
Spatio-Temporal Stream Reasoning with Incomplete
Spatial Information
Fredrik Heintz and Daniel de Leng
IDA, Linköping University, Sweden

Abstract. Reasoning about time and space is essential for many ap-
plications, especially for robots and other autonomous systems that
act in the real world and need to reason about it. In this paper we
present a pragmatic approach to spatio-temporal stream reasoning in-
tegrated in the Robot Operating System through the DyKnow frame-
work. The temporal reasoning is done in Metric Temporal Logic and
the spatial reasoning in the Region Connection Calculus RCC-8. Pro-
gression is used to evaluate spatio-temporal formulas over incremen-
tally available streams of states. To handle incomplete information
the underlying first-order logic is extended to a three-valued logic.
When incomplete spatial information is received, the algebraic clo-
sure of the known information is computed. Since the algebraic clo-
sure might have to be re-computed every time step, we separate the
spatial variables into static and dynamic variables and reuse the alge-
braic closure of the static variables, which reduces the time to com-
pute the full algebraic closure. The end result is an efficient and use-
ful approach to spatio-temporal reasoning over streaming informa-
tion with incomplete spatial information. 1

1 Introduction
Spatial and temporal reasoning are central and well-studied topics
in AI. The focus is usually on how to represent spatial, temporal
and spatio-temporal information and how to efficiently reason with
the information in a given knowledge base. In this paper we address
the problem of qualitative spatio-temporal stream reasoning, i.e.,
incremental spatio-temporal reasoning over streams of information.

Our main application domain is autonomous unmanned aircraft
systems (UAS). Both the information available to and the reasoning
required for these autonomous systems are fundamentally incremen-
tal in nature. A flow of incrementally available information is called
a stream of information. To draw relevant conclusions and react
to new situations with minimal delays incremental reasoning over
streams is necessary. We call such reasoning stream reasoning.

Reasoning about time and space is essential for autonomous
systems acting in the real world. Consider for example monitoring
the constraint that a UAS is not allowed to fly at a low altitude over
urban areas for more than 3 minutes. This could be reformulated as:
If the area occupied by the UAS overlaps an urban area then within
3 minutes the UAS should either be at a high altitude or the area it
occupies should be disconnected from the urban area.

1 This work is partially supported by grants from the National Graduate
School in Computer Science, Sweden (CUGS), the Swedish Aeronautics
Research Council (NFFP6), the Swedish Foundation for Strategic Research
(SSF) project CUAS, the Swedish Research Council (VR) Linnaeus Center
CADICS, ELLIIT Excellence Center at Linköping-Lund for Information
Technology, and the Center for Industrial Information Technology CENIIT.

There exist many spatial and temporal formalisms. This work
focuses on integrating qualitative spatial reasoning using the Region
Connection Calculus RCC-8 [16] with the Metric Temporal Logic
(MTL) [14]. RCC-8 captures topological reasoning over two dimen-
sional convex regions and is probably the most used spatial reasoning
formalism. MTL is selected since it supports temporal quantification
over intervals of time. Another reason is that we already have a
working solution to temporal stream reasoning using MTL [4].

The general idea of our approach to spatio-temporal stream rea-
soning is to perform the spatial reasoning within a time-point first and
then perform temporal reasoning over the result. This makes it pos-
sible to evaluate MTL formulas containing RCC-8 relations where
qualitative spatial reasoning is required to deduce implicit RCC-8
relations from the available incomplete spatial information. This
clearly separates the spatial and the temporal reasoning which greatly
simplifies changing the underlying spatial and temporal formalisms.
This closely resembles the spatio-temporal language ST0 [18].

To support spatio-temporal stream reasoning with incomplete
spatial information we need to solve two problems. First, we need
to extend traditional qualitative spatial reasoning over a fixed
knowledge base to qualitative spatial stream reasoning. This is
required to infer implicit information from the available incomplete
information. Second, we need to extend our progression-based
temporal stream reasoning to handle states containing disjunctive
information. This is necessary since even after qualitative spatial
reasoning the spatial information might be incomplete.

The main contribution of this work is a pragmatic ap-
proach to spatio-temporal stream reasoning integrated with
DyKnow [7, 10, 12] and the Robot Operating System (ROS) [15].
The approach provides solutions both to the problem of qualitative
spatial stream reasoning and to progression of metric temporal
logical formulas over states with disjunctive information.

The rest of the paper is structured as follows. First, we provide a
brief background to qualitative spatio-temporal reasoning, DyKnow
and our existing approach to temporal stream reasoning. Then,
we present a solution to the problem of qualitative spatial stream
reasoning. After that we present our solution to the problem of
temporal stream reasoning with disjunctive information. These
solutions are then combined into an approach for spatio-temporal
stream reasoning. Before concluding we present some empirical
results regarding qualitative spatial stream reasoning.

2 Qualitative Spatio-Temporal Reasoning

Qualitative spatio-temporal reasoning is concerned with reasoning
over time and space, in particular reasoning about spatial change [3].

Several qualitative spatio-temporal reasoning formalisms have been
created by combining a spatial formalism with a temporal. Examples
are STCC [6] and ARCC-8 [2] which both combine RCC-8 with
Allen’s Interval Algebra [1]. A qualitative representation provides
a more abstract representation which reduces the complexity of the
reasoning by focusing on the salient aspects. It also handles some
forms of uncertainty by considering equivalence classes rather than
values, and it provides a natural human-computer interface as people
often think and communicate in terms of qualitative representations.

In this work we are interested in changes in topological relations
between spatial regions. The Region Connection Calculus RCC-8
is the most well known approach to this type of spatial reason-
ing [16]. RCC-8 reasons about the relation between regions that are
non-empty regular, closed subsets of a topological space, and can
consist of more than one piece. RCC-8 has eight base relations (see
Figure 1) which are jointly exhaustive and pairwise disjoint: DC
(DisConnected), EC (Externally Connected), PO (Partial Overlap),
EQ (EQual), TPP (Tangential Proper Part), NTPP (Non-Tangential
Proper Part), and their inverse relations TPPi and NTPPi. The set of
RCC-8 relations corresponds to all possible subsets of the base rela-
tions, where each subset is interpreted as the union of its relations.

The two main approaches to temporal reasoning is Allen’s Interval
Algebra and temporal modal logics. The modal logics usually extend
the underlying propositional or first-order logic with temporal
operators such as© (“next”), ♦ (“eventually”), � (“always”) and U
(“until”). Metric Temporal Logic [14] extends first order logic with
temporal operators that allows metric temporal relationships to be
expressed. For example, F should hold within 30 seconds ♦[0,30] F
and F ′ should hold in every state between 10 and 20 seconds from
now �[10,20] F

′. Informally, ♦[τ1,τ2]
φ holds at τ iff φ holds at some

τ ′ ∈ [τ + τ1, τ + τ2], while �[τ1,τ2] φ holds at τ iff φ holds at all
τ ′ ∈ [τ + τ1, τ + τ2]. Finally, φU[τ1,τ2] ψ holds at τ iff ψ holds at
some τ ′ ∈ [τ + τ1, τ + τ2] such that φ holds in all states in (τ, τ ′).

The spatio-temporal formalism that is most relevant for this
paper is the STi family of spatio-temporal languages initially
proposed by Wolter and Zakharyaschev [18]. These languages
combine RCC-8 with the propositional temporal logic PTL. In
ST0 RCC-8 relations can be temporally quantified. For example,
�PO(Sweden,Europe) states that it is always the case that
Sweden is part of Europe. The expressive power of ST0 is restricted
to RCC-8 relations with region variables from the same time-point.
To support spatial relations between region variables from different
time-points ST1 is introduced. It allows applications of the next-time
operator© not only to formulas but also to region variables. Thus,
arguments of the RCC-8 predicates are now region terms, which
consist of a region variable that may be prefixed by an arbitrarily
long sequence of© operators. Using ST1 it is possible to state that
a region X never changes �EQ(X,©X). The final member of
the STi family is ST2 where region variables may be prefixed by
either �, ♦ or ©. The meaning of a region term ♦ r is the region
corresponding to the union of every instance of r and � r is then the
intersection of every instance of r. The STi family can further be
extended to ST+

i by allowing boolean combinations of region terms.
This allows formulas such as EQ(Scandinavia,Denmark ∨
Finland ∨ Iceland ∨ Norway ∨ Sweden). The STi family of
languages can also be expressed as a multi-modal logic [2].

3 DyKnow and Temporal Stream Reasoning

DyKnow helps organize the many levels of information and
knowledge processing in a distributed robotic system as a coherent

Figure 1. The RCC8 relations and their continuity network.

network of processes connected by streams [7, 8, 10, 12]. The
streams contain time-stamped information and may be viewed as
representations of time-series data. Computational units combine
streams by applying functions, synchronization, filtering, aggrega-
tion and approximation. The processing is done at many levels of
abstraction, often beginning with low level quantitative sensor data
and resulting in qualitative data structures which are grounded in the
world and can be interpreted as knowledge by the system.

DyKnow uses progression of metric temporal logic formulas for
incremental temporal reasoning over streams [4]. This provides real-
time incremental evaluation of logical formulas as new information
becomes available. The semantics of these formulas are defined over
infinite state sequences. Formulas are therefore incrementally eval-
uated using progression over a stream of timed states. The result of
progressing a formula through the first state in a stream is a new for-
mula that holds in the remainder of the state stream if and only if the
original formula holds in the complete state stream. If progression
returns true (false), the entire formula must be true (false), regardless
of future states. Even though the size of a progressed formula may
grow exponentially in the worst case, it is always possible to use
bounded intervals to limit the growth. It is also possible to rewrite
formulas which limits the growth for common formulas [7].

A temporal logic formula consists of symbols representing
variables, sorts, objects, features, and predicates besides the symbols
which are part of the logic. Features may for example represent
properties of objects and relations between objects. Consider
∀u ∈ UAS : u 6= uas1 → �XYDist[u, uas1] > 10, which has
the intended meaning that all UASs, except uas1, should always be
more than 10 meters away from uas1. This formula contains the
variable u, the sort UAS, the object uas1, the feature XYDist, the
predicates 6= and >, and the constant value 10, besides the logical
symbols. To evaluate such a formula an interpretation of its symbols
must be given. Normally, their meanings are predefined. However,
in the case of stream reasoning the meaning of features can not be
predefined since information about them becomes incrementally
available. Instead their meaning has to be determined at run-time. To
evaluate the truth value of a formula it is therefore necessary to map
feature symbols to streams, synchronize these streams and extract a
state sequence where each state assigns a value to each feature [7].

DyKnow also supports automatically mapping features in a
formula to streams in a system based on their semantics, which
we call semantic grounding [8, 9, 11]. By introducing semantic
mapping between ontologies from different UASs and reasoning
over multiple related ontologies it is even possible to find relevant
streams distributed among multiple UASs [11].

4 Qualitative Spatial Stream Reasoning
In this section we address the problem of qualitative spatial rea-
soning over streams of spatial information. The spatial information
can vary over time and may be incomplete. In this paper we assume

that the available spatial information is qualitative. We have started
to consider the case of quantitative spatial information, usually
some form of geometric information, and mixed qualitative and
quantitative spatial information, but this is left for future work.

The general idea is to collect all the relevant spatial relations
about a particular time-point, use a qualitative spatial reasoner
to compute the algebraic closure of the set of known relations to
check the consistency and infer implicit relations, and then generate
streams based on the result of this spatial reasoning. The algebraic
closure rather than complete backtracking is chosen to reduce the
computational overhead and make the approach practical. It is
straightforward to use a complete approach instead if desirable.

To compute the algebraic closure can be time-consuming if the
number of variables is large. To increase the efficiency we divide
the variables into two sets, static and dynamic variables. A static
variable represents a spatial region that does not change, which
means that the relations between the static variables are fixed. A
dynamic variable is one whose corresponding region changes over
time. It could for example be the variable corresponding to the area
that is in view of a particular sensor on a particular platform. The
algebraic closure of the static variables is only computed once. Each
time the dynamic relations changes, the algebraic closure of the
complete set of variables is recomputed starting from the algebraic
closure of the static variables.

We provide our solution both as a collection of ROS services
and as a computational unit integrated with DyKnow. The reasoner
that we use is GQR [5] which is a fast general qualitative constraint
reasoner that supports RCC-5, RCC-8, and RCC-23 among other
qualitative representations. The computational unit takes as input a
stream of sets of spatial relations and as output produces a stream
of spatial relations corresponding to the algebraic closure of the
current set of relations. This extends DyKnow with support for
spatial reasoning over streams of spatial information in any of the
qualitative spatial representations supported by GQR.

4.1 A Qualitative Spatial Reasoning ROS Service
The proposed ROS-based qualitative spatial reasoning service
provides a set of service calls for creating, updating and querying
qualitative spatial knowledge bases. The service keeps track of the
evolution of the knowledge bases to support time-varying spatial
information. Since GQR is used to compute the algebraic closure it
can handle any qualitative calculus supported by GQR.

ROS Services

create_kb(string kbname, string algebra,
Relation[] static_constraints,
int32 static_variable_threshold_ms)

: ExitStatus exit_status

set_static_variable_threshold_ms(int32 new_threshold)
: ExitStatus exit_status,
int32 old_threshold_ms

replace_constraints(string kbname, time t,
Relation[] constraints)

: ExitStatus exit_status

remove_variable(string kbname, string variable)
: ExitStatus exit_status

compute_algebraic_closure(string kbname, time t)
: ExitStatus exit_status,
bool result

get_relations_at(string kbname, time t,
string[] variables)

: ExitStatus exit_status,
Relation[] relations

get_current_relations(string kbname,
string[] variables)

: ExitStatus exit_status,
Relation[] relations

The service call create kb creates a new named knowledge base
for a particular qualitative algebra. Supported algebras include
RCC-5, RCC-8, RCC-23, point algebra, and OPRA [5]. It is also
possible to add a set of static constraints to the knowledge base and
to define the threshold for when to assume that a variable is to be
considered static. The threshold can be changed with the service
call set static variable threshold ms. It is important to notice that
this only affects the performance of the qualitative reasoning. It is
always possible to change the relation between a pair of variables,
but in the worst case the full algebraic closure has to be computed.

The service call replace constraints replaces the constraints for a
set of variables. To remove the constraint between a pair of variables,
add a constraint containing all the base relations. If a constraint
contains a variable not previously in the knowledge base it will be
added. To remove a variable use remove variable.

compute algebraic closure computes the algebraic closure of a
knowledge base at a particular time-point. For most applications it is
not necessary to call this explicitly since it is called when needed.

The service calls get relations at and get current relations return
all the relations for the given variables either for a specific time-
point or for the current content of the knowledge base. If the set of
variables is empty the set of all relations for all variables is returned.
If needed, the algebraic closure will be computed.

4.2 Dynamically Updating Spatial Knowledge
Bases

To update a spatial knowledge base two things are needed: (1) the
new information must be stored efficiently and (2) all implicit rela-
tions must be inferred. Since information might be available asyn-
chronously we need to store information related to multiple time-
points. This also makes it possible to query past spatial relations.

An in-memory database of spatial relations between regions (vari-
ables) over time is created to store the complete history of spatial
relations efficiently. For each pair of region variables v1 and v2 such
that v1 � v2 create an ordered array of pairs 〈t, sb〉, where t is the
time-point when the set of relations changed and sb is the new set of
relations represented as a bit vector. The � ordering on the variables
could for example be lexicographical ordering. This allows finding
a particular relation in O(log |v|) time. If there are at most 64 base
relations then the bit vector can be represented by an unsigned
integer on modern machines. This requires O(|v|2k) space, where
k is the maximum number of changes in the spatial relations. Since
the updates to the spatial relations are ordered in time, the array can
be updated in constant time for each relation. The relations between
a pair of variables at a particular time t can be found using binary
search over the array for the pair of variables and requires O(log k)
time. The current set of relations between a pair of variables can be
found in O(1) time since it is always the last element in the array.

An alternative is to replace the arrays by circular buffers that store
a fixed number of changes to limit the amount of memory used.

To efficiently infer implicit relations we use the facts that the
algebraic closure for the same set of variables must be computed

many times (every time some of the variables have changed) and
relations between variables that have not changed are the same. If
the set of variables is partitioned into those that are static and those
that are dynamic, it is enough to compute the algebraic closure of
the constraints involving only static variables once and then add the
constraints involving at least one dynamic variable when they have
changed and compute the new algebraic closure. The effect is that
there is an initial cost of computing the static part while the cost
for each update is reduced. In the empirical evaluation section we
quantify these gains.

To simplify the usage of the spatial reasoning service while
maximizing the performance, the knowledge base maintains the
set of variables Vs whose constraints have not been changed for
at least s milliseconds. The appropriate threshold depends on the
application, including how fast things change and the size of the
constraint problem. The threshold s can be configured at run-time
using the set static variable threshold ms service.

Formally, let V t be the set of all variables at time t and Ct be
the set of all (binary) constraints on these variables at time t. The
set V t is partitioned into V ts and V td , where V ts is the set of static
variables and V td is the set of dynamic variables at time t. Ct is
partitioned into Cts and Ctd, where Cts is the set of constraints where
both variables belong to the set V ts and Ctd is the set of constraints
where at least one variable belong to the set V td . Further, let ACts
denote the algebraic closure of the variables V ts and the constraints
Cts and ACt denote the algebraic closure of the variables V t and the
constraints Ct. Then, ACt can be computed from ACts by adding
the constraints Ctd and computing the algebraic closure. As we show
in the empirical evaluation section, this improves the efficiency since
ACt+1

s = ACts as long as V ts does not change.
If a variable v is added to Vs at t + 1, then Ct+1

s is Cts union the
set of constraints involving v and another variable in V ts .ACt+1

s can
then efficiently be compute from ACts. If a variable v is removed
from V ts then the algebraic closure for the new set V t+1

s is computed.

5 Temporal Reasoning over Streams of Disjunctive
Information

The metric temporal reasoning we use does not explicitly handle in-
complete information such as disjunctive information. The semantics
is defined over states where each state assigns each ground term ex-
actly one value. We have extended the temporal reasoning to handle
states where a ground term might have multiple values. To achieve
this we extend the metric temporal logic from a standard two valued
logic to a three valued Kleene logic [13]. The three values are true,
false and unknown, where unknown represents that the value is either
true or false but it is not known which. The extension consists of three
parts: (1) Extend the state representation from assigning each ground
term to a value to assigning each ground term a set of values. (2) Ex-
tend the progression algorithm to handle the new state representation.
(3) Extend the progression algorithm to handle the three valued logic.

The new extended state representation consists of a time-stamp
and a collection of key-value pairs where each key is a ground
term and each value is a collection of values. If the collection only
contains one value then the value of that term is completely known.
If the collection contains multiple values then the actual value of the
ground term is one of those, but it is not known which. This allows
incomplete information to be represented as a disjunction of possible
values. This is a strict extension of the previous representation
where a set with only one value is equivalent to assigning the term
a particular value.

The grammar for our metric temporal logic is the following:
φ := f | f1 rop f2 | ¬φ |φ1 lop φ2 | ∀v.φ |φ1 U[a,b] φ2 | top[a,b]φ,
where f is a ground feature term, rop ∈ {<,≤,=,≥, >},
lop ∈ {∧,∨}, top ∈ {�,♦}, and a and b are integers.

The progression algorithm uses the state to get the value of ground
features (f in the grammar). The spatial relations are considered
to be features and do not require any special treatment during
progression. Previously each ground feature was given a particular
value from the state. With the extended state representation it
may now have a set of possible values. The progression algorithm
handles this by extending its internal representation to support sets
of values. The truth value of an atomic formula f is only defined for
ground features whose value is a boolean. The extended progression
algorithm evaluates this atomic formula to true iff the set of values
for f only contains true, to false iff the set of values for f only
contains false and otherwise to unknown. The truth value of a formula
f1 op1 f2 is true (false) iff op1 is true (false) for every possible value
of f1 and f2. If it is neither true nor false then it is unknown.

Finally, the progression algorithm is extended to evaluate the
logical operators ¬, ∨ and ∧ according to the Kleene semantics
[13]. Since temporal operators are expanded through progression to
conjunctions and disjunctions no further changes are needed.

With these extensions our progression algorithm for metric
temporal logic is extended to use a three-valued first order Kleene
logic instead of a standard first order logic. The major limitation
is that atomic formulas are treated independently. This means that
a formula DC(a, b) ∨ PO(a, b) would be evaluated to unknown
even if the set of possible relations between the regions a and b are
{DC,PO} and it would be possible to deduce that the formula is
true. We are currently working on a solution to this.

6 Spatio-Temporal Stream Reasoning with
Incomplete Spatial Information

By combining qualitative spatial reasoning over streams and progres-
sion over disjunctive information we provide an approach to spatio-
temporal stream reasoning with incomplete spatial information. The
approach separates the spatial reasoning from the temporal reasoning
and corresponds to ST0. The output of the spatial stream reasoning is
a stream of sets of spatial relations, where each set represents all the
spatial information available at a particular time-point. This stream
is then synchronized with other streams of non-spatial information
into a stream of states containing all the information necessary
to evaluate a spatio-temporal formula. If a formula only contains
spatial relations and temporal operators, then the formula can be
evaluated directly over the output from the spatial stream reasoning
module. Since we extended the progression algorithm it is possible
to handle the fact that spatial information might be incomplete.

As a concrete example, consider monitoring that a UAS
is never allowed to fly over an urban area for more than
3 minutes. This could be captured in the following formula:
∀r ∈ UrbanRegion�(PO(UAS, r) → ♦[0, 180s]DC(UAS, r)).
This is an example formula which does temporal reasoning over spa-
tial information only. An alternative safety constraint could be that
if a UAS flies over an urban area then within 60 seconds it should
be at an altitude of more than 100 meters. This could be expressed
as ∀r ∈ UrbanRegion�(PO(UAS, r) → ♦[0, 60s](DC(UAS, r) ∨
altitude(UAS) > 100m)). This is an example formula which also
includes non-spatial information, in this case the altitude of the
UAS. DyKnow handles units of measurements directly in formulas
and can automatically transform streams containing information in

Figure 2. A qualitative spatio-temporal stream reasoning example.

one unit of measurement to another unit of measurement [9].
Figure 2 shows a complete example of evaluating the spatio-

temporal formula �(PO(a, b) → ♦DC(a, b)) given the static
region variables a, c, d and the static relations EC(a, c), EC(a, d),
and EC(c, d). The spatial information in the first state is the
spatial relation NTPP (c, b) which after spatial reasoning gives
that PO(a, b) can be either true or false, i.e., is unknown. In the
next state the spatial relation TPPi(d, b) is given from which the
conclusion that DC(a, b) is unknown can be drawn. Finally, in the
third state where NTPPi(d, b) is given spatial reasoning concludes
that DC(a, b) is true. This example shows both the benefit of spatial
reasoning as no explicit information about the relation between
a and b is given and the use of three-valued progression over
disjunctive information.

Since all the spatial information is collected and reasoned over
in the spatial reasoning module it is only done once. The single
stream of spatial information can be combined in many different
ways with other streams to support the evaluation of many different
spatio-temporal formulas.

7 Empirical Evaluation
To show the scalability of the spatio-temporal stream reasoning
approach we have conducted a number of experiments. The purpose
of the evaluation is to quantify the gain of partitioning the variables
into static and dynamic. The performance of the temporal reasoning
is only marginally changed by the extensions to the progression
algorithm. The performance is mainly dependent on the number of
nested temporal operators. For a formula with three nested temporal
operators it takes on average about 60 milliseconds to progress 1000
instances of the formula over a state on the computer onboard our
UAS. Due to space limitations we therefore focus on the spatial
reasoning part and refer interested readers to [7, 8].

The performance of the spatial reasoning is mainly dependent on
the number of variables, the average number of constraints (degree)
and the average label size [17]. Using basically the same method
as Renz and Nebel [17] we evaluate the effect of precomputing the
algebraic closure of the static variables, compared to computing the
whole algebraic closure for each time-step.

In the experiments we try to estimate the function
A(v,E(deg), E(l), r) by measuring the execution time on in-
stances with the number of variables v, the expected degree E(deg),
the expected label sizeE(l) and the ratio of dynamic variables r. The
number of variables can be divided in a dynamic part vd = r×v and
a static part vs = v − vd. The expected degree is the expected num-
ber of constraints from a given dynamic variable to other variables.
The expected label size is the expected size of the disjunction of

RCC-8 relations for a given constraint between a dynamic variable
and some other variable. In this evaluation we use E(l) = 4.0.

Because the static component only has to be computed once, we
compare the case where all variables are dynamic to the case where
there is a separation between static and dynamic variables, ignoring
the time it takes to compute this static component. The mean perfor-
mance results of the former are denoted by A(v,E(deg), 4.0, 1.00).
For the mean performance results of the dynamic component of the
latter, the notation Ad(v,E(deg), 4.0, r) is used. The performance
experiments used values of E(deg) ranging from 1 to 20 with step
size 1 and values of v ranging from 20 to 500 with step size 20.
The value of r was chosen to be constant, r = 0.25. For every
combination, we took the population mean CPU time over 100 runs.
The population mean was chosen to account for the difference in dis-
tribution between the satisfiable and unsatisfiable problem instances.

The evaluation compares the case of all variables being dynamic
to the case when some are static. A selection of the evaluation results
are shown in Figure 3.

The top-left graph in Figure 3 shows the performance of
A(v,E(deg), 4.0, 1.00) in CPU time. The graph shows a ridge
at E(deg) = 9. This is where the phase-transition occurs, where
the majority of instances flip from being satisfiable to being
unsatisfiable.

In comparison, the top-right graph shows the performance of
Ad(v,E(deg), 4.0, 0.25) in CPU time. Note that this only shows the
time needed by the dynamic component. For low degrees, the time
needed surpasses that of the exclusively dynamic case. A potential
explanation for this behavior is that the combination of a low degree
and high number of dynamic variables combined with the com-
pletely known static part (i.e. a degree of vs − 1 and label size l = 1
for the static component) makes for computation-intensive problem
instances. For all other values of v and E(deg) the performance is
significantly improved.

A comparison of the two top-row graphs is shown in the bottom
row of Figure 3. On the left the absolute performance increase
is shown, and on the right the relative performance increase. The
absolute comparison shows a clear decrease in performance when
comparing the exclusively dynamic case to the separated case when
the degree is low and the number of variables is high. However, in
all other cases there is a performance increase, especially around the
phase-transition area. The general performance increase is roughly
50 milliseconds. The relative performance increase graph on the right
shows an improvement of about 35% in the phase-transition area,
and an improvement of close to 100% for a low number of variables.

The results in Figure 3 show that the separation of dynamic
and static variables for r = 0.25 generally leads to better perfor-
mance, except in the case of a low degree with a high number of
variables. The performance increase is at its highest around the
phase-transition region where the more difficult problem instances
reside. The performance increase is expected to be higher for lower
values of r and decrease as r approaches 1.

8 Conclusions and Future Work

We have presented a pragmatic approach to spatio-temporal stream
reasoning which handles incomplete spatial information. The
temporal reasoning is done using Metric Temporal Logic and the
spatial reasoning using RCC-8. The approach first does the spatial
reasoning and then the temporal reasoning, in line with previous
approaches to spatio-temporal reasoning such as ST0. By separating
the spatial and temporal reasoning and using the fast and general

Figure 3. Comparison of performance when separating static and dynamic variables. The ratio of dynamic variables is fixed at r = 0.25. The top two graphs
show the mean absolute CPU times and the bottom two graphs show the mean absolute and relative performance increase.

GQR constraint reasoner it is very easy to either use multiple
different qualitative reasoning approaches together or replacing
RCC-8 with another qualitative spatial approach. The approach
has been integrated with the stream-based knowledge processing
middleware DyKnow and the Robot Operating System.

This work opens up many interesting avenues for further research
such as tighter integration of the spatial and temporal stream
reasoning as well as even better support for handling incomplete
information. In both cases, much can likely be gained by considering
the whole formula or at least first order sub-formulas instead of
individual atomic formulas. Another interesting direction is to
combine quantitative and qualitative spatial reasoning. This would
also open up for the possibility of supporting the rest of the STi
family of spatio-temporal languages.

REFERENCES
[1] J. Allen, ‘Maintaining knowledge about temporal intervals’, Commun.

ACM, 26(11), 832–843, (1983).
[2] B. Bennett, A. Cohn, F. Wolter, and M. Zakharyaschev, ‘Multi-

dimensional modal logic as a framework for spatio-temporal reason-
ing’, Applied Intelligence, 17(3), 239–251, (2002).

[3] A. Cohn and J. Renz, ‘Qualitative spatial representation and reasoning’,
in Handbook of Knowledge Representation, Elsevier, (2008).

[4] P. Doherty, J. Kvarnström, and F. Heintz, ‘A temporal logic-based plan-
ning and execution monitoring framework for unmanned aircraft sys-
tems’, J. of Auton. Agents and Multi-Agent Systems, 19(3), (2009).

[5] Z. Gantner, M. Westphal, and S. Wölfl, ‘GQR - a fast reasoner for bi-
nary qualitative constraint calculi’, in Workshop Notes of the AAAI-08
Workshop on Spatial and Temporal Reasoning, (2008).

[6] A. Gerevini and B. Nebel, ‘Qualitative spatio-temporal reasoning with
RCC-8 and Allen’s interval calculus: Computational complexity’, in
Proc. ECAI, (2002).

[7] F. Heintz, DyKnow: A Stream-Based Knowledge Processing Middle-
ware Framework, Ph.D. dissertation, Linköpings universitet, 2009.

[8] F. Heintz, ‘Semantically grounded stream reasoning integrated with
ROS’, in Proc. IROS, (2013).

[9] F. Heintz and D. de Leng, ‘Semantic information integration with trans-
formations for stream reasoning’, in Proc. Fusion, (2013).

[10] F. Heintz and P. Doherty, ‘DyKnow: An approach to middleware for
knowledge processing’, J. of Intelligent and Fuzzy Syst., 15(1), (2004).

[11] F. Heintz and Z. Dragisic, ‘Semantic information integration for stream
reasoning’, in Proc. Fusion, (2012).

[12] F. Heintz, J. Kvarnström, and P. Doherty, ‘Bridging the sense-reasoning
gap: DyKnow – stream-based middleware for knowledge processing’,
J. of Adv. Engineering Informatics, 24(1), (2010).

[13] S. Kleene, ‘On notation for ordinal numbers’, Symbolic Logic, (1938).
[14] R. Koymans, ‘Specifying real-time properties with metric temporal

logic’, Real-Time Systems, 2(4), 255–299, (1990).
[15] M. Quigley, B. Gerkey, K. Conley, J. Faust, T. Foote, J. Leibs, E. Berger,

R. Wheeler, and A. Ng, ‘ROS: an open-source robot operating system’,
in ICRA Workshop on Open Source Software, (2009).

[16] D. Randell, Z. Cui, and A. Cohn, ‘A spatial logic based on regions and
connection’, in Proc. KR, (1992).

[17] J. Renz and B. Nebel, ‘Efficient methods for qualitative spatial reason-
ing’, J. of Artificial Intelligence Research, 15, 289–318, (2001).

[18] F. Wolter and M. Zakharyaschev, ‘Spatio-temporal representation and
reasoning based on RCC-8’, in Proc. KR, (2000).

