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Abstract.
We provide a logical model of biochemical reactions and show

how hypothesis generation using weakest sufficient and strongest
necessary conditions may be used to provide additional information
in the context of an incomplete model of metabolic pathways.

1 A Logical Model for the Analysis of Biochemical
Reactions

The analysis of biochemical pathways has been considered in numer-
ous papers (see, e.g., [1, 2]). In this paper, a bipartite graph represen-
tation of chemical reactions will be used (see, e.g., [2]).

It is assumed that any reaction is specified by:

n : c1 + . . . + ck
α(n)−→ c′1 + . . . + c′l, (1)

wheren is a label (name) of the reaction,c1, . . . , ck are reactants
(inputs forn), c′1, . . . , c

′
l are products ofn andα(n) is a formula

that specifies additional conditions necessary for the reaction, such
as temperature, pressure, presence of catalyzers, etc.

In this paper, the classical first-order logic is used for specifying
reactions. Reaction nodes will be represented explicitly, while infor-
mation about available compounds will be given via a suitable re-
lation. Consequently, it is assumed that the following symbols are
available:

1. constants and variables:

• constants naming reactions (n, n′), compounds (c, c′, h2o, co2
etc.), and reaction nodes (r, r′)

• variables representing reactions (N, N ′), compounds (C, C′),
and reaction nodes (R, R′)

for constants and variables we also use indices, when necessary
2. relation symbols reflecting static information:

• in(C, N) meaning that compoundC is needed for reactionN

• out(N, C) meaning that compoundC is a product of reactionN

3. relation symbols reflecting dynamic information:

• prec(R, R′) meaning that reaction nodeR precedes reaction
nodeR′

• chain(R, R′) meaning that there is a chain of reactions
R, R1, R2, . . . , Rk, R′ such thatprec(R, R1), prec(R1, R2),
. . . ,prec(Rk−1, Rk), prec(Rk, R′)

• react(N, R) meaning that reactionN actually happened in re-
action nodeR

• av(C, R) meaning that compoundC is available for reaction
represented by reaction nodeR.

1 Department of Computer and Information Science, SE-581 83 Linköping,
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Let e, t be any expressions ands any subexpression ofe. By
e(s/t) we shall mean the expression obtained frome by substitut-
ing each occurrence ofs by t.

It is assumed that any formula is implicitly universally quantified
over all its variables that are not bound by a quantifier.

Any reaction of the form (1) is translated into the formula
react(n, R), where the following background theory is assumed:

• static information about reactionn:

in(c1, n) ∧ . . . ∧ in(ck, n)∧
out(n, c′1) ∧ . . . ∧ out(n, c′l)

• linking nodes in graphs with reactions

react(n, R) → (2)

α(n/R)∧
av(c1, R) ∧ . . . ∧ av(ck, R)∧
∀R′. {prec(R, R′) → av(c′1, R

′)}∧
. . .∧
∀R′. {prec(R, R′) → av(c′l, R

′)}.

2 Hypotheses Generation Using Strongest
Necessary and Weakest Sufficient Conditions

Snc’s and wsc’s (see e.g. [5] for a definition) provide a powerful
means of generating hypotheses using abduction. Suppose one is
given a (incomplete) specification of a set of interacting reactions
of the form shown in equation (1). We would use this set of formulas
as the background theoryT . Suppose additionally, that a number of
observations are made referring to reactions known to have occurred,
or compounds known to be available for participation in a reaction,
etc. Letα denote the formula representing these observations. Gen-
erally, it will not be the case thatT |= α becauseT only provides an
incomplete specification of the reactions.

We would like to generate a formula (candidate hypotheses)φ in a
restricted subset of the language of reactionsP such thatφ together
with the background theoryT does entail the observationsα. It is
important that we do not over commit otherwise we could just as
easily chooseα itself as the hypothesis which wouldn’t do much
good. In fact, theWSC(α; T ; P ) does just the right thing since we
know thatT∧WSC(α; T ; P ) |= α and it is the weakest such formula
by definition.

WSC(α; T ; P ) actually represents alternative hypotheses for ex-
plaining α. If it is put in disjunctive normal form, each of the dis-
juncts makesWSC(α; T ; P ) true and represents a weakest hypoth-
esis. To reason about what each candidate hypothesis might im-
ply in terms of completing the reaction representation, one can add
both the background theoryT and the candidate hypothesisα′ to a
logic database and query the database as desired. For this purpose



the approximate databases described in [3] are a suitable alternative
that enables reasoning about incomplete and approximate knowledge
through the use of rough set techniques.

Observe that:

• wsc corresponds to a weakest abduction expressed in a given tar-
get language. For example, consider

WSC(av(fin, so3); Th; L),

whereTh is the theory expressing properties of given reactions,
as constructed in Section 1. Then

– if the target languageL consists ofav only, the resulting wsc
expresses what compound’s availability makes the required
output of reaction nodefin feasible

– if the target language consists ofreact, then the resulting wsc
expresses reactions necessary to make the required output of
fin feasible

• snc allows one to infer facts from negative information. In fact, snc
expresses what would be possible under a given set of hypotheses.
For example, if a certain side product has not been observed, a
reaction can be excluded from the set of hypotheses.

The wsc’s and snc’s can be calculated efficiently for a large class
of formulas by expressing them as second-order formulas, using an
equivalence proved in [5], and obtaining logically equivalent first-
order formulas by applying theDLS∗ algorithm described, e.g.,
in [4].

3 A Metabolic Pathway Example

Consider a fragment of the aromatic amino acid pathway of yeast,
shown in Figure 1 (this is a fragment of a larger structure used in [1]).

In the graph there are two types of nodes:compound nodes(de-
picted by circles) andreaction nodes(depicted by rectangles). An
edge from a compound node to a reaction node denotes a substrate.
An edge from a reaction node to a compound node denotes a product
of the reaction. We additionally allow conditions placed in the boxes
and in this case rectangles are labelled with enzyme names, meaning
that a respective enzyme is to be available for reaction, i.e., thatav
holds. For example,av(ydr127w, r) is necessary, when the label of
r is “YDR127W”.
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Figure 1. A fragment of the aromatic amino acid pathway of yeast.

Figure 1 depicts the following reactions:

n1 : C02652 + C00005
YDR127W−→ C00006 + C00493

n3 : C03175 + C00074
YDR127W−→ C01269 + C00009

n4 : C01269
YGL148W−→ C00009 + C00251.

It is assumed that reaction

n2 : C00493 + C00002
YDR127W−→ C03175 + C00008

depicted by the dashed box is, in fact, missing.
The above set of reactions is expressed by formulas as defined in

Section 1. For example, the first reaction is expressed by:

react(n1, R) →
av(ydr127w, R)∧
av(c02652, R) ∧ av(c00005, R)∧
∀R′. [prec(R, R′) → av(c00006, R′)]∧
∀R′. [prec(R, R′) → av(c00493, R′)].

The missing reaction is also present, among many other reactions, in
the database, and is expressed by:

react(n1, R) →
av(ydr127w, R)∧
av(c00493, R) ∧ av(c00002, R)∧
∀R′. [prec(R, R′) → av(c03175, R′)]∧
∀R′. [prec(R, R′) → av(c00008, R′)].

We assume that the underlying database contains partial information
about the observed chain of reactions:

react(n1, r1) ∧ react(n3, r3) ∧ react(n4, r4)

together with a description of reactionsn1, n3, n4 and many other re-
actions, includingn3. Let the considered knowledge base be denoted
by KDB.

We can now consider, e.g.,WSC(α; KDB; av), where

α
def≡ ∃N.[react(N, r2) ∧ prec(r1, r2) ∧ prec(r2, r3)],

providing one with the weakest requirement expressed in terms ofav
only, makingα true, provided that the background theory given by
KDB holds.

In our case, the generated hypotheses will contain the disjunct
av+(c00002, r2), reflecting, among others, sufficient conditions for
prec. TheSNC(α; KDB;{out}) will contain the disjunct

out+(N, c03175) ∧ out+(N, c00008),

reflecting, among others, necessary conditions forprec. If one of
the compoundsc03175, c00008 has not been observed during the
reaction chain, one can reject the hypothesis that reactionN in node
r2 wasn2.
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