
 

Abstract

 

Recently substantial research has been devoted to
Unmanned Aerial Vehicles (UAVs). One of a UAV’s most
demanding subsystem is vision. The vision subsystem must
dynamically combine different algorithms as the UAV’s
goal and surrounding chang. To fully utilize the available
hardware, a run time system must be able to vary the qual-
ity and the size of regions the algorithms are applied to, as
the number of image processing tasks changes. To allow
this the run time system and the underlying computational
model must be integrated. In this paper we present a com-
putational model suitable for integration with a run time
system. The computational model is called Image Process-
ing Data Flow Graph (IP-DFG). IP-DFG has been
developed for modeling of complex image processing algo-
rithms. IP-DFG is based on data ßow graphs, but has been
extended with hierarchy and new rules for token consump-
tion, which makes the computational model more ß exible
and more suitable for human interaction. In this paper we
also show that IP-DFGs are suitable for modelling expres-
sions, including data dependent decisions and iterations,
which are common in complex image processing
algorithms. 

 

1. Introduction

 

Substantial research has recently been devoted to develop-
ment of Unmanned Aerial Vehicles (UAVs) [1, 2, 3, 4]. A
UAV is a complex and challenging system to develop. It
operates autonomously in unknown and dynamically
changing environment. This requires different types of sub-
systems to cooperate. For example, the subsystem
responsible for planning and plan execution base its deci-
sions on information derived in the vision subsystem. The
vision system, on the other hand, decides which image pro-

cessing algorithms to run based on expectations of the
surrounding, information which the planning and plan exe-
cution subsystem derives. To simplify this cooperation it is
important that the subsystems are ß exible. 

We currently develop a UAV in the WITAS UAV project
[1]. This is a long term research project covering many
areas relevant for UAV development. Within the project
both basic research and applied research is done. As part of
the project a prototype UAV is developed. The UAV plat-
form is a mini helicopter and we are looking at scenarios
involving trafÞc supervision and surveillance missions.
The helicopter currently used in the project for experimen-
tation is depicted in Þgure 1. On the side of the helicopter
the onboard computer system is mounted and beneath the
helicopter the camera gimbal is mounted. The project is a
cooperation between several universities in Europe, the
USA, and South America. The research groups participat-
ing in the WITAS UAV project are actively researching
topics including, but not limited to, knowledge representa-
tion, planning, reasoning, computer vision, sensor fusion,
helicopter modeling, helicopter control, human interaction
by dialog. See [1] for a more complete description of the
activities within the WITAS UAV project.

One of the most important information sources for the
WITAS UAV is vision. In this subsystem symbolic infor-
mation is derived from a stream of images. There exists a
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Figure 1. The mini-helicopter used for experiments
in the WITAS UAV project.
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large set of different image processing algorithms that are
suited for different purposes and different conditions. It is
desirable for a UAV to be able to combine different algo-
rithms as its surrounding and goal changes. To allow this a
ß exible model for the image processing algorithms
together with a run time system that manages the combina-
tion and execution of the algorithms is needed. Further
more a run time system needs to represent image process-
ing algorithms in a model with a clear semantic deÞ nition.
This would make it possible to do both static (of-line) and
dynamic (run-time) optimizations. Optimizations makes it
possible to utilize the available processing power optimally
by varying the quality and the size of the regions an algo-
rithm is applied to, as the number of image processing tasks
varies.

One such model commonly used for image processing
algorithms is Synchronous Data Flow Graphs (Synchro-
nous DFGs). However, this model can only represent static
behavior. Another computational model is boolean DFG.
Boolean DFGs can model dynamic behavior, but are hard
to use. To overcome the mentioned problems we introduce
in this paper a new model of computation aimed at high
level descriptions of image processing algorithms.

 

2. Related work

 

Several systems for modeling signal processing or systems
dedicated for image processing algorithms have been
developed over the years [11, 12, 13]. Early work laid the
foundation by developing data ßow models of computa-
tion. Based on the token ßow model several systems for
modeling or designing signal processing in general or
image processing is particular have been developed.

Data ßow graphs are a special case of a Kahn process
networks [5]. A DFG is a directed graph where nodes rep-
resent processes and arcs represent communication
channels. The communication channels are directed
unbounded FIFO queues, where reads are blocking and
writes are non-blocking. A DFG is executed by repeated
Þring of actors (nodes in the graph). The Þrings are data
driven. Each actor has a set of Þring rules, each specifying
a pattern of tokens on the input channels. A pattern specify
the number of tokens needed on each channel for the actor
to Þre. The tokens are removed from the input channels as
the actor Þres. A pattern can also specify a value for a spe-
ciÞc token. For example an actor with three inputs can have
two Þring rules with the patterns {[true], [*], 

 

⊥

 

} and
{[false], 

 

⊥

 

, [*]}. 

 

⊥

 

 is called bottom and represent the empty
sequence of tokens, hence is always matched. * is a wild-
card and is matched by any token. This actor will consume
one token on either its second or third input, depending on
the value of the token on its Þrst input. The actor is a deter-
ministic merge.

Synchronous DFGs are a special case of DFGs, where
an actor consumes and produces a Þ xed number of tokens
each time it Þres, i.e. it has one Þring rule. To avoid token
accumulation all tokens produced must be consumed. This
leads to linear system of equations called the balancing
equation. From a solution of the balancing equation a static
schedule and bound on the buffer size needed for the com-
munication channels can easily be derived. See [5, 6] for a
detailed description of synchronous DFGs.

Synchronous DFGs can only model static behavior. To
relax this while still preserving some analyzability boolean
data ßow graphs was introduced [7]. A boolean DFG actor
has one input called the control input. This input receives
boolean tokens. When a boolean DFG actor Þres the num-
ber of tokens consumed and produces is a function of the
value of the control token. This is equivalent to two Þ ring
rules, one with the pattern 

 

true

 

 and one with the pattern

 

false

 

 for the control input and a Þ xed number of wildcards
on the other inputs. A systematic approach for consistency
analysis of boolean DFGs is presented in [8].

DFGs are powerful and can be used to model complex
image processing algorithms. However their structure are
complex and working directly with DFGs is error prone.
Synchronous DFGs are much nicer to work with, but they
can not model dynamic behavior which is needed in more
complex image processing algorithms. Boolean DFGs
extends synchronous DFGs with dynamic behavior, but
they are cumbersome to use for representing recursive
algorithms. Hence they are not suitable for modeling of
algorithms containing iterative approximations.

 

3. Integrating a computational model and a 
run time system

 

By integrating the run time system and the underlying com-
putational model it is possible to consider different aspects
at different levels of granularity. Consider the general ori-
entation algorithm shown in Þgure 2. For an algorithm like
this the application typically implies a timing requirement
for the whole algorithm, hence it is preferable to specify
timing constraints at the algorithm level of granularity.
Other aspects are better to consider at a Þner level of gran-
ularity. If the algorithm is to be executed in a parallel
architecture the distribution should be done at node level
and the distribution algorithm should balance the amount
of computation on each processing unit and the communi-
cation between them. Similarly a scheduler should
schedule the nodes individually which would make it pos-
sible to minimize the amount of live data. This could
reduce the memory requirements considerably [14, 15].
The information needed for this type of optimization could
be derived automatically if the computational model was
carefully designed and integrated with the run time system.

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02) 
0-7695-1790-0/02 $17.00 © 2002 IEEE 

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 17, 2009 at 05:58 from IEEE Xplore.  Restrictions apply. 



 

This approach would be more ß exible and offer more con-
trol over execution than using a traditional thread model
and implement algorithm using concurrent threads.

When deciding on a computational model it is not sufÞ -
cient only to consider the interaction with the run time
system. One also have to consider what expression power
is needed for the intended applications. For the vision sub-
system of the WITAS UAV project the applications are
image processing. Many image processing algorithms are
simple. They are composed of well known operations
applied to the whole image. The output of one operation is
the input to another. To illustrate consider the orientation
algorithm shown in Þgure 2. The input image is convolved
with four different kernels resulting in four temporary
images. The features extracted in the temporary images are
then combined on pixel level using a binary tree structure. 

All algorithms are not as simple as the orientation algo-
rithms described above. Consider a camera control
algorithm for a UAV. The camera it to be pointed at an area
of interest. The camera should point to this area indepen-
dent of the helicopter movement. This can be done by
tracking a number of Þxpoints in the image [16]. A Þ xpoint
is a point that is easy to track. If one Þxpoint is out of sight,
i.e. hidden, the camera control algorithm should Þ nd
another Þxpoint. To describe this behavior a model of com-
putation that allows data dependent decisions is needed.

Another type of image processing algorithms which
need to be considered are recursive algorithms, commonly
iterative approximation algorithms. These algorithms itera-
tively improve their result until some conditions are
satisÞed. The conditions could be that the result is sufÞ -
ciently accurate, i.e. a value exceeds a threshold, or that a
maximum number of iterations has been done.

 

4. IPAPI - a run time system

 

Early in the WITAS UAV project it was clear that the plan-
ning and plan execution subsystem would need to access
and guide the image processing subsystem. For this pur-
pose an Image Processing Application Program Interface
(IPAPI) was deÞned. IPAPI has evolved from a simple run
time system with static behavior to a run time system with
dynamic behavior, where the planning and plan execution
subsystem conÞgures the set of algorithms to be executed
based on what symbolic information it needs to extract
from its surrounding.

IPAPI has a library with implementations of different
algorithms. An algorithm is executed as long as its results
are needed. The creation, execution and removal of algo-
rithms is managed by IPAPI. IPAPI also updates the Visual
Object data Base (VOB) with the result of the algorithms.
The VOB contains one entry for each dynamic object the
UAV keeps track of in its surrounding, The VOB is the
UAV’s view of the world. Other subsystem access image
processing result from the VOB.

Internally the image processing algorithms are repre-
sented using a DFG based model. This representation is
described later in this paper. IPAPI has functionality for
dynamic creation and removal of graphs. It dynamically
manages the size of temporary data in the algorithms i.e.
buffers for images. The planning and plan execution sub-
system sets the size of the region of either the input or the
output of a graph. IPAPI then propagates the size through
the graph and allocates memory for buffers needed during
execution. When the size of the regions propagates through
the graph operations that affect the size, i.e. the result is the
intersection of the input regions, are accounted for. IPAPI
also manages the execution of the graphs.

IPAPI has a type system. For each input and output of an
actor a type is speciÞed. The types are checked when inputs
are connected to outputs during the creation of graphs. The
typing of inputs and outputs of actors makes it possible for
the run time system to automatically add conversion
between graphs, for example an image with pixels encoded
as integers can be converted to an image with pixels
encoded as ß oating points. 

 

5. IP-DFG - a computational model

 

We had two goals when developing the computational
model for IPAPI. First the model should be simple for
humans to work with yet it should have sufÞcient expres-
sion power to allow seamless modeling of complex image
processing algorithms. The second goal was to Þnd a model
that is suitable for integration with a ß exible run time sys-
tem such as IPAPI. The model should simplify dynamic
combinations of different algorithms. It should allow

conv(k1)

conv(k3)

conv(k2)

conv(k4)

op1

op1

op2

Figure 2. Orientation, a simple image processing
algorithm
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dynamic change of region sizes and the inherited parallel-
ism of an algorithm should be preserved. Since there is no
need to describe non determinism in image processing
algorithms the model should only allow deterministic
behavior.

DFGs are suitable for integrating with a run time sys-
tem. Using data dependent Þring rules one can create
complex control structures. However DFGs are cumber-
some to use for these functions. There are two major
obstacles, deadlock and token accumulation. The problem
of deadlocks can be reduced by using a tagged token ßow
model. In a tagged token ßow models tokens are tagged
which makes it possible to Þre actors out of order while
preserving the implicit synchronization of tokens [9, 10].
Token accumulation is illustrated in Þgure 3. If the streams
of the control input (horizontal arc) of 

 

select

 

 and 

 

merge

 

 are
identical the graph in Þgure 3a represents two mutually
exclusive calculations (an

 

 if then else

 

 statement). If the con-
trol input to 

 

merge

 

 is the negation of the control input to

 

switch

 

, as in Þgure 3b, the behavior is quite different. Con-
sider the input sequences for select to be {true, true, true,
false} and {x

 

0

 

, x

 

1

 

, x

 

2

 

, x

 

3

 

}. First switch Þres and output x

 

0

 

on the 

 

f

 

 branch. The actor 

 

f

 

 Þres and outputs f(x

 

0

 

). 

 

Merge

 

receives false (the negation of 

 

selects

 

 input) on its control
input. It can not Þre because the matching Þring rule needs
one token on the 

 

g

 

 branch. This will not happen until 

 

switch

 

has Þred four times. At this time x

 

3

 

 will be sent on the 

 

g

 

branch. The output sequence of the graph will be {g(x

 

3

 

),
f(x

 

0

 

)} and several tokens are still remaining in the graph,
but no Þ ring rules are matched.

Boolean DFGs can express data dependent conditions
and iterations needed by complex algorithms. However it is
cumbersome to express some complex algorithms using
boolean DFGs. Therefore we have developed a new variant
of DFGs targeted for complex image processing algorithms
and more suitable for humans to work with. We call this
computational model Image Processing Data Flow Graph

(IP-DFG) and we have used it for integration with IPAPI.
IP-DFG is based on boolean DFG, but has been

extended with hierarchy and new rules for token consump-
tion when an actor Þres. This makes the model more
ß exible. IP-DFG has the same concept, as boolean DFG, of
one control input and two Þring rules for each actor. The
value of the control token decides which Þring rule is used
and the Þring rule determines the number of tokens con-
sumed and produced.

As in DFGs tokens are stored on the arcs in FIFO order.
However in IP-DFG an actor do not need to remove all
tokens matching the Þring rule from the input. A Þring rule
consists of a token pattern and a number for each input to
the actor. The token pattern indicates which tokens need to
be present for the actor to Þre and the number indicate how
many tokens should be removed from the inputs when it
Þres. If an actor has a pattern with 

 

n

 

 tokens and 

 

m

 

 tokens
are removed when it Þres the actor is said to read 

 

n

 

 tokens
and consume 

 

m

 

. This simpliÞes the implementation of
functions that use the same token in several Þrings, for
example sliding average. Sliding average over 

 

n

 

 tokens
reads 

 

n

 

 tokens but consume only 1. 

 

n

 

-1 tokens remains in
the FIFO-queue of the input so they can be read the next
time the actor Þres. This behavior is common for image
processing algorithms that extract dynamic features in an
image sequence, for example optical ßow.

 

5.1. Hierarchy

 

An IP-DFG is composed of boolean DFGs in a hierarchical
way. An actor can encapsulate an acyclic boolean DFG.
Such actor is called a hierarchical actor. Since the internal
graph of a hierarchal actor is acyclic it can not model iter-
ations. Instead in IP-DFG iterations are explicitly deÞ ned.
This makes the model more suitable for human interaction,
see section 5.2. In an IP-DFG a hierarchical actor is no dif-
ferent from any other boolean DFG actor. It has two Þ ring
rules and when it Þres it consumes and produces tokens
according to the matching Þring rule. Internally the Þring is
divided into three steps. The three steps perform 

 

initializa-
tion

 

, 

 

execution

 

 and 

 

result transmission

 

. For initialization
and result transmission a 

 

token mapping function

 

 is used. A
token mapping function maps a set of token sequences to
another set of token sequences, .
A token mapping function is usually simple, i.e. a result
sequence is identical to a source sequence. However it is
possible to perform more complex operations in a token
mapping function, for example split one sequence or merge
or concatenate two sequences. The token sequences in a
token mapping function always have a Þnite length in con-
trast to DFGs which are working on inÞnite token
sequences. Token mapping functions are described in sec-
tion 5.3.

Figure 3. A DFG example

select

merge

gf not

a) b)

select

merge

gf

S0 … Sn, ,{ } S0 … Sm, ,{ }→
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A hierarchical actor is stateless. To guarantee this the
Þrst step of the Þring of a hierarchical actor is to generate
the initial state of all internal arcs. The contents of the arcs
are created from the tokens read by the hierarchical actor as
it is Þred. This is done according to a token mapping func-
tion. When a hierarchical actor with 

 

n

 

 inputs and 

 

m

 

 internal
arcs Þres a sequence of tokens, , are read from each
input, 

 

i

 

j

 

. The token mapping function maps the set of all
input sequences, , to a set of sequences

. The sequence  is used as the initial state of
the FIFO queue on arc . A token mapping function can
also create new tokens from constants. There is one token
mapping function for each Þ ring rule. 

The second step is the execution of the internal boolean
DFG. This is done according to the Þring rules of the actors
in the internal boolean DFG. When no internal Þring rules
are matched the boolean DFG is blocked and the second
step ends.

In the third and Þnal step the result tokens are mapped
to the outputs of the hierarchical actor. This is done accord-
ing to a token mapping function. When the internal boolean
DFG is blocked there is a sequence of tokens, , on each
arc . The token mapping function maps the set of all the
sequences of the internal arcs, , to a set of
sequences . Each sequence  is transmitted
on the output . After the token mapping function is per-
formed all tokens remaining in the internal boolean DFG
are dead. The initialization mapping guarantees that they
will not be used in the next Þring of the hierarchical actor
and the run time system can reclaim the memory used by
these tokens. This also prevents token accumulation.

To illustrate consider the camera control algorithm out-
lined in section 3. The algorithm tracks a constant number
of Þxpoints in the images and based on this aims the cam-
era to the area of interest. If a Þxpoint is no longer visible
it is replaced by a new visible Þxpoint. Figure 4 shows a
sub-function in the algorithm. The sub-function is called

 

pointLocator

 

 and Þnds one Þxpoint with a given signature
in a given image, or if the Þxpoint is not found selects a new
one. The result of 

 

pointLocator

 

 is an updated or new Þ x-
point signature and corresponding parameters used in the
camera control loop. 

 

PointLocator

 

 consume/produce one
token on each input/output when it Þres. The internal actors
has the following Þring rules (inputs are ordered counter
clockwise starting with the the upper-most left-most one): 

•

 

Þ nd

 

: {[*], [*]}
•

 

select new: 

 

{[*], [true]}, {

 

⊥

 

, [false]}
•

 

merge:

 

 {[*], [true], 

 

⊥

 

}, {

 

⊥

 

, [false], [*]}
The Þring of 

 

pointLocator

 

 starts with the initialization
step. There are two token sequences,

 

 S

 

Þ xpoint

 

 

 

and

 

 S

 

image

 

.
Both contain one token. According to the token mapping

function the sequence 

 

S

 

Þ xpoint

 

 is placed in the FIFO queue
of the internal arc 

 

f 

 

and the sequence 

 

S

 

image

 

 is placed in the
FIFO queue of 

 

i

 

. After this the internal boolean DFG is exe-
cuted. The Actor 

 

Þ nd

 

 Þ res Þrst, since it is the only actor
with a matched Þring rule. It generates one token on each
of its outputs. The gray arc is connected to the control input
of 

 

select new

 

 and 

 

merge

 

. The generated control token is

 

true

 

 if the Þxpoint was found or else 

 

false

 

. If the token is
true both 

 

select new

 

 and 

 

merge

 

 can Þre. In this case 

 

select
new

 

 do not generate any token and 

 

merge

 

 forwards the Þ x-
point token from 

 

Þ nd

 

. If the Þxpoint was not found only

 

select new

 

 can Þ re. 

 

Select new

 

 now selects a new Þ xpoint
and send it to its output. 

 

Merge

 

 forwards this token to the 

 

f ’

 

arc. Now the boolean DFG is blocked and the result map-
ping starts. The tokens on the internal arcs 

 

f ’ 

 

and 

 

p 

 

are
transferred to the outputs 

 

Þ xpoint’

 

 and 

 

pos

 

. In this example
the actor 

 

select new

 

 Þred independent of whether a new Þ x-
point needs to be selected. It is important to understand that
it is only in one of these Þrings that the actor do any work.
The purpose of the second Þring rule is only to remove
tokens from the control input. If the run time system knows
that the actor is stateless it can chose not to Þre an actor that
do not produce any output. Instead the tokens matching the
Þring rule are discarded. Also note that if the Þxpoint was
not found the Þxpoint token from 

 

Þ nd

 

 to 

 

merge

 

 will not be
consumed. This is not a problem because the next time

 

pointLocator

 

 Þres it will be removed during initialization.
In fact a run time system should reclaim this token directly
when 

 

pointLocator

 

 is blocked.
From this example it seems unnecessary to have a token

mapping function for initialization and transferring the
result to the outputs. It would be simpler to directly connect
the internal arcs with the FIFO queues of the surrounding
arcs. However this separation allows an actor to create con-
stant tokens during the initialization step and it simpliÞ es

Si j

Si1
… Sin

,{ , }
Sa1

… Sam
,{ , } Sal

al

Sal

al
Sa1

… Sam
,{ , }

So1
… Som

,{ , } Sol

Ol

Figure 4. A hierarchical actor for tracking a Þxpoint. If
the Þxpoint is not visible a new Þxpoint is
selected.
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modeling of iterative functions as described below.

 

5.2. Iteration

 

There are two types of iterations of interest when dealing
with image processing, iteration over data and tail recur-
sion. In iteration over data the same function is applied on
independent data. In a computational model based on the
token ßow model this is achieved by placing several tokens,
each containing one quantum of data, in the graph. The
actors will Þre appropriate number of times. To use the

 

pointLocator

 

 shown in Þgure 4 for tracking ten Þ xpoints
one simply place ten tokens containing the signature on the

 

Þ xpoint

 

 arc and ten images on the 

 

image

 

 arc, 

 

pointLocator

 

will then Þre ten times. This implementation tracks differ-
ent Þxpoints in different images. For tracking several
Þxpoint in the same image a more suitable approach is to
change the Þring rules. By setting the Þring rule of 

 

point-
Locator

 

 to consume ten tokens on the 

 

Þ xpoint

 

 input and one
on the 

 

image

 

 input the proper tokens are placed on the 

 

f

 

 and

 

i

 

 internal arcs during the initialization mapping. The Þ ring
rule of the internal actors 

 

Þ nd

 

 and 

 

select new

 

 must also be
changed. They should read one token and consume zero
tokens from the 

 

i

 

 arc. The image token on the internal arc 

 

i

 

will be removed after the result mapping, so 

 

pointLocator

 

will behave correct the next time it Þ res.
Tail recursion is an important type of iteration com-

monly used for iterative approximations. In tail recursion
the result of one invocation of a function is used as argu-
ment for the next invocation of the same function. Tail
recursion is equivalent to iteration and in the rest of this
paper we will use the term iteration. In IP-DFGs iteration
is implemented using hierarchical actors. When a hierar-
chical actor fires the internal graph can be executed several
times. For modeling of iteration we have extend hierarchi-
cal actors with a 

 

termination arc

 

 and an 

 

iteration mapping
function

 

. Such actors are called iterative actors. 
When an iterative actor Þres it is initialized and the

internal boolean DFG is executed once as a hierarchical
actor. As part of the execution a termination condition is
evaluated, resulting in a boolean token on the 

 

terminate
arc

 

. The 

 

terminate arc

 

 is a special arc in the internal bool-
ean DFG of an iterative actor. If the last token on the

 

terminate arc

 

 is false when the internal boolean DFG is
blocked the internal boolean DFG is to be executed again.
Before the repeated execution starts the internal boolean
DFG must be transformed from its blocked state, where no
Þring rules are satisÞed to the initial state of the next itera-
tion. This is done according to the 

 

iteration mapping
function

 

. The 

 

iteration mapping function

 

 generates a token
sequence for each arc in the internal graph from the token
sequences in the blocked graph. This mapping is deÞned by
a token mapping function. Tokens not explicitly declared to

remain in the boolean DFG will be removed. This is to
avoid token accumulation. The internal boolean DFG is
executed until the termination condition is satisÞed. When
this happens result tokens are generated according to the
output mapping as described in the section on hierarchical
actors.

The separation of the iteration body and token mapping
functions allows a cleaner implementation of iterative
functions. Consider the camera control algorithm from sec-
tion 3. and 5.1. The core of the algorithm is to Þnd the
cameras position and heading in the 3D world. This can be
done by using the Geographical Position System (GPS) and
anchoring objects in an image from the camera with a geo-
graphical information system. This is very computational
intensive, so it is preferable not to do this often. A less com-
putational intensive approach is to track the cameras
movement in the 3D world. This can be done by tracking a
set of points in the 2D image from the camera [16]. The cal-
culations assume that all points are located on the ground
plane. However this is not the case for all points in the
world, i.e. points at the top of a building. An algorithm
based on this approach should ignore points not behaving
as if they was on the ground plane. An iterative actor which
do this is shown in Þgure 5. All actors consume/produce
one token on each input/output, except the 

 

plane

 

 input of
the 

 

new plane

 

 actor, which reads one token, but the token is
not consumed. In each iteration one estimate of the ground
plane is calculated. Also the distance between the estimated
plane and the Þxpoints are calculated. If there is one Þ x-
point with a distance larger than a threshold then the
Þxpoint with the largest distance is removed and a new iter-
ation is to be done. The actor 

 

new plane

 

 calculates a new
estimate of the ground plane from an earlier ground plane
estimate and a set of current and earlier Þxpoints positions.
The set of Þxpoints is stored in one token. The actor 

 

resid-

Figure 5.  A recursive algorithm for estimating the
ground plane relative to the camera.

init mapping:
plan = oldPlane
FPPair = Þ xpoints

plane FPPair

iteration mapping:
plane = plane
FPPair = FPPair’

result mapping:
newPlane = 
last(plane’, 0)

fixpoints

new

residual

plane

terminateFPPair’

oldPlane

plane’

newPlane
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ual

 

 Þnds the Þxpoint with the largest distance from the
estimated ground plane. If this distance is larger than a
threshold then this point is removed and a token with the
remaining Þxpoints are sent to the 

 

FPPair’

 

 arc and a false
token is sent to the terminate arc, otherwise true are sent to
the terminate arc. The Þring of the iterative actor is simple
to follow. First in the initialization mapping function an
earlier ground plane and a set of tracked Þxpoints are
mapped to the internal boolean DFG. Next the internal
boolean DFG is executed. The actor new plane Þ res Þ rst
followed by residual, resulting in a blocked boolean DFG.
If the estimate of the ground plane was based on fixpoint
not on the plane then the last token generated on the termi-
nate arc is false and the set of Þxpoints now believed to be
on the ground plane is in the token on the FPPair’ arc. The
internal boolean DFG is to be executed again and the iter-
ation mapping function generates the initial state for the
next iteration. The token on the plane arc is to stay on the
arc and the token with the set of Þxpoints on the PFPair’
arc is mapped to the FPPair arc. Now the internal boolean
DFG is executed again. This repeats until all Þxpoints is
sufÞciently close to the estimate of the ground plane,
resulting in a true token on the terminate arc. The result
mapping function then maps the last estimated plane to the
newPlane output arc. 

5.3. Token mapping functions

Token mapping functions are used in hierarchical and iter-
ative actors to transfer tokens between the internal arcs and
the surrounding. They are also used in iterative actors to
change internal state between iterations. This can be seen
as a mapping from one set of token sequences of Þ nal
length to another set of token sequences of Þnite length,

. Each sequence is associated
with one arc and the token sequence is the contents of the
arcs FIFO queue. In a token mapping function a result
sequence is created from concatenations of sequences. The
sequences can be original sequences, new sequences or an
empty sequence (⊥). New sequences are created from indi-
vidual tokens from the source sequences and new tokens
created from constants. 

In a token mapping function a new token can also be cre-
ated by wrapping a token sequence. The original token
sequence can be recreated by unwrapping token created by
a wrapping. This makes it possible to treat some elements
as a set, but still have the possibility to apply functions to
the individual elements. Consider the plane estimate actor
for the camera control algorithm in Þgure 5. In the iterative
actor the Þxpoints are treated as a set, encapsulated in one
token. However as part of the algorithm the distance for
each Þxpoint to a plane is to be calculated. This is done by
the hierarchical actor in Þgure 6. During the initialization

mapping the set of Þxpoints is unwrapped and placed as a
sequence of tokens on the fp arc. The distance actor will Þ re
once for each Þxpoint and the result mapping will later
wrap the sequence of distances to one token.

To preserve properties of a graph a token mapping func-
tion is said to be monotonic if it preserves the relative
precedence of all tokens. If token tk proceeds token tl in any
if the input sequences tk precedes tl in all result sequences
both tokens are present in.

6. Experimental platform

Originally IPAPI was implemented and tested in the simu-
lator developed for the WITAS UAV project. The WITAS
UAV simulator is composed of several components com-
municating using real-time CORBA. The components of
the simulator correspond to the subsystems of the onboard
system in addition to components for simulating the envi-
ronment, the physical behavior of the helicopter and
rendering of 3D images. The rendered images are used as
input to the image processing algorithms. Currently this
implementation is ported to the onboard hardware plat-
form. During this porting the components are modiÞed to
coupe with the limitations of the onboard hardware while
meeting constraints on timing and stability.

IPAPI has been implemented in Java which make it easy
to move between different hardware platforms. To achieve
good performance all image processing operations (actors)
have been implemented in native methods. The onboard
system has one PowerPC processor dedicated for image
processing. The native implementations of the image pro-
cessing actors fully utilize the AltiVec unit of the PowerPC
processor. The AltiVec unit is a vector processing unit with
128 bit internal data-paths. It allows SIMD instructions on
16, 8, or 4 parallel elements depending on the number of
bits per element (short, int, long or ßoating point). Our
experiments show that this division of Java and native C
implementation give a negligible overhead compared to
implementing the whole run time system in C. Java has the

S0 … Sn, ,{ } S0 … Sm, ,{ }→

init mapping:
plan’ = plane
dp = unwrap(Þ x-
points)

plane’ fp

result mapping:
distance = 
wrap(dist)

fixpoints

distance

plane

distances

dist

Figure 6. A hierarchical actor for calculation of the
distance of all points in a set to one plane.

Proceedings of the Euromicro Symposium on Digital System Design (DSD’02) 
0-7695-1790-0/02 $17.00 © 2002 IEEE 

Authorized licensed use limited to: Linkoping Universitetsbibliotek. Downloaded on March 17, 2009 at 05:58 from IEEE Xplore.  Restrictions apply. 



beneÞt of automatic memory management and stable
exception handling while still meeting real time constraints
for critical tasks [17].

7. Future work

In the WITAS UAV project we have encountered a need for
higher order functions. A higher order function is a func-
tion that generates another function and in the context of
DFGs an actor that generates DFGs. This is similar to a
hierarchical actor, but more powerful. Currently we are
using algorithms that is composed of calculations at differ-
ent scales of an image and we need the number of scale
levels to be parametric. Today we solve this by allow a hier-
archical actor to create its subgraph as it is being created.
The creation of a subgraph is deÞned by a Java function,
which creates the internal data structure used by IPAPI
where the hierarchical actor Þres. To allow people not
familiar with the internal structure of IPAPI to use this
functionality it is desirable to express higher order func-
tions directly in IP-DFG.

Currently our onboard system for the WITAS helicopter
has one processor dedicated for image processing. Thus
IPAPI is implemented for single processor. We plan to
extend the onboard system with more processors in the near
future. For this purpose IPAPI will be extended with algo-
rithms for distribution of image processing algorithms.
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