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Automated Learning of Communication Models
for Robot Control Software

Alexander Kleiner 1
and Gerald Steinbauer 2

and Franz Wotawa 2

Abstract.
Control software of autonomous mobile robots comprises a

number of software modules which show very rich behaviors
and interact in a very complex manner. These facts among
others have a strong influence on the robustness of robot con-
trol software in the field. In this paper we present an approach
which is able to automatically derive a model of the structure
and the behavior of the communication within a component-
orientated control software. Such a model can be used for
on-line model-based diagnosis in order to increase the robust-
ness of the software by allowing the robot to autonomously
cope with faults occurred during runtime. Due to the fact
that the model is learned form recorded data and the use of
the popular publisher-subscriber paradigm the approach can
be applied to a wide range of complex and even partially un-
known systems.

1 Introduction

Control software of autonomous mobile robots comprises a
number of software modules which show very rich behaviors
and interact in a very complex manner. Because of this com-
plexity and other reasons like bad design and implementation
there is always the possibility that a fault occurs at runtime
in the field. Such faults can have different characteristics like
crashes of modules, deadlocks or wrong data leading to a haz-
ardous decision of the robot. This situation can occur even if
the software is carefully designed, implemented and tested. In
order to have truly autonomous robots operating for a long
time without or with limited possibility for human interven-
tion, e.g., planetary rovers exploring Mars, such robots have
to have the capability to detect, localize and to cope with
such faults.

In [8, 7] the authors presented a model-based diagnosis
framework for control software for autonomous mobile robots.
The control software is based on the robot control framework
Miro [10, 9] and has a client-server architecture where the soft-
ware modules communicate by exchanging events. The idea
is to use the different communication behaviors between the
modules of the control software in order to monitor the status
of the system and to detect and localize faults. The model
comprises a graph specifying which modules communicate
with each other. Moreover, the model has information about
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the type of a particular communication path, e.g, whether the
communication occurs on a regular basis or sporadically. Fi-
nally, the model includes information about which inputs and
outputs of the software modules have a functional relation,
e.g, which output is triggered by which input. The model is
specified by a set of logic clauses and uses a component-based
modeling schema [1]. Please refer to [8, 7] for more details.

The diagnosis process itself uses the well known
consistency-based diagnosis techniques of Reiter [5]. The mod-
els of the control software and the communication were cre-
ated by hand by analyzing the structure of the software and
its communication behavior during runtime. Because of the
complexity of such control software or the possible lack of in-
formation about the system it is not feasible to do this by
hand for large or partially unknown systems.

Therefore, it is desirable that such models can be created
automatically either from a formal specification of the system
or from observation of the system. In this paper we present an
approach which allows the automatic extraction of all neces-
sary information from the recorded communication between
the software modules. The algorithm provides all information
needed for model-based diagnosis. It provides a communica-
tion graph showing which modules communicate, the desired
behavior of the particular communication paths and the rela-
tion between the inputs and outputs of the software modules.

These model learning approach was originally developed for
and tested with the control software of the Lurker robots [2]
used in the RoboCup rescue league. This control software uses
the IPC communication framework [6], which is a very pop-
ular event-based communication library used by a number of
robotic research labs worldwide. However, the algorithm sim-
ply can be adapt to other event-based communication frame-
works, such as for instance Miro. The next section describes
in more detail how the model is extracted from the observed
communication.

2 Model Learning

Control systems based on IPC use an event-based communi-
cation paradigm. Software modules which wants to provide
data are publishing an event containing the data. Other soft-
ware modules which like to use this data, subscribe for the
appropriate event and get automatically informed when such
an event is available. A central software module of IPC is in
charge for all aspects of this communication. Moreover, this
software module is able to record all the communication de-
tails. It is able to record the type of the event, the time the
event was published or consumed, the content of the event,
and the names of the publishing and the receiving module.



The collected data is the basis for our model learning algo-
rithm. Figure 1 depicts such collected data for a small exam-
ple control software comprising only 5 modules with a simple
communication structure. This example will be used in the
following description of the model learning algorithm. The
control software comprises two data path. One is the path
for the self-localization of the robot. The two modules in the
path Odometry and SelfLoc provide data on a regular basis.
The other is the path for object tracking. The module Vision
provides new data on a regular basis. The module Tracker
provides data only if new data is available from the module
Vision. The figure shows when the different events were pub-
lished. Based on this recorded communication we extract the
communication model step by step.

2.1 The communication graph

At a first step the algorithm extract a communication graph
from the data. The nodes of the graph are the different soft-
ware modules. The edges represent the different events which
are exchanged between the modules. Each event is represented
by at least one edge. If the same event is received by multiple
modules, there is an edge to every receiving module originat-
ing from the publishing module. Figure 2 depicts the commu-
nication graph for the above example. This graph shows the
communication structure of the control software. Moreover,
it shows the relation of inputs and outputs of the different
software modules because each node knows its connections.
Such a communication graph is not only useful for diagnosis
purposes, but it is also able to expressively visualize the re-
lation of modules from a larger or partially unknown control
software.

Formally the communication graph can be defined as fol-
lowing:

Definition 1 (CG) A communication graph (CG) is a di-
rected graph with the set of nodes M and the set of labeled
edges C where:

• M is a set of software modules sending or receiving at least
one event.

• C is a set of connections between modules, the direction of
the edge points from the sending to the receiving module,
the edge is labeled with the name of the related event.

Please note that the communication graph may contain cy-
cles. Usually such cycles emerge from acknowledgement mech-
anisms between two modules.

The algorithm for the creation of the communication graph
is straightforward. The algorithm starts with an empty set
of nodes M and edges C. The algorithm iterates trough all
recorded communication events. If either the sender or the
receiver are not in the set of the nodes the sender or the
receiver is added to the set. If there is no edge pointing from
the sending to the receiving node with the proper label, a
new edge with the appropriate label is added between the
two modules.

Moreover, we define the two functions in : CO 7→ 2C

which returns the edges pointing to a node and the function
out : CO 7→ 2C which returns the edges pointing from a
node.

2.2 The communication behavior

In a next step the behavior or type of each event connection is
determined. For this determination we use the information of
the node the event connection comes from, and the recorded
information of the event related to the connection, and all
events related to the sending node.

We can distinguish the following types: triggered
event connection (1), periodic event connection (2),
bursted event connection (3) and random event connec-
tion (4). In order to describe the behavior of a con-
nection formally we define a set of connection types
CT = {periodic, triggered, bursted, random} and a function
ctype : C 7→ CT which returns the type of a particular con-
nection c ∈ C.

The type of a event connection is determined by tests like
measurements of the mean and the standard deviation of the
time between the occurrence of the events on the connection,
and comparison or correlation of the occurrence of two events.
The criteria used to assign an event connection to one of the
four categories are summarized below:

triggered A triggered event only occurs if its publishing
module recently received a trigger event. In oder to deter-
mine if an event connection is a triggered event connection,
the events on connection c ∈ out(m) are correlated to the
events on the set of input connection to the software module
I = in(m). If the number of events on connection c, which are
correlated with an event on a particular connection t ∈ in(m),
exceed a certain threshold, connection t is named as trigger of
connection c. The correlation test looks for the occurrence of
the trigger event prior the observed event. Note each trigger
event can only trigger one event. If connection c is correlated
with at least one connection t ∈ in(m) connection c is cate-
gorized as a triggered connection. Usually, such connections
are found in modules doing calculations only if new data are
available.

periodic On a periodic event connection the same event
regularly occurs with a fixed frequency. We calculate from the
time stamps of the occurrence of all events a discrete distri-
bution of the time difference between two successive events. If
there is a high evidence in the distribution for one particular
time difference, the connection is periodic with a periodic time
of the estimated time difference. For a pure periodic event
connection one gets a distribution close to a Dirac impulse.
Usually, such connections are found with modules providing
data at a fixed frame rate, such as a module sending data
from a video camera.

bursted A bursted event is similar to the periodic event
but its regularly occurrence can be switched on and off for
a period of time. A event connection is classified as bursted
if there exist time periods where the criteria of the periodic
event connection hold. Usually, such connections are found
with modules which do specific measurements only if the cen-
tral controller explicitly enable them, e.g., a complete 3d laser
scan.

random For random event connections none of the above
categories match and therefore no useful information about
the behavior of that connection can be derived. Usually, such
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Figure 1. Recorded communication of the example robot control software. The peaks
indicate the occurrence of the particular event.
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Figure 2. Communication graph learned
from the recorded data of the example control

software.

connections are found in modules which provide data only if
some specific circumstance occur in the system or its environ-
ment.

In the case of the above example, the algorithm correctly
classified the event connections odometry, objects and pose
as periodic and the connection velocity as triggered with the
trigger objects.

2.3 The observers

In order to be able to monitor the actual behavior of the con-
trol software, the algorithm instantiates an observer for each
event connection. The type of the observer is determined by
the type of the connection and its parameters, estimated by
the methods described before. An observer rises an alarm
if there is a significant discrepancy between the currently
observed behavior of an event connection and the behavior
learned beforehand during normal operation. The observer
provides as an observation O the atom ok(l) if the behavior
is within the tolerance and the atom ¬ok(l) otherwise. Where
l is the label of the corresponding edge in the communica-
tion graph. The observations of the complete control OBS

software is the union of all individual observations

OBS =

n
[

i=1

Oi

where n is the number of observers.

The following observers are used:

triggered This observer raises an alarm if within a certain
timeout after the occurrence of a trigger event no correspond-
ing event occurs or if the trigger event is missing prior the
occurrence of the corresponding event. In order to be robust
against noise, the observer uses a majority vote for a number
of succeeding events, e.g, 3 votes.

periodic This observer raises an alarm if there is a signif-
icant change in the frequency of the events on the observed
connection. The observer checks if the frequency of succes-
sive events does vary too much from the specified frequency.
For this purpose, the observer estimates the frequency of the
events within a sliding time window.

bursted This observer is similar to the observer above. It
differs in the fact that this observer starts the frequency check
only if events occur and does not raise an alarm if no events
occur.

random This is a dummy observer which alway provides
the observation ok(l). This observer is implemented for com-
pleteness.

2.4 The system description

The communication graph together with the type of the con-
nections is a sufficient specification of the communication be-
havior of the robot control software. This specification can be
used in order to derive a system description for the diagnosis
process. It is a description of the desired or nominal behavior
of the system. In order to be able to be used in the diagno-
sis process, the system description is automatically written
down as a set of logical clauses. This set can easily be de-
rived from the communication graph and the behavior of the
connections.

The algorithm to derive the system description starts with
an empty set SD. For every event connection in two steps,
clauses are added to the system description. In the first step,
a clause for forward reasoning is added. The clause specifies
if a module works correct and all related inputs and outputs
behave as expected. Depending on the type of the connection,
we add the following clause to the SD. If connection c is



triggered, we add the clause

¬AB(m)
^

t∈trigger(c)∧t∈in(m)

ok(t) → ok(c)

and the clause
¬AB(m) → ok(c)

otherwise. ¬AB(m) means that the module m is not abnormal
and the module works as expected. The atom ok(c) specifies
that the connection c behaves as expected.

In a second step, a clause for backward reasoning is added.
The clause specifies if all output connections c′ of module m

behave as expected the module itself has to behave as ex-
pected. We add the clause

^

c′∈out(m)

ok(c′) → ¬AB(m)

Figure 3 depicts the system description obtained for the
above example control software.

3 Model-based diagnosis

For the detection and localization of faults we use the
consistency-based diagnosis technique of [5]. A fault de-
tectable by the derived model causes a change in the behavior
of the system. If such an inconsistency between the modeled
and observed behavior emerges, a failure has been detected.
Formally, we define this by:

SD ∪ OBS ∪ {¬AB(m)|m ∈ M} |=⊥

where the latter set says that we assume that all modules
work as expected.

In order to localize the module responsible for the detected
fault, we have to calculate a diagnosis ∆. Where ∆ is a set of
modules m ∈ M we have to declare as faulty (change ¬AB(m)
to AB(m)) in order to resolve the above contradiction. We
use our implementation 3 of this diagnosis process for the
experimental evaluation of the models. Please refer to [8, 7]
for the detail of the diagnosis process.

4 Experimental Results

In order to show the potential of our model learning approach,
the approach has been tested on three different types of robot
control software. We evaluated whether the approach is able
to derive an appropriate model reflecting all aspects of the
behavior of the system. The derived model was evaluated by
the system engineer who has developed the system. Moreover,
we injected artificial faults like module crashes in the system,
and evaluated if the fault can be detected and localized by
the derived model.

4.1 A small example control software

The example software from the introduction comprises five
modules. The module Odometry provides odometry data at
a regular basis. This data is consumed by the module Self-
Loc, which does pose tracking by integrating odometry data,
and providing continuously a pose estimate to a visualization

3 The implementation can freely be downloaded at
http://www.ist.tugraz.at/mordams/.

module User. The module Vision provides position measure-
ments of objects. The module Tracker uses this measurements
to estimate the velocity of the objects. New velocity estima-
tions are only generated if new data is available. The veloc-
ity estimates are also visualized by the GUI. Figure 1 shows
the recorded communication of this example. Figure 2 depicts
the communication graph extracted from the recorded data.
It correctly represents the actual communication structure of
the example, and shows the correct relation of event producers
and event consumers.

Moreover, the algorithm correctly identified the type of the
event connections. This can be seen by the system descrip-
tion the algorithm has derived which is depicted in Figure 3.
It also instantiated the correct observer for the four event
connections. A periodic event observer was instantiated for
odometry, objects and pose, and a triggered event observer
was instantiated for velocities.

1. ¬AB(Vision) → ok(objects)
2. ¬AB(Odometry) → ok(odometry)
3. ¬AB(Tracker) ∧ ok(objects) → ok(velocities)
4. ¬AB(Selfloc) → ok(pose)
5. ok(objects) → ¬AB(Vision)
6. ok(odometry) → ¬AB(Odometry)
7. ok(velocities) → ¬AB(Tracker)
8. ok(pose) → ¬AB(Selfloc)

Figure 3. The system description automatically derived for the
example control software.

Figure 3 depicts the extracted system description. Clauses
1 to 4 describe the forward reasoning. Clauses 5 to 8 de-
scribe the backward reasoning. Clause 3 states that the mod-
ule Tracker works correctly only if a velocity event occurs
only after trigger event. For instance, Clause 6 states that if
all output connections of module Odometry work as expected,
consequently the module itself works correct. This automat-
ically generated system description was used in some diag-
nosis tests. We randomly shutdown modules and evaluate if
the fault was correctly detected and localized. For this simple
example the faults were always proper identified.

4.2 Autonomous exploration robot Lurker

In a second experiment we recorded the communication of the
control software of the rescue robot Lurker [2] while the robot
was autonomously exploring an unknown area. The robot is
shown in Figure 4.

The control software of this robot is far more complex as
in the example above, since it comprises all software modules
enabling a rescue robot to autonomously explore an area after
a disaster. Figure 5 shows the communication graph derived
from the recorded data, clearly showing the complex structure
of the control software.

From the communication graph and the categorized event
connections a system description with 70 clauses with 51
atoms and 35 observers was derived. After a double check with
the system engineer of the control software it was confirmed
that the automatically derived model maps the behavior of
the system.
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Figure 5. Communication graph Lurker robot.

Figure 4. The autonomous rescue robot Lurker of the
University of Freiburg.

4.3 Teleoperation Telemax robot.

In a final experiment we record data during a teleoperated run
with the bomb-disposal robot Telemax. The robot Telemax is
shown in Figurer 6.

Figure 6. The teleoperated robot Telemax.

Figure 7 depicts the communication graph derived from the
recorded data. It clearly shows that the control software for
teleoperation shows a far less complex communication struc-
ture than in the autonomous service. From the communica-
tion graph and the categorized event connections a system
description with 44 clauses with 31 atoms and 22 observer
was derived.

5 Related Research

There are many proposed and implemented systems for fault
detection and repair in autonomous systems. Due to lack of
space we refer only a few. The Livingstone architecture by
Williams and colleagues [4] was used on the space probe Deep
Space One to detect failures in the probe’s hardware and to
recover from them. Model-based diagnosis also has been suc-
cessfully applied for fault detection and localization in dig-
ital circuits and car electronics and for software debugging
of VHDL programs [1]. In [3] the authors show how model-
based reasoning can be used for diagnosis for a group of robots
in the health care domain. The system model comprises in-
terconnected finite state automata. All these methods have
in common that the used models of the system behavior are
generated by hand.

6 Conclusion and Future Work

In this paper we presented an approach which allows the
automated learning of communication models for robot con-
trol software. The approach uses recorded event communica-
tion. The approach is able to automatically extract a model
of the behavior of the communication within a component-
orientated control software. Moreover, the approach is able to
derive a system description which can be used for model-based
diagnosis. The approach was successfully tested on IPC-based
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Figure 7. Communication graph Telemax robot.

robot control software like the rescue robot Lurker. IPC is a
widely used basis for robot control software. Therefore, our
approach is instantly usable on many different robot systems.

Currently, we are working on a port for Miro-based systems.
This even will increase the number of potential target systems
of our approach. Moreover, we work on the recognition of
additional event types in order to enrich the generated models.

We believe that the consideration of the content of the
events will lead to significantly better models and diagno-
sis. For the modeling the techniques of Qualitative Reason-
ing seem to be promising. But it is an open question how
such qualitative models can be automatically learned from
recorded data.
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