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Abstract Planning with incomplete information may mean a number of
different things; that certain facts of the initial state are not known, that
operators can have random or nondeterministic effects, or that the plans
created contain sensing operations and are branching. Study of the com-
plexity of incomplete information planning has so far been concentrated
on probabilistic domains, where a number of results have been found. We
examine the complexity of planning in nondeterministic propositional do-
mains. This differs from domains involving randomness, which has been
well studied, in that for a nondeterministic choice, not even a probability
distribution over the possible outcomes is known. The main result of this
paper is that the non-branching plan existence problem in unobservable
domains with an expressive operator formalism is EXPSPACE-complete.
We also discuss several restrictions, which bring the complexity of the
problem down to PSPACE-complete, and extensions to the fully and
partially observable cases.



1 Introduction

Though the planning problem, including the computational com-
plexity of planning, has been long studied in AI, the problem of
planning with incomplete information has received relatively little
attention, and the computational complexity of this problem even
less. Most work has been in the area of Markov decision processes,
which model any uncertainty as a probability distribution over the
set of alternatives. In contrast, we consider the problem of planning
with nondeterministic operators; we assume no information about
the relative probabilities of different operator outcomes.

1.1 Approaches to Planning with Incomplete Information

There are basically two ways in which incomplete information has
been dealt with in planning research.

A conformant planner [15] tries to construct plans that will work
in every foreseeable case, by choosing operators such that the goal
is achieved no matter what the value of an initially unknown state
component or the outcome of a nondeterministic operator. When the
domain contains sensing operators that can provide information on
the state of the world during plan execution, contingent planners [13,
12,3,14] can create branching plans, plans that execute differently
depending on the information sensed.

From the theory of Markov decision processes (MDPs), we bor-
row the terminology on observability and call a domain fully observ-
able if there are sensing operators without preconditions for every
proposition in the domain, unobservable if there are no sensing op-
erators and partially observable when none of the other terms apply.
Obviously, in an unobservable domain there is no point in creating
a branching plan as there is no information to branch on, and thus
the contingent plan existence problem coincides with the conformant
version of the problem.

In probabilistic planning [9], all uncertainties are assigned a prob-
ability distribution. The planner seeks to create a plan that will max-
imize the probability of achieving the goal. Probabilistic planners
may also take advantage of sensing operators to create branching
plans [4].



1.2 Nondeterministic Operators in Planning

The problem we consider in this paper is conformant plan existence
in unobservable domains where we lack even a probability distribu-
tion over the possible outcomes of a nondeterministic operator.

Such incompleteness naturally arises in domains where the exact
process involved in an action is too complex to model, and where
statistical data to create a probabilistic model is lacking. An example
of this kind is domains involving agents that act independently of
the planning agent, such as a game situation. Another example is
synthesis of “fault-tolerant” plans.

1.3 Previous Results on the Complexity of Planning

There is a growing body of work on the complexity of the planning
problem. We summarize the results relevant for comparison with the
main result of this paper.

Deciding plan existence in a propositional domain with determin-
istic operators and complete information about the initial state was
shown to be PSPACE-complete by Bylander [2]. Erol et al. [5] showed
that in a general first order domain the same problem is undecidable.
Restricted to a first order domain with a finite set of ground terms,
the problem is EXPSPACE-complete. This representation has es-
sentially the same expressive power as the propositional, but allows
for exponentially more compact encoding. Since they consider the
complete information case, all these results naturally concern only
non-branching plans.

For planning with operators having context dependent and prob-
abilistic effects, Littman [10] showed that deciding the existence of a
branching plan with a probability of success greater or equal to some
threshold € in a fully observable propositional domain is EXPTIME-
complete.

Many other results on the complexity of probabilistic planning
come from the theory of Markov decision processes. The problem
of finding an optimal history dependent m-horizon policy for a par-
tially observable, succinctly represented MDP corresponds to the
problem of finding an optimal (i.e. maximizing the probability of
success) branching plan of depth at most m in a partially observable



propositional domain with context dependent operators and proba-
bilistic effects. This problem is known to be EXPSPACE-complete
[6]. Interestingly, both the unobservable and the fully observable
domain versions of the problem are easier, being EXPTIME- and
NEXPTIME-complete, respectively.

1.4 Contributions

In this paper, we consider the complexity of the problem of deciding
the existence of non-branching plans in an unobservable proposi-
tional domain, and show this problem to be EXPSPACE-complete.
We also discuss a number of restrictions on problem instances or
solutions that bring the complexity down to PSPACE. Finally, we
show briefly how a limited form of branching in plans can be en-
coded into a non-branching plan, taking advantage of the expressive
operator formalism.

2 Preliminaries

The following basic definitions are used throughout the paper.

Definition 1. By a planning scenario we mean a tuple
P=(D,0,1,G)

where the domain D s a set of propositional symbols, O is a set of
operators and I and G are the initial state and goal state descrip-
tions, respectively. The definition of operators varies, depending on
the case under consideration.

A state set description, or state formula, is any boolean combi-
nation of literals over D. A state is represented by the subset of D
consisting of all propositions true in the state. A state formula o
denotes a set of possible states, in the obvious way;

mod(c) = {§ € DI = o}

where £ = 0 means that o holds in state &, according to the standard
semantics of propositional logic.

For a set of states = and an operator O we define operator seman-
tics in terms of the successor state set function, S(O, Z), denoting



the set of states that may result from applying O in any state & € =.
A sequence of operators Oq; ... ; O, constitutes a plan for scenario

P iff S(Op, S(On_1,-..S(0r,mod(I))...)) G-

The definition of the successor state set function depends on what
operator formalism we consider. In this paper, we introduce a kind
of operators, called actions, that may have nondeterministic and
context dependent effects.

Definition 2. A reassignment is an ezrpression r:=v, where t€D
and ve{T,F}. A condition is a boolean combination of literals over
D. An action is

(i) A reassignment, x:=v.

(11) A sequential composition of actions ay;as, where a; and ay are
actions.

(iii) A conditional composition of actions \ vi — «;, where each v; is
a condition and each «; an action, and the conditions are mutu-
ally exclusive.

(iv) A nondeterministic composition of actions a1V as, where a; and
g are actions.

Given a set of possible states = and an action A, the successor state
function is defined inductively as

S(x:=T,2) ={lEeEnE=EU{r}}

S(x:=F,5) ={{lEcEn=E—{z}}

S(ar; as, &) = S(ag, S(a1, &))

S(Nvi = a;, 2) =US(e, {€ € El Ev}) U{E € ZEFE Vit
S(Ozl\/OQ,E) :S(Ozl,E)US(oz2,5)

We use sequential composition in place of conjunction to avoid the
ambiguity that may otherwise arise when two subactions affect the
same propositions. We may encode the unordered conjunction of
two actions a; and as as (ap;az) V (ag;aq)t, or we may include
unordered conjunction into the definition of actions; it does not affect
the results.

! Note, though, that this expression grows exponentially with the number of actions
composed.



3 Nondeterminism, Context Dependency and
Unobservable Domain

In this section, we present the main result of the paper, that the
non-branching plan existence problem for a planning scenario P =
(D,0,1,G) with unobservable propositional domain and contain-
ing actions is EXPSPACE-complete. In the process, we also show a
bound on the length of plans (Lemma 3).

We show hardness through a reduction from the EXPSPACE--
complete problem of deciding universality for regular expressions
with exponentiation. To clarify the reduction, we first convert the
regular expression into a nondeterministic finite automaton aug-
mented with counters of bounded capacity. For definitions and re-
sults on regular expressions and finite automata not presented here,
see for instance [7].

Definition 3. A regular expression with exponentiation is formed
as a normal reqular expression from symbols of the alphabet, but us-
g in addition to the operations of concatenation, union and closure
also exponentiation, which is written r™, where r is a reqular expres-
ston with exponentiation and n a natural number written in binary
(the symbols 1 and 0 are assumed not to belong to the alphabet of
the expression). The expression r™ denotes all strings consisting of
n consecutive substrings denoted by r, i.e. L(r"™) = {wiw,. . .w,|w; €

L(r)}.

For example, the expression (a'® + 5'°)!% over the alphabet {a,b}
denotes the set {aaaa, aabb, bbaa, bbbb}.

When counting the number of operators in a regular expression
with exponentiation, r, we include alphabet symbols but count each
exponentiaton as one operator, regardless of the number it is raised
to. By the length of r, |r|, we mean the number of operators in r
plus the number of digits in the exponents in r 2. For example, the
expression above consists of 6 operators and its length is 12.

Definition 4. A nondeterministic finite automaton with counters,
or NFAC, is a nondeterministic finite automaton augmented with

2 This does not exactly correspond the number of symbols in r because concatenation
and exponentiation are written without actual symbols for the operators.



a set of counters C. Fach counter c is associated with a set of
states states., a natural number limit., and the two states loop.
and continue.. Initially, all counters are set to 0. When the automa-
ton enters any state q € states., it may increment ¢ by one and
immediately change state, to loop. if ¢ < limit, and to continue,
if ¢ > limit.. The automaton terminates as usual when there is no
more input, and accepts if there is some sequence of choices that
makes it reach a final state.

Lemma 1. The problem of determining if a reqular expression with

exponentiation is universal, i.e. that it denotes all strings over its
alphabet, is EXPSPACE-complete.

Proof. See [7].

Lemma 2. For any reqular expression with erxponentiation r, there
exists a NFAC accepting the language L(r) that has a number of
states that is linear in the number of operators in r, and such that
Yocclimit, < 20,

Proof. By structural induction on r. A similar proposition for regular
expressions without exponentiation and normal NFA can be found
in e.g. [7] and we refer to that for the cases concerning the normal
operators.

For r = rf, there exists a NFAC M, = (Q, X, §, qo, F, C) accept-
ing L(rq), by the induction assumption. Construct

M = <QU{f}aEa5aQOa{f}’CU{c}>

by setting states. = F, limit. = n, loop. = qo and continue, = f.

Any string in L(r) will consist of n substrings such that each is in
L(ry). M starts in state go, and since My accepts L(ry) ends in some
state fo € F only after having read one copy of r,. When, and only
when, M enters some fy € F' can ¢ be incremented, and therefore M
will reach its final state f only after having read n strings in L(rp).
Any string s accepted by M will consist of n consecutive substrings
accepted by My and therefore in L(ry), so s€L(r).

Since the construction adds a constant number of states for each
operator in r, the total number of states is bounded by some linear
function in the size of r. Since the total length of all exponents in r



written in binary can not be greater than the length of r, they can
not combined represent a greater number than 2/"/.

Theorem 1. Deciding existence of a non-branching plan for a sce-
nario P with propositional domain and containing actions, is EXP-

SPACE-hard.

Proof. By reduction from the universality problem for regular ex-
pressions with exponentiation, via the same problem for NFACs.
For a regular expression with exponentiation, r, we know there ex-
ists an NFAC, M, accepting the same language and bounded in |r|.
We construct a scenario P, polynomially bounded in |r| and such
that there exists a plan for P iff there exists a string in X* not ac-
cepted by M. This shows plan existence to be co-EXPSPACE-hard,
which since EXPSPACE = co-EXPSPACE, proves the theorem.
We model the state of M and its counters as the state of the
scenario, and the transition function § as the behavior of actions,
with one action for each symbol in Y. Assuming states in @) are

numbered 0, ... ,|Q|, propositions sg, ..., Sieg|g| denote the current
state in binary. Each counter c is likewise represented by propositions
Coy+ -+ s Cloglimit.- We write s = m for /\izo,...,log\Q\ b;, where b; is s;

if the ith bit of m is 1 and —s; if the ¢th bit of m is 0, and s:=m
analogously. For counters ¢, we write ¢ = m and ¢ < m in the same
way, and c:=c + 1 for the conditional reassignment

(_|C() — CQI:T) VAN (_|Cl N cy — 61!:7'/\ C()I:]:) VANPIRAN
(TClogn A Clogn)—1 A -+« A€o = Clogn:=T ; Clogn)—1:=F; ... ; co:=F)

which increments the counter by one, and which is linear in the
length of the binary representation of limit.. For each character 7 €
X, define the action

_ iy (s:=j) VINC(c) if q; € state,
o /\(8 - (q,e>(/q) §:=] if ¢; & statec)
5 7,4
where INC(c) is the action of incrementing ¢ and chaning state
accordingly, encoded as

(c < limit, — 1 — c:=c + 1; s:=loop,. )\
(c = limit, — 1 — c:=c + 1; s:=continue,)



The initial state I is s = 0A (/. ¢ = 0), which is the initial state of
M, and the goal G is ti€F s = i, the disjunction of all non-accepting
states of M.

The construction yields a one-to-one correspondence between
plans for P and sequences of characters that are guaranteed to take
M from its initial state to halt in a non-accepting state. Since M
accepts exactly the strings that are in L(r), r is universal iff no such
plan exists.

The initial state and goal descriptions are bounded by log(|Q|) +
Yeec log(limit.) and log(|Q|):|F|, respectively. The number of ac-
tions is bounded by |X|, which is at most linear in the size of r, and
each action will have no more than |@Q| branches. The effect formulas
of each branch are bounded by

log(limit.,) + ... + log(limit,, )

which is also linear in the size of r. Therefore, the size of the entire
planning scenario, is bounded by k - 73, for some constant k.

To show that plan existence for a propositional scenario with actions
is in EXPSPACE, we need a bound on plan length.

Lemma 3. Let P = (D,0,I,G) be a planning scenario, with D
propositional and |D| = n. If there ezists a plan for P, there exists
a plan consisting of no more than 22" steps.

Proof. Consider the space of state sets, of which there are 22". Since
the successor state set function maps a set of states to another, any
action is a deterministic transition in this space. Therefore, if there
exists a plan for P there exists also a plan without loops in this
space.

Plan existence for a scenario P with propositional domain and ac-
tions can therefore be decided by nondeterministically selecting oper-
ators and computing the resulting state set, until the goal is achieved
or the length of the sequence exceeds 22". The state set can be rep-
resented in space n-2" and the counter requires 2". Combining this
with Theorem 1, we have the following.

Theorem 2. The non-branching plan existence problem for a sce-
nario P with propositional domain and actions is EXPSPACE--
complete.



4 Bounded-Length Plans

In response to the hardness results on the complete information plan-
ning problem, some researchers have investigated the problem of
finding bounded-length plans, mainly plans of polynomial length.
It turns out that in a propositional domain, the problem of decid-
ing if there for a (complete information) planning scenario P exists
a plan no longer than p(|P|), where p(z) is a polynomial, is NP-
complete.Thus, some of the hardness of the general planning problem
derives from the fact that shortest plans may be very long.

Proposition 1. Let P be a planning scenario with propositional do-
main and actions, and let p(z) be a polynomial. The problem of de-
ciding if there exists a non-branching plan for P of length at most

p(|P]) is solvable in PSPACE.

The proof relies on the fact that we can write down a (nondeterminis-
tically chosen) candidate plan, then explore every possible execution
of this plan depth-first. Since the depth is bounded by the length of
the plan, this exploration requires no more than polynomial space
(though in the worst case on the order of p(|P|)?).

5 Limited Information Incompleteness and
Dependency

Another way to reduce the complexity of problem is to limit the
information incompleteness and/or the context dependency of oper-
ators. In this way, we find two severely restricted classes for which
the non-branching plan existence problem is PSPACE-complete3.

Proposition 2. Let P be a planning scenario with propositional do-
main, only deterministic and context independent operators* and an
arbitrarily incomplete initial state. Then, the non-branching plan ex-
istence problem for P is PSPACE-complete.

For the second class, we need some definitions.
8 But still more general than the class of complete information scenarios, for which

the plan existence problem is also PSPACE-complete.
% That is, essentially STRIPS operators, though with arbitrary preconditions.



Definition 5. Let D = {p1,... ,pn} be a propositional domain and
let = be a state set over D. We construct a T-F-U description of
Z, §(5), by mapping each p; to T iff E(pi) =T forall € E, to F
iff £(pi) = F for all€ € = and to U (“unknown”) otherwise. For a
given T-F-U description, §, we define the realisation of §, p(d), as
the state set

Epi) =T ifd(p)) =T _
{¢| {f(pi) — F if§(p) = F for each p; € D}

We say a state set = is a T-F-U state if p(6(Z)) = =, and that
an operator O preserves T-F-U states iff S(O, =) is a T-F-U state
whenever = is a T-F-U state.

What the 7T-F-U property means is that each proposition in the
domain is either known or independent of all others. It is similar to
the notion of 0-approzimation in [1].

Proposition 3. Let P be a planning scenario with propositional do-
main, an initial state that is T-F-U and operators that are all T-F-
U preserving. Then, the non-branching plan existence problem for P
is PSPACE-complete.

The proofs of propositions 2 and 3 both depend on two facts; (%)
that we can represent the combined effect of a sequence of operators
polynomially, without needing to store the actual sequence, and ()
that the incompleteness is constant or decreasing, which limits the
length of the shortest plan to single exponential.

Definition 5 is rather technical, and a more intuitive characteriza-
tion of T-F-U preserving operators is difficult to find. Deterministic
context independent operators preserve T-F-U states, as do certain
kinds of deterministic context dependent operators®. Nondeterminis-
tic operators that are purely information-destructive, i.e. that assign
to the nondeterministically affected propositions any possible com-
bination of values, also preserve T-F-U states.

% Note, however, that this does not imply that proposition 3 subsumes proposition 2,
since the later allows arbitrary initial state.



6 Partially Observable Domains and Branching
Plans

In the presence of incomplete information, or even nondeterminism,
it may seem as a good idea to equip the executing agent with some
form of sensors and to conditionalize plan execution on the results
of sensing; that is, to search for branching plans.

In the case of Markov decision processes, the policy existence
problems for both fully observable and unobservable domains are
known to be somewhat easier than the corresponding problem for
partially observable domains. By analogy, it is not unreasonable to
expect the branching plan existence problem for partially observable
domains with nondeterministic context dependent operators to be
at least as hard as the problem corresponding non-branching plan
existence problem, if not harder.

However, we can encode a limited form of “branchingness” in a
non-branching plan using operator context dependency. Specifically,
for a scenario P with propositional domain of size n and actions, by
adding 2 domain propositions and 2n + 3 actions (depending only
on the domain)®, allows the construction of plans of the form

IF v, THEN A;; IF v, THEN A,;...; IF ,, THEN A4,

where each +; is an arbitrary formula over the domain propositions,
The idea is to write each 7; on disjunctive normal form and evaluate
it “linearly”, storing the intermediate results in two control propo-
sitions.

A partially observable domain can be encoded in an unobservable
domain, by duplicating propositions, letting one set represent the
actual world state and the other the agents knowledge of the state.
Normal operators would then depend on and effect only the “world”
propositions, while sensing operators change the “knowledge” propo-
sitions depending on the corresponding world propositions.

Because both transformations are polynomial, this means that
at least a limited form of the contingent plan existence problem in
partially observable domains is no harder to decide than conformant
plan existence in an unobservable domain.

6 A constant change to each action originally in P is also necessary.



7 Conclusions and Future Work

The high complexity of the planning problem in the presence of non-
determinism and context dependency should come as no surprise.
This result is however interesting to compare with the correspond-
ing problem for probabilistic domains, known to be NEXPTIME-
complete and thus presumably easier’. That nondeterministic choice
contains less information than probabilistic choice is a known fact,
but these results together show that for the planning problem, the
difference is significant.

This paper also leaves a large number of open questions. Is the
polynomially bounded plan existence problem discussed in section
4 hard for PSPACE? To show this by reduction meets with some
difficulties, since known PSPACE-complete problems involve either
exponentially long sequences (for instance, the reachable deadlock
problem [11]) or choice (such as the satisfiability problem for quan-
tified Boolean formulas and various two-player games). If this prob-
lem is not hard for PSPACE, is there a more efficient algorithm that
solves it?

What is the complexity of the (fully) branching plan existence
problem on fully or partially observable domains? The encoding
shown in section 6 depends only on the problem domain, and is
linear in size. If it is also allowed to depend on operators, and in-
crease in size proportional to a higher degree polynomial, are there
then other classes of branching plans that can be encoded?
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" There is a class called |J,.,TA[2" ,n] that lies inbetween NEXPTIME and EX-
PSPACE, and is believed to be strictly inbetween. This fascinating class captures
the decision problem for the theory of the reals with addition. For details, see [8].
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