
Extending TALplanner with Concurrency and Resources
Jonas Kvarnström and Patrick Doherty and Patrik Haslum1

Abstract. We present TALplanner, a forward-chaining planner
based on the use of domain-dependent search control knowledge
represented as temporal formulas in the Temporal Action Logic
(TAL). TAL is a narrative based linear metric time logic used for
reasoning about action and change in incompletely specified dy-
namic environments. TAL is used as the formal semantic basis for
TALplanner, where a TAL goal narrative with control formulas is
input to TALplanner which then generates a TAL narrative that en-
tails the goal formula. We extend the sequential version of TALplan-
ner, which has previously shown impressive performance on standard
benchmarks, in two respects: 1) TALplanner is extended to generate
concurrent plans, where operators have varied durations and inter-
nal state; and 2) the expressiveness of plan operators is extended for
dealing with several different types of resources. The extensions to
the planner have been implemented and concurrent planning with re-
sources is demonstrated using an extended logistics benchmark.

In W.Horn (ed.): ECAI 2000. Proceedings of the 14th Euro-
pean Conference on Artificial Intelligence, IOS Press, Amster-
dam, 2000.

1 INTRODUCTION

Recently, Bacchus and Kabanza et al. [3, 4, 10] have been in-
vestigating the use of modal temporal logics to express domain-
specific search control knowledge for a forward-chaining planner
called TLPLAN, an approach similar to the negative heuristics used
by Kibler and Morris [12]. TLPLAN has demonstrated impressive
improvements in efficiency when compared to many recent plan-
ners such as Blackbox [11] and IPP [14], the best performers in the
AIPS’98 planning competition [1] (see [4] for comparisons).

In [8], we began exploring a somewhat different approach, repre-
senting not only control rules but also operators, goal statements, and
domain constraints using TAL (Temporal Action Logics [7]), a fam-
ily of narrative-based first-order temporal logics for reasoning about
action and change in incompletely specified dynamic worlds. The re-
sulting planner, TALplanner [8, 25], takes a TAL goal narrative as
input and generates a new narrative where a set of TAL action occur-
rences (corresponding to plan steps) have been added.

In this process, TAL serves as a reference formalism providing
a formal semantics for all parts of the specification of a planning
problem, which provides a very solid basis for experimenting with
planners and formally verifying the correctness of generated plans.
In fact, TAL is a highly expressive formalism, allowing the mod-
eling of STRIPS or ADL operators as well as actions with dura-
tion, non-deterministic effects, incompletely specified timing of ac-
tions, delayed effects, concurrent actions, qualifications to actions,
side-effects of actions, state and domain constraints, and incomplete

1 Department of Computer and Information Science, Link¨oping University,
SE-581 83 Link¨oping, Sweden,fjonkv,patdo,pahasg@ida.liu.se

knowledge about the initial state. Currently, only part of this expres-
sivity is allowed by TALplanner. The intention is to incrementally
extend the planner to handle larger subsets of TAL, testing the ex-
tensions empirically using existing benchmarks when possible and
extending benchmarks when necessary.

This paper reflects the methodology by extending the sequential
version of TALplanner to a version which generates concurrent plans
and by extending the expressivity of plan operators to allow the rep-
resentation of a number of different resource types. The extensions
are verified and tested for efficiency by extending a planning bench-
mark from the logistics domain, generating new domain-dependent
search control formulas and testing the extensions against the unex-
tended benchmark without use of concurrency or resources.

2 TAL: TEMPORAL ACTION LOGICS

The approach we use for reasoning about action and change is as
follows. First, represent a narrative description as a set� of labeled
statements in a surface languageL(ND), a high-level language for
representing observations, action types (plan operators), action oc-
currences, dependency constraints, and domain constraints. Second,
generate the corresponding theory� = �[�fnd in L(FL), an order-
sorted first-order language with a linear, discrete time structure.� is
the translation of� intoL(FL) using theTransfunction [7], and�fnd

is a set of foundational axioms including unique names axioms and
temporal structure axioms. Third, deal with the well known frame,
qualification and ramification problems via a circumscription ax-
iom which is easily reducible to a 1st-order formula via syntactic
transformation. Let�0 be the result of applying a circumscription
policy to the dependency constraints and action types in� and let
�0 = �0 ^ �fnd. Then,� is entailed by� iff �0 j= �. (See [7] for
details regarding TAL and [15] for an implementation.)

3 TALPLANNER

Since earlier TAL logics had no provision for goals or control rules,
we define an extended surface languageL(ND)� which provides two
new statement classes: Intended goal statements (labeledigoal) and
goal control statements (labeledgctrl), described in the following
two subsections. This is in line with the TAL philosophy of adding
macros but keeping the underlying base languageL(FL) unchanged.

TALplanner takes a goal narrative descriptionGN in L(ND)� as
input and generates a plan narrativeNp in L(ND). If GNigoal and
GNgctrl are the sets of intended goal statements and goal control state-
ments inGN , then (assuming the planner is successful) the generated
plan narrativeNp is (GN n(GNigoal[GNgctrl))[GNocc, whereGNocc

is the set of action occurrences (plan steps) generated by the planner.
Thus,GNigoal andGNgctrl are only used in the plan synthesis algo-
rithm, and the output of the planner is a pureL(ND) narrative.

The planning algorithms presented in this paper are sound in the
sense that if a narrative descriptionNp is returned givenGN as input,
then�0

Np
j= Trans([t]

V
GNigoal), where�0

Np
is the circumscribed

logical theory inL(FL) corresponding toNp andt is the end time-
point of the last action occurrence inGNocc. Completeness is a more
difficult issue and depends on the control rules used for each domain.

3.1 Goals inL(ND)�

As demonstrated by TLPLAN, domain-dependent control rules are
often more effective if they can refer to the intended goal. TLPLAN

allows this by using a goal modality, but since TAL is not a modal
logic, TALplanner handles it differently. Due to lack of space, we
will present a restricted translation that requires conjunctive goals.

An intended goal statementin L(ND)� is a conjunction of expres-
sions of the formf =̂ v. This defines the set of goal states. Negative
goals of the form:f can be written asf =̂ false.

For each fluentf : dom1 � � � � � domn ! dom, we add a
corresponding goal fluentgoalf : dom1 � � � � � domn � dom !
ftrue; falseg. The intention is thatgoalf (x; v) should be true exactly
when the goal requires thatf(x) =̂ v. To achieve this, we make
each goal fluent durational with default valuefalse. By translating
the intended goal statement^ni=1fi(xi) =̂ vi into the dependency
constraint8t: I([t] ^ni=1 goalfi(xi; vi) =̂ true), we force the ap-
propriate goal fluents to be true; all other goal fluents remain false.
Finally, the set of atomic expressions inL(ND)� is extended to in-
cludegoal expressionsof the formgoal(f(x) =̂ v), translated into
8t:[t] goalf (x; v) =̂ true. Thus, goal expressions can be used in con-
trol rules as well as in domain constraints and operator preconditions
and their semantics is integrated with that of TAL.

3.2 Control rules in L(ND)�

Unlike traditional search heuristics based on a single state, TLPLAN

uses control formulas in a linear modal tense logic to place con-
straints on the entire state sequence induced by a plan prefix, and
also allows formulas to refer to the given goal. There are four tempo-
ral modalities,U (until),3 (eventually),2 (always), and (next), as
well as agoal modality. A plan prefix can be seen as inducing an infi-
nite state sequence, where the final state is repeated an infinite num-
ber of times. This sequence can be seen as a model, and control rules
can be viewed as model filterers that rule out state sequences that
cannot lead to plans or that lead to suboptimal or redundant plans.

As an example, consider the gripper domain, where a robot with
a number of grippers moves objects between rooms. If some of
the objects the robot is carrying should be in the current room,
it should immediately drop one of those objects – it should not
move to another room. For the special case of a robot with a sin-
gle gripper, this can be expressed using the modal control rule,
2 8o[carry(o) ^ 9l[at(robby; l) ^ goal(at(o; l))]! :carry(o)].

A plan prefix should be retained unless it can be shown thatev-
ery plan beginning with this prefix will violate some control rule. In
TLPLAN, this is achieved by using formula progression and view-
ing a plan prefix as a state sequence whose last state is an idle state.
The TALplan/modal algorithm [8] uses a similar approach, although
the progression algorithm is somewhat different due to the use of ac-
tions with duration and internal state. In this approach, the temporal
modalities can be viewed as special types of macro operators whose
semantics is defined by the translation into plainL(ND) [8].

However, due to the use of explicit time in TAL, it is also possible
to specify control rules in terms of formulas to be evaluated rather

than progressed, as in theTALplan/non-modal algorithm [8]. We in-
troduce a temporal constantt� and ensure that it is always bound
to the timepoint of the lastfixed state – the last state that is guar-
anteed not to be changed by the addition of new operators. Then,
control rules can be contextualized by referring tot�, ensuring that
potentially valid plan prefixes are not discarded prematurely. For ex-
ample, the control formula above can be written as8t; o[t < t� ^
[t] carry(o) ^ 9l[at(robby; l) ^ goal(at(o; l))]! [t+ 1] :carry(o)].

Each approach has advantages and disadvantages in terms of com-
putational complexity. Although a naive progression algorithm might
do better than a naive formula evaluator, as demonstrated in bench-
mark tests [8], we have found that evaluation enables certain opti-
mizations that are more difficult to apply to a progression algorithm,
making the current TALplanner implementation significantly faster
when using evaluation. An additional advantage is the significantly
lower memory usage due to not needing to store a progressed control
formula in each search node. Developing and analyzing optimization
choices is currently being pursued as an active research issue.

In the remainder of the paper, we will concentrate on the use of
evaluated control formulas. The next section presentsTALplan/non-
modal, a variation of the algorithm presented in [8]. In the following
sections, we extend this algorithm with resources and concurrency.

4 SEQUENTIAL TALPLANNER

We will now present a sequential planner,TALplan/non-modal, based
on a combination of those found in Bacchus [4] and Kabanza [10].
Although there are many differences, the most important distinctions
are that the algorithms are modified for the TAL family of logics and
the notion of a narrative, and that formula evaluation is used in place
of progression. The current algorithm has the following restrictions:

� The initial state must be completely specified.
� Actions must be deterministic (but can be context-dependent).
� Dependency constraints (and side effects) are not allowed.
� Domain constraints must be of the form8t; x [t � t� !

([t]f(x)$ �)]. This provides the possibility to use defined pred-
icates (essentially, state variables defined in terms of formulas).

However, we do allow actions with duration and internal state
changes. Also, although the goal formula translation from Sec-
tion 3.1 only handles conjunctive goals, the algorithm itself and its
current implementation allows arbitrary goals. Many existing plan-
ners have much less expressivity, even with these constraints.

Input : An initial goal narrativeGN .
Output : A plan narrativeNp which entails the goal

V
GNigoal.

1 procedureTALplan/non-modal(GN)
2 acc fg // Visited states for cycle checking
3 Open hh0; 0; GNii // Stack (depth-first search)
4 while Open 6= hi do
5 h�; � 0;GNi pop(Open)
6 N (GN n (GNigoal [GNgctrl))
7 if �0

N[ft�=� 0g 6j= Trans(:
V
GNgctrl) then

8 if �0
N j= Trans([�]

V
GNigoal) then return N

9 if (state at time� 0 for N) 62 acc then
10 acc acc [f(state at time� 0 for N)g
11 Expand(GN ; � 0;Open)

Some explanations may be in order. Line 7 checks whether the nega-
tion of the control rules is entailed, or, equivalently, whether any
control rule is violated. Lines 9–11 are responsible for redundancy
checking and expansion: If a plan prefix satisfying the control rules

does not achieve the goal and is not redundant, then we push its suc-
cessors on the stack. Naturally, the search strategy can easily be mod-
ified to use breadth-first search or various forms of heuristic search.

TheExpand algorithm is responsible for finding all successors of a
plan prefix. Here, this is done by finding all operator instances whose
preconditions are satisfied at times in GN . Different implementa-
tions of Expand can provide different lookahead, decision-theoretic
and filtering mechanisms for choice of actions.

1 procedureExpand(GN ; s;Open)
2 N GN n (GNigoal [GNgctrl)
3 for all a(x) 2 ActionTypes(N) do
4 for all [s; t] a(c) 2 Instantiate(s; a(x)) do
5 if �0

N j= Trans([s] precond(a(c))) then
6 Open Open [fhs; t;GN [f[s; t] a(c)gig

5 TALPLANNER AND CONCURRENCY

In this section, we will show how TALplanner has been extended to
generate concurrent plans.

Since TALplanner is fundamentally based on forward chaining,
the definition of the set of successors for each plan prefix (or, equiv-
alently, the definition of the search tree) is one of the most important
features of the planning algorithm.

Generally, letp = h[s1; t1] o1; : : : ; [sn; tn] oni be a (possi-
bly empty) plan prefix. Then, any successor must be of the form
h[s1; t1] o1; : : : ; [sn; tn] on; [s; t] oi, where the precondition ofo is
satisfied at its invocation timepoints � 0. If n > 0, we also require
thats � sn: We never try to invoke a new operator earlier than an
existing operator. Thus, all states up to and includingsn arefixed,
and will never be modified in any successor ofp, which is important
for the efficiency of the implementation.

Sequential planning adds the condition thats = tn (or s = 0
if n = 0): A new action is always invoked exactly when the previ-
ous action finished executing. For concurrent planning, this condition
must be relaxed. Let� be the maximum of all ending timepoints of
all actions inp. The states fromsn up to� may all be different, due to
actions having effects in their intermediate states, but since nothing
can change after� there is no point in considering successors with
s > � . Thus, we require thatsn � s � � .

There is an additional difficulty associated with successors where
s = sn: The search tree could contain redundant pairs of plan pre-
fixes such ash[0; 3] o1; [0; 3] o2i andh[0; 3] o2; [0; 3] o1i. To avoid
this redundancy, we assume the existence of a total order� on oper-
ator instances, and ifs = sn, we require thato � on.

This definition induces a possibly infinite search tree, which can be
traversed using standard search strategies such as breadth first search
or various forms of heuristic search methods. In the algorithms be-
low, we will use depth-first search, relying on control rules to prune
nodes that would not take us closer to the goal.

Input : An initial goal narrativeGN .
Output : A plan narrativeNp which entails the goal

V
GNigoal.

1 procedureTALplan/conc(GN)
2 acc fg // Visited states for cycle checking
3 Open hh0; 0; 0; GNii // Stack (depth-first search)
4 while Open 6= hi do
5 h�; � 0; � ;GNi pop(Open)
6 N GN n (GNigoal [GNgctrl)
7 if �0

N[ft�=�g 6j= Trans(:
V
GNgctrl) then

8 state (state at time� for N)
9 if not exists state0 2 acc: better-or-equal(state0; state) then

10 acc acc [fstateg
11 if �0

N j= Trans([�]
V
GNigoal) then return N

12 elseExpand(GN ; �; � ; � ;Open)
13 for s from � � 1 downto � do
14 if �0

N[ft�=sg 6j= Trans(:
V
GNgctrl) then

15 Expand(GN ; �; s; � ;Open)
Successors may be added at any timepoint between� and� . Note
that they are pushed on the stack in reverse temporal order, since we
prefer invoking operators as early as possible. The case whereall
states up to� are fixed must be treated separately (lines 7–12): Only
here can a plan possibly be found, and only here can redundancy
(cycle) checking be performed. The ordering relationbetter-or-equal
is described in Section 5.2.

As discussed above, theExpand algorithm must be modified some-
what to prevent the search tree from containing redundant pairs of
plan prefixes (line 5 below). Also,� must be updated and stored in
each search node (max(t; �) in line 7).
1 procedureExpand(GN ; �; s; � ;Open)
2 N GN n (GNigoal [GNgctrl)
3 for all a(x) 2 ActionTypes(N) do
4 for all [s; t] a(c) 2 Instantiate(s; a(x)) do
5 if s 6= � or a(c) � lastact(N) then
6 if �0

N j= Trans([s] precond(a(c))) then
7 push hs; t;max(t; �);GN [f[s; t] a(c)gi on Open

5.1 Concurrency and Control Rules

Control rules should normally only be applied to fixed states, since if
a violation depends on a non-fixed state, it might be possible to “re-
pair” it by adding a new concurrent action that modifies the non-fixed
state. However, there are control rules for which this can never be the
case. Consider the gripper rule discussed in Section 3.2. Clearly, once
the robot has picked up an object that was already in its goal location,
adding actions to the plan prefix cannot possibly undo this violation.

Fortunately, many control rules do have this property. Although
this could sometimes be detected automatically, especially in trivial
cases such as the gripper control rule discussed above, this has cur-
rently been left as a topic for future research. Instead, TALplanner al-
lows rules to be marked asunrepairable. For such rules, the planner
always usest� = � rather thant� = s, which increases performance
by allowing the planner to detect violations earlier.

5.2 Concurrency and Resources

Although resources can be modeled in plain TAL, the formaliza-
tion can be quite complex, especially when concurrency is involved.
To facilitate the use of resources, we therefore introduce two new
macros inL(ND)�. The resource macro is used for declaring re-
source fluents and their maximum and minimum allowed values,
while theoperator macro allows for a more structured way of defin-
ing operators and their preconditions, effects, and resource usage.

There are five kinds of resource effects. At any delayt from its
invocation timepoint, an operator canproduceresources (which can-
not be consumed untilt+1). Resources can beconsumedatt, which
leaves room for more production att + 1. Resources can bebor-
rowed, eitherexclusivelyor non-exclusively(shared with other non-
exclusive borrowers). Finally, resources can beassigneda new value.

Resources and resource effects are translated into fluents, plain ac-
tion effects, and domain constraints. The translation also uses control
rules to ensure that resource values are within the allowed range at
all times. Due to lack of space, the translation is not shown here.

With resources, plain cycle checking is generally too weak. For
example, if moving consumes fuel, moving froma to b to a leads
to a new state where less fuel is available. Therefore, each resource

can be associated with a preference:more, less, or none. Here, we
would always prefer to have more fuel. This induces a partial order
on states,better-or-equal, used in the planner. Since resources can
be used in preconditions, effects, control rules, and goals, generat-
ing preferences automatically can be quite complex for non-trivial
domains and has currently been left as a future research topic.

6 THE LOGISTICS DOMAIN

In the standard logistics domain, a number of packages can be trans-
ported by truck between locations in the same city and by airplane
between cities. The goal is normally to deliver each package from its
initial location to its destination.

This domain is naturally concurrent. For example, different ve-
hicles can be moved and different packages loaded and unloaded,
relatively independent of one another. This kind of concurrency ex-
ists in many standard domains, and has motivated approaches such as
partial-order planning and Graphplan’s use of parallel actions [18, 6].

However, few planners have considered the duration of concurrent
actions. To create efficient plans, a planner must be able to plan a se-
quence of several “short” actions, like loading, driving and unload-
ing a truck, in parallel with a “long” action, like flying an airplane
between distant cities. Assuming all actions to have unit duration is
very restrictive.

The logistics domain is also easily extended to include resources.
For example, the carrying capacity of different vehicles is an example
of a property most naturally modelled as a resource.

6.1 Plan Operators, Resources and Control Rules

In keeping with the standard formulation, the following features,
resources and operators describe the domain. Note that TAL is an
order-sorted logic, and all variables are typed; the types used areloc,
with subtypeairport, city, andthing. The typething has subtypesobj
and vehicle (which in turn has subtypestruck and plane). The fol-
lowing is written using macros inL(ND)� and can be translated into
TAL formulas. Note that[t] � means that� holds at timet.

#feature at(thing, loc), in(obj, vehicle), moving(vehicle, loc): boolean
#feature city of(loc): city
#feature dist(loc, loc), size(obj): integer

#resource use of(thing) :domain integer :min 0 :max 1 :preference :none
#resource space(vehicle) :domain integer
:min 0 :max capacity(vehicle) :preference :more

#operator load(obj, vehicle, loc) :at t
:precond [t] at(obj, loc) & at(vehicle, loc)
:resources [+1] :borrow-nonex use of(vehicle) :amount 1,

[+1] :borrow use of(obj) :amount 1
[+1] :consume space(vehicle) :amount size(obj)

:effects [+1] at(obj, loc) := false, [+1] in(obj, vehicle) := true

#operator unload(obj, vehicle, loc) :at t
:precond [t] in(obj, vehicle) & at(vehicle, loc)
:resources [+1] :borrow-nonex use of(vehicle) :amount 1,

[+1] :borrow use of(obj) :amount 1
[+1] :produce space(vehicle) :amount size(obj)

:effects [+1] in(obj, vehicle) := false, [+1] at(obj, loc) := true

#operator drive(truck, loc1, loc2) :at t
:precond [t] at(truck, loc1) & city of(loc1) == city of(loc2) & loc1 != loc2
:resources [+1,+dist(loc1,loc2)/2] :borrow use of(truck) :amount 1,
:effects [+1] at(truck,loc1) := false,

[+1,+dist(loc1,loc2)/2-1] moving(truck,loc2) := true,
[+dist(loc1,loc2)/2] at(truck,loc2) := true
[+dist(loc1,loc2)/2] moving(truck,loc2) := false

#operator fly(plane, airport1, airport2) :at t
:precond [t] at(plane, airport1) & airport1 != airport2
:resources [+1,+dist(airport1,airport2)/5] :borrow use of(plane) :amount 1,
:effects [+1] at(plane,airport1) := false,

[+1,+dist(airport1,airport2)/5-1] moving(plane,airport2) := true,
[+dist(airport1,airport2)/5] at(plane,airport2) := true

[+dist(airport1,airport2)/5] moving(plane,airport2) := false

The city of, dist andsize features define parameters of the problem.
Theuse of resource ensures that an object is never used in conflict-
ing concurrent actions (in other words, it provides a form of mutual
exclusion). Loading and unloading packages into or from a vehicle
borrows theuse of resource non-exclusively, allowing several load-
ing or unloading actions involving the vehicle to take place concur-
rently. Actions that move the vehicle borrow the resource exclusively,
so that it can never be moved to two different destinations at the same
time, or moved during loading or unloading. Vehicles also have lim-
ited carrying capacity, modeled using thespace resource. Unloading
produces space, while loading consumes space; the precondition that
there must be enough space is implicit.

The following domain constraints define abbreviations used in the
control rules: An object needs to be moved by plane fromloc1 if its
destinationloc2 is in another city, and it needs to be unloaded atloc1
if loc1 is in the same city as its destination.
#dom forall t [[t] move-by-plane(obj, loc1) <->
exists loc2 [goal(at(obj, loc2)) & ([t] city of(loc1) !== city of(loc2))]

#dom forall t [[t] unload-from-plane(obj, loc1) <->
exists loc2 [goal(at(obj, loc2)) & ([t] city of(loc1) == city of(loc2))]

The following control rules are inspired by those used by TLPLAN,
but have been modified for concurrency and the use of vehicles with
limited space. Briefly, an airplane should remain where it is until all
packages that should be moved by the plane, and that actually fit into
the plane, have been loaded; note the explicit reference to resources.
It should only move to locations where it needs to deliver or pick up
packages. If a package is at its destination, it should not be moved.
A package should only be loaded onto a plane if a plane (rather than
a truck) is needed to move it, and should only be unloaded if it is in
its destination city. Similar control rules are needed for trucks.
#control :unrepairable forall t, plane, loc [

[t] at(plane, loc) & exists obj [
(at(obj, loc) & move-by-plane(obj, loc) & size(obj) <= space(plane)) |
(in(obj, plane) & unload-from-plane(obj, loc))]

-> [t+1] at(plane, loc)]

#control :unrepairable forall t, plane, loc [
([t] at(plane, loc)) ->
([t+1] at(plane, loc))
| exists loc2 [

([t+1] (at(plane, loc2) | moving(plane, loc2))) &
([t+1] exists obj [in(obj, plane) & unload-from-plane(obj, loc2)])]

| exists loc2 [
([t+1] (at(plane, loc2) | moving(plane, loc2))) &
([t+1] exists obj [at(obj, loc2) & move-by-plane(obj, loc2) &

size(obj) <= space(plane)]) &
(forall p2 [[t+1] (at(p2, loc2) | moving(p2,loc2)) -> p2 = plane])]]

#control :unrepairable forall t, obj, loc [
[t] at(obj, loc) & goal(at(obj, loc)) -> [t+1] at(obj, loc)]

#control :unrepairable forall t, obj, plane [
[t] !in(obj, plane) & forall loc [at(obj, loc) -> !move-by-plane(obj, loc)] ->
[t+1] !in(obj, plane)]

#control :unrepairable forall t, obj, plane [
[t] in(obj, plane) & forall loc [at(plane, loc)-> !unload-from-plane(obj, loc)] ->
[t+1] in(obj, plane)]

7 TEST RESULTS

We have tested both TLPLAN and TALplanner in a number of stan-
dard planning domains using suitable control rules.2 Here, we will
concentrate on the 30 logistics problems from the AIPS’98 planning
competition [1]. For three of those problems, TLPLAN ran out of
memory; the others required between 0.4 seconds and 17 hours to

2 All tests were performed using a Pentium II-333 PC with 256 MB of mem-
ory, running Windows NT.

complete.TALplan/non-modal proved to be considerably more effi-
cient, creating a 274-operator plan for the most complex problem in
under 0.7 seconds using less than 10 MB of memory.

With a use of resource for mutual exclusion,TALplan/conc re-
quired around 0.9 seconds for the most complex problem.

Finally, we have testedTALplan/conc on extended logistics prob-
lems based on the same 30 problems but using the operators and
control rules presented above. Trucks had 5 units of space, while
planes had 25 units. Package sizes were between 1 and 3, and dis-
tances varied between 1 and 25. Due to certain optimizations not yet
being implemented for actions with variable duration, TALplanner
now needed around 11 minutes to complete the most complex prob-
lem. Once these optimizations have been implemented, we expect
performance to improve by at least an order of magnitude.

TALplanner also had a very successful showing at the AIPS-2000
Planning Competition, where it won the “Distinguished Planner”
award in the domain dependent planning track and first place in the
Schindler Miconic-10 Intelligent Elevator Control planning compe-
tition. For the results of the competition and a view of comparative
graphs, see Bacchus [2].

Further test results for TALplanner and complete domain specifi-
cations for a number of planning domains will be available on the
WWW [25].

8 RELATED WORK

Planning with domain-dependent control information, and
“knowledge-based planning” in general [30], has for a long
time been investigated in the context of HTN planning [29, 26],
case-based planning, and some kinds of reactive planning [5]. The
idea of planning with domain information in the form of control rules
in the “classical” state-space setting in fact dates back to 1981 [12],
although it is only more recently that the idea has re-emerged and
been applied to forward-chaining [4] and SAT-based [9] planners.

Time and resource reasoning has been integrated in several HTN
planners (e.g.SHOP [20]). In classical planning, though many plan-
ners form parallel plans (e.g.Graphplan [6] and descendants), not so
many treat operators with non-unit durations and internal state. Sev-
eral approaches in this direction,e.g.Deviser [27], Zeno [21], IxTeT
[16] and TripTic [23], are based on partial-ordered planning com-
bined with temporal constraint reasoning. A more recent approach is
Temporal Graphplan [24].

Resources, or rather continuous state variables, have been inte-
grated in several different planning approaches, for example in the
Graphplan based RIPP [13] planner, constraint propagation [22],
integer-linear programming [28] and a combination of LP and SAT
encoding [31]. HSTS [19] and parcPlan [17], both constraint-based
planners, integrate time and resources in a coherent framework.

9 CONCLUSIONS

We have presented a forward-chaining planner, TALplanner, with a
formal semantics based on the use of a temporal action logic (TAL).
TALplanner has been extended to generate concurrent plans and to
deal with a number of different resource types. The planner is fully
implemented and has been demonstrated and tested using an ex-
tended logistics benchmark. Empirical results have previously shown
that TALplanner is one of the fastest and most memory efficient
domain-dependent planners currently being developed. The new ex-
tensions increase the suite of application domains where the planner
can be used. We are currently working on relaxing the closed world

assumption built into the planner and introducing limited types of
side effects and nondeterministic plan operators.

REFERENCES

[1] AIPS98. Artificial Intelligence Planning Systems: 1998 Planning Com-
petition. http://ftp.cs.yale.edu/pub/mcdermott/aipscomp-results.html.

[2] F. Bacchus. AIPS 2000 planning competition results. Presentation
available athttp://www2.cs.toronto.edu/aips2000.

[3] F. Bacchus and F. Kabanza, ‘Planning for temporally extended goals’,
Annals of Mathematics and Artificial Intelligence, 22, 5–27, (1998).

[4] F. Bacchus and F. Kabanza, ‘Using temporal logics to express search
control knowledge for planning’,Artificial Intelligence, (1998). Sub-
mitted for publication.

[5] M. Beetz and D. McDermott, ‘Improving robot plans during their exe-
cution’, in Proc. Artificial Intelligence Planning Systems, (1994).

[6] A. L. Blum and M. L. Furst, ‘Fast planning through graph analysis’,
Artificial Intelligence, 90(1–2), 281–300, (1997).

[7] P. Doherty, J. Gustafsson, L. Karlsson, and J. Kvarnstr¨om, ‘TAL: Tem-
poral Action Logics – language specification and tutorial’,Linköping
Electronic Articles in Computer and Information Science, 3(15),
(September 1998). Available athttp://www.ep.liu.se/ea/cis/1998/015.

[8] P. Doherty and J. Kvarnstr¨om, ‘TALplanner: An empirical investigation
of a temporal logic-based forward chaining planner’, inProc. TIME’99,
(1999).

[9] Y. Huang, B. Selman, and H. Kautz, ‘Control knowledge in planning:
Benefits and tradeoffs’, inProc. 16th National Conference on Artificial
Intelligence, (1999).

[10] F. Kabanza, M. Barbeau, and R. St-Denis, ‘Planning control rules for
reactive agents’,Artificial Intelligence, 95, 67–113, (1997).

[11] H. Kautz and B. Selman. Blackbox: A new approach to the application
of theorem proving to problem solving.www.research.att.com/�kautz.

[12] D. Kibler and P. Morris, ‘Don’t be stupid’, inProc. IJCAI’81, (1981).
[13] J. Koehler, ‘Planning under resource constraints’, inProc. ECAI’98,

(1998).
[14] J. Koehler, B. Nebel, J. Hoffmann, and Y. Dimopoulos, ‘Extending

planning graphs to an ADL subset’, inEuropean Conference on Plan-
ning, (1997).http://www.informatik.uni-freburg.de/�koehler/ipp.html.

[15] J. Kvarnström and P. Doherty. VITAL. An on-line system for reasoning
about action and change using TAL, 1997–2000. Available athttp://
http://www.ida.liu.se/�jonkv/vital.html.

[16] P. Laborie and M. Ghallab, ‘Planning with sharable resource con-
straints’, inProc. IJCAI’95, (1995).

[17] J. M. Lever and B. Richards, ‘parcPLAN: A planning architecture with
parallel actions, resources and constraints’, inProc. 9th International
Symposium on Methodologies for Intelligent Systems, (1994).

[18] D. McAllester and D. Rosenblitt, ‘Systematic nonlinear planning’, in
Proc. 9th National Conference on Artificial Intelligence, (1991).

[19] N. Muscettola, ‘Integrating planning and scheduling’, In Zweben and
Fox [32].

[20] D. Nau, Y. Cao, A. Lotem, and H. Mu˜noz-Avila, ‘SHOP: Simple hier-
archical ordered planner’, inProc. IJCAI’99, (1999).

[21] J. S. Penberthy and D. S. Weld, ‘Temporal planning with continous
change’, inProc. 12th National Conf. on Artificial Intelligence, (1994).

[22] J. Rintanen and H. Jungholt, ‘Numeric state variables in constraint-
based planning’, inProc. 5th European Conf. on Planning, (1999).

[23] E. Rutten and J. Hertzberg, ‘Temporal planner = nonlinear planner +
time map manager’,AI Communications, 6(1), 18–26, (1993).

[24] D. E. Smith and D. S. Weld, ‘Temporal planning with mutual exclusion
reasoning’, inProc. IJCAI’99, (1999).

[25] TALplanner home page.http://www.ida.liu.se/labs/kplab/talplanner.
[26] A. Tate, B. Drabble, and R. Kirby, ‘O-Plan2: An open architecture for

command, planning and control’, In Zweben and Fox [32], 213 – 239.
[27] S. Vere, ‘Planning in time: Windows and durations for activities and

goals’, IEEE Trans. on Pattern Analysis and Machine Intelligence, 5,
246 – 267, (1983).

[28] T. Vossen, M. Ball, A. Lotem, and D. Nau, ‘On the use of integer pro-
gramming models in AI planning’, inProc. IJCAI’99, (1999).

[29] D. E. Wilkins, ‘Can AI planners solve practical problems?’,Computa-
tional Intelligence, 6(4), 232 – 246, (1990).

[30] D. E. Wilkins and M. desJardins, ‘A call for knowledge-based plan-
ning’, in Proc. AIPS Workshop on Analysing and Exploiting Domain
Knowledge for Efficient Planning, (2000).

[31] S. A. Wolfman and D. S. Weld, ‘The LPSAT engine & its application
to resource planning’, inProc. IJCAI’99, (1999).

[32] Intelligent Scheduling, eds., M. Zweben and M. Fox, Morgan-
Kaufmann, 1994.

