or-have-conmtted-
drivers &
goal (at(driver, location)) |
([t] 'all-nondriven-trucks-at-their-destinations-or-have-conmtted-
drivers) &
exists truck [
[t] at(truck, location) &
goal (!'at (truck, location)) &
lexists driver2 |
driver2 !'= driver &
[t] at(driver2, location) |
driving(driver2, truck) 1 ])

/1l Only | oad packages if they aren’t at their goal
#control :nane "only-|oad-when-necessary"
forall t, obj, locationl |
([t] at(obj, locationl)) &
([t+1] !at(obj, locationl)) ->
goal ('at (obj, locationl)) ]

/1 Only unl oad packages at their goal
#control :name "only-unl oad-when-necessary"
forall t, obj, truck |
[t] in(obj, truck) &
([t+1] !'in(obj, truck)) ->
exi sts location |
[t] at(truck, location) &
goal (at(obj, location)) ] ]

/!l Load and unl oad all packages that need to be | oaded and unl oaded before
/1l driving to another |ocation
#control :name "trucks-stay-until-everything-1loaded-and-unl oaded"
forall t, truck, location |
[t] at(truck, location) &
[t+1] 'at(truck, |ocation) ->
([t] $avail abl e(obj ects-to-nmove-at(location)) == 0) &
lexists obj [
[t] in(obj, truck) &
goal (at(obj, location)) ] ]

/!l Only board a truck if a drive-truck or a | oad-package will be possible.
/'l Loadi ng packages are only possible after the driver has boarded the
/'l truck.
#control :nane "only-board-when-necessary"
forall t, driver, truck, location [
[t] !'driving(driver, truck) &
at(truck, location) ->
[t+1] !driving(driver, truck) |
([t] driving-distance-to-reasonabl e-destination(truck, |ocation)
== {0, 9999})
exi sts obj [
[t] at(obj, location) &
goal (!'at (obj, location)) ] ]

/1 Don’t disenbark if there are packages | oaded or being |loaded into the truck
/1l that must be driven sonewhere or if the truck has a goal to be sonmewhere
Il else.
#control :name "only-di senbar k-when-necessary"
forall t, driver, truck [

[t] driving(driver, truck) ->

([t+1] driving(driver, truck)) |

exists location [
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([t] at(truck, location)) &
('exists obj [
goal (!at (obj, location)) &
$committed(t+1, in(obj, truck), true)
[t] in(obj, truck) 1 &
Igoal ('at(truck, location))) ] ]

/1 Only disenbark if you have driven to your goal or if there is another truck
/'l at the location that needs to be driven to its goal
#control :name "only-di senbar k- when-you- have- a- goal "
forall t, driver, truck [
[t] driving(driver, truck) ->
([t+1] driving(driver, truck)) |
exists location [
goal (at(driver, location)) ] |
exi sts location, truck2 [
[t] at(truck, location) &
at (truck2, location) &
empty(truck2) &
I'reasonabl e-truck-1ocation(truck2, location) ] ]

/1l True when all packages are at their goal |ocations.
#define [t] all-objects-at-their-destinations:
forall obj, location [
goal (at(obj, location)) -> [t] at(obj, location) ]

/1l True when all trucks without drivers are at their goal |ocations or have a
// drivers comritted to driving themthere.
#define [t] all-nondriven-trucks-at-their-destinations-or-have-comitted-
drivers:
forall truck, location |
([t] empty(truck) &
goal (at(truck, location))) ->
(([t] at(truck, location)) |
exi sts location2, driver [
[t] at(truck, location2) &
([t] destination(driver, |ocation2)
[t] at(driver, location2) &
I'goal (at(driver, location2))) 1) ]

B.8 DriverLog SimpleTime

#domai n integer :integer :1b O :ub 10000

#domai n | ocatable :elenments {}

#domai n obj :parent |ocatable :elenments {}
#domai n | ocation :elenments {}

#domai n truck :parent |ocatable :elements {}
#domai n driver :parent |ocatable :elenents {}

#feature at(l ocatable, |ocation) :domain boolean :injective
#feature in(obj, truck) :domain boolean :injective

#feature driving(driver, truck) :domain bool ean :double-injective
#feature link(location, |ocation) :domain bool ean

#feature path(location, |ocation) :domain bool ean

#f eature enpty(truck) :donain bool ean :secondary

// True while a driver or a truck is going to a location but hasn’t arrived yet.
#f eature going-to(locatable, |ocation) :domain boolean :injective
#feature destination(driver, |ocation) :domain boolean :injective
#def f eat ure reasonabl e-driver-location(driver, |ocation)
:donmai n bool ean :uncached
#def f eature driving-di stance-to-reasonabl e-destination(truck, |ocation)
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:donai n integer :uncached
#def f eat ure reasonabl e-truck-1ocation(truck, |ocation)
:domai n bool ean :uncached
#def f eat ure reasonabl e-truck-1 ocati on-cached(truck, |ocation) :domain bool ean
#def feature all-objects-at-their-destinations :domain bool ean
#def feature all-nondriven-trucks-at-their-destinations-or-have-conmmtted-drivers
:domai n bool ean

#val uevar from to, internedi ate, dest :domain |ocation

#di stfeature driving-distance-between(from to) :domain integer :link |ink
#di st feat ure wal ki ng-di st ance- between(from to) :domain integer :link path

#mi ndi stfeature mndist-driving :feature driving-di stance-between
: domai n integer

#m ndi stfeature m ndi st-wal king :feature wal ki ng-di stance-between
. domai n i nt eger

#resource obj ects-to-nmove-at(location) :domain integer :preference :none
#resource semtruck(truck) :donain integer :preference :none
#resource semdriver(driver) :domain integer :preference :none

#assert forall t, driver, location, truck |

[t] driving(driver, truck) -> [t] lat(driver, location) ]
#assert forall t, driver, location, truck [

[t] at(driver, location) -> [t] !driving(driver, truck) ]
#assert forall t, driver, location, truck |

[t] going-to(driver, location) -> [t] !driving(driver, truck) ]

#dom [0] forall location [ $init(objects-to-nove-at(location)) ==
$sum(<obj >, [0] at(obj, location) &
goal (lat(obj, location)), 1) &
$m ni nunm( obj ects-to-nove-at(location)) == 0 &
$maxi mum( obj ect s-t o- nove-at (1 ocation)) == 9999 ]
#dom [0] forall truck [ $init(semtruck(truck)) == 1 &
$mi ni munm(sem truck(truck)) == 0 &
$mexi munm(sem truck(truck)) == 1]
#dom [0] forall driver [ $init(semdriver(driver)) == 1 &
$mi ni mum(semdriver(driver)) == 0 &
$maxi num(semdriver(driver)) == 1]

#operator board-truck(driver, truck, |ocation)
rat ot
. precond [t] at(truck, location) &
[t] at(driver, location) &
[t] empty(truck) &
([t] all-nondriven-trucks-at-their-destinations-or-have-
committed-drivers ->
I'goal (at(driver, location)))
. resources [ +1] :borrow nonex semtruck(truck) :anmount 1
[+1] :borrow semdriver(driver) :anount 1
: cont ext
reffects [+1] at(driver, location) := fal se,
[ +1] driving(driver, truck) := true,
[+1] empty(truck) := false

#operator |oad-truck(obj, truck, |ocation)
rat ot
. precond [t] at(truck, location) &
[t] at(obj, location) &
(([t] 'enpty(truck)) |
$committed(t+1, enpty(truck), false))
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:duration 2
. resources [ +1] :consune objects-to-nove-at(location) :anmount 1
[ +1, +2] :borrow nonex semtruck(truck) :amount 1

: cont ext
ceffects [+1] at(obj, location) := fal se,
[+2] in(obj, truck) := true
#operator unl oad-truck(obj, truck, l|ocation)
rat ot
: precond [t] at(truck, location) &
[t] in(obj, truck)
:duration 2
. resources [ +1, +2] :borrow nonex semtruck(truck) :amount 1
: cont ext
ceffects [+1] in(obj, truck) := false

[+2] at(obj, location) := true

#operator drive-truck(truck, locationl, |ocation2, driver)
citerate (truck, driver, locationl, |ocation2)

cat ot
. precond [t] at(truck, locationl) &
[t] driving(driver, truck) &
[t] link(locationl, l|location2) &
| ocationl !'= location2 &
[t] driving-distance-to-reasonabl e-destination(truck
== {0, 9999} &
[t] driving-distance-to-reasonabl e-destination(truck
>
drivi ng-di st ance-to-reasonabl e-destination(truck
:duration 10
. resources [ +1, +10] :borrow semtruck(truck) :anount 1,
[+1, +10] :borrow semdriver(driver) :anount 1
. cont ext
reffects [+1] at(truck, locationl) := fal se,
[+10] at(truck, location2) := true,
[ +1] going-to(truck, |ocation2) := true,
[ +10] going-to(truck, location2) := fal se

#oper at or di senbark-truck(driver, truck, |ocation)

cat ot

. precond [t] at(truck, location) &
[t] driving(driver, truck)

:duration 1

:resources [+1] :borrow nonex semtruck(truck) :amunt 1
[+1] :borrow semdriver(driver) :anmount 1

. cont ext

.effects [ +1] driving(driver, truck) := false,

[+1] at(driver, location) := true,
[+1] enpty(truck) := true

| ocati onl)
| ocati onl)

| ocati on2)

#oper at or wal k- choosi ng-desti nati on(driver, |ocationl, |ocation2, dest)

cprint wal k(driver, locationl, |ocation2)
citerate (driver, locationl, dest, |ocation2)
cat ot
: precond [t] at(driver, locationl) &
([t] path(locationl, l|ocation2)) &
lexists location3 [
[t] destination(driver, location3) ] &
([t] reasonabl e-driver-location(driver, dest)) &
([t] wal ki ng-di stance-between(l ocationl, dest) ==
m ndi st - wal ki ng(
| ocationl,
to,

[t] reasonabl e-driver-location(driver, to))) &
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([t] !'reasonabl e-driver-location(driver, locationl)) &
('exists driver2 |
([t] destination(driver2, dest)) |
$committed(t+1, destination(driver2, dest), true) ] |
[t] all-objects-at-their-destinations &
al I -nondriven-trucks-at-their-destinations-or-have-
comritted-drivers) &
| ocationl !'= [ocation2 &
([t] wal ki ng-di stance-between(l ocationl, dest) >
wal ki ng- di st ance-bet ween( | ocati on2, dest))

:duration 20
. resources [ +1, +20] :borrow semdriver(driver) :anount 1
. cont ext
reffects [+1] at(driver, locationl) := fal se,
[+20] at(driver, location2) := true,
[ +1] destination(driver, dest) := true,
[ +1, +19] going-to(driver, location2) := true,
[ +20] going-to(driver, location2) := false

#oper at or wal k-t owar ds-destinati on(driver, |ocationl, |ocation2)
cprint wal k(driver, locationl, |ocation2)

cat ot
. precond [t] at(driver, locationl) &
([t] path(locationl, location2)) &
exi sts dest |
[t] destination(driver, dest) &
[t] wal ki ng-di st ance-between(l ocationl, dest) >
wal ki ng-di st ance-bet ween(l ocation2, dest) ] &
| ocationl !'= | ocation2
:duration 20
. resources [ +1, +20] :borrow semdriver(driver) :anmount 1
. cont ext
.effects [+1] at(driver, locationl) := false,
[+20] at(driver, location2) := true,
[+1] going-to(driver, location2) := true,
[ +1, +19] going-to(driver, location2) := true,
[ +20] going-to(driver, location2) := false
. cont ext
: precond [t] destination(driver, |ocation2) |
exi sts dest |
destination(driver, dest) &
I reasonabl e-driver-1location(driver, dest) ]
.effects [ +20] destination(driver, location2) := false

#define [t] driving-distance-to-reasonabl e-destination(truck, |ocation):
val ue(t, mndist-driving(location,
to,
[t] reasonabl e-truck-location(truck, to)))
#define [t] reasonabl e-truck-location(truck, |ocation):
[t] reasonabl e-truck-I|ocation-cached(truck, |ocation))
([t] S$avail abl e(obj ects-to-nmove-at(location)) !==0) &
(([t] at(truck, location)) |
lexists truck2 |
truck2 !'= truck &
[t] 'empty(truck2) &
[t] at(truck2, location) ] &
/1 Extra case when the truck is going to location but hasn't arrived.
lexists truck2 |
truck2 !'= truck &
[t] 'empty(truck2) &
[t] going-to(truck2, location) ] &
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#defi ne

#defi ne

drivers

lexists truck2 [

truck2 !'= truck &
([t] 'empty(truck2)) &
$committed(t+1, going-to(truck2, location), true)]))

[t] reasonabl e-truck-Ilocation-cached(truck, |ocation):

exi sts

([t] al

obj [

[t] in(obj, truck) &

goal (at(obj, location)) ] |

| - obj ects-at-their-destinations &

(goal (at (truck, location))

(!goal

('Tat(truck, location)) &

exi sts driver |

[t] driving(driver, truck) &
goal (at(driver, location)) 1)))

[t] reasonabl e-driver-location(driver, |ocation):
([t] 'all-objects-at-their-destinations) &

exi sts

[t] all

([t] al
&

truck [

[t] at(truck, location) &

([t] empty(truck)) &

' $comm tted(t+1, enpty(truck), false) ] |
-objects-at-their-destinations &

| -nondriven-trucks-at-their-destinations-or-have-conm tted-

goal (at(driver, location))

([t] !

drivers) &
exists truck [

#contr ol

#contr ol

#contr ol

#contr ol

> nane
forall

> nane
forall

> nane
forall

> nane
forall

all -nondriven-trucks-at-their-destinations-or-have-conmtted-

[t] at(truck, location) &
goal ('at (truck, location)) &
lexists driver2 [

driver2 !'= driver &

(([t] at(driver2, location)) |

/1 Extra case when driver2 is going to |location but

/1 hasn’t arrived.

[t] going-to(driver2, |ocation) |

driving(driver2, truck)) ] 1)

"onl y-| oad- when-necessary"

t, obj, locationl |

([t] at(obj, locationl)) &
([t+1] 'at(obj, locationl)) ->
goal (!'at (obj, locationl)) ]

"onl y-unl oad- when- necessary"”
t, obj, truck [
([t] in(obj, truck)) &
([t+1] !in(obj, truck)) ->
exists location [
[t] at(truck, location) &
goal (at(obj, location)) ] ]

"trucks-stay-until-everythi ng-1 oaded-and- unl oaded"
t, truck, location [
[t] at(truck, location) &
[t+1] 'at(truck, |ocation) ->
([t] $avail abl e(obj ects-to-nmove-at(location)) == 0) &
lexists obj [
[t] in(obj, truck) &
goal (at(obj, location)) ] ]

"onl y- boar d- when- necessary"
t, driver, truck, location [
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[t] !'driving(driver, truck) &
at (truck, location) ->
([t+1] !driving(driver, truck)) |
([t] driving-distance-to-reasonabl e-destination(truck, |ocation)
== {0, 9999}) |

exi sts obj [

[t] at(obj, location) &

goal (!at (obj, location)) ] ]

#control :name "only-di senbar k-when-necessary"
forall t, driver, truck [
[t] driving(driver, truck) ->
([t+1] driving(driver, truck)) |
exists location [
([t] at(truck, location)) &
('exists obj [
goal (!at (obj, location)) &
$commi tted(t+1, in(obj, truck), true)
[t] in(obj, truck) ] &
I'goal ('at(truck, location))) ] ]

#control :nane "only-di senbar k- when-you- have- a- goal "
forall t, driver, truck [
([t] driving(driver, truck)) ->
([t+1] driving(driver, truck)) |
exi sts location |
goal (at(driver, location)) ] |
exi sts location, truck2 [
[t] at(truck, location) &
at (truck2, location) &
enpty(truck2) &
I reasonabl e-truck-1 ocation(truck2, location) ] ]

#define [t] all-objects-at-their-destinations:
forall obj, location |
goal (at(obj, location)) -> [t] at(obj, location) ]

#define [t] all-nondriven-trucks-at-their-destinations-or-have-comitted-
drivers:
forall truck, location [
([t] empty(truck) &
goal (at(truck, location))) ->
(([t] at(truck, location))
exi sts location2, driver [
[t] at(truck, location2) &
([t] destination(driver, |ocation2)
[t] at(driver, location2) &
I'goal (at(driver, location2))) 1) 1

B.9 DriverLog Timed

#domain integer :integer :1b O :ub 10000

#domai n | ocatable :elenments {}

#domai n obj :parent |ocatable :elements {}
#domai n | ocation :elenments {}

#domai n truck :parent locatable :elenments {}
#domai n driver :parent |ocatable :elenents {}

#feature at(locatable, |ocation) :domain boolean :injective
#feature in(obj, truck) :domain boolean :injective

#feature driving(driver, truck) :donmain bool ean :double-injective
#feature link(location, |ocation) :domain bool ean
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#f eature path(location, |ocation) :domain bool ean
#feature enpty(truck) :domain bool ean :secondary

/1 The wal ki ng di stance between two | ocations, specified in the problemfiles.
#feature tine-to-wal k(location, |ocation) :domain integer :function
/1 The driving distance between two | ocations, specified in the problemfiles.
#feature tinme-to-drive(location, |location) :domain integer :function

#f eature going-to(locatable, |location) :domain boolean :injective
#f eature destination(driver, |ocation) :domain boolean :injective
#def f eat ure reasonabl e-driver-1|ocation(driver, |ocation)
:domai n bool ean :uncached
#def f eature driving-di stance-to-reasonabl e-destination(truck, |ocation)
:donai n integer :uncached
#def f eat ure reasonabl e-truck-1ocation(truck, |ocation)
:domai n bool ean :uncached
#def f eat ure reasonabl e-truck-1 ocati on-cached(truck, |ocation) :domain bool ean
#deffeature all-objects-at-their-destinations :donmain bool ean

#deffeature all-nondriven-trucks-at-their-destinati ons-or-have-conmtted-drivers

:domai n bool ean
#val uevar from to, internedi ate, dest :domain |ocation

#di stfeature driving-distance-between(from to)

:domain integer :link link :cost time-to-drive
#di st f eat ure wal ki ng-di st ance- between(from to)
domain integer :link path :cost tine-to-walk

#mi ndi stfeature mndist-driving :feature driving-di stance-between
: domai n integer

#m ndi stfeature m ndi st-wal ki ng : feature wal ki ng-di stance-bet ween
. domai n i nt eger

#resource objects-to-nove-at(location) :domain integer :preference :none
#resource semtruck(truck) :donain integer :preference :none
#resource semdriver(driver) :domain integer :preference :none

#assert forall t, driver, location, truck |

[t] driving(driver, truck) -> [t] lat(driver, location) ]
#assert forall t, driver, location, truck [

[t] at(driver, location) -> [t] !driving(driver, truck) ]
#assert forall t, driver, location, truck |

[t] going-to(driver, location) -> [t] !driving(driver, truck) ]

#dom [0] forall location [ $init(objects-to-nmove-at(location)) ==
$sum(<obj >, [0] at(obj, location) &
goal (lat(obj, location)), 1) &
$m ni nunm( obj ects-to-nove-at(location)) == 0 &
$maxi mum( obj ect s-t o- nove-at (1 ocation)) == 9999 ]
#dom [0] forall truck [ $init(semtruck(truck)) ==1 &
$mi ni mum(sem truck(truck)) == 0 &
$maxi munm(sem truck(truck)) == 1]
#dom [O] forall driver [ $init(semdriver(driver)) == 1 &
$m ni mum(semdriver(driver)) == 0 &
$maxi num(semdriver(driver)) == 1]

#operator board-truck(driver, truck, |ocation)
rat ot
. precond [t] at(truck, location) &
[t] at(driver, location) &
[t] empty(truck) &
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([t] all-nondriven-trucks-at-their-destinations-or-have-
committed-drivers ->
I'goal (at(driver, location)))
:resources [+1] :borrow nonex semtruck(truck) :amunt 1
[+1] :borrow semdriver(driver) :anmount 1
. cont ext
.effects [+1] at(driver, location) := false,
[ +1] driving(driver, truck) := true,
[+1] enpty(truck) := false

#operator | oad-truck(obj, truck, |ocation)

cat ot
. precond [t] at(truck, location) &
[t] at(obj, location) &
(([t] lenmpty(truck)) |
$committed(t+1, enmpty(truck), false))
:duration 2
. resources [ +1] :consune objects-to-nove-at(location) :anmount 1
[+1, +2] :borrow nonex semtruck(truck) :amunt 1
: cont ext
.effects [+1] at(obj, location) := false,
[+2] in(obj, truck) := true
#oper ator unl oad-truck(obj, truck, |ocation)
cat ot
. precond [t] at(truck, location) &
[t] in(obj, truck)
:duration 2
:resources [+1, +2] :borrow nonex semtruck(truck) :amunt 1
: cont ext
.effects [+1] in(obj, truck) := false
[+2] at(obj, location) := true

#operator drive-truck(truck, locationl, |ocation2, driver)
citerate (truck, driver, locationl, |ocation2)
cat ot
. precond [t] at(truck, locationl) &
[t] driving(driver, truck) &
[t] link(locationl, |location2) &
| ocationl !'= location2 &
([t] driving-distance-to-reasonabl e-destination(truck
| ocationl) !== {0, 9999}) &
/1 There is no cheaper road link that also reduce the val ue of
/1 driving-distance-to-reasonabl e-destination
lexists location3 |
[t] link(locationl, |location3) &
[t] driving-distance-to-reasonabl e-destination(truck
| ocation3) +
dri vi ng-di st ance- bet ween(l ocati onl, location3) <
drivi ng-di stance-to-reasonabl e-destination(truck
| ocation2) +
drivi ng-di st ance- between(l ocationl, |ocation2) ]

:duration $maketi me(val ue(t, tinme-to-drive(locationl, location2))) :as t2
:resources [+1, +t 2] :borrow semtruck(truck) :anount 1,
[+1, +t2] :borrow semdriver(driver) :anount 1
. cont ext
.effects [+1] at(truck, locationl) := false,
[+t2] at(truck, location2) := true,
[+1, +t2 - 1] going-to(truck, location2) := true,
[+t2] going-to(truck, location2) := false

#oper ator di senbark-truck(driver, truck, |ocation)
cat ot
: precond [t] at(truck, location) &
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[t] driving(driver, truck)

:duration 1
. resources [ +1] :borrow nonex semtruck(truck) :anmount 1
[+1] :borrow semdriver(driver) :anmount 1
: cont ext
.effects [ +1] driving(driver, truck) := false,

[+1] at(driver, location) := true,
[+1] empty(truck) := true

#oper at or wal k- choosi ng-destination(driver, |ocationl, |ocation2, dest)
cprint wal k(driver, locationl, |ocation2)
citerate (driver, locationl, dest, |ocation2)
cat ot
: precond [t] at(driver, locationl) &
([t] path(locationl, location2)) &
lexists location3 [
[t] destination(driver, location3) ] &
([t] reasonabl e-driver-location(driver, dest)) &
([t] wal ki ng-di stance-between(l ocationl, dest) ==
m ndi st - wal ki ng(
| ocationl,
to,
[t] reasonabl e-driver-location(driver, to))) &
([t] !'reasonabl e-driver-location(driver, locationl)) &
('exists driver2 [
([t] destination(driver2, dest)) |
$committed(t+1, destination(driver2, dest), true) ] |
[t] all-objects-at-their-destinations &
al I -nondriven-trucks-at-their-destinations-or-have-
committed-drivers) &
| ocationl !'= [ocation2 &
([t] wal ki ng-di stance-between(l ocationl, dest) >
wal ki ng- di st ance-bet ween(| ocati on2, dest))

:duration $maketi me(val ue(t, time-to-wal k(locationl, location2))) :as t2
:resources [+1, +t 2] :borrow semdriver(driver) :amunt 1
. cont ext
.effects [+1] at(driver, locationl) := false,
[+t2] at(driver, location2) := true,
[+1] destination(driver, dest) := true,
[+1,+t2 - 1] going-to(driver, location2) := true,
[+t 2] going-to(driver, location2) := false

#oper at or wal k-t owar ds-destination(driver, |ocationl, |ocation2)
cprint wal k(driver, locationl, |ocation2)

rat ot
. precond [t] at(driver, locationl) &
([t] path(locationl, l|ocation2)) &
exi sts dest |
[t] destination(driver, dest) &
[t] wal ki ng-di stance-between(l ocationl, dest) >
wal ki ng-di stance-bet ween(l ocation2, dest) ] &
| ocationl !'= | ocation2
:duration $maketi me(val ue(t, time-to-wal k(locationl, location2))) :as t2
: resources [+1, +t2] :borrow semdriver(driver) :anount 1
: cont ext
.effects [+1] at(driver, locationl) := false,
[+t2] at(driver, location2) := true,
[+1,+t2 - 1] going-to(driver, location2) := true,
[+t2] going-to(driver, location2) := false
: cont ext
. precond [t] destination(driver, |ocation2) |

exi sts dest |
destination(driver, dest) &
I reasonabl e-driver-location(driver, dest) ]
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reffects [+t2] destination(driver, location2) := false

#define [t] driving-di stance-to-reasonabl e-destination(truck, |ocation):
val ue(t, mndist-driving(location,
to,
[t] reasonabl e-truck-location(truck, to)))

#define [t] reasonabl e-truck-location(truck, |ocation):
([t] reasonabl e-truck-1ocation-cached(truck, |ocation))
(([t] $avail abl e(obj ects-to-nove-at(location)) !==0) &
(([t] at(truck, location))
|

exists truck2 [

truck2 !'= truck &

[t] 'empty(truck2) &

[t] at(truck2, location) | &
lexists truck2 |

truck2 !'=truck &

[t] 'Tenmpty(truck2) &

[t] going-to(truck2, location) | &
lexists truck2 |

truck2 !'= truck &

([t] 'enpty(truck2)) &

$committed(t+1, going-to(truck2, location), true)]))

#define [t] reasonabl e-truck-1ocation-cached(truck, |ocation):
exi sts obj |
[t] in(obj, truck) &
goal (at(obj, location)) ] |
([t] all-objects-at-their-destinations &
(goal (at (truck, location))
('goal ('at(truck, location)) &
exists driver [
[t] driving(driver, truck) &
goal (at(driver, location)) 1)))

#define [t] reasonabl e-driver-1location(driver, |ocation):
([t] 'all-objects-at-their-destinations) &
exists truck [
[t] at(truck, location) &
([t] empty(truck)) &
' $comm tted(t+1, enpty(truck), false) ] |
[t] all-objects-at-their-destinations &
([t] all-nondriven-trucks-at-their-destinations-or-have-conmitted-
drivers &
goal (at(driver, location))
([t] 'all-nondriven-trucks-at-their-destinations-or-have-conmtted-
drivers) &
exists truck [
[t] at(truck, location) &
goal ('at(truck, location)) &
lexists driver2 [
driver2 !'= driver &
([t] at(driver2, location) |
goi ng-to(driver2, location) |
driving(driver2, truck)) 1 1)

#control :name "only-Ioad-when-necessary"
forall t, obj, locationl |
([t] at(obj, locationl)) &
([t+1] 'at(obj, locationl)) ->
goal ('at (obj, locationl)) ]

111



#control :name "only-unl oad-when-necessary"
forall t, obj, truck |
([t] in(obj, truck)) &
([t+1] !in(obj, truck)) ->
exists location [
[t] at(truck, location) &
goal (at(obj, location)) ] ]

#control :name "trucks-stay-until-everything-1loaded-and-unl oaded"
forall t, truck, location |
[t] at(truck, location) &
[t+1] 'at(truck, |ocation) ->
([t] $avail abl e(obj ects-to-nmove-at(location)) == 0) &
lexists obj |
[t] in(obj, truck) &
goal (at(obj, location)) ] ]

#control :nane "only-board-when-necessary"
forall t, driver, truck, location |
[t] !'driving(driver, truck) &
at (truck, location) ->
([t+1] !driving(driver, truck)) |
([t] driving-distance-to-reasonabl e-destination(truck, |ocation)
== {0, 9999}) |
exi sts obj |
[t] at(obj, location) &
goal (!at (obj, location)) ] ]

#control :name "only-di senbar k- when-necessary"
forall t, driver, truck |
[t] driving(driver, truck) ->
([t+1] driving(driver, truck)) |
exi sts location |
([t] at(truck, location)) &
('exists obj [
goal (!at (obj, location)) &
$commi tted(t+1, in(obj, truck), true)
[t] in(obj, truck) ] &
I'goal ('at(truck, location))) ] ]

#control :nane "only-di senbar k- when-you- have- a- goal "
forall t, driver, truck [
([t] driving(driver, truck)) ->
([t+1] driving(driver, truck)) |
exists location [
goal (at(driver, location)) ] |
exi sts location, truck2 [
[t] at(truck, location) &
at (truck2, location) &
empty(truck2) &
I reasonabl e-truck-1 ocation(truck2, location) ] ]

#define [t] all-objects-at-their-destinations:
forall obj, location |
goal (at(obj, location)) -> [t] at(obj, location) ]

#define [t] all-nondriven-trucks-at-their-destinations-or-have-comitted-
drivers:
forall truck, location [

([t] empty(truck) &

goal (at(truck, location))) ->

(([t] at(truck, location))

exi sts location2, driver [

[t] at(truck, location2) &
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([t] destination(driver, |ocation2)
[t] at(driver, location2) &
I'goal (at(driver, location2))) 1) 1]

B.10 Rovers STRIPS

#domain integer :integer :Ib O :ub 1000

#domai n rover :elenments {}
#domai n waypoi nt :elenments {}
#domain store :elenments {}
#domai n canera :elenents {}
#domai n node :elenments {}
#domai n | ander :elenments {}
#domai n obj ective :elenments {}

#f eature at (rover, waypoint) :domain bool ean :injective

#feature at | ander (| ander, waypoint) :domain boolean :injective
#feature can_traverse(rover, waypoi nt, waypoint) :domain boolean :function
#f eature equi pped_for_soil _anal ysi s(rover) :domain bool ean :function
#f eat ure equi pped_for_rock_anal ysi s(rover) :domain bool ean :function
#f eat ure equi pped_for_i magi ng(rover) :domain bool ean :function
#feature enpty(store) :domain bool ean

#f eature have_rock_anal ysi s(rover, waypoint) :domain bool ean

#f eature have_soil _anal ysi s(rover, waypoi nt) :domain bool ean

#feature full (store) :domain bool ean

#feature calibrated(canera, rover) :donmain boolean :injective

#f eature supports(canera, node) :donmin boolean :function

#f eature avail abl e(rover) :domain bool ean

#f eature visi bl e(waypoi nt, waypoi nt) :domain bool ean :function

#f eature have_i mage(rover, objective, node) :domain bool ean

#f eat ure conmmuni cat ed_soi | _dat a(waypoi nt) :domai n bool ean

#f eature comuni cat ed_r ock_dat a(waypoi nt) :donmai n bool ean

#f eature comuni cat ed_i mage_dat a( obj ecti ve, node) :donmai n bool ean
#feature at_soil _sanpl e(waypoi nt) :domain bool ean

#feature at_rock_sanpl e(waypoi nt) :domai n bool ean

#feature visible_fromobjective, waypoint) :domain boolean :function
#feature store_of (store, rover) :donmain boolean :injective

#feature calibration_target(camera, objective) :domain boolean :function
#f eature on_board(canera, rover) :domain boolean :injective :function
#f eat ure channel _free(l ander) :domain bool ean

#f eat ure sonmeone_has_rock_anal ysi s(waypoi nt) :domai n bool ean
#f eature sonmeone_has_soi |l _anal ysi s(waypoi nt) :domai n bool ean
#f eat ure sonmeone_has_i mage( obj ective, node) :donmai n bool ean

#def f eat ure rovi ng-di stance-to-reasonabl e-1 ocati on(rover, waypoi nt)
. domai n i nt eger
#def f eat ure reasonabl e-rover-| ocati on(rover, waypoint) :domain bool ean
#di stfeature roving-di stance-between(rover, waypointl, waypoint?2)
:domain integer :link can_traverse
#nmi ndi stfeature mndi st-roving :feature roving-di stance-between :donai n integer

/'l Taking an image destroys the canmeras calibration so you can’'t take two inages
/1 with one canmera at the same tinme.

#resource semtake_ i mage(canera) :dommin integer :preference :none

/] Don't take two inages of the same objective with the same node at the sane

/1l time becausse it will generate two have_i mage(rover, objective, node).
#resource sem have_i nage(obj ective, node) :donmmin integer :preference :none

/1 The |l ander has only one conmuni cati on channel

#resource sem comuni cat e_dat a(l ander) :domain integer :preference :none

/] Don't do two actions that fills the store of a rover at the sanme tine.
#resource semstore(store) :dommin integer :preference :none

113



/1 Don't sanple the sane rock or soil twice
#resource semrock_sanpl e(waypoi nt) :donmain integer :preference :none
#resource semsoil _sanpl e(waypoi nt) :donain integer :preference :none

#dom [0] forall canera [
$init(semtake i mage(canera)) == 1 &
$mi ni nunm(sem t ake_i mage(canera)) == 0 &
$maxi mun(sem t ake_i mage(canera)) == 1 ]
#dom [0] forall objective, node [
$i nit (sem have_i mage(objective, node)) == 1 &
$m ni mum(sem have_i mage(obj ective, nmode)) == 0 &
$maxi mun(sem have_i mage(obj ective, node)) == 1 ]
#dom [ 0] forall |ander |
$ini t(sem comuni cate_data(l ander)) == 1 &
$m ni mrum(sem communi cate_data(l ander)) == 0 &
$maxi munm(sem comuni cat e_dat a(l ander)) == 1]
#dom [0] forall store |
$init(semstore(store)) == 1 &
$m ni num(sem store(store)) == 0 &
$maxi mun(sem store(store)) == 1 ]
#dom [ 0] forall waypoint |
$ini t(semrock_sanpl e(waypoint)) == 1 &
$m ni mum(sem r ock_sanpl e(waypoint)) == 0 &
$maxi mum(sem r ock_sanpl e(waypoint)) == 1]
#dom [ 0] forall waypoint [
$init(semsoil _sampl e(waypoint)) == 1 &
$mi ni num(sem soi | _sanpl e(waypoint)) == 0 &
$maxi mum(sem soi | _sanpl e(waypoint)) == 1 ]

#operator sanple_soil(rover, store, waypoint)

cat ot

: precond [t] at(rover, waypoint) &
[t] at_soil _sanpl e(waypoint) &
[t] equi pped_for_soil _anal ysis(rover) &
[t] store_of (store, rover) &
[t] enpty(store)

:resources [+1] :borrow semstore(store) :amount 1,
[+1] :borrow sem soil _sanpl e(waypoint) :amount 1

. cont ext
.effects [+1] empty(store) := false,
[+1] full(store) := true,
[+1] have_soil _anal ysis(rover, waypoint) := true,
[ +1] soneone_has_soil _anal ysi s(waypoint) := true,

[+1] at_soil _sanpl e(waypoint) := fal se

#operator sanple_rock(rover, store, waypoint)

cat ot

: precond [t] at(rover, waypoint) &
[t] at_rock_sanpl e(waypoint) &
[t] equi pped_for_rock_anal ysis(rover) &
[t] store_of (store, rover) &
[t] enpty(store)

:resources [+1] :borrow semstore(store) :amount 1,
[+1] :borrow semrock_sanpl e(waypoint) :amount 1

. cont ext
.effects [+1] empty(store) := false,
[+1] full(store) := true,
[ +1] have_rock_anal ysis(rover, waypoint) := true,
[ +1] soneone_has_rock_anal ysi s(waypoi nt) := true,

[+1] at_rock_sanpl e(waypoint) := fal se
#oper ator take_i mage(rover, waypoint, objective, canera, node)
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cat ot
. precond ] calibrated(canera, rover) &
] on_board(canera, rover) &
] equi pped_for_inaging(rover) &
] supports(canera, node) &
] visible_ from objective, waypoint) &
t] at(rover, waypoint)) &
/1 Don’t take imges that you al ready have.
[t] !have_i mage(rover, objective, nopde)
:resources [+1] :borrow semtake inage(canera) :amount 1
[+1] :borrow sem have_i nmage(objective, node) :anmount 1

[t
[t
[t
[t
[t
q

. cont ext
.effects [ +1] have_i nage(rover, objective, node) := true,
[ +1] soneone_has_inage(objective, node) := true,
[+1] calibrated(canera, rover) := fal se
/1 The rover must not have changed | ocation while taking the
/'l picture.
[+1] at(rover, waypoint) := true

#operator communi cate_soil _data(rover, |ander, waypointl, waypoi nt2, waypoint3)
cat t
. precond ] at(rover, waypoint2) &
] at_lander (|l ander, waypoint3) &
] have_soil _anal ysi s(rover, waypointl) &
] visible(waypoint2, waypoint3) &
] avail abl e(rover) &
t] channel _free(lander)) &
/1 Don’t send data that you’ ve already sent.
[t] !comruni cated_soil data(waypoi nt1)
:resources [+1] :borrow sem communi cat e_dat a(l ander) :anount 1
. cont ext
.effects /1 [+1] channel free(l ander) := fal se,
/1[+1] channel free(lander) := true,
[ +1] comruni cated_soil _data(waypointl) := true

[t
[t
[t
[t
[t
q

#oper at or conmuni cate_rock_data(rover, |ander, waypointl, waypoint2, waypoi nt3)
cat ot
. precond ] at(rover, waypoint2) &
] at_l ander (| ander, waypoint3) &
] have_rock_anal ysi s(rover, waypointl) &
] visible(waypoint2, waypoint3) &
] avail abl e(rover) &
t] channel _free(lander)) &
Don’t send data that you've already sent.
] !comruni cat ed_r ock_dat a(waypoi nt 1)
. resources 1] :borrow sem conmuni cate_dat a(l ander) :anount 1
. cont ext
.effects /1 [+1] channel _free(l ander) fal se,
/1[+1] channel _free(l ander) true,
[ +1] communi cat ed_rock_data(waypointl) := true

#oper at or conmuni cate_i mage_dat a(rover, |ander, objective, node, waypoint?2,

waypoi nt 3)
cat ot
: precond [t] at(rover, waypoint2) &
[t] at_l ander (|l ander, waypoint3) &
[t] have_i mage(rover, objective, node) &
[t] visible(waypoint2, waypoint3) &
[t] avail abl e(rover) &
([t] channel _free(lander)) &
/1 Don’t send data that you’ ve already sent.
[t] !'communi cated_i nage_dat a( obj ecti ve, node)
. resources [ +1] :borrow sem conmuni cate_dat a(l ander) :anount 1
: cont ext
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ceffects /1[+1] channel free(lander) := false,
/1[+1] channel free(lander) := true,
[ +1] communi cat ed_i nage_dat a(obj ecti ve, nobde) := true

#operator calibrate(rover, canera, objective, waypoint)

cat ot

. precond [t] equi pped_for _imging(rover) &
[t] calibration_target(canera, objective) &
[t] at(rover, waypoint) &
[t] visible fron{objective, waypoint) &
[t] on_board(canera, rover)

. cont ext

.effects [+1] calibrated(camera, rover) := true

/1 The rover nust not have changed | ocation while calibrating
/1 the canera.
[+1] at(rover, waypoint) := true

#operator drop(rover, store)

cat ot

: precond [t] store_of(store, rover) &
[t] full(store)

. cont ext

.effects [+1] full(store) := false,
[+1] enpty(store) := true
#operator navi gate(rover, waypoi ntl, waypoint2)

cat ot

. precond [t] can_traverse(rover, waypointl, waypoint2) &
[t] avail abl e(rover) &
[t] at(rover, waypointl) &
([t] visible(waypointl, waypoint2)) &
waypointl ! = waypoint2 &
/1 Only navigate if we are not at a reasonable | ocation, and
/1 there exists a reasonabl e destination and navigating brings
/] us closer toit.
[t] roving-distance-to-reasonabl e-1ocation(rover, waypointl)

== {0, 999} &
[t] roving-distance-to-reasonabl e-location(rover, waypointl) >
rovi ng- di st ance-t o-reasonabl e-1 ocati on(rover, waypoi nt2)
: cont ext
.effects [+1] at(rover, waypointl) := false,

[+1] at(rover, waypoint2) := true

/1l A waypoint is reasonable for a rover if:
#define [t] reasonabl e-rover-1location(rover, waypoint):
/1 W need to go get a rock sanple.
(goal (communi cat ed_r ock_dat a(waypoi nt)) &
[t] at_rock_sanpl e(waypoint) &
[t] !'soneone_has_rock_anal ysi s(waypoint) &
[t] equipped_for_rock_anal ysis(rover)) |
/1 W need to go get a soil sanple.
(goal (conmuni cat ed_soi | _dat a(waypoint)) &
[t] at_soil _sanpl e(waypoint) &
[t] !'soneone_has_soil _anal ysi s(waypoint) &
[t] equipped_for_soil _analysis(rover)) |
/1 W need to go take an image of an objective visible fromit.
exi sts node, objective [
goal (conmuni cat ed_i mage_dat a(obj ecti ve, node)) &
[t] visible_fron(objective, waypoint) &
[t] !'soneone_has_i mage(obj ective, node) &
([t] equi pped_for_inmaging(rover)) &
exi sts canera |
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[t] on_board(canera, rover) &
[t] supports(canera, node) &
[t] calibrated(canera, rover) ]]
/!l W need to go calibrate a canmera to take an i mage.
exi sts node, canera, objective |
goal (conmuni cat ed_i mage_dat a( obj ective, node)) &
[t] !'soneone_has_i mage(objective, node) &
[t] supports(canera, node) &
[t] on_board(canera, rover) &
[t] !'calibrated(canera, rover) &
[t] calibration_target(canera, objective) &
[t] visible_fron{objective, waypoint) ] |
/1 W need to go send rock data to | ander
exi sts waypoi nt 2, waypoint3, |ander [
[t] have_rock_anal ysis(rover, waypoint2) &
[t] !conmmunicated_rock_data(waypoi nt2) &
[t] at_l ander (|l ander, waypoint3) &
[t] visible(waypoint3, waypoint) ] |
/1 W need to go send soil data to | ander
exi sts waypoi nt 2, waypoint3, |ander [
[t] have_soil _anal ysi s(rover, waypoint2) &
[t] !conmmunicated_soil _data(waypoint2) &
[t] at_l ander (|l ander, waypoint3) &
[t] visible(waypoint3, waypoint) ] |
/1 W need to go send image data to | ander
exi sts node, objective, waypoint2, |ander [
[t] have_i mage(rover, objective, node) &
[t] !communi cated_i nage_dat a(obj ective, node) &
[t] at_lander(lander, waypoint2) &
[t] visible(waypoint2, waypoint) ]

#define [t] roving-distance-to-reasonabl e-1ocation(rover, waypointl):
val ue(t, m ndist-roving(rover,
waypoi nt 1,
way poi nt 2,
[t] reasonabl e-rover-|ocation(rover, waypoint2)))

/Il Only sanmple soil if it’s a goal
#control :name "only-sanpl e-goal -soil"
forall t, waypoint [
[t] !'soneone_has_soil _anal ysi s(waypoint) ->
([t+1] !soneone_has_soil _anal ysi s(waypoint)) |
goal (conmuni cat ed_soi | _data(waypoint)) ]

/] Only sanple rock if it’'s a goal
#control :nane "only-sanpl e-goal -rock"
forall t, waypoint [
[t] !'soneone_has_rock_anal ysi s(waypoint) ->
([t+1] !soneone_has_rock_anal ysi s(waypoint)) |
goal (conmuni cat ed_r ock_dat a( waypoi nt)) ]

// Only take image if it’s a goal
#control :nane "only-take-goal -i mages”
forall t, objective, node, rover [
[t] !soneone_has_inage(objective, node) ->
([t+1] !someone_has_i nage(objective, node))
goal (conmuni cat ed_i mage_dat a( obj ecti ve, node)) ]

/1l Only calibrate canmeras that can be used to take inages that are needed in
/'l the goal
#control :nane "only-calibrate-if-camera-needed"
forall t, rover, canera |
[t] !'calibrated(canmera, rover) ->
([t+1] !calibrated(canera, rover)) |
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exi sts objecti
[t] sup
goal (co
[t] !so

[l Only enpty a store if it’s
/1l sanple rock.

#contr ol

:name "only-drop-if-n
forall t, store |

[t] full(store

([t+1] full(st

exi sts rover |

([t] st

exi sts

ve, node |
ports(camera, node) &

mruni cat ed_i mage_dat a(obj ective, node)) &

meone_has_i mage(obj ective, node) ] ]

on a rover that needs it to sanple soil or

eccessary"

) ->
ore)) |

ore_of (store, rover)) &
waypoi nt [
goal (communi cat ed_soi | _data(waypoint)) &

[t] !'soneone_has_soil _anal ysi s(waypoint) &

[t] at_soil _sanpl e(waypoint) &
[t] at(rover, waypoint) &
[t] equipped_for_soil _anal ysis(rover) ]

exi sts waypoi nt [

goal (conmuni cat ed_rock_dat a(waypoint)) &

[t] !'soneone_has_rock_anal ysi s(waypoint) &

[t] at_rock_sanpl e(waypoint) &
[t] at(rover, waypoint) &

[t] equi pped_for_rock_analysis(rover) ] ] ]

B.11 Rovers SimpleTime

#domai

#domai
#domai
#domai
#domai
#domai
#domai
#domai

#f eat ure
#f eat ure
#f eature
#f eature
#f eat ure
#f eat ure
#f eat ure
#f eature
#f eature
#f eat ure
#f eat ure
#f eat ure
#f eature
#f eature
#f eat ure
#f eat ure
#f eat ure
#f eature
#f eature
#f eat ure
#f eat ure
#f eat ure
#f eature
#f eature
#f eat ure

n

5D 353 3533535 335

integer :integer :1b 0O

rover :elenents {}
waypoi nt :elenents {}
store :elements {}
canmera :elements {}
node : el enents {}

| ander :elements {}
obj ective :elenents {}

at (rover, waypoint) :
at _| ander (| ander, way

:ub 1000

dormai n bool ean :injective
poi nt) :domai n boolean :injective

to

can_traverse(rover, waypoint, waypoint) :domain bool ean :function
equi pped_for_soil _anal ysis(rover) :domain boolean :function
equi pped_for_rock_anal ysi s(rover) :domain bool ean :function

equi pped_for _i magi ng(
enpty(store) :domain

rover) :domai n boolean :function
bool ean

have_r ock_anal ysi s(rover, waypoi nt) :domain bool ean
have_soi | _anal ysi s(rover, waypoi nt) :domain bool ean

full (store) :domain b

ool ean

cal i brated(canera, rover) :domain boolean :injective

supports(canera, node

) :domai n bool ean :function

avai |l abl e(rover) :domain bool ean

vi si bl e(waypoi nt, way
have_i mage(rover, obj
comuni cat ed_soi | _dat
comuni cat ed_r ock_dat

poi nt) :domain bool ean :function
ective, node) :domain bool ean
a(waypoi nt) :domai n bool ean
a(waypoi nt) :domai n bool ean

conmuni cat ed_i mage_dat a(obj ecti ve, node) :donain bool ean

at _soi |l _sanpl e(waypoi
at _rock_sanpl e( waypoi
vi si bl e_from(objectiv
store_of (store, rover

calibration_target(canmera, objective) :donmain boolean :function

on_board(canera, rove
channel _free(l ander)

nt) :domai n bool ean

nt) :domain bool ean

e, waypoint) :domain boolean :function
) :dommi n boolean :injective

r) :domain bool ean :function
: domai n bool ean
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/1 Someone has collected a rock or soil sanple or an image or is in the
/1l process of doing so.

#f eat ure soneone_has_rock_anal ysi s(waypoi nt) :domai n bool ean

#f eat ure soneone_has_soil _anal ysi s(waypoi nt) :domai n bool ean

#f eat ure sonmeone_has_i mage( obj ective, node) :donmai n bool ean

/1l The canera has started calibrating but hasn’t finished yet.

#feature calibrating(canmera) :domai n bool ean

#def f eat ure rovi ng-di stance-to-reasonabl e-1 ocati on(rover, waypoi nt)
. domai n i nt eger
#def f eat ure reasonabl e-rover-1| ocati on(rover, waypoint) :domain bool ean
#di stfeature roving-di stance-between(rover, waypointl, waypoint?2)
:domain integer :link can_traverse
#mi ndi stfeature mndi st-roving :feature roving-di stance-between : donai n integer

#resource semtake_i mage(canera) :domain integer :preference :none
#resource sem have_i nage(obj ective, node) :donmmin integer :preference :none
#resource sem comuni cate_dat a(l ander) :domain integer :preference :none
#resource semstore(store) :donamin integer :preference :none

#resource semrock_sanpl e(waypoi nt) :donmain integer :preference :none
#resource sem soil _sanpl e(waypoi nt) :donain integer :preference :none
#resource semrover(rover) :domain integer :preference :none

#dom [0] forall canera [
$init(semtake i mage(canera)) == 1 &
$mi ni nunm(sem t ake_i mage(canera)) == 0 &
$maxi mun(sem t ake_i mage(canera)) == 1 ]
#dom [0] forall objective, node [
$i nit(sem have_i mage(objective, node)) == 1 &
$m ni mum(sem _have_i mage(obj ective, node)) ==
$maxi mum(sem have_i mage(obj ective, node)) ==
#dom [ 0] forall [ander |
$ini t(sem comuni cate_data(l ander)) == 1 &
$mi ni num(sem communi cate_data(l ander)) == 0 &
$maxi munm(sem comuni cat e_dat a(l ander)) == 1]
#dom [0] forall store |
$init(semstore(store)) == 1 &
$m ni num(sem store(store)) == 0 &
$maxi mun(sem store(store)) == 1 ]
#dom [ 0] forall waypoint |
$i ni t (semrock_sanpl e(waypoint)) == 1 &
$m ni mum(sem r ock_sanpl e(waypoint)) == 0 &
$maxi mum(sem r ock_sanpl e(waypoint)) == 1]
#dom [ 0] forall waypoint [
$init(semsoil _sanmpl e(waypoint)) == 1 &
$mi ni nunm(sem soi | _sanpl e(waypoint)) == 0 &
$maxi mum(sem soi | _sanpl e(waypoint)) == 1 ]
#dom [0] forall rover [
$init(semrover(rover)) == 1 &
$m ni mum(sem rover(rover)) == 0 &
$maxi munm(sem rover(rover)) == 1 ]

= O
R

#operator sanple_soil (rover, store, waypoint)
cat ot
. precond [t] at(rover, waypoint) &
[t] at_soil _sanpl e(waypoint) &
[t] equipped_for_soil __anal ysis(rover) &
[t] store_of (store, rover) &
[t] enmpty(store)
:duration 10
i resources [+1, +10] :borrow sem store(store) :anount 1,
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[+1, +10] : borrow sem soil _sanpl e(waypoi nt) :amount 1
[ +1, +10] : borrow nonex semrover(rover) :anount 1

. cont ext
ceffects [+1] enpty(store) := fal se,
[+10] full(store) := true,
[ +10] have_soil _anal ysi s(rover, waypoint) := true,
[ +1] soneone_has_soil _anal ysi s(waypoi nt) := true,
[+1] at_soil _sanpl e(waypoint) := fal se

#oper ator sanpl e_rock(rover, store, waypoint)

cat ot
. precond [t] at(rover, waypoint) &
[t] at_rock_sanpl e(waypoint) &
[t] equipped_for_rock_anal ysis(rover) &
[t] store_of(store, rover) &
[t] enmpty(store)
:duration 8
. resources [+1, +8] :borrow sem store(store) :amount 1,
[+1, +8] :borrow semrock_sanpl e(waypoint) :anount 1
[+1, +8] :borrow nonex semrover(rover) :anount 1
. cont ext
.effects [+1] empty(store) := false,
[+8] full(store) := true,
[ +8] have_rock_anal ysis(rover, waypoint) := true,
[ +1] soneone_has_rock_anal ysi s(waypoi nt) := true,

[+1] at_rock_sanpl e(waypoint) := fal se

#operator take_i mage(rover, waypoint, objective, camera, node)
cat ot

: precond [t] calibrated(canmera, rover) &
[t] on_board(canera, rover) &
[t] equipped_for _imging(rover) &
[t] supports(canera, node) &
[t] visible_fron{objective, waypoint) &
[t] at(rover, waypoint) &
[t] !'soneone_has_i mage(objective, node)
:duration 7
. resources [+1,+7] :borrow sem take_i mage(canera) :anmount 1
[+1, +7] :borrow sem have_i nage(objective, nobde) :anpunt 1
[+1, +7] :borrow nonex semrover(rover) :anount 1
. cont ext
.effects [ +7] have_i nage(rover, objective, node) := true,
[ +1] soneone_has_i mage(obj ective, node) := true,
[+7] calibrated(canera, rover) := fal se
[+7] at(rover, waypoint) := true

#oper at or conmuni cate_soil _data(rover, |ander, waypointl, waypoi nt2, waypoi nt3)
cat ot
: precond t] at(rover, waypoint2) &

] at_Il ander (| ander, waypoint3) &

] have_soil _anal ysi s(rover, waypointl) &

] visible(waypoint2, waypoint3) &

] avail abl e(rover) &

] channel free(lander) &

]

[
[t
[t
[t
[t
[t
[t] !comunicated_soil _data(waypoi nt1)
:duration 10
. resources [ +1, +10] : borrow sem conmuni cate_dat a(l ander) :anount 1
[ +1, +10] : borrow nonex semrover(rover) :anount 1
: cont ext
reffects [1[+1] channel _free(lander) := fal se,
/1 [+10] channel _free(lander) := true,

[ +10] comuni cated_soil _data(waypointl) := true
#oper ator communi cate_rock_data(rover, |ander, waypointl, waypoi nt2, waypoint3)
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cat ot

. precond t] at(rover, waypoint2) &

t] at_l ander (|l ander, waypoint3) &

] have_rock_anal ysi s(rover, waypointl) &
] visible(waypoint2, waypoint3) &
] avail abl e(rover) &
] channel free(l ander) &
]

I comuni cat ed_r ock_dat a( waypoi nt 1)

[
[
[t
[t
[t
[t
[t
:duration 10
:resources [ +1, +10] : borrow sem conmmuni cate_dat a(l ander) :amount 1
[ +1, +10] : borrow nonex semrover(rover) :anount 1
. cont ext
.effects /1 [+1] channel free(lander) := fal se,
/1[+10] channel free(lander) := true,
[ +10] communi cat ed_rock_dat a(waypoi nt1l) := true

#oper at or conmuni cate_i mage_dat a(rover, |ander, objective, node, waypoint2,

waypoi nt 3)
cat ot
: precond [t] at(rover, waypoint2) &
[t] at_l ander (|l ander, waypoint3) &
[t] have_i mage(rover, objective, node) &
[t] visible(waypoint2, waypoint3) &
[t] avail abl e(rover) &
[t] channel free(lander) &
[t] !'communi cated_i nage_dat a( obj ecti ve, nopde)
:duration 15
. resources [ +1, +15] : borrow sem conmuni cat e_dat a(l ander) :anount 1
[+1, +10] :borrow nonex semrover(rover) :anount 1
: cont ext
.effects /1 [+1] channel free(lander) := fal se,
/1 [+15] channel _free(lander) := true,
[ +15] communi cat ed_i mage_dat a( obj ecti ve, node) := true

#operator calibrate(rover, canera, objective, waypoint)
cat ot

. precond [t] equi pped_for _imging(rover) &
[t] calibration_target(canera, objective) &
[t] at(rover, waypoint) &
[t] visible_fron{objective, waypoint) &
[t] on_board(canera, rover) &
[t] 'calibrated(canmera, rover) &
[t] !'calibrating(canera)

:duration 5

:resources [ +1, +5] :borrow nonex semrover(rover) :amunt 1

. cont ext

.effects [+5] calibrated(canmera, rover) := true
[+5] at(rover, waypoint) := true,
[+1] calibrating(canmera) := true
[+5] calibrating(canmera) := fal se
#operator drop(rover, store)

cat ot

: precond [t] store_of(store, rover) &
[t] full(store)

. cont ext

.effects [+1] full(store) := false,
[+1] empty(store) := true
#oper ator navi gate(rover, waypointl, waypoi nt?2)
cat t
. precond [t] can_traverse(rover, waypointl, waypoint2) &

[t] avail abl e(rover) &
[t] at(rover, waypointl) &
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[t] visible(waypointl, waypoint2) &

waypointl ! = waypoint2 &

[t] roving-distance-to-reasonabl e-1ocation(rover, waypointl)
== {0, 999} &

[t] roving-di stance-to-reasonabl e-location(rover, waypointl) >
rovi ng-di stance-to-reasonabl e-1 ocati on(rover, waypoi nt2)

:duration 5
. resources [+1, +5] :borrow semrover(rover) :anmount 1
: cont ext
ceffects [+1] at(rover, waypointl) := fal se,
[+5] at(rover, waypoint2) := true

#define [t] reasonabl e-rover-|ocation(rover, waypoint):
(goal (communi cat ed_rock_dat a(waypoint)) &
[t] at_rock_sanpl e(waypoint) &
[t] !'soneone_has_rock_anal ysi s(waypoin
[t] equipped_for_rock_anal ysis(rover))
(goal (conmuni cat ed_soi | _dat a(waypoint)) &
[t] at_soil _sanpl e(waypoint) &
[t] !'soneone_has_soil _anal ysi s(waypoint) &
[t] equipped_for_soil _analysis(rover)) |
exi sts node, objective [
goal (conmuni cat ed_i mage_dat a(obj ecti ve, node)) &
[t] visible_ fron(objective, waypoint) &
[t] !'soneone_has_i mage(obj ective, node) &
([t] equi pped_for_inmaging(rover)) &
exi sts canera |
[t] on_board(canera, rover) &
[t] supports(canera, nopde) &
[t] calibrated(canera, rover) ]]
exi sts node, camera, objective |
goal (conmuni cat ed_i mage_dat a(obj ecti ve, node)) &
[t] !soneone_has_inage(objective, node) &
[t] supports(canera, node) &
[t] on_board(canera, rover) &
[t] !'calibrated(canmera, rover) &
[t] calibration_target(canmera, objective) &
[t] visible_fron{objective, waypoint) ] |
exi sts waypoi nt2, waypoi nt3, |ander [
[t] have_rock_anal ysi s(rover, waypoint2) &
[t] !conmmunicated_rock_data(waypoi nt2) &
[t] at_lander(l ander, waypoint3) &
[t] visible(waypoint3, waypoint) ] |
exi sts waypoi nt2, waypoi nt3, |ander [
[t] have_soil _anal ysi s(rover, waypoint2) &
[t] !conmmunicated_soil _data(waypoint2) &
[t] at_lander(l ander, waypoint3) &
[t] visible(waypoint3, waypoint) ] |
exi sts node, objective, waypoint2, |ander [
[t] have_i mage(rover, objective, node) &
[t] !'communi cated_i nage_dat a(obj ective, node) &
[t] at_lander(lander, waypoint2) &
[t] visible(waypoint2, waypoint) ]

t) &
I

#define [t] roving-distance-to-reasonabl e-1ocation(rover, waypointl):
val ue(t, m ndist-roving(rover,
waypoi nt 1,
way poi nt 2,
[t] reasonabl e-rover-I|ocation(rover
waypoi nt2)))

#control :name "only-sanpl e-goal -soil"
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forall t, waypoint [
[t] !soneone_has_soil _anal ysi s(waypoint) ->
([t+1] !soneone_has_soil _anal ysi s(waypoint)) |
goal (conmuni cat ed_soi | _dat a(waypoi nt)) ]

#control :nane "only-sanpl e-goal -rock"
forall t, waypoint [
[t] !soneone_has_rock_anal ysi s(waypoint) ->
([t+1] !soneone_has_rock_anal ysi s(waypoint)) |
goal (conmuni cat ed_r ock_dat a( waypoi nt)) ]

#control :nane "only-take-goal -i mages"
forall t, objective, node, rover |
[t] !soneone_has_inage(objective, node) ->
([t+1] !soneone_has_i mage(objective, node))
goal (conmmuni cat ed_i mage_dat a( obj ecti ve, node)) ]

#control :nane "only-calibrate-if-camera-needed"
forall t, rover, canera |

[t] !calibrating(camera) &

([t+1] calibrating(canmera)) ->

exi sts objective, node [
[t] supports(canera, node) &
goal (conmuni cat ed_i mage_dat a(obj ecti ve, node)) &
[t] !soneone_has_inage(objective, node) ]]

#control :nane "only-drop-if-neccessary"
forall t, store [
[t] full(store) ->
([t+1] full(store)) |
exi sts rover |
([t] store_of(store, rover)) &
exi sts waypoint |
goal (communi cat ed_soi | _dat a(waypoint)) &
[t] !soneone_has_soil _anal ysi s(waypoint) &
[t] at_soil _sanpl e(waypoint) &
[t] at(rover, waypoint) &
[t] equipped_for_soil _analysis(rover) ] |
exi sts waypoi nt [
goal (communi cat ed_r ock_dat a(waypoint)) &
[t] !'soneone_has_rock_anal ysi s(waypoint) &
[t] at_rock_sanpl e(waypoint) &
[t] at(rover, waypoint) &
[t] equipped_for_rock_anal ysis(rover) ] 1]

B.12 Rovers Timed

#timescal e 0.001

#domai n integer :integer :1b O :ub 1000000
#domai n fi xedpoint :fixedpoint :1b O :ub 200000 :decinals 4

#domai n rover :elenments {}
#domai n waypoi nt :elenments {}
#domai n store :elenments {}
#domai n canera :elenents {}
#domai n node :elenments {}
#domai n | ander :elements {}
#domai n obj ective :elenments {}

#feature at(rover, waypoi nt) :domain boolean :injective
#feature at_| ander (| ander, waypoint) :donmain boolean :injective
#feature can_traverse(rover, waypoi nt, waypoint) :domain boolean :function
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#f eat ure equi pped_for_soil _anal ysi s(rover) :domain bool ean :function
#f eat ure equi pped_for_rock_anal ysi s(rover) :domain bool ean :function
#f eat ure equi pped_for _i magi ng(rover) :domain bool ean :function

#f eature enpty(store) :domain bool ean

#f eat ure have_rock_anal ysi s(rover, waypoint) :domain bool ean

#f eature have_soil _anal ysi s(rover, waypoi nt) :domain bool ean
#feature full (store) :domai n bool ean

#feature calibrated(canmera, rover) :domain boolean :injective

#f eat ure supports(canera, node) :donain bool ean :function

#f eature avail abl e(rover) :domain bool ean

#f eature visi bl e(waypoi nt, waypoi nt) :domain bool ean :function

#f eature have_i mage(rover, objective, node) :donmain bool ean

#f eature comuni cat ed_soi | _dat a(waypoi nt) :domai n bool ean

#f eat ure communi cat ed_rock_dat a(waypoi nt) :domai n bool ean

#f eat ure communi cat ed_i nage_dat a( obj ecti ve, node) :domain bool ean
#feature at_soil _sanpl e(waypoi nt) :domain bool ean

#f eature at_rock_sanpl e(waypoi nt) :domain bool ean

#feature visible_fronm(objective, waypoint) :domain boolean :function
#feature store_of (store, rover) :donain boolean :injective

#feature calibration_target(canera, objective) :domain boolean :function
#f eature on_board(canera, rover) :domai n boolean :function

#f eature channel free(lander) :donmain bool ean

#feature i n_sun(waypoi nt) :domain bool ean :function

#f eature energy(rover) :domain fixedpoint :function

#resource renergy(rover) :domain fixedpoint :preference :none
#feature recharge-rate(rover) :domain fixedpoint :function

#f eat ure soneone_has_rock_anal ysi s(waypoi nt) :domai n bool ean
#f eat ure soneone_has_soi |l _anal ysi s(waypoi nt) :domai n bool ean
#f eat ure sonmeone_has_i mage( obj ective, node) :donai n bool ean
#feature calibrating(canmera) :domain bool ean

#f eature rechargi ng(rover) :domai n bool ean

#val uevar from to :donmain waypoint

#def f eat ure rovi ng-di stance-t o-reasonabl e-1ocation(rover, waypoint) :domain

i nt eger

#def f eat ure rovi ng-di stance-to-recharge(rover, waypoint) :domain integer
#def f eat ure reasonabl e-rover-1 ocation(rover, waypoint) :domain bool ean
#def f eat ure reasonabl e-rover-1| ocati on-dont-care-energy(rover, waypoint) :domain
bool ean

#di stfeature roving-di stance-between(rover, waypointl, waypoint2) :domain
integer :link can_traverse

#nmi ndi stfeature mndi st-roving :feature roving-di stance-between :donai n integer

#def f eat ure enough-energy-for-expedition(rover, from to) :domain bool ean
#def f eat ure have-enough-energy(rover, fixedpoint) :donmain bool ean :uncached

#resource semtake_i mage(canera) :dommin integer :preference :none
#resource sem have_i nage(obj ective, node) :donmin integer :preference :none
#resource sem conmuni cate_dat a(l ander) :domain integer :preference :none
#resource semstore(store) :dommin integer :preference :none

#resource sem rock_sanpl e(waypoint) :domain integer :preference :none
#resource sem soil _sanpl e(waypoint) :domain integer :preference :none
#resource semrover(rover) :domain integer :preference :none

#resource nutex_energy :dommin integer :preference :none

#dom [0] forall canera [

$init(semtake_i mage(canmera)) == 1 &

$mi ni nunm(sem t ake_i mage(canera)) == 0 &

$maxi mun(sem t ake_i mage(canera)) == 1 ]
#dom [ 0] forall objective, node [

$ini t(sem have_i mage(objective, node)) == 1 &
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#dom [ 0] foral

#dom [ 0] foral

#dom [ 0] foral

#dom [ 0] foral

#dom [ 0] foral

#dom [ 0] foral

$m ni mum(sem have_i mage(obj ective, node)) ==
$maxi mum(sem have_i mage(obj ective, node)) ==
| ander [

$ini t(sem comuni cate_data(l ander)) == 1 &
$m ni mum(sem communi cat e_dat a(l ander)) == 0
$maxi mun(sem communi cat e_dat a(l ander)) == 1
store |

$init(semstore(store)) == 1 &

$m ni num(sem store(store)) == 0 &

$maxi mun(sem store(store)) == 1 ]

waypoi nt [

$init(semrock_sanpl e(waypoint)) == 1 &

$m ni munm(sem r ock_sanpl e(waypoint)) ==
$maxi mum(sem r ock_sanpl e(waypoi nt)) ==
waypoi nt [
$init(semsoil _sanmpl e(waypoint)) == 1 &
$m ni munm(sem soi | _sanpl e(waypoint)) == 0
$maxi mum(sem soi | _sanpl e(waypoint)) == 1
rover [

$init(semrover(rover)) == 1 &

$m ni mum(semrover(rover)) == 0 &

$maxi nunm(sem rover(rover)) == 1 ]

rover |

$init(renergy(rover)) == energy(rover) &
$m ni munm(renergy(rover)) == 0.0 &

$maxi mun(renergy(rover)) == 81.0 ]

= O
R

R

[ )
R

R

#dom [0] S$init(mutex_energy) == 1 &
$mi ni mun( nmut ex_energy) == 0 &
$maxi munm( nmut ex_ener gy) ==

#operator recharge(rover, waypoint)

cat t
: precond

:duration

[t] at(rover, waypoint) &
[t] in_sun(waypoint) &
[t] $avail abl e(renergy(rover)) < 80.0 &
[t] !'rechargi ng(rover)
/1 Duration is: amount of energy charged / recharge rate of
/1 rover. $max to make sure that the duration is not |ess than
/1 one time step (which is not allowed).
$maket i me($cast (fi xedpoi nt,

i nt eger,

val ue(t, $nmax(1.0,

1000.0 * (80.0 -

$avail abl e(renergy(rover))) / recharge-rate(rover))))) :as t2

.resources

. cont ext
.effects

[+1, +t2] :borrow nonex semrover(rover) :anount 1
/'l Recieved energy is: recharge duration * recharge rate of
/1 rover.
[+t2] :produce renergy(rover)
camount $mekeval ue(fi xedpoint, t2) *
recharge-rate(rover) / 1000. O,
[ +1] :borrow nutex_energy :anount 1

[+1,+t2 - 1] recharging(rover) := true,
[+t 2] recharging(rover) := fal se

#operator sanple_soil (rover, store, waypoint)

cat t
: precond

[t] at(rover, waypoint) &

[t] at_soil _sanpl e(waypoint) &

[t] equipped_for_soil _anal ysis(rover) &
[t] store_of (store, rover) &

[t] enpty(store) &
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[t] have-enough-energy(rover, 3.0)
:duration 10000 :as t2
. resources [+1, +t2] :borrow sem store(store) :anount 1,
[+1, +t 2] :borrow sem soil _sanpl e(waypoi nt) :amount 1
[+1, +t 2] :borrow nonex semrover(rover) :anount 1
[ +1] :consune renergy(rover) :amount 3.0,
[ +1] :borrow nutex_energy :anount 1

. cont ext
ceffects [+1] enpty(store) := fal se,
[+t2] full(store) := true
[+t 2] have_soil _anal ysi s(rover, waypoint) := true,
[ +1] soneone_has_soil _anal ysi s(waypoi nt) := true,
[+1] at_soil _sanpl e(waypoint) := fal se

#oper ator sanpl e_rock(rover, store, waypoint)

cat t

. precond [t] at(rover, waypoint) &
[t] at_rock_sanpl e(waypoint) &
[t] equipped_for_rock_anal ysis(rover) &
[t] store_of(store, rover) &
[t] enpty(store) &
[t] have-enough-energy(rover, 5.0)

:duration 8000 :as t2

:resources [+1, +t 2] :borrow sem store(store) :anount 1,
[+1, +t 2] : borrow semrock _sanpl e(waypoi nt) :amount 1
[+1, +t2] :borrow nonex semrover(rover) :anount 1
[ +1] :consune renergy(rover) :amount 5.0,
[ +1] :borrow nutex_energy :anount 1

: cont ext

ceffects [+1] enpty(store) := fal se,

[+t2] full(store) := true,
[+t 2] have_rock_anal ysi s(rover, waypoint) := true,
[ +1] soneone_has_rock_anal ysi s(waypoi nt) := true,
[+1] at_rock_sanpl e(waypoint) := fal se

#operator take_i mage(rover, waypoint, objective, camera, node)
cat ot

. precond [t] calibrated(canera, rover) &
[t] on_board(canera, rover) &
[t] equi pped_for_inmaging(rover) &
[t] supports(canera, node) &
[t] visible_fron(objective, waypoint) &
[t] at(rover, waypoint) &
([t] !'soneone_has_i mage(objective, node)) &
[t] have-enough-energy(rover, 1.0)

:duration 7000 :as t2

. resources [+1, +t2] :borrow semtake_image(canera) :anount 1
[+1, +t 2] :borrow sem have_i nage(objective, node) :amunt 1
[+1, +t 2] :borrow nonex semrover(rover) :anount 1
[+1] :consume renergy(rover) :anount 1.0,
[ +1] :borrow nutex_energy :anount 1

. cont ext

.effects [+t 2] have_i mage(rover, objective, node) := true,

[ +1] soneone_has_i nage(objective, nbde) := true,
[+t2] calibrated(canmera, rover) := false
[+t2] at(rover, waypoint) := true

#oper at or conmuni cate_soil _data(rover, |ander, waypointl, waypoint2, waypoi nt3)
cat ot
: precond [t] at(rover, waypoint2) &
[t] at_l ander (|l ander, waypoint3) &
[t] have_soil _anal ysis(rover, waypointl) &
[t] visible(waypoint2, waypoint3) &
[t] avail abl e(rover) &
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[t] channel free(lander) &
([t] !comuni cated_soil _data(waypointl)) &
[t] have-enough-energy(rover, 4.0)
:duration 10000 :as t2
:resources [+1, +t 2] : borrow sem comruni cate_dat a(l ander) :amount 1
[ +1] :consune renergy(rover) :amount 4.0,
[ +1] :borrow nutex_energy :anount 1

. cont ext
ceffects [+1] avail abl e(rover) := false,
[+1] channel free(lander) := fal se,
[+t 2] channel free(lander) := true,
[+t 2] communi cated_soil _data(waypointl) := true,
[+t 2] avail abl e(rover) := true

#oper ator communi cate_rock_data(rover, |ander, waypointl, waypoi nt2, waypoint3)
cat t
. precond at (rover, waypoint2) &
at _| ander (| ander, waypoint3) &
have rock_anal ysi s(rover, waypointl) &
vi si bl e(waypoi nt 2, waypoi nt3) &
avai l abl e(rover) &
channel free(l ander) &
t] !communi cated_rock_data(waypointl)) &
[t] have-enough-energy(rover, 4.0)
:duration 10000 :as t2
. resources [+1, +t 2] :borrow sem conmuni cate_dat a(l ander) :anount 1
[ +1] :consune renergy(rover) :amount 4.0,
[ +1] :borrow nutex_energy :anount 1

— e e e —

[t
[t
[t
[t
[t
[t
([

: cont ext
ceffects [+1] avail abl e(rover) := false,
[ +1] channel free(lander) := false,
[+t 2] channel _free(lander) := true,
[+t 2] communi cat ed_rock_data(waypointl) := true,
[+t2] avail abl e(rover) := true

#oper at or conmuni cat e_i mage_dat a(rover, |ander, objective, node, waypoint 2,
waypoi nt 3)
cat ot
: precond at (rover, waypoint2) &
at _| ander (I ander, waypoint3) &
have_i mage(rover, objective, node) &
vi si bl e(waypoi nt 2, waypoi nt3) &
avai l abl e(rover) &
channel _free(l ander) &
t] !communi cat ed_i mage_dat a(obj ective, node)) &
[t] have-enough-energy(rover, 6.0)
:duration 15000 :as t2
. resources [+1, +t2] :borrow sem conmuni cate_dat a(l ander) :anount 1
[+1] :consume renergy(rover) :anount 6.0,
[+1] :borrow nutex_energy :anmount 1

[ S T S i Sy S—

[t
[t
[t
[t
[t
[t
([

. cont ext
.effects [ +1] avail abl e(rover) := fal se,
[ +1] channel free(lander) := false,
[+t2] channel free(l ander) := true,
[+t 2] conmmuni cat ed_i mage_dat a(obj ective, node) := true
[+t 2] avail abl e(rover) := true

#operator calibrate(rover, canera, objective, waypoint)
cat ot
: precond [t] equipped_for _inmaging(rover) &
[t] calibration_target(canera, objective) &
[t] at(rover, waypoint) &
[t] visible_fron(objective, waypoint) &
[t] on_board(canera, rover) &
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[t] 'calibrated(canmera, rover) &
[t] 'calibrating(canera) &
[t] have-enough-energy(rover, 2.0)
:duration 5000 :as t2
. resources [+1, +t2] :borrow nonex semrover(rover) :anount 1
[ +1] :consune renergy(rover) :amount 2.0,
[ +1] :borrow nutex_energy :anount 1

: cont ext
ceffects [+t2] calibrated(canmera, rover) := true
[+t2] at(rover, waypoint) := true
[+1] calibrating(canera) := true
[+t2] calibrating(canera) := fal se

#operator drop(rover, store)

cat t
. precond [t] store_of (store, rover) &
[t] full(store)
:duration 1000 :as t2
:resources [+1] :borrow nutex_energy :anmount 1
. cont ext

.effects [+1] full(store) := false,
[+t 2] enpty(store) := true

#oper ator navi gate(rover, waypointl, waypoi nt2)

cat t
. precond [t] can_traverse(rover, waypointl, waypoint2) &
[t] avail abl e(rover) &
[t] at(rover, waypointl) &
[t] visible(waypointl, waypoint2) &
waypointl ! = waypoint2 &
[t] roving-distance-to-reasonabl e-l1ocation(rover, waypointl) !==
{0, 999} &

[t] roving-di stance-to-reasonabl e-location(rover, waypointl) >
rovi ng- di st ance-to-reasonabl e-1 ocati on(rover, waypoi nt2)
:duration 5000 :as t2
. resources [+1, +t2] :borrow semrover(rover) :anount 1,
[ +1] :consune renergy(rover) :amount 8.0,
[+1] :borrow nutex_energy :anmount 1
: cont ext
.effects [+1] at(rover, waypointl) := false,
[+t2] at(rover, waypoint2) := true

/1 Taking energy into account, a location is reasonable for a rover if:
#define [t] reasonabl e-rover-1|ocation(rover, to):
exists from]
([t] at(rover, from) &
/1 1t’s a place in the sun and either we don’t have enough energy
/1 to do one action and then go recharge or
/1 there are no other reasonable |ocations that we can reach with
/1 the avail abl e energy.
(([t] in_sun(to) &
(([t] $avail abl e(renergy(rover)) <
$cast (i nt eger,

fi xedpoint,
val ue(t, roving-distance-to-recharge(rover, fron))
* 8.0 + 8.0) |

I exists waypoint3 |
waypoint3 !'=to &
[t] enough-energy-for-expedition(rover, from
waypoi nt3) &
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[t] reasonabl e-rover-I|ocation-dont-care-energy(rover,
waypoint3) 1)) |
/1 There is enough energy to go to place, do sonething and then
/1 go recharge and that place is reasonable.
([t] enough-energy-for-expedition(rover, from to) &
[t] reasonabl e-rover-|ocation-dont-care-energy(rover, to))) ]

/1l There is enough energy for the rover to go between fromand to, perform
/] at |east one action and still have energy left to reach a recharge | ocation
#define [t] enough-energy-for-expedition(rover, from to):
[t] S$cast (integer,
fi xedpoi nt,
val ue(t, roving-di stance-between(rover, from to) +
rovi ng-di stance-to-recharge(rover, to)))
* 8.0 + 8.0 <
$avai |l abl e(renergy(rover))

/1 Wthout taking energy into account, a location is reasonable for a rover if
/1 it can performsonme action there that hel ps achi eve the goals.
#define [t] reasonabl e-rover-| ocation-dont-care-energy(rover, waypoint):
(goal (comuni cat ed_rock_dat a(waypoint)) &
[t] at_rock_sanpl e(waypoint) &
[t] !'soneone_has_rock_anal ysi s(waypoin
[t] equipped_for_rock_anal ysis(rover))
(goal (conmuni cat ed_soi | _dat a(waypoint)) &
[t] at_soil _sanpl e(waypoint) &
[t] !'soneone_has_soil _anal ysi s(waypoint) &
[t] equipped_for_soil _analysis(rover)) |
exi sts node, objective [
goal (conmuni cat ed_i mage_dat a(obj ecti ve, node)) &
[t] visible_ fron(objective, waypoint) &
[t] !'soneone_has_i mage(obj ective, node) &
([t] equi pped_for_inmaging(rover)) &
exi sts canera |
[t] on_board(canera, rover) &
[t] supports(canera, nopde) &
[t] calibrated(canera, rover) ]]
exi sts node, camera, objective |
goal (conmuni cat ed_i mage_dat a(obj ecti ve, node)) &
[t] !soneone_has_inage(objective, node) &
[t] supports(canera, node) &
[t] on_board(canera, rover) &
[t] !'calibrated(canmera, rover) &
[t] calibration_target(canmera, objective) &
[t] visible_fron(objective, waypoint) ] |
exi sts waypoi nt2, waypoi nt3, |ander [
[t] have_rock_anal ysi s(rover, waypoint2) &
[t] !conmmunicated_rock_data(waypoi nt2) &
[t] at_lander(l ander, waypoint3) &
[t] visible(waypoint3, waypoint) ] |
exi sts waypoi nt2, waypoi nt3, |ander [
[t] have_soil _anal ysi s(rover, waypoint2) &
[t] !conmmunicated_soil _data(waypoint2) &
[t] at_lander(lander, waypoint3) &
[t] visible(waypoint3, waypoint) ] |
exi sts node, objective, waypoint2, |ander [
[t] have_i mage(rover, objective, node) &
[t] !'communi cated_i nage_dat a(obj ective, node) &
[t] at_lander(l ander, waypoint2) &
[t] visible(waypoint2, waypoint) ]

t) &
I

#define [t] roving-distance-to-reasonabl e-1ocation(rover, waypointl):
val ue(t, m ndist-roving(rover,
waypoi nt 1,
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waypoi nt 2,
[t] reasonabl e-rover-|ocation(rover, waypoint2)))

/1 The distance to the cl osest waypoint that can be used to recharge the rover.
#define [t] roving-di stance-to-recharge(rover, waypointl):
val ue(t, m ndist-roving(rover,
waypoi nt 1,
way poi nt 2,
[t] in_sun(waypoint2)))

/1 A rover has enough energy to do an action that consunes the anpunt of energy
/1l passed in the fixedpoint argunment if it can do the action and still have
/1 enough energy to reach a recharge | ocation
#define [t] have-enough-energy(rover, fixedpoint):
exi sts waypoi nt [
[t] at(rover, waypoint) &
[t] S$cast (integer,

fi xedpoi nt,
val ue(t, roving-di stance-to-recharge(rover, waypoint)))
* 8.0 <

(%avail abl e(renergy(rover)) - fixedpoint) ]

#control :nane "only-sanpl e-goal -soil™
forall t, waypoint [
[t] !soneone_has_soil _anal ysi s(waypoint) ->
([t+1] !soneone_has_soil _anal ysi s(waypoint)) |
goal (conmuni cat ed_soi | _data(waypoint)) ]

#control :name "only-sanpl e-goal -rock"
forall t, waypoint [
[t] !'soneone_has_rock_anal ysi s(waypoi nt) ->
([t+1] !soneone_has_rock_anal ysi s(waypoint)) |
goal (conmuni cat ed_rock_dat a(waypoint)) ]

#control :name "only-take-goal -i nages"
forall t, objective, node, rover |
[t] !'soneone_has_i mage(obj ective, node) ->
([t+1] !someone_has_i nage(objective, node))
goal (conmuni cat ed_i mage_dat a(obj ecti ve, node)) ]

#control :nane "only-calibrate-if-camera-needed”
forall t, rover, canera |

[t] 'calibrating(canera) &

([t+1] calibrating(canera)) ->

exi sts objective, node [
[t] supports(canera, node) &
goal (conmuni cat ed_i mage_dat a( obj ective, node)) &
[t] !'soneone_has_i mage(objective, node) ] ]

#control :name "only-drop-if-neccessary"
forall t, store [
[t] full(store) ->
([t+1] full(store))
exi sts rover |
([t] store_of(store, rover)) &
exi sts waypoint |
goal (conmuni cat ed_soi | _data(waypoint)) &
[t] !'soneone_has_soil _anal ysi s(waypoint) &
[t] at_soil_sanpl e(waypoint) &
[t] at(rover, waypoint) &
[t] equipped_for_soil _analysis(rover) ] |
exi sts waypoint |
goal (conmuni cat ed_rock_dat a(waypoint)) &
[t] !soneone_has_rock_anal ysi s(waypoint) &
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[t] at_rock_sanpl e(waypoint) &
[t] at(rover, waypoint) &
[t] equi pped for_rock_analysis(rover) ] ] ]

B.13 Satellite STRIPS

#domain integer :integer :Ib O :ub 20

#domai n satellite :elements {}
#domai n direction :elenments {}
#domai n i nstrunent :elenments {}
#domai n node :elenents {}

#val uevar old _direction, new direction :domain direction

#f eature on_board(instrunent, satellite) :domain boolean :injective

#f eature supports(instrunent, node) :donmain bool ean :function

#feature pointing(satellite, direction) :donmain boolean :injective

#feature power_avail (satellite) :domain bool ean

#f eature power_on(instrunment) :domain bool ean

#feature calibrated(instrunent) :domain bool ean

#f eat ure have_i mage(direction, node) :domain bool ean

#feature calibration_target(instrument, direction) :domain boolean :function

#deffeature goal _direction(satellite, direction) :domain bool ean
#deffeature all _i mages_col |l ected : domai n bool ean

#def feature take_ i mage_possi bl e(satellite, direction) :domain bool ean
#def f eat ure useful ness(instrunent) :domain integer

#def f eat ure node_needed_f or _goal (node) :domai n bool ean

#operator take_inage(satellite, direction, instrunent, node)
cat ot
. precond [t] calibrated(instrunent) &
[t] on_board(instrument, satellite) &
[t] supports(instrunment, node) &
[t] power_on(instrunent) &
([t] pointing(satellite, direction)) &
/1 Don’t take images that we already have.
([t] !'have_i mage(direction, node)) &
I'$committed(t+1, have_i nage(direction, node), true)
. cont ext
.effects [ +1] have_i nage(direction, node) := true,
/1l The satellite nmust not change direction while the picture is
/1 being taken.
[+1] pointing(satellite, direction) := true

#operator switch_on(instrunment, satellite)

cat t
: precond [t] on_board(instrunment, satellite) &
[t] power_avail (satellite)
. cont ext
.effects [ +1] power _on(instrument) := true,
[+1] calibrated(instrument) := false
[+1] power _avail (satellite) := fal se

#operator turn_to(satellite, new direction, old_direction)

cat t
: precond [t] pointing(satellite, old _direction) &
[t] new direction != old _direction
: cont ext
.effects [+1] pointing(satellite, new direction) := true,
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[+1] pointing(satellite, old_direction) := fal se

#operator switch_off(instrunent, satellite)

rat ot

: precond [t] on_board(instrument, satellite) &
[t] power_on(instrunent)

. cont ext

.effects [ +1] power _on(instrunment) := false,
[+1] power_avail (satellite) := true

#operator calibrate(satellite, instrunent, direction)

cat ot

. precond [t] on_board(instrunent, satellite) &
[t] calibration_target(instrument, direction) &
[t] pointing(satellite, direction) &
[t] power_on(instrunent) &
[t] !'calibrated(instrunent)

. cont ext

ceffects [+1] calibrated(instrunent) := true

#control :nane "only-take-pictures-of-goal s"
forall t, direction, node |
[t] !have_inage(direction, node) &
[t+1] have_i mage(direction, node) ->
goal (have_i mage(direction, node)) ]

#control :name "only-point-in-goal-directions”
forall t, satellite, direction |
[t] pointing(satellite, direction) ->
([t+1] pointing(satellite, direction)) |
exi sts new direction [
[t+1] pointing(satellite, new direction) &
([t] goal _direction(satellite, new direction)) ] ]

/1 1t is useful for the satellite to point in the direction if:
#define [t] goal direction(satellite, direction):
/1 An image in the direction is possible and is a goal
([t] take_i mage_possible(satellite, direction)) |
/1 W need to calibrate an instrunent.
exi sts instrunent |
[t] calibration_target(instrunment, direction) &
[t] on_board(instrunment, satellite) &
[t] !'calibrated(instrument) &
[t] power_on(instrument) ] |
/1l Pointing in the direction is a goal and all inages have been
/1 coll ected.
(goal (pointing(satellite, direction)) &
[t] all_imges_coll ected)

/1l If the satellite points in the direction, the instrunmentation is ready to
/!l take a picture of it, the picture has not been taken and taking the picture
/'l is a goal
#define [t] take_image_possible(satellite, direction):
exi sts node |
goal (have_i mage(direction, node)) &
I'$comm tted(t+1, have_i mage(direction, node), true) &
([t] !'have_i nage(direction, node)) &
exi sts instrument [
[t] supports(instrunent, node) &
[t] on_board(instrunent, satellite) &
[t] power_on(instrunent) &
[t] calibrated(instrunent) ]]
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#define [t] all _i mges_col |l ect ed:
lexists direction, node [
goal (have_i mage(directi on, node)) &
[t] !'have_inage(direction, node) ]

// Don’t turn towards a direction that another satellite has already decided
/l to turn to.
#control :name "don’t-all-point-in-sane-direction"
forall t, satellite, direction |

[t] !'pointing(satellite, direction) ->

([t+1] !pointing(satellite, direction)) |

lexists satellite2 |

$committed(t+1, pointing(satellite2, direction), true) ] ]

/1 An instrument is nore useful the nore imaging nodes it supports that are
/1l needed to fulfill the goals.
#define [t] useful ness(instrunent):
val ue(t, $sun{<npde>
[t] supports(instrument, node) &
node_needed_f or _goal ( node),
1))

/1 A node is needed if at |least one goal is to have an inage using that node
/1 and we have not yet taken that image.
#define [t] nobde_needed_for_goal (node):
exists direction |
goal (have_i mage(direction, node)) &
[t] !'have_inage(direction, node) ]

/!l Only power on an instrument if there are no other instrunments that are nore
/1 useful or that are already sw tched on
#control :name "use-the-nost-useful-instrunment”
forall t, instrunent |
[t] !'power_on(instrunent) ->
([t+1] !power_on(instrunent)) |
([t] useful ness(instrunment) > 0) &
lexists satellite, instrunent2 [
[t] useful ness(instrunent2) > useful ness(instrunent) &
[t] on_board(instrument, satellite) &
[t] on_board(instrunent2, satellite) ] ]

/1l Only power off an instrunent if it is no |onger of any use.
#control :name "don't-swtch-instrunent-off-if-you-don’'t-have-to"
forall t, instrunent |
[t] power_on(instrunent) ->
([t+1] power_on(instrunment)) |
lexi sts node |
[t] supports(instrument, node) &
[t] node_needed_for_goal (node) ] ]

B.14 Satellite SimpleTime

#domai n integer :integer :Ib O :ub 2000

#domai n satellite :elenents {}

#domai n direction :elenents {}

#domai n i nstrunent :elenents {}

#domai n node :elenments {}

#val uevar ol d_direction, new direction :domain direction

#feature on_board(instrunment, satellite) :domain boolean :function
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#f eature supports(instrunent, node) :donmain bool ean :function

#feature pointing(satellite, direction) :donmain boolean :injective

#f eature power _avail (satellite) :domain bool ean

#f eat ure power _on(instrunment) :domain bool ean

#feature calibrated(instrunent) :domain bool ean

#f eature have_i mage(direction, node) :domain bool ean

#feature calibration_target(instrument, direction) :domain boolean :function

/] Satellite has started turning but not finished.

#feature turning _towards(satellite, direction) :dormain boolean :injective
/'l Someone has taken the image or is in the process of taking it.

#f eature have_i mage_general i zed(di recti on, node) :domain bool ean

/!l The instrunent is powered on or powering on

#f eat ure power _on_generalized(instrument) :domain bool ean

/1 The instrument has started calibrating but not finished.

#feature calibrating(instrunent) :domain bool ean

#deffeature goal _direction(satellite, direction) :domain bool ean

#def feature all _i mages_col |l ected : domai n bool ean

#def feature take_ i mage_possi bl e(satellite, direction) :domain bool ean
#def f eat ure useful ness(instrunent) :domain integer

#def f eat ure node_needed_f or _goal (node) :domai n bool ean

/1 Don’t power up two instruments on the sane satellite at the sanme tine.
#f eature sem power_on(satellite, instrunent) :donmain boolean :injective
// 1If an instrunent is power_on it nmust al so be power_on_generali zed.
#assert forall t, instrunment [
[t] power_on(instrunent) -> power_on_generalized(instrunent) ]

#operator take_imge(satellite, direction, instrument, node)
cat ot

. precond [t] calibrated(instrunent) &
[t] on_board(instrunent, satellite) &
[t] supports(instrunment, node) &
[t] power_on(instrument) &
[t] pointing(satellite, direction) &
([t] !have_i mage_general i zed(direction, node)) &
I'$comm tted(t+1, have_i nmage_generalized(direction, node), true)
:duration 7
: cont ext
.effects [ +7] have_i nage(direction, node) := true,
[ +1, +7] power _on(instrunment) := true,
[+1,+7] pointing(satellite, direction) := true,
[+1] have_i mage_general i zed(direction, node) := true

#operator switch_on(instrunment, satellite)

cat ot

. precond [t] on_board(instrunent, satellite) &
[t] power_avail (satellite) &
[t] !power_on(instrunment) &
[t] !power_on_generalized(instrunent)

:duration 2

. cont ext

ceffects [+2] power _on(instrument) := true,

[+1] calibrated(instrunment) := fal se,
[ +1] power _avail (satellite) := fal se
[ +1] power _on_generalized(instrunent) := true,

/1 Powering on nore than one instrunment on this satellite
/1 at the same time will give sem power_on conflicting

/1 values and is therefore inpossible.

[ +1] sem power _on(satellite, instrunment) := true

#operator turn_to(satellite, new direction, old_direction)
citerate (satellite, old _direction, new direction)

134



at ot

. precond [t] pointing(satellite, old direction) &
[t] new direction !'= old _direction

:duration 5

: cont ext

.effects [+1] turning towards(satellite, new direction) := true,

[+1] pointing(satellite, old direction) := false,
[+5] pointing(satellite, new direction) := true,
[+5] turning towards(satellite, new direction) := fal se

#operator switch_off(instrunent, satellite)

cat ot

. precond [t] on_board(instrunent, satellite) &
[t] power_on(instrument) &
[t] power _on_generalized(instrunent)

:duration 1

. cont ext

.effects [ +1] power _on(instrunment) := false,

[ +1] power _on_generalized(instrument) := false,
[+1] power _avail (satellite) := true

#operator calibrate(satellite, instrunent, direction)

cat ot

: precond [t] on_board(instrument, satellite) &
[t] calibration_target(instrument, direction) &
[t] pointing(satellite, direction) &
[t] power_on(instrunent) &
[t] 'calibrated(instrunment) &
[t] !calibrating(instrunent)

:duration 5

. cont ext

.effects [+5] calibrated(instrunment) := true,

[ +1, +5] power _on(instrunment) := true,
[+1] calibrating(instrunent) := true,
[+5] calibrating(instrunent) := fal se

#control :name "only-take-pictures-of-goal s"
forall t, direction, node |
[t] !'"have_i nage_generalized(direction, node) &
[t+1] have_i mage_general i zed(direction, node) ->
goal (have_i nage(direction, node)) ]

#control :name "only-point-in-goal-directions"”
forall t, satellite, direction |
[t] pointing(satellite, direction) ->
([t+1] pointing(satellite, direction)) |
exi sts new_direction [
[t+1] turning_towards(satellite, new direction) &
([t] goal _direction(satellite, new direction)) ]]

#define [t] goal direction(satellite, direction):

([t] take_i mage_possible(satellite, direction)) |

exi sts instrument |
[t] calibration_target(instrunment, direction) &
[t] on_board(instrunent, satellite) &
[t] 'calibrated(instrunment) &
[t] power_on(instrument) ] |

(goal (pointing(satellite, direction)) &

[t] all_images_coll ected)

#define [t] take_inage_possible(satellite, direction):
exi sts node [
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goal (have_i mage(direction, node)) &
([t] !have_i mage(direction, node)) &
exi sts instrunent |
[t] supports(instrument, node) &
[t] on_board(instrument, satellite) &
[t] power_on(instrunent) &
[t] calibrated(instrunent) ]]

#define [t] all _inmages_collected:
lexists direction, node [
goal (have_i mage(direction, node)) &
[t] !'have_i nage(direction, node) ]

#control :name "don’t-all-point-in-sane-direction"
forall t, satellite, direction |
[t] 'turning towards(satellite, direction) ->
([t+1] !'turning_towards(satellite, direction))
lexists satellite2 |
$committed(t+1, turning towards(satellite2, direction),
true) ] ]

#define [t] useful ness(instrunent):
val ue(t, $sun(<nopde>,
[t] supports(instrument, node) &
node_needed_f or_goal (npde),
1))

#define [t] node_needed_for_goal (node):
exists direction [
goal (have_i mage(direction, node)) &
[t] !'have_i nage(direction, node) ]
#control :name "use-the-nost-useful-instrunment”
forall t, instrunent |
[t] !power_on_generalized(instrunent) ->
([t+1] !power_on_generalized(instrument)) |
([t] useful ness(instrunment) > 0) &
lexists instrument2 [
[t] useful ness(instrunent?2) > useful ness(instrunent)
[t] power _on(instrument2) ]]

#control :nane "don t-switch-instrunent-off-if-you-don’t-have-to”"
forall t, instrunent |
[t] power_on_generalized(instrunent) ->
([t+1] power_on_generalized(instrunment)) |
lexi sts node |
[t] supports(instrunent, node) &
[t] nmode_needed_for_goal (npode) ]]

B.15 Satellite Timed

#ti mescal e 0.001

#domai n integer :integer :1b O :ub 1000000
#domai n fi xedpoint :fixedpoint :Ib O :ub 100000 :decinmals 4

#domai n satellite :elenents {}
#domai n direction :elenments {}
#domai n i nstrunent :elenents {}
#domai n node :elenments {}

#val uevar ol d_direction, new direction :domain direction
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#feature on_board(instrunent, satellite) :domain bool ean :function

#f eature supports(instrunment, node) :donain boolean :function

#feature pointing(satellite, direction) :donmain boolean :injective

#f eature power _avail (satellite) :domain bool ean

#f eat ure power _on(instrunment) :domain bool ean

#feature calibrated(instrunment) :donmain bool ean

#f eature have_i mage(direction, node) :domain bool ean

#feature calibration_target(instrument, direction) :domain boolean :function

#feature slew tine(direction, direction) :domain fixedpoint :function
#feature calibration_tinme(instrument, direction) :domain fixedpoint :function

#feature turning_towards(satellite, direction) :domain boolean :injective
#f eat ure have_i mage_general i zed(direction, node) :domain bool ean

#f eat ure power _on_generalized(instrument) :domain bool ean

#feature calibrating(instrunent) :domain bool ean

#f eature sem power_on(satellite, instrunent) :domain boolean :injective

#deffeature goal _direction(satellite, direction) :domain bool ean

#def feature all _i mages_col |l ected : donmai n bool ean

#deffeature take_i nage_possi bl e(satellite, direction) :domain bool ean
#def f eat ure useful ness(instrunent) :domain integer

#def f eat ure node_needed_f or _goal (node) :domai n bool ean

#resource semtake_ i mage(instrunment, node) :domain integer :preference :none

#assert forall t, instrunment [
[t] power_on(instrunent) -> power_on_generalized(instrunent) ]

#dom [0] forall instrunent, node [
$init(semtake_i mage(instrument, node)) == 1 &
$mi ni nunm(sem t ake_i mage(i nstrunent, node)) == 0 &
$maxi mum(sem t ake_i mage(i nstrunent, node)) == 1 ]

#operator take_inage(satellite, direction, instrunent, node)
cat ot
. precond [t] calibrated(instrunent) &
[t] on_board(instrument, satellite) &
[t] supports(instrument, node) &
[t] power_on(instrunent) &
[t] pointing(satellite, direction) &
[t] !'have_i nage_generalized(direction, node)

:duration 7000 :as t2
:resources [+1, +t 2] :borrow semtake i mage(i nstrunment, node) :anount 1
. cont ext
.effects [+t 2] have_i mage(direction, node) := true,
[ +1, +t 2] power _on(instrument) := true,
[+1, +t 2] pointing(satellite, direction) := true,
[+1] have_i mage_general i zed(direction, node) := true

#operator switch_on(instrunment, satellite)

cat ot
: precond [t] on_board(instrument, satellite) &
([t] power_avail (satellite)) &
([t] !power_on(instrunent)) &
([t] !power_on_generalized(instrument))
:duration 2000 :as t2
: cont ext
ceffects [+t2] power_on(instrunent) := true,
[+1] calibrated(instrunment) := false
[ +1] power _avail (satellite) := fal se
[ +1] power _on_generalized(instrunent) := true,
[+1] sem power_on(satellite, instrument) := true
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#operator turn_to(satellite, new direction, old_direction)
citerate (satellite, old_direction, new. direction)

cat t
: precond [t] pointing(satellite, old_direction) &
[t] new direction !'= old _direction
:duration $maket i me( $cast (fi xedpoi nt,
i nt eger,

val ue(t, 1000.0 * slew tinme(old direction
new direction)))) :as t2

. cont ext
.effects [+1] turning towards(satellite, new direction) := true,
[+1] pointing(satellite, old direction) := false,
[+t2] pointing(satellite, new direction) := true,
[+t2] turning_towards(satellite, new direction) := false

#operator switch_off(instrunent, satellite)

cat ot

: precond [t] on_board(instrument, satellite) &
[t] power_on(instrument) &
[t] power_on_generalized(instrunent)

:duration 1000 :as t2

. cont ext

ceffects [+t2] power _on(instrunent) := fal se,

[ +1] power _on_generalized(instrument) := false,
[+t 2] power _avail (satellite) := true

#operator calibrate(satellite, instrunent, direction)
cat ot
: precond t] on_board(instrunent, satellite) &
t] calibration_target(instrunment, direction) &
t] pointing(satellite, direction) &
t] power_on(instrunent) &
t] !calibrated(instrument) &
t] !calibrating(instrunent)
maket i me( $cast (fi xedpoi nt,
i nt eger,
val ue(t, 1000.0 * calibration_time(instrunent,

:duration

[
[
[
[
[
[
$

direction)))) :as t2

: cont ext
.effects [+t2] calibrated(instrunment) := true,
[ +1, +t 2] power _on(instrument) := true,
[+1] calibrating(instrunment) := true,
[+t2] calibrating(instrunent) := false

#control :nane "only-take-pictures-of-goal s2"
forall t, direction, node |
[t] !have_i mage_generalized(direction, node) &
[t+1] have_i mage_general i zed(direction, node) ->
goal (have_i nage(direction, node)) ]

#control :name "only-point-in-goal-directions”
forall t, satellite, direction [
[t] pointing(satellite, direction) ->
([t+1] pointing(satellite, direction)) |
exi sts new direction [
[t+1] turning_towards(satellite, new direction) &
([t] goal _direction(satellite, new direction)) ]]

#define [t] goal direction(satellite, direction):
([t] take_image_possible(satellite, direction)) |
exi sts instrument |
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[t] calibration_target(instrument, direction) &
[t] on_board(instrunent, satellite) &
[t] 'calibrated(instrument) &
[t] power _on(instrument) ] |
(goal (pointing(satellite, direction)) &
[t] all _images_coll ected)

#define [t] take_inage_possible(satellite, direction):
exi sts node [

goal (have_i mage(direction, node)) &

([t] !have_i mage(direction, node)) &

exi sts instrunent |
[t] supports(instrunent, node) &
[t] on_board(instrument, satellite) &
[t] power_on(instrument) &
[t] calibrated(instrunent) ]]

#define [t] all _i mges_col |l ected:
lexists direction, node [
goal (have_i nage(direction, node)) &
[t] !'have_i nage(direction, node) ]

#control :nane "don't-all-point-in-sane-direction”
forall t, satellite, direction [
[t] 'turning towards(satellite, direction) ->
([t+1] !'turning_towards(satellite, direction))
lexists satellite2 |
$commi tted(t+1,
turning towards(satellite2, direction),
true) |
[t] turning_towards(satellite2, direction) ] ]

#define [t] useful ness(instrunent):
val ue(t, $sun{<npde>
[t] supports(instrument, node) &
node_needed_f or _goal ( node),
1))

#define [t] node_needed_f or_goal (node):
exists direction [
goal (have_i mage(direction, node)) &
[t] !'have_i nage(direction, node) ]

#control :name "use-the-nost-useful-instrunment”
forall t, instrunent |

[t] !power _on_generalized(instrunent) ->

([t+1] !power_on_generalized(instrument)) |

([t] useful ness(instrunment) > 0) &

lexists instrument2 [
[t] useful ness(instrunent?2) > useful ness(instrunent)
[t] power_on(instrunent2) ]]

#control :nane "don t-switch-instrunent-off-if-you-don’t-have-to”"
forall t, instrunent |
[t] power_on_generalized(instrunent) ->
([t+1] power_on_generalized(instrunent)) |
lexi sts node |
[t] supports(instrunent, node) &
[t] node_needed_for_goal (nmode) ]]

B.16 UM Translog-2

#domai n integer :integer :I1b O :ub 10000
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#domai n obj ect :elements { regularp, bulky, liquid, granular, cars, nail
regul arv, flatbed, tanker, hopper, auto, air,
truck, airplane, train,
road-route, rail-route, air-route,
airport, train-station }

#domai n regi on :parent object :elements {}
#domain city :parent object :elements {}
#domai n | ocation : parent object :elenments {}
#domai n package :parent object :elenents {}
#domai n vehicle :parent object :elenents {}
#domai n route : parent object :elenents {}
#domai n equi prent : parent object :elenents {}

/'l The package types.

#domai n ptype :parent object :elenments { regularp, bulky, liquid,
granul ar, cars, nail }

/'l The vehi cl e subtypes.

#domai n vtype :parent object :elenents { regularv, flatbed, tanker
hopper, auto, air }

/'l The vehicle types.

#domai n vptype :parent object :elements { truck, airplane, train }

/1l The route types.

#domai n rtype :parent object :elenents { road-route, rail-route, air-route }

I/ The |l ocation types.

#domain |type :parent object :elements { airport, train-station }

#domai n crane :parent equi pnent :elenments {}

#domai n pl ane-ranp : parent equi prent :elenents {}

#val uevar location-from |ocation-to, |ocation-goal :domain |ocation
#val uevar city-from city-to :domain city

#f eature at-equi prent (equi pnent, |ocation) :domain boolean :function :injective
#f eat ure at - packagec(package, crane) :domain boolean :injective
#f eat ure at - packagel (package, |ocation) :donain boolean :injective
#f eat ure at - packagev(package, vehicle) :domain boolean :injective
#feature at-vehicle(vehicle, |location) :domain boolean :injective
#f eature avail abl el (I ocati on) :donain bool ean :function
#feature avail abler(route) :domai n boolean :function
#f eat ure avail abl ev(vehicle) :donmain boolean :function
#f eat ure chut e-connect ed(vehi cl e) :domai n bool ean
#feature clear :domain bool ean
#f eature connect-city(route, rtype, cityl, city2) :domain boolean :function
#f eature connect-loc(route, rtype, locationl, |ocation2)
:donai n bool ean :function
#f eat ure delivered(package, |ocation) :domain boolean :injective
#f eat ure door-open(vehicle) :domain bool ean
#f eature enpty(crane) :domain bool ean
#f eature fees-coll ected(package) :domain bool ean
#f eat ure hose-connect ed(vehicl e) :domai n bool ean
#feature h-start(package) :domain bool ean
#f eature hub(l ocation) :domai n boolean :function
#feature in-city(location, city) :domain boolean :function
#feature in-region(city, region) :domain boolean :function
#f eat ure nove(package) :domai n bool ean
#f eat ure nove-enp(vehicle) :domain bool ean
#f eature over (package) :domai n bool ean
#f eature pv-conpati bl e(ptype, vtype) :domain bool ean :function
#f eat ure ranp-connect ed(vehicle, plane-ranp) :domain bool ean :injective
#f eat ure ranp-down(vehicle) :domain bool ean
#feature rv-conpatibl e(rtype, vptype) :domain bool ean :function
#f eature serves(location, region) :donain boolean :function
#feature tcenter(location) :domain boolean :function
#f eature t-end(package) :donmain bool ean
#feature t-start(package) :domain bool ean
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#feature typel (1 ocation, Itype) :donmain boolean :function :injective

#f eature typep(package, ptype) :domain boolean :function :injective-always
/1l Vehicle is of subtype vtype.

#f eature typev(vehicle, vtype) :domain boolean :function :injective-al ways
/I Vehicle is of type vptype.

#feature typevp(vehicle, vptype) :domain boolean :function :injective-always

#feature unload(vehicle) :domain boolean

#feature valve-open(vehicle) :domain boolean

#feature distance(locationl, location2) :domain integer :function
#feature gas-left(vehicle) :domain integer

#feature gpm(vehicle) :domain integer :function

#feature height-v(vehicle) :domain integer :function
#feature height-cap-I(location) :domain integer :function
#feature height-cap-r(route) :domain integer :function
#feature length-v(vehicle) :domain integer :function
#feature length-cap-I(location) :domain integer :function
#feature local-height(city) :domain integer :function
#feature local-weight(city) :domain integer :function
#feature volume-cap-c(crane) :domain integer :function
#feature volume-cap-I(location) :domain integer :function
#feature volume-cap-v(vehicle) :domain integer :function
#feature volume-load-I(location) :domain integer :function
#feature volume-load-v(vehicle) :domain integer :function
#feature volume-p(package) :domain integer :function
#feature weight-cap-c(crane) :domain integer :function
#feature weight-cap-r(route) :domain integer :function
#feature weight-cap-v(vehicle) :domain integer :function
#feature weight-p(package) :domain integer :function
#feature weight-load-v(vehicle) :domain integer :function
#feature weight-v(vehicle) :domain integer :function
#feature width-v(vehicle) :domain integer :function
#feature width-cap-I(location) :domain integer :function

#deffeature in-wrong-city(package, location) :domain boolean
#deffeature in-same-city(locationl, location2) :domain boolean
#deffeature at-packagel-generalized(package, location) :domain boolean

#deffeature package-vehicle-compatible(package, vehicle) :domain boolean
#deffeature need-to-move-package-from(package, location) :domain boolean
#deffeature need-to-unload-package-at(package, location) :domain boolean

#deffeature reasonable-vehicle-for-package(package, vehicle, location)
:domain boolean :uncached

#deffeature reasonable-nontruck-for-package(package, vehicle, location)
:domain boolean :uncached

#deffeature reasonable-truck-for-package(package, vehicle, location)
:domain boolean :uncached

#deffeature reasonable-truck-location(vehicle, location, location)
:domain boolean :uncached

#deffeature can-go-by-truck(vehicle, location, location)
:domain boolean :uncached

#deffeature reasonable-nontruck-location(vehicle, location, location)
:domain boolean :uncached

#deffeature can-go-by-nontruck(vehicle, location, location)
:domain boolean :uncached

#resource rvolume-load-I(location) :domain integer :preference :none
#resource rvolume-load-v(vehicle) :domain integer :preference :none
#resource rweight-load-v(vehicle) :domain integer :preference :none
#resource rgas-left(vehicle) :domain integer :preference :none

#resource rpackages-to-deliver :domain integer :preference :none
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#dom [0] forall location |

$init(rvolume-load-I(location)) == volune-load-I(location) &

$mi ni mun(rvol une-1oad-1(location)) == 0 &

$maxi mum(rvol unme-1 oad- | (1 ocation)) == vol unme-cap-1(location) ]
#dom [0] forall vehicle [

$init(rvolume-Iload-v(vehicle)) == volune-1load-v(vehicle) &

$mi ni mun(rvol ume-1oad-v(vehicle)) == 0 &

$maxi mun(rvol une- | oad- v(vehi cl e)) == vol une-cap-v(vehicle) ]
#dom [0] forall vehicle [

$init(rwei ght-load-v(vehicle)) == weight-1oad-v(vehicle) &

$m ni mum(rwei ght -1 oad-v(vehicle)) == 0 &

$maxi munm(rwei ght -1 oad- v(vehi cl e)) == wei ght-cap-v(vehicle) ]

#dom [ 0] forall vehicle [
Sinit(rgas-left(vehicle)) == gas-left(vehicle) &
$m ni num(rgas-l eft(vehicle)) == 0 &
$maxi mun(rgas-left(vehicle)) == 9999 ]

#dom [ 0] $init(rpackages-to-deliver) ==
$sun( <package>,
exists location [
goal (del i ver ed( package, |ocation)) ],
1) &
$m ni nun(r packages-to-deliver) == 0 &
$maxi mum(r packages-t o-deliver) == 9999

#assert forall t, package, |ocation, vehicle [
[t] at-packagev(package, vehicle) ->
I at - packagel (package, | ocation) ]
#assert forall t, package, |ocation, crane |
[t] at-packagec(package, crane) ->
I at - packagel (package, | ocation) ]
#assert forall t, package, vehicle, crane |
[t] at-packagec(package, crane) ->
I at - packagev( package, vehicle) ]
#assert forall t, package, location, |location2 |
[t] delivered(package, |ocation) ->
I at - packagel (package, |ocation2) ]

/1 When all packages have been delivered, the planner nust nmake sure that al

/1l vehicle doors and val ves are closed and all | oadi ng equi pnent di sconnect ed.
#oper ator cl ean-donai n

cat ot

: precond lexists vehicle [

[t] unload(vehicle) &
(([t] typev(vehicle, regularv) &
[t] door-open(vehicle)) |
([t] typev(vehicle, hopper) &
[t] chute-connected(vehicle)) |
([t] typev(vehicle, tanker) &
[t] hose-connected(vehicle)) |
([t] typev(vehicle, tanker) &
[t] val ve-open(vehicle)) |
([t] typev(vehicle, auto) &
[t] ramp-down(vehicle)) |
(([t] typev(vehicle, air)) &
exi sts plane-ranp |
[t] ramp-connected(vehicle, plane-ranp) ]) |
([t] typev(vehicle, air) &
[t] door-open(vehicle))) 1 &
[t] $avail abl e(rpackages-to-deliver) ==
. cont ext
reffects [+1] clear := true
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#operator collect-fees(package)

cat ot
: precond ([t] 'fees-collected(package)) &
lexists location |
[t] delivered(package, |ocation) ]
. cont ext
.effects [ +1] fees-collected(package) := true

#oper ator deliver(package, |ocation)
cat ot
. precond ([t] at-packagel (package, |ocation)) &
lexists location2 [
[t] delivered(package, |ocation2) ]
: resources [+1] :consune rvol une-1oad-1(location) :amunt vol ume-
p(package),
[ +1] :consune rpackages-to-deliver :amount 1
. cont ext
ceffects [ +1] delivered(package, |ocation) := true,
[ +1] at-packagel (package, |ocation) := fal se

/'l Regul ar vehicles must open the door before |oading or unloadi ng packages.
#oper at or open-door-regul ar (vehicl e)

cat ot
: precond [t] !door-open(vehicle) &
[t] typev(vehicle, regularv)
. cont ext
.effects [ +1] door-open(vehicle) := true

/'l And cl ose the door before goi ng anywhere.
#oper ator cl ose-door-regul ar(vehicl e)

cat ot
. precond [t] door-open(vehicle) &
[t] typev(vehicle, regularv)
: cont ext
.effects [ +1] door-open(vehicle) := fal se

/!l Load a package into a regular vehicle.
#oper at or | oad-regul ar (package, vehicle, |ocation)

cat ot
. precond [t] at-vehicle(vehicle, location) &
[t] avail abl ev(vehicle) &
[t] at-packagel (package, | ocation) &
([t] typev(vehicle, regularv)) &
exi sts ptype |
[t] typep(package, ptype) &
[t] pv-conpatible(ptype, regularv) ] &
[t] door-open(vehicle) &
[t] fees-collected(package)
: resources [+1] :consune rvol ume-1oad-1(location) :amunt vol ume-
p(package),
[ +1] :produce rweight-1oad-v(vehicle) :anpbunt weight-p(package),
[ +1] :produce rvol une-1oad-v(vehicle) :anpbunt vol une-p(package)
: cont ext
ceffects [ +1] at-packagev(package, vehicle) := true,

[ +1] at-packagel (package, |ocation) := fal se

/1 Unl oad a package from a regul ar vehicle.
#oper at or unl oad-r egul ar (package, vehicle, |ocation)
rat ot
. precond [t] at-vehicle(vehicle, location) &
[t] at-packagev(package, vehicle) &
[t] typev(vehicle, regularv) &
[t] door-open(vehicle)
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:resources [+1] :produce rvol ume-1load-1(location) :amunt vol unme-
p(package),
[ +1] :consune rweight-1oad-v(vehicle) :anpbunt weight-p(package),
[+1] :consume rvol unme-1oad-v(vehicle) :amunt vol une-p(package)

: cont ext
.effects [ +1] at-packagel (package, |ocation) := true,
[ +1] at-packagev(package, vehicle) := fal se
[ +1] nove(package) := fal se,
[ +1] unl oad(vehicle) := true,
[+1] clear := fal se

/!l Use a crane to pick up a package.
#oper at or pi ck-up- package- ground( package, crane, |ocation)

cat ot
: precond [t] at-equipnent(crane, |ocation) &
[t] at-packagel (package, | ocation) &
[t] enmpty(crane) &
[t] fees-collected(package) &
[t] weight-p(package) <= wei ght-cap-c(crane) &
[t] vol une-p(package) <= vol une-cap-c(crane)
. resources [ +1] :consune rvol une-load-I(location) :anmount vol urme-p(package)
. cont ext
.effects [ +1] at-packagec(package, crane) := true,
[+1] enpty(crane) := fal se,
[ +1] at-packagel (package, |ocation) := fal se

/1l Use a crane to |oad a package on a fl atbed vehicle.
#oper at or put - down- package- vehi cl e(package, crane, vehicle, |ocation)
cat ot
: precond [t] at-equipnent(crane, |ocation) &
[t] at-packagec(package, crane) &
[t] at-vehicle(vehicle, location) &
[t] typev(vehicle, flatbed) &
([t] avail ablev(vehicle)) &
exi sts ptype |
[t] typep(package, ptype) &
[t] pv-conpatible(ptype, flatbed) ] &
[t] fees-coll ected(package)
:resources [+1] :produce rweight-1oad-v(vehicle) :anmunt weight-p(package),
[+1] :produce rvol unme-1oad-v(vehicle) :amunt vol une-p(package)

. cont ext
.effects [+1] empty(crane) := true,
[ +1] at-packagev(package, vehicle) := true,
[ +1] at-packagec(package, crane) := fal se

/!l Use a crane to unload a package froma fl atbed vehicle.
#oper at or pi ck-up- package-vehi cl e( package, crane, vehicle, |ocation)
cat ot
: precond [t] enpty(crane) &
[t] at-equipnent(crane, |ocation) &
[t] at-packagev(package, vehicle) &
[t] at-vehicle(vehicle, location) &
[t] typev(vehicle, flatbed)
:resources [+1] :consume rweight-1oad-v(vehicle) :anmunt weight-p(package),
[+1] :consume rvol unme-1oad-v(vehicle) :amunt vol une-p(package)

. cont ext
.effects [ +1] at-packagec(package, crane) := true,
[+1] empty(crane) := false,
[ +1] at-packagev(package, vehicle) := false

/1l The crane puts the package on the ground.

#oper at or put - down- package- gr ound( package, crane, | ocation)
cat ot
: precond [t] at-equipnent(crane, |ocation) &
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[t] at-packagec(package, crane)

. resources [ +1] :produce rvol une-load-I(location) :anmount vol urme-p(package)
. cont ext
ceffects [ +1] at-packagel (package, location) := true,
[+1] enpty(crane) := true,
[ +1] nove(package) := fal se,
[ +1] at-packagec(package, crane) := fal se

/| Hoppers need to connect a chute before |oading or unloadi ng packages.
#oper at or connect -chut e(vehicle)

cat ot
. precond [t] !'chute-connected(vehicle) &
[t] typev(vehicle, hopper)
: cont ext
ceffects [ +1] chute-connected(vehicle) := true

/1 And di sconnect the chute before going anywhere.
#oper at or di sconnect-chut e(vehi cl e)

cat ot
: precond [t] chute-connected(vehicle) &
[t] typev(vehicle, hopper)
. cont ext
.effects [ +1] chute-connected(vehicle) := fal se

/'l Load a package into a hopper

#operator fill-hopper(package, vehicle, |ocation)
cat ot
. precond [t] chute-connected(vehicle) &

[t] at-vehicle(vehicle, location) &
[t] at-packagel (package, location) &
[t] avail abl ev(vehicle) &
([t] typev(vehicle, hopper)) &
exi sts ptype [
[t] typep(package, ptype) &
[t] pv-conpatibl e(ptype, hopper) ] &
[t] fees-coll ected(package)
. resources [ +1] :consune rvol une-1load-I(location) :amunt vol ume-
p(package),
[+1] :produce rweight-1oad-v(vehicle) :anmunt weight-p(package),
[+1] :produce rvol unme-1oad-v(vehicle) :amunt vol une-p(package)
. cont ext
.effects [ +1] at-packagev(package, vehicle) := true,
[ +1] at-packagel (package, l|ocation) := fal se

/1 Unl oad a package from a hopper
#oper at or enpty- hopper (package, vehicle, |ocation)

cat ot
. precond [t] chute-connected(vehicle) &
[t] at-vehicle(vehicle, location) &
[t] at-packagev(package, vehicle) &
[t] typev(vehicle, hopper)
. resources [ +1] :produce rvol une-1load-I(location) :anmunt vol ume-
p(package),
[+1] :consume rweight-1oad-v(vehicle) :anmunt weight-p(package),
[+1] :consume rvol unme-1oad-v(vehicle) :amunt vol une-p(package)
. cont ext
.effects [ +1] at-packagel (package, |ocation) := true,
[ +1] at-packagev(package, vehicle) := fal se
[ +1] nove(package) := fal se,
[ +1] unl oad(vehicle) := true,
[+1] clear := fal se

/'l Tankers need to connect a hose before opening the valve.
#oper at or connect - hose(vehicl e)
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cat ot
. precond

. cont ext
.effects

[t]
[t]

[ +1] hose-connected(vehicle)

t anker)

I hose- connect ed(vehicle) &
typev(vehicl e,

/1 And di sconnect the hose before goi ng anywhere.
#oper at or di sconnect - hose(vehicl e)

cat t
: precond

: cont ext
.effects

[t] hose-connected(vehicle) &

[t]
[t]

[ +1] hose-connected(vehicle)

t anker)

I'val ve-open(vehicle) &
typev(vehi cl e,

1= true

= fal se

/1l Tankers need to open the val ve before | oadi ng or unl oadi ng packages.
#oper at or open-val ve(vehi cl e)

cat ot
: precond

: cont ext
effects

[t]

I'val ve-open(vehicle) &

[t] hose-connected(vehicle) &

[t]
[+1]

typev(vehicle,

val ve- open(vehi cl e)

t anker)

1= true

/'l And cl ose the valve before disconnecting the hose.
#operator cl ose-val ve(vehicle)

tanker) ] &

: produce rwei ght-1oad-v(vehicle) :anpbunt weight-p(package),
: produce rvol une-1 oad-v(vehicle) :anpount vol une-p(package)

1= true,

cat ot
. precond [t] val ve-open(vehicle) &
[t] typev(vehicle, tanker)
: cont ext
.effects [ +1] val ve-open(vehicle) := fal se
/1l Load a package into a tanker.
#operator fill-tank(package, vehicle, |ocation)
cat ot
. precond [t] at-vehicle(vehicle, location) &
[t] at-packagel (package, | ocation) &
[t] typev(vehicle, tanker) &
([t] avail ablev(vehicle)) &
exi sts ptype [
[t] typep(package, ptype) &
[t] pv-conpatibl e(ptype
[t] val ve-open(vehicle) &
[t] hose-connected(vehicle) &
[t] fees-collected(package)
. resources [ +1] :consune rvol une-1load-I(location) :amunt vol ume-
p(package),
[ +1]
[+1]
: cont ext
.effects [ +1] at-packagev(package, vehicle)
[ +1] at-packagel (package, | ocati on)

/1 Unload a package from a tanker
#oper ator enpty-tank(package, vehicle, |ocation)

cat ot
. precond

.resources
p(package),

at -vehi cl e(vehicl e,
at - packagev( package,
typev(vehicle,
avai | abl ev(vehicle) &

hose- connect ed(vehicle) &
val ve- open(vehi cl e)

| ocation) &
vehicle) &
tanker) &

= fal se

. produce rvolume-1load-1 (Il ocation) :anmount vol une-
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[+1] :consume rweight-1oad-v(vehicle) :amunt weight-p(package),
[ +1] :consune rvol une-1|oad-v(vehicle) :anount vol une-p(package)

. cont ext
ceffects [ +1] at-packagel (package, location) := true,
[ +1] at-packagev(package, vehicle) := false,
[ +1] nove(package) := fal se,
[ +1] unl oad(vehicle) := true,
[+1] clear := fal se

/'l Car transports need to |ower the ranp before | oading or unloading cars.
#operator | ower-ranp(vehicle)

cat ot
. precond [t] !'ranp-down(vehicle) &
[t] typev(vehicle, auto)
: cont ext
.effects [ +1] ranp-down(vehicle) := true

/1 And raise the ranp before going anywhere.
#operator raise-ranp(vehicle)

cat ot
. precond [t] ramp-down(vehicle) &
[t] typev(vehicle, auto)
. cont ext
reffects [+1] ranp-down(vehicle) := fal se

/!l Load a package into a car transport.
#oper at or | oad-cars(package, vehicle, |ocation)

cat ot
: precond ([t] typev(vehicle, auto)) &
exi sts ptype [
[t] typep(package, ptype) &
[t] pv-conpatible(ptype, auto) ] &
[t] avail abl ev(vehicle) &
[t] at-packagel (package, location) &
[t] at-vehicle(vehicle, location) &
[t] ramp-down(vehicle) &
[t] fees-coll ected(package)
. resources [ +1] :consune rvol une-1load-I(location) :amunt vol ume-
p(package),
[+1] :produce rweight-1load-v(vehicle) :amunt weight-p(package),
[ +1] :produce rvol une-1|oad-v(vehicle) :anpbunt vol une-p(package)
. cont ext
.effects [ +1] at-packagev(package, vehicle) := true,

[ +1] at-packagel (package, |ocation) := fal se

/1l Unload a package froma car transport.
#oper at or unl oad- car s(package, vehicle, |ocation)

cat ot
: precond [t] at-packagev(package, vehicle) &
[t] at-vehicle(vehicle, location) &
[t] typev(vehicle, auto) &
[t] ramp-down(vehicle)
. resources [ +1] :produce rvol une-1load-I(location) :anmunt vol ume-
p(package),
[+1] :consume rweight-1oad-v(vehicle) :amunt weight-p(package),
[ +1] :consune rvol une-1|oad-v(vehicle) :anpbunt vol une-p(package)
. cont ext
.effects [ +1] at-packagel (package, |ocation) := true,
[ +1] at-packagev(package, vehicle) := false,
[ +1] nove(package) := fal se,
[ +1] unl oad(vehicle) := true,
[+1] clear := fal se

/1 Aircraft need to attach a conveyor ranp before opening the door
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#operator attach-conveyor-ranp(vehicle, plane-ranp, |ocation)
rat ot
. precond lexists vehicle2 |
[t] ramp-connected(vehicle2, plane-ranp) ] &
[t] at-equiprent(plane-ranp, location) &
([t] typev(vehicle, air)) &
lexi sts plane-ramp2 |
[t] ramp-connected(vehicle, plane-ranp2) ] &
[t] at-vehicle(vehicle, |ocation)
: cont ext
.effects [ +1] ranp-connected(vehicle, plane-ranp) := true

/1 And detach the ranp before goi ng anywhere.
#oper at or det ach-conveyor-ranp(vehicle, plane-ranp, |ocation)
cat ot
. precond [t] ramp-connected(vehicle, plane-ranp) &
[t] at-equiprent(plane-ranp, |ocation) &
[t] at-vehicle(vehicle, location) &
[t] !'door-open(vehicle)
: cont ext
.effects [ +1] ranp-connected(vehicle, plane-ranp) := fal se

/1l Aircraft need to open the door before | oading or unloadi ng packages.
#oper at or open-door-airpl ane(vehicl e)

cat ot
. precond [t] !'door-open(vehicle) &
([t] typev(vehicle, air)) &
exi sts plane-ranp |
[t] ranmp-connected(vehicle, plane-ranp) ]
: cont ext
.effects [ +1] door-open(vehicle) := true

/!l Load package into aircraft.
#oper at or | oad-airpl ane(package, vehicle, |ocation)

cat ot
. precond [t] at-packagel (package, | ocation) &
[t] at-vehicle(vehicle, location) &
([t] avail abl ev(vehicle)) &
exi sts ptype |
[t] typep(package, ptype) &
[t] pv-conpatible(ptype, air) ] &
([t] door-open(vehicle)) &
exi sts plane-ranp |
[t] ramp-connected(vehicle, plane-ranmp) ] &
[t] fees-collected(package)
. resources [ +1] :consune rvol une-1load-I(location) :amunt vol ume-
p(package),
[ +1] :produce rweight-1oad-v(vehicle) :anpbunt weight-p(package),
[+1] :produce rvol unme-1oad-v(vehicle) :amunt vol une-p(package)
: cont ext
.effects [ +1] at-packagev(package, vehicle) := true,

[ +1] at-packagel (package, |ocation) := fal se

/1 Unl oad package fromaircraft.
#oper at or unl oad- ai r pl ane( package, vehicle, |ocation)

cat ot
. precond [t] typev(vehicle, air) &
[t] at-packagev(package, vehicle) &
([t] at-vehicle(vehicle, location)) &
exi sts plane-ranp |
[t] ramp-connected(vehicle, plane-ranp) ] &
[t] door-open(vehicle)
. resources [ +1] :produce rvol une-1load-I(location) :amunt vol umne-
p(package),
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[+1] :consume rweight-1oad-v(vehicle) :amunt weight-p(package),
[ +1] :consune rvol une-1|oad-v(vehicle) :anount vol une-p(package)

. cont ext
ceffects [ +1] at-packagel (package, location) := true,
[ +1] at-packagev(package, vehicle) := false,
[ +1] nove(package) := fal se,
[ +1] unl oad(vehicle) := true,
[+1] clear := fal se

/'l And cl ose the door before detaching the ranp.
#oper ator cl ose-door-airpl ane(vehicl e)

cat ot
. precond [t] door-open(vehicle) &
[t] typev(vehicle, air)
: cont ext
.effects [ +1] door-open(vehicle) := fal se

/1 NMove a truck between two |locations in the same city.
/1 Either both or none of the locations are transportation centers.
/1 Al packages in the truck will be over(package) and not allowed to nove

/1 agai n.
#oper at or nove-vehicl e-1ocal -road-routel(vehicle, location-from |ocation-to,
city)

cat ot

: precond at-vehicle(vehicle, location-from &

| ocation-from!= |ocation-to &
$avai |l abl e(rvol une-1oad-v(vehicle)) >0
I move-enp(vehicle)) &

] !door-open(vehicle)) &
i sts plane-ranp [
[t] ramp-connected(vehicle, plane-ranp) 1) |
[t] typev(vehicle, flatbed)) &
hei ght-cap-1 (l ocation-to) >= height-v(vehicle) &
| engt h-cap-1| (location-to) >= length-v(vehicle) &
wi dt h-cap-1 (l ocation-to) >= width-v(vehicle) &
typevp(vehicle, truck) &
in-city(location-from city) &
in-city(location-to, city) &
hei ght-v(vehicle) <= local-height(city) &
wei ght -v(vehicle) + weight-|oad-v(vehicle) <=
| ocal -weight(city) &
(([t] tcenter(location-from &
[t] tcenter(location-to))
([t] !'tcenter(location-from &
[t] !'tcenter(location-to0))) &
I exi sts package [
[t] at-packagev(package, vehicle) &
([t] over(package)
[t] move( package)
[t] t-start(package)
[t] t-end(package) |
[t] h-start(package)) ]
. resources [ +1] :consune rgas-|eft(vehicle)
:anmount gpm(vehicle) * distance(location-from | ocation-to)

]
]
t]
t]
(([t] typev(vehicle, regularv) &
[t] !door-open(vehicle)) |
([t] typev(vehicle, hopper) &
[t] !chute-connected(vehicle)) |
([t] typev(vehicle, tanker) &
[t] !hose-connected(vehicle)) |
([t] typev(vehicle, auto) &
[t] !'ranp-down(vehicle))
([t] typev(vehicle, air) &
([t
I ex

———— ————
~ ~ o~ ~ ~ ~ ~+ ~
e e e e e

s cont ext
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.effects

:cont ext

: precond
reffects

:cont ext

. precond
.effects

:cont ext

11
I
I
I

#oper at or

c

cforall
. precond
effects

[+1] at-vehicle(vehicle, location-fron) := false,
[+1] at-vehicle(vehicle, location-to) := true

[t] $avail abl e(rvol une-| oad-v(vehicle)) >0

[+1] move-enp(vehicle) := fal se

[t] $avail abl e(rvol une-1 oad-v(vehicle)) == 0

[ +1] nove-enp(vehicle) := true
package

[t] at-packagev(package, vehicle)
[ +1] nove(package) true,

[ +1] over(package) true

Move a truck between two locations in the sane city.
The trip is froma non transportation center to a transportati on center

All

ty)
at t

precond

resour ces

cont ext
.effects

cont ext
. precond
ceffects

packages in the truck will
must be by train or
nove- vehi cl e- | ocal - r oad-r out e2( vehi cl e,

be t-start(package) and further
pl ane.
| ocation-from

at -vehi cl e(vehicl e,
| ocation-from!= location-to &

$avai | abl e(rvol une-1oad-v(vehicle)) >0

I nove-enp(vehicle)) &

[t | ocation-from &
[t
([
[
(

] !'door-open(vehicle)) &
ists plane-ranp |
[t]

typev(vehi cl e,

]
]
t]
t]
(([t] typev(vehicle, regularv) &
[t] !'door-open(vehicle))
([t] typev(vehicle, hopper) &
[t] !chute-connected(vehicle)) |
([t] typev(vehicle, tanker) &
[t] !'hose-connected(vehicle)) |
([t] typev(vehicle, auto) &
[t] !'ranp-down(vehicle))
([t] typev(vehicle, air) &
([t
I ex

r anp- connect ed(vehi cl e,
flatbed)) &

pl ane- r anp)
[t]

| engt h-cap-1 (Il ocation-to)
wi dt h-cap-I (I ocation-to) >= w dt h-v(vehicle)
typevp(vehicle, truck) &
in-city(location-from city) &
in-city(location-to, city) &

hei ght -v(vehicle) <= local-height(city) &

wei ght-v(vehicle) + weight-I|oad-v(vehicle) <=
| ocal -wei ght (city) &

[t] !'tcenter(location-from &
([t] tcenter(location-to)) &

I exi sts package [

[t] at-packagev(package
([t] over(package)

[t] move(package)

[t] t-start(package)
[t] t-end(package) |
[t] h-start(package)) ]

—_— e — ——
— o~ = o~ — o~ = —+
[ S T S S SOy y |

vehicle) &

[ +1] :consune rgas-|eft(vehicle)

:anmount gpm(vehicle) * distance(location-fro
[+1] at-vehicle(vehicle, location-fron) := false,
[+1] at-vehicle(vehicle, location-to) := true

[t] $avail abl e(rvol une-1oad-v(vehicle)) > 0
[+1] move-enp(vehicle) := fal se
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hei ght - cap-1 (Il ocation-to) >= height-v(vehicle) &
>= | ength-v(vehicle) &

&

m | ocation-to)



s cont ext

. precond [t] $avail abl e(rvol une-1 oad-v(vehicle)) ==
.effects [ +1] nove-enp(vehicle) := true
: cont ext
:forall package
. precond [t] at-packagev(package, vehicle)
.effects [ +1] nove(package) := true,
[+1] t-start(package) := true

/'l Move a truck between two | ocations in the same city.
/1l The trip is froma transportation center to a non transportation center

/1 Al'l packages in the truck will be over(package) and not allowed to nove
/1 agai n.
#oper at or nove-vehicl e-1ocal -road-route3(vehicle, location-from |ocation-to,
city)

cat t

. precond at-vehicle(vehicle, location-from &

| ocation-from!= | ocation-to &
$avai | abl e(rvol une-1oad-v(vehicle)) >0
I nove-enp(vehicle)) &

] !'door-open(vehicle)) &
ists plane-ranp |
[t] ramp-connected(vehicle, plane-ranp) ]) |
[t] typev(vehicle, flatbed)) &
[t] height-cap-Il(location-to) >= height-v(vehicle) &
[t] length-cap-Il(location-to) >= length-v(vehicle) &
[t] width-cap-I(location-to) >= width-v(vehicle) &
[t] typevp(vehicle, truck) &
[t] in-city(location-from city) &
[t] in-city(location-to, city) &
[t] height-v(vehicle) <= local-height(city) &
[t] weight-v(vehicle) + weight-|oad-v(vehicle) <=
| ocal -weight (city) &
[t] tcenter(location-from &
([t] !'tcenter(location-to)) &
I exi sts package [
[t] at-packagev(package, vehicle) &
([t] over(package)
[t] move(package)
[t] t-start(package)) ]
:resources [+1] :consume rgas-1eft(vehicle)
:anmount gpm(vehicle) * distance(location-from | ocation-to)

]
]
t]
t]
(([t] typev(vehicle, regularv) &
[t] !'door-open(vehicle))
([t] typev(vehicle, hopper) &
[t] !chute-connected(vehicle)) |
([t] typev(vehicle, tanker) &
[t] !'hose-connected(vehicle)) |
([t] typev(vehicle, auto) &
[t] !'ranp-down(vehicle))
([t] typev(vehicle, air) &
([t
I ex

. cont ext
.effects [+1] at-vehicle(vehicle, location-from := false,
[+1] at-vehicle(vehicle, location-to) := true
: cont ext
. precond [t] $avail abl e(rvol une-1oad-v(vehicle)) > 0
.effects [ +1] nove-enp(vehicle) := fal se
. cont ext
. precond [t] $avail abl e(rvol une-1 oad-v(vehicle)) ==
ceffects [+1] nove-enmp(vehicle) := true
. cont ext
:forall package
. precond [t] at-packagev(package, vehicle)
ceffects [ +1] over(package) := true,
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[+1] move(package) := true,

[ +1] t-end(package) := fal se,

[+1] h-start(package) := fal se
/'l NMove a truck between two |l ocations in different cities using a road route.
/1 Al packages in the truck will be over(package) and not allowed to nove
/1 agai n.

#oper at or nove-vehicl e-road-route-crossCity(vehicle, location-from I|ocation-to,
city-from city-to, route)

rat ot

. precond at-vehicle(vehicle, location-from &
| ocation-from!= location-to &

$avai | abl e(rvol une-1oad-v(vehicle)) >0

I nove-enp(vehicle)) &

[t
[t
([
[
(

] !'door-open(vehicle)) &
i sts plane-ranp [

[t] ramp-connected(vehicle, plane-ranp) ]) |
[t] typev(vehicle, flatbed)) &
[t] height-cap-I|(location-to) >= height-v(vehicle) &
[t] length-cap-Il(location-to) >= length-v(vehicle) &
[t] width-cap-I(location-to) >= width-v(vehicle) &
[t] typevp(vehicle, truck) &
[t] in-city(location-from city-from &
[t] in-city(location-to, city-to) &
[t]
[t]
[t]
[t]
([t

]
]
t]
t]
(([t] typev(vehicle, regularv) &
[t] !'door-open(vehicle))
([t] typev(vehicle, hopper) &
[t] !chute-connected(vehicle)) |
([t] typev(vehicle, tanker) &
[t] !hose-connected(vehicle)) |
([t] typev(vehicle, auto) &
[t] !'ranp-down(vehicle))
([t] typev(vehicle, air) &
([t
I ex

city-from!=rcity-to &

connect-city(route, road-route, city-from city-to) &

avail abler(route) &

hei ght-v(vehicle) <= height-cap-r(route) &

] weight-v(vehicle) + weight-I|oad-v(vehicle) <=
wei ght-cap-r(route)) &
I exi sts package [
[t] at-packagev(package, vehicle) &
([t] over(package)
[t] move(package)
[t] t-start(package)
[t] t-end(package) |
[t] h-start(package)) ]
. resources [ +1] :consune rgas-|eft(vehicle)
:anmount gpm(vehicle) * distance(location-from | ocation-to)

: cont ext
reffects [+1] at-vehicle(vehicle, location-fron) := false,
[+1] at-vehicle(vehicle, location-to) := true
. cont ext
. precond [t] $avail abl e(rvol une-1oad-v(vehicle)) > 0
ceffects [+1] nove-enmp(vehicle) := fal se
: cont ext
. precond [t] $avail abl e(rvol une-1 oad-v(vehicle)) ==
.effects [ +1] nove-enp(vehicle) := true
. cont ext
:forall package
: precond [t] at-packagev(package, vehicle)
.effects [ +1] nove(package) := true,
[ +1] over(package) := true

/1l Move a train or plane between two | ocations using a conpatible route.
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/1 Either both or none of the locations are transportation hubs.
/1 Al packages in the truck will be t-end(package) and only allowed to be noved
/1 by truck to a non transportation center
#oper at or nove-vehi cl e-nonroad-routel(vehicle, location-from |ocation-to,
route)
cat ot
. precond at-vehicle(vehicle, location-from &
| ocation-from!= location-to &
$avai | abl e(rvol une-1oad-v(vehicle)) >0
I nove-enp(vehicle)) &

[t
[t
([
[
(

] !'door-open(vehicle)) &
ists plane-ranp |
[t] ramp-connected(vehicle, plane-ranp) ]) |
[t] typev(vehicle, flatbed)) &
[t] height-cap-I|(location-to) >= height-v(vehicle) &
[t] length-cap-Il(location-to) >= length-v(vehicle) &
[t] width-cap-I(location-to) >= width-v(vehicle) &
[t] 'typevp(vehicle, truck) &
[t] tcenter(location-from &
[t] tcenter(location-to) &
(([t] hub(location-from &
[t] hub(location-to))
([t] !"hub(location-from &
[t] '"hub(location-to))) &
[t] availablel (location-from &
([t] availablel(location-to)) &
exi sts rtype, vptype [
[t] connect-loc(route,
rtype,
| ocation-from
| ocation-to) &
[t] typevp(vehicle, vptype) &
[t] rv-conpatible(rtype, vptype) ] &
[t] availabler(route) &
[t] height-v(vehicle) <= height-cap-r(route) &
([t] weight-v(vehicle) + weight-|oad-v(vehicle) <=
wei ght-cap-r(route)) &
I exi sts package [
[t] at-packagev(package, vehicle) &
([t] over(package) |
[t] rove(package) |
[t] t-end(package)
[t] h-start(package)) ]
. resources [ +1] :consune rgas-|eft(vehicle)
camount gpm(vehicle) * distance(location-from | ocation-to)

]
]
t]
t]
(([t] typev(vehicle, regularv) &
[t] !'door-open(vehicle))
([t] typev(vehicle, hopper) &
[t] !chute-connected(vehicle)) |
([t] typev(vehicle, tanker) &
[t] !'hose-connected(vehicle)) |
([t] typev(vehicle, auto) &
[t] !'ranp-down(vehicle))
([t] typev(vehicle, air) &
([t
I ex

: cont ext

.effects [+1] at-vehicle(vehicle, location-from := false,
[+1] at-vehicle(vehicle, location-to) := true

. cont ext
: precond [t] $avail abl e(rvol une-1 oad-v(vehicle)) > 0
ceffects [+1] nove-emp(vehicle) := fal se

. cont ext
: precond [t] $avail abl e(rvol une-1 oad-v(vehicle)) ==
.effects [ +1] nove-enp(vehicle) := true

: cont ext
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:forall package

. precond [t] at-packagev(package, vehicle)
.effects [ +1] t-end(package) := true,
[+1] t-start(package) := fal se
[+1] nove(package) := true

/!l NMove a train or plane between two | ocations using a conpatible route.
/!l The trip is froma non transportation hub to a transportation hub
/1 Al packages in the truck will be h-start(package) and only allowed to be
noved
/1l by truck to a non transportation center or by train or plane to a non
/1l transportation hub.
#oper at or nove-vehi cl e- nonr oad-rout e2(vehicle, location-from |ocation-to,
route)
cat ot
. precond at-vehicle(vehicle, location-fronm &
| ocation-from!= location-to &
$avai |l abl e(rvol une-1oad-v(vehicle)) >0
I nove-enp(vehicle)) &

[t
[t
([
[
(

] !'door-open(vehicle)) &
i sts plane-ranp [
[t] ramp-connected(vehicle, plane-ranp) ]) |
[t] typev(vehicle, flatbed)) &
hei ght-cap-1| (l ocation-to) >= height-v(vehicle) &
I engt h-cap-1 (1 ocation-to) >= length-v(vehicle) &
wi dt h-cap-1 (l ocation-to) >= width-v(vehicle) &
Itypevp(vehicle, truck) &
tcenter(location-from &
tcenter(location-to) &
L'hub(l ocation-from &
hub(l ocation-to) &
avail abl el (I ocation-from &
([t] availablel(location-to)) &
exi sts rtype, vptype [
[t] connect-loc(route,
rtype,
| ocati on-from
| ocation-to) &
[t] typevp(vehicle, vptype) &
[t] rv-conpatible(rtype, vptype) ] &
[t] availabler(route) &
[t] height-v(vehicle) <= height-cap-r(route) &
([t] weight-v(vehicle) + weight-Iload-v(vehicle) <=
wei ght-cap-r(route)) &
I exi sts package [
[t] at-packagev(package, vehicle) &
([t] over(package)
[t] move( package)
[t] t-end(package)
[t] h-start(package)) ]
i resources [+1] :consume rgas-1eft(vehicle)
:anmount gpm(vehicle) * distance(location-from | ocation-to)

]
]
t]
t]
(([t] typev(vehicle, regularv) &
[t] !'door-open(vehicle))
([t] typev(vehicle, hopper) &
[t] !chute-connected(vehicle)) |
([t] typev(vehicle, tanker) &
[t] !hose-connected(vehicle)) |
([t] typev(vehicle, auto) &
[t] !'ranp-down(vehicle))
([t] typev(vehicle, air) &
([t
I ex

———— —— —— —
~ ~ ~ ~ ~ ~ ~ ~ ~
e et e e e e e i

. cont ext
.effects [+1] at-vehicle(vehicle, location-from := false,
[+1] at-vehicle(vehicle, location-to) := true
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s cont ext

. precond [t] $avail abl e(rvol une-1 oad-v(vehicle)) > 0
.effects [ +1] nove-enp(vehicle) := fal se
: cont ext
. precond [t] $avail abl e(rvol une-1 oad-v(vehicle)) ==
.effects [ +1] nove-enp(vehicle) := true
. cont ext
:forall package
: precond [t] at-packagev(package, vehicle)
ceffects [+1] h-start(package) := true,
[+1] t-start(package) := fal se
[ +1] nove(package) := true

/1l Move a train or plane between two |ocations using a conpatible route.
/1 The trip is froma transportation hub to a non transportation hub
/1l Al'l packages in the truck will be t-end(package) and only allowed to be noved
/1 by truck to a non transportation center
#oper at or nove-vehi cl e- nonr oad-rout e3(vehicle, location-from |ocation-to,
route)
cat ot
. precond at-vehicle(vehicle, location-from &
| ocation-from!= location-to &
$avai |l abl e(rvol une-1oad-v(vehicle)) >0

I nove-enp(vehicle)) &

] !'door-open(vehicle)) &
i sts plane-ranp [
[t] ramp-connected(vehicle, plane-ranp) ]) |
[t] typev(vehicle, flatbed)) &
[t] height-cap-I|(location-to) >= height-v(vehicle) &
[t] length-cap-I(location-to) >= length-v(vehicle) &
[t] width-cap-I(location-to) >= width-v(vehicle) &
[t] 'typevp(vehicle, truck) &
[t] tcenter(location-from &
[t] tcenter(location-to) &
[t] hub(location-from &
[t] !'hub(location-to) &
[t] availablel (location-from &
([t] availablel(location-to)) &
exi sts rtype, vptype [
[t] connect-loc(route,
rtype,
| ocati on-from
| ocation-to) &
[t] typevp(vehicle, vptype) &
[t] rv-conpatible(rtype, vptype) ] &
[t] availabler(route) &
[t] height-v(vehicle) <= height-cap-r(route) &
([t] weight-v(vehicle) + weight-Iload-v(vehicle) <=
wei ght-cap-r(route)) &
I exi sts package [
[t] at-packagev(package, vehicle) &
([t] over(package)
[t] move(package)
[t] t-end(package)) ]
i resources [+1] :consume rgas-1eft(vehicle)
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]
]
t]
t]
(([t] typev(vehicle, regularv) &
[t] !'door-open(vehicle))
([t] typev(vehicle, hopper) &
[t] !chute-connected(vehicle)) |
([t] typev(vehicle, tanker) &
[t] !hose-connected(vehicle)) |
([t] typev(vehicle, auto) &
[t] !'ranp-down(vehicle))
([t] typev(vehicle, air) &
([t
I ex



camount gpm(vehicle) * distance(location-from |ocation-to)

. cont ext
.effects [+1] at-vehicle(vehicle, location-from := false,
[+1] at-vehicle(vehicle, location-to) := true
: cont ext
. precond [t] $avail abl e(rvol une-1 oad-v(vehicle)) > 0
.effects [ +1] nove-enp(vehicle) := fal se
. cont ext
. precond [t] $avail abl e(rvol une-1 oad-v(vehicle)) ==
ceffects [+1] nove-enp(vehicle) := true
. cont ext
:forall package
. precond [t] at-packagev(package, vehicle)
ceffects [+1] t-end(package) := true,
[+1] h-start(package) := false,
[+1] t-start(package) := fal se
[ +1] nove(package) := true
L Movenment trains and planes ---------------------

/1l Trains and planes only go to |locations that are reasonabl e-nontruck-1|ocation

#contr ol

:name "only-nove-nontrucks-to-reasonabl e-1ocati ons"

forall t, vehicle, location-from]|
[t] 'typevp(vehicle, truck) &
[t] at-vehicle(vehicle, location-fronm ->
([t+1] at-vehicle(vehicle, |ocation-from)
exists location-to |

[t+1] at-vehicle(vehicle, location-to) &
[t] reasonabl e-nontruck-1ocation(vehicle,
| ocati on-from
|l ocation-to) ] ]

/'l Alocation is reasonable for a train or plane if:
[t] reasonabl e-nontruck-1ocation(vehicle, |location-from |ocation-to):

#defi ne

/1 There’s a package to pick up
exi sts package |

[t] at-packagel -generalized(package, |ocation-to) &

[t] !'over(package) ] |
/1 \W're carrying a package that needs to go there.
exi sts package |
[t] at-packagev(package, vehicle) &
goal (del i vered(package, location-to)) ] |
/1 We're carrying a package going to that city.
exi sts package, |ocation-goal [
[t] at-packagev(package, vehicle) &
goal (del i ver ed( package, |ocation-goal)) &

[t] in-same-city(location-goal, l|ocation-to) &

[t] !can-go-by-nontruck(vehicle,
| ocati on-from
| ocation-goal) ] |

/1 \W’'re carrying a package going to a city we can’'t

/1 to go through an internmediate city.
exi sts package, |ocation-goal [
[t] at-packagev(package, vehicle) &
goal (del i ver ed( package, |ocation-goal)) &

reach so we need

([t] !'in-sane-city(location-goal, location-to)) &

[t] 'hub(location-fron) &
[t] hub(location-to) &
([t] !can-go-by-nontruck(vehicle,
| ocation-from
| ocation-goal)) &
lexists location3 |
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[t] in-same-city(location3, location-goal) &
[t] can-go-by-nontruck(vehicle,

| ocati on-from

I ocation3) ] ]

/1l A train or plane can travel between |ocation-fromand |ocation-to if there
/1l is enough gas, the vehicle neets all size restrictions, both | ocations are
/1 available transportation centers and there is an avail able and conpati bl e
/'l route to travel by.
#define [t] can-go-by-nontruck(vehicle, |ocation-from |ocation-to):
[t] $avail abl e(rgas-left(vehicle)) >=
di stance(l ocation-from |ocation-to) * gpm(vehicle) &
[t] height-cap-I|(location-to) >= height-v(vehicle) &
[t] length-cap-Il(location-to) >= length-v(vehicle) &
[t] width-cap-I(location-to) >= width-v(vehicle) &
[t] tcenter(location-from &
[t] tcenter(location-to) &
[t] availablel (location-from &
([t] availablel(location-to)) &
exists route, rtype, vptype [
[t] connect-loc(route, rtype, location-from |ocation-to) &
[t] typevp(vehicle, vptype) &
[t] rv-conpatible(rtype, vptype) &
[t] availabler(route) &
[t] height-v(vehicle) <= height-cap-r(route) &
([t] weight-v(vehicle) + $avail abl e(rwei ght-1load-v(vehicle)) <=
wei ght-cap-r(route)) ]

A L Movement trucks -----------------------------

/1l Trucks only go to locations that are reasonabl e-truck-1ocation
#control :nane "only-nove-trucks-to-reasonabl e-| ocati ons”
forall t, vehicle, location-from]|
[t] typevp(vehicle, truck) &
[t] at-vehicle(vehicle, |ocation-from ->
([t+1] at-vehicle(vehicle, |ocation-from)
exi sts location-to [
[t+1] at-vehicle(vehicle, location-to) &
[t] reasonabl e-truck-Iocation(vehicle,
| ocation-from
|l ocation-to) ] ]

/1 Alocation is reasonable for a truck if:

#define [t] reasonabl e-truck-1ocation(vehicle, location-from |ocation-to):
/1l There's a package to pick up and we’'re not carrying a package that
/1 needs to go el sewhere (since that package may then be inpossible
/1l to deliver later).
exi sts package |

[t] at-packagel -generalized(package, |ocation-to) &
[t] !'over(package) ] &
I exi sts package [
[t] at-packagev(package, vehicle) ] |
/1 \W're carrying a package that needs to go there.
exi sts package [
[t] at-packagev(package, vehicle) &
goal (del i vered(package, location-to)) ] |
/1 \W’'re carrying a package going to another city with no road_route
/1 and the location is a tcenter
exi sts package, |ocation-goal [
[t] at-packagev(package, vehicle) &
[t] in-wong-city(package, |ocation-from &
[t] in-sane-city(location-from |ocation-to) &
([t] tcenter(location-to)) &
goal (del i vered(package, |ocation-goal)) &
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[t] !'can-go-by-truck(vehicle, location-from |ocation-goal) ]

/1 A truck can travel between l|ocation-fromand |ocation-to if there

11

i s enough gas, the vehicle nmeets all size restrictions and both | ocations

/]l are in the sane city or there is an available intercity road route to use.
#define [t] can-go-by-truck(vehicle, location-from |ocation-to):

[t] $avail abl e(rgas-left(vehicle)) >=
di stance(l ocation-from |ocation-to) * gpm(vehicle) &
[t] height-cap-I|(location-to) >= height-v(vehicle) &
[t] length-cap-Il(location-to) >= length-v(vehicle) &
([t] width-cap-I|(location-to) >= width-v(vehicle)) &
(exists city [
[t] in-city(location-from city) &
[t] in-city(location-to, city) ] |
exists city-from city-to [
[t] in-city(location-from city-from &
([t] in-city(location-to, city-to)) &
exi sts route [
[t] connect-city(route, road-route, city-from city-to) &
[t] availabler(route) &
[t] height-v(vehicle) <= height-cap-r(route) &
[t] weight-v(vehicle) +
$avai |l abl e(rwei ght -1 oad-v(vehicle)) <=
wei ght-cap-r(route) 1 1 )

——————————————————————————— Loadi ng packages -----------------"------------

#control :nane "only-|oad- packages-into-reasonabl e-vehicl es”

forall t, package, vehicle [
[t] !at-packagev(package, vehicle) ->
([t+1] !at-packagev(package, vehicle)) |
exi sts location |
[t] at-packagel -generalized(package, |ocation) &
[t] reasonabl e-vehicl e-for-package(package,
vehi cl e,
| ocation) ] ]

#define [t] reasonabl e-vehi cl e-for-package(package, vehicle, |ocation-from

[t] typevp(vehicle, truck) &

[t] reasonabl e-truck-for-package(package, vehicle, |ocation-fron)
[t] 'typevp(vehicle, truck) &

[t] reasonabl e-nontruck-for-package(package, vehicle, |ocation-from

/Il Atruck is a reasonable mean of transportation for a package if:
#define [t] reasonabl e-truck-for-package(package, vehicle, location-from

/1 The package needs to go sonewhere and the truck is enpty.
exi sts | ocation-goal [
goal (del i ver ed( package, |ocation-goal)) &
([t] location-from!= |ocation-goal) &
I exi sts package2 |
package2 ! = package &
[t] at-packagev(package2, vehicle) | &
/1 The truck can deliver it or take it to a transportation center
/1 froma non transportation center
(([t] can-go-by-truck(vehicle, location-from |ocation-goal) &
[t] h-start(package) ->
tcenter(location-fron) & !tcenter(location-goal))
[t] 'tcenter(location-from &
([t] !'t-end(package)) &
exi sts location3 |
| ocation3 != location-from&
[t] in-sane-city(location3, location-fron &
[t] tcenter(location3) &
[t] can-go-by-truck(vehicle, location-from location3) ])]
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/1 Atrain or plane is a reasonable nmean of transportation for a package if:
#define [t] reasonabl e-nontruck-for-package(package, vehicle, |ocation-fromn
/'l The package needs to go to a location in the same city which is
/'l reachabl e.
exi sts | ocation-goal |
goal (del i ver ed( package, |ocation-goal)) &
| ocation-from!= | ocation-goal &
[t] in-same-city(location-from |ocation-goal) &
[t] can-go-by-nontruck(vehicle, |ocation-from |ocation-goal) ] |
/1 The package needs to go to another city that is reachable.

exi sts | ocation-goal, location3 |
goal (del i ver ed( package, |ocation-goal)) &
| ocation-from!= | ocation-goal &

[t] 'in-sane-city(location-from |ocation-goal) &
[t] in-sane-city(location3, |ocation-goal) &
[t] can-go-by-nontruck(vehicle, location-from |ocation3) ] |
/1 The package needs to go to a third city that is a transportation hub

exi sts location-goal, location3 |
goal (del i vered(package, |ocation-goal)) &
| ocation-from!= | ocation-goal &

[t] 'in-same-city(location-from |ocation-goal) &
[t] 'in-same-city(location3, |ocation-goal) &
[t] 'hub(location-fron) &
[t] hub(location3) &
([t] can-go-by-nontruck(vehicle, location-from |ocation3)) &
lexists | ocationd [
[t] in-sane-city(location4, |ocation-goal) &
[t] can-go-by-nontruck(vehicle,
| ocation-from
| ocationd) ] ]

#control :nane "only-unl oad- packages- aft er - novi ng- and- at - r easonabl e-| ocati ons"
forall t, package, vehicle, location |
[t] at-vehicle(vehicle, location) &
[t] at-packagev(package, vehicle) &
([t+1] !at-packagev(package, vehicle)) ->
[t] move(package) &
(goal (del i vered(package, location)) |
[t] tcenter(location)) ]

#control :nane "only-put-down-packages-if-they ve-noved"
forall t, package, l|location [
[t] !'at-packagel (package, |ocation) &
([t+1] at-packagel (package, |ocation)) ->
[t] move(package) ]

/1l 1f a crane picks up a package froma vehicle, it nust then put it on the
/1 ground instead of loading it into the vehicle again.
#control :name "put-packages-down-after-picking-them up-fromvehicle"
forall t, package, crane |

[t] move(package) &

[t] at-packagec(package, crane) &

[t+1] !'at-packagec(package, crane) ->

[t+1] !'nove(package) ]

/1 Only connect chute if needed to | oad or unl oad a package.
#control :nane "only-connect-chute-if-needed”
forall t, vehicle |
[t] !chute-connected(vehicle) &
([t+1] chute-connected(vehicle)) ->
exi sts location |
([t] at-vehicle(vehicle, location)) &
(exi sts package [
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[t] at-packagel -generalized(package, |ocation) &
[t] package-vehicl e-conpati bl e( package, vehicle) &
need-t o- nove- package- f ron( package, | ocation) ] |
exi sts package [
[t] at-packagev(package, vehicle) &
[t] need-to-unl oad- package- at (package,
location) 1) ] ]

/1 Only disconnect chute if there are no packages to | oad.
#control :name "only-disconnect-chute-if-not-needed"
forall t, vehicle [
[t] chute-connected(vehicle) &
([t+1] !chute-connected(vehicle)) ->
exists location [
([t] at-vehicle(vehicle, location)) &
I exi sts package [
[t] at-packagel -generalized(package, |ocation) &
[t] package-vehicl e-conpati bl e( package, vehicle) &
need-t o- nove- package- f r on( package,
location) 1 ] 1]

// Only attach conveyor ranp if needed to | oad or unload a package.
#control :nane "only-attach-conveyor-ranp-if-needed”
forall t, vehicle, plane-ranp [
[t] !ranp-connected(vehicle, plane-ranmp) &
([t+1] ranp-connected(vehicle, plane-ranmp)) ->
exi sts location |
([t] at-vehicle(vehicle, location)) &
(exi sts package [
[t] at-packagel -generalized(package, |ocation) &
[t] package-vehicl e-conpati bl e( package, vehicle) &
[t] reasonabl e-nontruck-for-package(package,
vehi cl e,
| ocation) ] |
exi sts package [
[t] at-packagev(package, vehicle) &
[t] need-to-unl oad- package- at (package,
location) 1) ] ]

/1 Only | ower conveyor ranp if needed to | oad or unload a package.
#control :nane "only-lower-ranp-if-needed”
forall t, vehicle [
[t] !'ranp-down(vehicle) &
([t+1] ramp-down(vehicle)) ->
exists location [
([t] at-vehicle(vehicle, location)) &
(exi sts package |
[t] at-packagel -generalized(package, |ocation) &
[t] package-vehicl e-conpati bl e(package, vehicle) &
need-t o- nove- package-fron( package, |ocation) ] |
exi sts package [
[t] at-packagev(package, vehicle) &
[t] need-to-unl oad- package- at (package,
location) 1) 1 1

/1l Only raise conveyor ranp if there are no packages to | oad or unl oad.
#control :nane "only-rai se-ranp-if-not-needed”
forall t, vehicle [
[t] ranmp-down(vehicle) &
([t+1] !ranp-down(vehicle)) ->
exi sts location |
([t] at-vehicle(vehicle, location)) &
I (exi sts package |
[t] at-packagel -generalized(package, |ocation) &
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[t] package-vehicl e-conpati bl e(package, vehicle) &
need-t o- nove- package- f ron( package, | ocation) ] |
exi sts package [
[t] at-packagev(package, vehicle) &
[t] need-to-unl oad- package- at ( package,
location) 1) ] ]

/1 Only open vehicle door if needed to | oad or unload a package.
#control :name "only-open-door-if-needed"
forall t, vehicle |
[t] !'door-open(vehicle) &
([t+1] door-open(vehicle)) ->
exi sts location |
([t] at-vehicle(vehicle, location)) &
(exi sts package [
[t] at-packagel -generalized(package, |ocation) &
[t] package-vehicl e-conpati bl e( package, vehicle) &
[t] reasonabl e-vehicl e-for-package(package,
vehi cl e,
| ocation) ] |
exi sts package [
[t] at-packagev(package, vehicle) &
[t] need-to-unl oad- package- at (package,
location) 1) 1 1

/1 Only close vehicle door if there are no packages to | oad or unl oad.
#control :nane "only-cl ose-door-if-not-needed”
forall t, vehicle [
[t] door-open(vehicle) &
([t+1] !door-open(vehicle)) ->
exi sts location |
([t] at-vehicle(vehicle, location)) &
I (exi sts package |
[t] at-packagel -generalized(package, |ocation) &
[t] package-vehicle-conpati bl e(package, vehicle) &
[t] reasonabl e-vehicl e-for-package(package,
vehi cl e,
| ocation) ] |
exi sts package [
[t] at-packagev(package, vehicle) &
[t] need-to-unl oad- package- at (package,
location) 1) ] ]

/'l Only connect hose if needed to |oad or unload a package.
#control :name "only-connect-hose-if-needed"
forall t, vehicle [
[t] !'hose-connected(vehicle) &
([t+1] hose-connected(vehicle)) ->
exists location [
([t] at-vehicle(vehicle, location)) &
(exi sts package |
[t] at-packagel -generalized(package, |ocation) &
[t] package-vehicl e-conpati bl e( package, vehicle) &
need-t o- nove- package-fron( package, |ocation) ] |
exi sts package [
[t] at-packagev(package, vehicle) &
[t] need-to-unl oad- package- at (package,
location) 1) ] ]

/1 Only disconnect hose if there are no packages to | oad.
#control :nane "only-di sconnect-hose-if-not-needed”
forall t, vehicle [
[t] hose-connected(vehicle) &
([t+1] !hose-connected(vehicle)) ->
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exists location [
([t] at-vehicle(vehicle, location)) &
I exi sts package [
[t] at-packagel -generalized(package, |ocation) &
[t] package-vehicl e-conpati bl e(package, vehicle) &
need-t o- nove- package-f rom( package, location) ] ] ]

/1 Only open tanker valve if needed to | oad or unl oad a package.
#control :name "only-open-val ve-if-needed"
forall t, vehicle |
[t] !'val ve-open(vehicle) &
([t+1] val ve-open(vehicle)) ->
exi sts location |
([t] at-vehicle(vehicle, location)) &
(exi sts package [
[t] at-packagel -generalized(package, |ocation) &
[t] package-vehicl e-conpati bl e( package, vehicle) &
need-t o- nove- package- f ron( package, | ocation) ] |
exi sts package [
[t] at-packagev(package, vehicle) &
[t] need-to-unl oad- package- at (package,
location) 1) ] ]

/1l Only close tanker valve if there are no packages to | oad or unl oad.
#control :name "only-close-val ve-if-not-needed"
forall t, vehicle [
[t] val ve-open(vehicle) &
([t+1] !val ve-open(vehicle)) ->
exists location [
([t] at-vehicle(vehicle, location)) &
I (exi sts package |
[t] at-packagel -generalized(package, |ocation) &
[t] package-vehicl e-conpati bl e( package, vehicle) &
need-t o- nove- package-fron( package, |ocation) ] |
exi sts package [
[t] at-packagev(package, vehicle) &
[t] need-to-unl oad- package- at (package,
location) 1) ] ]

A L General ---------cmiii e

/1 The package is at the location or being lifted by a crane at the | ocation
#define [t] at-packagel -generalized(package, |ocation):
([t] at-packagel (package, |ocation)) |
exi sts crane |
[t] at-equipment(crane, |ocation) &
[t] at-packagec(package, crane) ]

/'l The package has a goal to be at another |ocation
#define [t] in-wong-city(package, |ocation):
exi sts location-to |
goal (del i ver ed( package, location-to)) &
lexists city [
[t] in-city(location, city) &
[t] in-city(location-to, city) ] ]

/!l Locationl and |ocation2 are in the sane city.
#define [t] in-same-city(locationl, |ocation2):
exists city [
[t] in-city(locationl, city) &
[t] in-city(location2, city) ]

/1 The package is conmpatible with the vechile.
#define [t] package-vehicl e-conpati bl e( package, vehicle):
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exi sts ptype, vtype [
[t] typep(package, ptype) &
[t] typev(vehicle, vtype) &
[t] pv-compati bl e(ptype, vtype) ]

/1 A goal forces the package to be npved.
#define [t] need-to-nove-package-frompackage, | ocation):
exi sts location2 |
| ocation !'= location2 &
goal (del i vered(package, |ocation2)) ]

/1 The package has reached its destination or nust be unl oaded before further
/1l transportation.
#define [t] need-to-unl oad- package- at (package, |ocation):

goal (del i vered(package, |ocation)) |

[t] rnove(package)

/'l Packages that are over(package) cannot be noved and shoul d not be | oaded
/1 into a vehicle.
#control :name "Don’'t-I| oad-packages-that-are-over"
forall t, package, vehicle |
[t] !'at-packagev(package, vehicle) ->
([t+1] !at-packagev(package, vehicle)) |
[t] !over(package) ]

#control :nane "only-deliver-if-goal"”
forall t, package, location [
[t] !'delivered(package, |ocation) &
[t+1] delivered(package, |ocation) ->
goal (del i vered(package, l|ocation)) ]
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