
A Distributed Architecture for Autonomous Unmanned
Aerial Vehicle Experimentation

P. Doherty, P. Haslum, F. Heintz, T. Merz, P. Nyblom, T. Persson, and B. Wingman

Linköping University
Dept. of Computer and Information Science
SE-58183 Link̈oping, Sweden
patdo@ida.liu.se

In Proceedings of the 7th International Symposium on Distributed Autonomous Sys-
tems, 2004.

Summary. The emerging area of intelligent unmanned aerial vehicle (UAV) research has shown
rapid development in recent years and offers a great number of research challenges for distributed
autonomous robotics systems. In this article, a prototype distributed architecture for autonomous un-
manned aerial vehicle experimentation is presented which supports the development of intelligent
capabilities and their integration in a robust, scalable, plug-and-play hardware/software architecture.
The architecture itself uses CORBA to support its infrastructure and it is based on a reactive concentric
software control philosophy. A research prototype UAV system has been built, is operational and is
being tested in actual missions over urban environments.

1 Introduction

The emerging area of intelligent unmanned aerial vehicle (UAV) research has shown rapid
development in recent years and offers a great number of research challenges in the area of
distributed autonomous robotics systems. Much previous research has focused on low-level
control capability with the goal of developing controllers which support the autonomous
flight of a UAV from one way-point to another. The most common type of mission sce-
nario involves placing sensor payloads in position for data collection tasks where the data is
eventually processed off-line or in real-time by ground personnel. Use of UAVs and mission
tasks such as these have become increasingly more important in recent conflict situations
and are predicted to play increasingly more important roles in any future conflicts.

Intelligent UAVs will play an equally important role in civil applications. For both mil-
itary and civil applications, there is a desire to develop more sophisticated UAV platforms
where the emphasis is placed on development of intelligent capabilities and on abilities to
interact with human operators and additional robotic platforms. Focus in research has moved
from low-level control towards a combination of low-level and decision-level control inte-
grated in sophisticated software architectures. These in turn, should also integrate well with
larger network-centric based C4I2 systems. Such platforms are a prerequisite for supporting
the capabilities required for the increasingly more complex mission tasks on the horizon and
an ideal testbed for the development and integration of distributed AI technologies.



The WITAS1 Unmanned Aerial Vehicle Project2 [4] is a basic research project whose
main objectives are the development of an integrated hardware/software VTOL (Vertical
Take-Off and Landing) platform for fully-autonomous missions and its future deployment
in applications such as traffic monitoring and surveillance, emergency services assistance,
photogrammetry and surveying.

Fig. 1. Aerial photo over
Revinge, Sweden

Basic and applied research in the project covers a wide
range of topics which include the development of a dis-
tributed architecture for autonomous unmanned aerial vehi-
cles. In developing the architecture, the larger goals of in-
tegration with human operators and other ground and aerial
robotics systems in network centric C4I2 infrastructures has
been taken into account and influenced the nature of the base
architecture. In addition to the software architecture, many
AI technologies have been developed such as path planners,
chronicle recognition and situational awareness techniques.
The architecture supports modular and distributed integra-
tion of these and any additional functionalities added in the
future. The WITAS UAV hardware/software platform has
been built and successfully used in a VTOL system capa-
ble of achieving a number of complex autonomous missions flown in an interestingur-
ban environment populated with building and road structures. In one mission, the UAV
autonomously tracked a moving vehicle for up to 20 minutes. In another, several building
structures were chosen as survey targets and the UAV autonomously generated a plan to fly
to each and take photos of each of its facades and then successfully executed the mission.

Fig. 2.The WITAS RMAX Helicopter

Figure 1 shows an aerial photo of our pri-
mary testing area located in Revinge, Swe-
den. An emergency services training school
is located in this area and consists of a col-
lection of buildings, roads and even makeshift
car and train accidents. This provides an ideal
test area for experimenting with traffic surveil-
lance, photogrammetric and surveying scenar-
ios, in addition to scenarios involving emer-
gency services. We have also constructed an
accurate 3D model for this area which has
proven invaluable in simulation experiments
and parts of which have been used in the on-
board GIS.

In the remainder of the paper, we will focus primarily on a description of the engineered
on-board system itself, parts of the distributed CORBA-based software architecture and in-
teraction with the primary flight control system. There are a great many topics that will
not be considered due to page limitations, particularly in the area of knowledge represen-
tation [5, 7, 8], symbol grounding [14, 13], and deliberative capabilities [24, 6], task-based
planning [6], specific control modes [3, 16, 27] and their support, image processing [18]

1WITAS (pronouncedvee-tas) is an acronym for the Wallenberg Information Technology and
Autonomous Systems Laboratory at Linköping University, Sweden.

2This work and the project is funded by a grant from the Wallenberg Foundation.



and in technologies such as dialogue management for support of ground operation person-
nel [26].

2 The VTOL and Hardware Platform

RTLINUX

RTLINUX

TCP/IP

700Mhz PIII/256Mbram/500Mbflash

700Mhz PIII/256Mbram/500Mbflash

700Mhz PIII/256Mbram/256Mbflash

GPS

serial analog

magnetic
compass

pressure
sensor

temp.
sensors

camera
control

framegrabber
BT878

preprocessor

IPAPI

path
planner

task
planner

knowledge
repository

TP exec

chronicle
recognition

GIS

DOR

Other. . .

Helicopter Control

RMAX Helicopter
Platform

Yamaha
Attitude
Controller

roll

yaw

pitch

200Hz

50Hz

Camera Platform

Color CCD Camera/
PTU

mini-dv

Yamaha
Attitude
Sensors

200/66Hz

LINUX

RS232

sonar

Fig. 3.On-Board Hardware Schematic

The WITAS Project UAV platform we use is
a slightly modified Yamaha RMAX (figure 2).
It has a total length of 3.6 m (incl. main ro-
tor), a maximum take-off weight of 95 kg,
and is powered by a 21 hp two-stroke engine.
Yamaha equipped the radio controlled RMAX
with an attitude sensor (YAS) and an atti-
tude control system (YACS). Figure 3 shows
a high-level schematic of the hardware plat-
form that we have built and integrated with the
RMAX platform.

The hardware platform consists of three
PC104 embedded computers (figure 3). The
primary flight control (PFC) system consists
of a PIII (700Mhz) processor, a wireless Eth-
ernet bridge and the following sensors: a RTK
GPS (serial), and a barometric altitude sensor
(analog). It is connected to the YAS and YACS
(serial), the image processing computer (se-
rial) and the deliberative computer (Ethernet).
The image processing (IP) system consists
of a second PC104 embedded computer (PIII
700MHz), a color CCD camera (S-VIDEO,
serial interface for control) mounted on a pan/tilt unit (serial), a video transmitter (com-
posite video) and a recorder (miniDV). The deliberative/reactive (D/R) system runs on a
third PC104 embedded computer (PIII 700MHz) which is connected to the PFC system
with Ethernet using CORBA event channels. The D/R system is described in more detail in
section 4.

3 Control

A great deal of effort has gone into the development of a control system for the WITAS UAV
which incorporates a number of different control modes and includes a high-level interface
to the control system. This enables other parts of the architecture to call the appropriate
control modes dynamically during the execution of a mission. The ability to switch modes
contingently is a fundamental functionality in the architecture and can be programmed into
the task procedures associated with the reactive component in the architecture. We devel-
oped and tested the following autonomous flight control modes:

• take-off (TO-Mode) and landing via visual navigation (L-Mode, see [16])
• hovering (H-Mode)
• dynamic path following (DPF-Mode, see [3])
• reactive flight modes for interception and tracking (RTF-Mode).



These modes and their combinations have been successfully demonstrated in a number
of missions at the Revinge testflight area. The primary flight control system (bottom PC104
in Figure 3) can be described conceptually as consisting of a device, reactive, behavior and
application layer as depicted in figure 4a.3Each layer consists of several functional units
which, with the exception of the application layer, are executed periodically with compara-
ble period and worst case execution times. The implementation is based on RTLinux (GPL),
which runs an ordinary Linux distribution as a task with lower priority. The application layer
is realized in user space as no hard real-time execution is required, while the other layers
contain functional units running as kernel modules in hard real-time.

A CORBA interface is set up between the PFC system and the deliberative/reactive sys-
tem of the software architecture (top PC104 in Figure 3). Network communication between
the two is physically realized using Ethernet with CORBA event channels and CORBA
method calls. Task procedures in the D/R system issue commands to the PFC system to
initiate different flight modes and receive helicopter states and events from the PFC system
which influence the activity of the task procedure.

image processing modules
image acquisition

serial communication

PFC comm. pan/tilt driver camera driver

pan/tilt control camera control

image processing HCSM

b)

analog I/O

vehicle control

sensor drivers

continuous
set−point gen.

IPC/GCS comm.

processing
sensor signal
state analysis

digital I/O

actuator drivers

simulation
vehicle/sensor

serial comm.

primary flight control HCSM

CORBA interface / user HCSMuser interfacea)

idle

braking take off

hovering

TakeOffMode

proportional
navigation

landing

BrakeMode

HoverMode

DynPathMode

tracking
object

TrackMode

dyn. path following

ModeSwitch

LandMode

PropMode

manual

IPSystem

Interface

auto

1
ModeSwitch

2

3

...

�������

������� �������

�������

	�
������������������ �!�"

#%$ !'&(� �!�"�) *,+.-0/21

354 ���6&87:9 4<;>= ��? 4 !@1�A

BDC ���6&87:9 4<;>= ��? 4 !@1

BDC ���6&�9 4<;>= ��? 4 !E1

#%$ !'&F�G�!�"�)GHJI���*%1 �������

3K4 ���6&�9 4<;>= ��? 4 !E1LA
	�
����� ;>= ��? 4 !��G�!�"5M
	�
�����NO".PQ!SR

#%$ !'&(� �!�"�) TVUSWS
YX[Z\1

#%$ !'&F�G�!�"�) T]+^US_`WQ1

#%$ !'&(� �!�"�)Ga\-cbS
+�1

&F�G�!�"�)Gd<US���e1
#%$ !

354 ���

f ?��Fgc"E&(h = P�iQ"Kj�k,���ml`�

	.
�2��� B $ h = P�iQ"

	�
�����onJ?��m�c�����������
f ?��Fgc"<&8nJ?��p�qj�k,���ml`�D1LA

	.
o������rP 4 ?2PS�F�����������
f ?��Fgc"<&87�nJ?e�m�qj�k,���ml`�D1LA

3K4 ���LAs	�
��� � �rP 4 ?2PS�F�����������

t nJ?��p�qj�k,���ml`�D1LA

Fig. 4.PFC and IP System Schematic (left) and HCSMs for Flight Mode Switching (right)

Hierarchical concurrent state machines (HCSMs) are used to represent states of the PFC
system. HCSMs are mixed Mealy and Moore machines with hierarchical and orthogonal
decomposition. These are executed explicitly in the PFC system. We use a visual formalism
similar to Harel’s statecharts [12] to describe HCSMs.

Figure 4b shows that part of the flight control HCSM involving mode switching for
different flight modes.4

3The image processing (IP) system (middle PC104 in Figure 3) has a similar structure, but will
not be considered in this paper.

4Nested state machines are symbolized as rectangular boxes in a state node,Pulseis an event sent
periodically,Init triggers a transition from an entry state (circular node) when condition holds,Exit



4 Software System

A great deal of effort in the artificial intelligence community has recently been directed
towards deliberative/reactive control architectures for intelligent robotic systems. Two good
sources of reference are [1] and [15]. Many of the architectures proposed can be viewed
in a loose sense as layered architectures with a control, a reactive and a deliberative layer
(see [9]). The software architecture we have developed does have deliberative, reactive and
control components, but rather than viewing it from the perspective of a layered architecture,
it is best viewed as areactive concentricarchitecture which uses services provided by both
the deliberative and control components in a highly distributed and concurrent manner. At
any time during the execution of a mission, a number of interacting concurrent processes at
various levels of abstraction, ranging from high-level services such as path planners to low-
level services such as execution of control laws, are being executed with various latencies.

We have chosen CORBA5 as a basis for the design and implementation of a loosely
coupled distributed software architecture for our aerial robotic system. We believe this is
a good choice which enables us to manage the complexity of a deliberative/reactive (D/R)
software architecture with as much functionality as we require for our applications. It also
ensures clean and flexible interfacing to the deliberative and control components in addition
to the hardware platform via the use of IDL (Interface Definition Language).

Geographical
Data

Repository

Knowledge
Repository

Dynamic
Object

Repository

Task Procedure Execution
Module (TPEM)

TP1 TPn

Prediction
Service

Chronicle
Recognition

Service

Path Planner
Service

Task Planner
Service

Helicopter
Controller

Physical
Camera

Controller

Image
Controller

IPAPI

IPAPI Runtime
Image Processing Module (IPM)

Qualitative
Signal Processing

Controller

Fig. 5.Some deliberative, reactive and control services

In short, CORBA (Common
Object Request Broker Archi-
tecture) is middleware that es-
tablishes client/server relation-
ships between objects or com-
ponents. A component can be a
complex piece of software such
as a path planner, or something
less complex such as a task
procedure which is used to in-
terface to helicopter or camera
control. Objects or components
can make requests to, and re-
ceive replies from, other objects or components located locally in the same process, in
different processes, or on different processors on the same or separate machines.

Many of the functionalities which are part of the architecture can be viewed as clients
or servers where the communication infrastructure is provided by CORBA, using services
such as standard and real-time event channels.6 Figure 5 depicts an (incomplete) high-
level schematic of some of the software components used in the architecture. Each of these
functionalities has been implemented and are being used and developed in our applications.
This architectural choice provides us with an ideal development environment and versatile
run-time system with built-in scalability, modularity, software relocatability on various hard-

is sent to the superstate when entering an exit state (square node), superstate transitions are executed
prior to substate transitions.

5We are currently using TAO/ACE [20].The Ace Orb is an open source implementation of
CORBA 2.6.

6Event channels are specified in the CORBA Event Service standard (http://www.omg.org/
technology/document/corbaservices/_spec/_catalog.htm ) and allow decoupled
passing of arbitrary data from one or more senders to one or more receivers.



ware configurations, performance (real-time event channels and schedulers), and support for
plug-and-play software modules.

4.1 The Modular Task Architecture

The conceptual layers used to describe an architecture are less important than the actual
control flow and interaction between processes invoked at the various layers. What is most
important is the ability to use deliberative services in a reactive or contingent manner (which
we callhybrid deliberation) and to use traditional control services in a reactive or contingent
manner (which is commonly calledhybrid control). Figure 6 depicts some of these ideas.
Due to the reactive concentric nature of the architecture,task proceduresand their execution
are a central feature of the architecture.

Deliberation

Reaction

Control

Hybrid Deliberation

Hybrid Control

Deliberative Services

Control Laws

Task Procedures

TPs Calling
High-Level Services

TPs for
Discrete/Continuous Control

Reactive Concentric Control

Interacting disributive processes
with varying latencies

Mixed TPs

Fig. 6. Reactive Concentric
Control

The modular task architecture (MTA) is a reactive sys-
tem design in the procedure-based paradigm developed for
loosely coupled heterogeneous systems such as the WITAS
aerial robotic system. Atask is a behavior intended to
achieve a goal in a limited set of circumstances. Atask pro-
cedure(TP) is the computational mechanism that achieves
this behavior. A TP is essentially event-driven; it may open
its own (CORBA) event channels, and call its own services
(both CORBA and application-oriented services such as path
planners); it may fail to perform its task due to the limited set
of circumstances in which it is specified to operate; it may
be called, spawned or terminated by an outside agent, or by
other TPs; and it may be executed concurrently.

Formally, a TP is any CORBA object that implements the
Witas::Task interface and adheres to the behavioral restrictions of the MTA specification.7

To increase the ease and flexibility of specifying and implementing individual TPs, a
Task Specification Language (TSL) has been developed. TSL is an XML-based code markup
language intended to simplify the implementation of TPs. The idea is that for any TP there
is an application dependent or operative part which can be implemented in any host lan-
guage supported by TSL [19]. Currently TSL supports C++ and it would be straightforward
to extend it to support languages such as JAVA and C. The application independent part
of the TP is set up automatically in a translation process from TSL to the host language.
Figure 7 shows a schematic of a special type of TP specified in the TSL with some of the es-
sential markup tags, including those for a finite state machine (fsm) block. Task procedures
can be used for many different purposes. Figure 6 depicts several types of usage as hybrid
deliberation TPs, hybrid control TPs or mixed TPs.

A good way to view and represent a hybrid controller is as an augmented automaton.
We have provided structural and macro tags for this purpose which can be used in a TP.
Figure 7b shows a TSL schematic for the finite state machine specification which would be
included in the〈fsm〉 . . . 〈/fsm〉 tag block in Figure 7a. Some additional tags not listed al-
low for specification of jumps to other states, exits on failure and the setting up of execution
checkpoints.

An important property of D/R architectures is their ability to integrate and execute pro-
cesses at the deliberative, reactive and control levels concurrently and to switch between

7The TPEM (Task Procedure Execution Module) in Figure 5 represents the set of TP CORBA
objects used. There is no centralized execution mechanism.



〈tp name = T askname〉
〈declarations〉

〈parameter . . . /〉 . . . 〈parameter . . . /〉
// other declarations, e.g. local variables and constants

〈/declarations〉
〈services〉

// CORBA server objects, event channels used, etc.
〈/services〉
〈init〉

// Host code for task specific initialization
〈/init〉
〈destroy〉

// Host code for task specific cleanup
// CORBA cleanup handled automatically

〈/destroy〉
〈function〉 . . . 〈/function〉 . . . //more fns
〈start〉

// Executed with call to TP start() method
// Host code plus host code macros
// Typically will perform some setup then
// a 〈jump〉 to FSM state

〈/start〉
〈fsm〉

// Main behavioral specification in form
// of a finite state machine

〈/fsm〉
〈/tp〉

(a) TSL tags and partial schematic
for a TP specification.

〈fsm〉
〈statename =sname〉
〈action〉

// Executed whenever TP enters this state
〈/action〉

// State specific reactions to events
〈reaction event = ”event name”〉 . . . 〈/reaction〉

.

.

.
〈reaction event = ”event name”〉 . . . 〈/reaction〉
〈/state〉

//More state specifications. . .

// Global reactions to events
〈reaction〉 . . . 〈/reaction〉

.

.

.
〈reaction〉 . . . 〈/reaction〉
〈/fsm〉

(b) TSL tags and partial schematic for
an fsm specification

Fig. 7.TP Specifications with TSL tags.

them seamlessly. Reactive components must be able to interface in a clean manner to heli-
copter and camera control and adapt activity to contingencies in the environment in a timely
manner. Likewise, they must be able to interface to deliberative services in a clean man-
ner. Consequently, use of TPs for hybrid control and hybrid deliberation is of fundamental
importance. An example is provided in the following section.

4.2 Using Task Procedures for Flight Control

In this section, the interface between TPs for hybrid control and flight control modes, in
addition to some limited hybrid deliberation, will be described. The main ingredients are
TPs in the shape of finite state machines and the use of a declarative flight command lan-
guage (FCL). Events from the flight controller (passed via event channels) create a par-
tial view of the state of the UAV. Based on this, and its own state, a TP can dynami-
cally generate appropriate flight commands, which are sent back to the control system.

Lock UAV
to position pathplanner

Wait for Call
FlyPath

UAV stable path ready finished

UAV off courseno path found fail (other reson)

FAIL

EXIT

Fig. 8.TheNavToPt automaton

Suppose the UAV has been given
the task of finding and tracking a vehi-
cle with a particular signature, believed
to be in a certain region of Revinge. A
TP for such a mission consists of sev-
eral subtasks, each carried out by the
top-level TP invoking other TPs: The
first isNavToPt (depicted in Figure 8),
which navigates the UAV safely to a
waypoint in the region of interest (ROI).

To do so,NavToPt makes use of both deliberative and control services. First, it calls
a path planning service [25] which provides a (segmented) path from the UAVs current
position to the waypoint (provided such a path can be found). Then, it invokes aFlyPath TP



which takes care of passing the path segments, target velocity and other parameters to the
dynamic path following flight mode in the control system. During flight,FlyPath receives
events from the control system (via event channels) and responds appropriately, for example
issuing a command to enter hovering mode when the end of the last path segment is reached.
It also generates events reporting on the progress of the flight, which are in turn monitored
by NavToPt.

Once the UAV has arrived at the goal point, the parent TP configures and starts im-
age processing services [18] to attempt identification of vehicles in the area. If a vehicle
matching the initial signature is found, the parent TP starts a new TPFlyTo (see Figure
9) which uses proportional navigation mode [27], one of the existing RTF-modes, to posi-
tion the UAV relative to the vehicle. Since the vehicle is probably moving,FlyTo instances
will be continually terminated and restarted with new parameters. Each instance ofFlyTo,
while running, generates a stream of flight commands passed to the PFC system, where
they are handled by the PN flight mode functional unit, and receives a stream of events
from the flight control system and image processing system. Both automata described are
in fact implemented using TPs with structure similar to that in the two TSL schemata.

FlyTo
aligned

Init

Align

Climb

n
o
t
 
a
l
i
g
n
e
d

a
l
i
g
n
e
d

no
t 
al
ig
ne
d

n
o
t
 
a
t
 
a
l
t
i
t
u
d
e

a
t
 
a
l
t
i
t
u
d
e

closing
Brake

at position

no
t 
al
ig
ne
d

Hold
exit

cl
os
in
g

Fig. 9.TheFlyTo automaton

The flight command language (FCL)
is used to bridge the abstraction gap
between task procedures in the reac-
tive component and flight and cam-
era modes in the control component.
Figure 10 shows a number of repre-
sentative flight commands used for the
proportional navigation flight control
mode.

In this case the PN mode is con-
trolled by providing commands toXY,
Z andYaw channels, in addition to an
administration channel. The adminis-
tration channel is used to set various
parameters. It is also used to inform the
PN mode which object to fly to (FlyObject), this may be a waypoint or a moving object on
the ground previously identified, and the object to look at with the camera (LookObject).
Additional flight commands are provided for other flight control modes and camera control.
In the case of dynamic path following, representations of parameterized curves are passed
as arguments to flight commands, these arguments are generated via a task procedure call to
the path planning service.

XY Channel Z Channel
Cruise(), SlowDown() Land(), FlyAtAltitude()
Slow(), Brake() ClimbTo()
FlyToFlyObject(), FlyWithVelocity() Yaw Channel
FlyTowards(), LockOnFlyObject() FlyWithYaw(), FlyWithYawOfYourself()
LockOnPosition(), LockOnLookObject() FlyCleanly()

Fig. 10.Representative Flight Commands for Proportional Navigation.



4.3 Benefits of the Approach

The use of TSL with XML markup tags and a host language translator provides a modular,
extensible means of constructing and experimenting with TPs that hides the syntactic over-
head associated with initialization of CORBA event channels, services and error handling
code. Each TP is automatically generated as a standard CORBA object and can be spawned
or terminated using the Witas::Task interface. We believe that the greatest flexibility is pro-
vided if the actual semantic content of a TP can be specified in a familiar language such as
C++ or Java. The structuring of code in this manner also provides a clean way to analyze
the behavior of a TP formally. The use of a flight command language provides a smooth
transition from discrete to continuous control behavior between the reactive and control
components.

New control modes can be added in a modular manner and interfaced by adding new
flight commands. The flight command streams themselves can be generated and analyzed in
many different ways. The use of event channels and filters by TPs also provides a flexible
means of dynamically constructing partial state representations which drive the behaviors of
TPs. In a similar manner, deliberative functionalities can be modularly added and packaged
as CORBA objects. These may include legacy code. For example, the chronicle recognition
software used is based on IXTET [11]8 and is wrapped directly as a CORBA object . These
objects may physically be distributed between the UAV itself and various ground stations.
This is useful if the computational resources required for a service exceed those provided
by the UAV platform.

5 Related Work

There is, without a doubt, much activity with UAVs in the military sector, primarily with
fixed-wing high altitude vehicles. Much of the focus is on design of physical platforms, low-
level control, and sensing [21]. Less focus has been placed on the type of system described
here. This also applies to the majority of commercial attempts at marketing UAVs, although
here, there has been more activity with VTOL platforms. Academic research with UAVs is
increasing at a rapid pace. Here again, the majority of projects have focused on low-level
control, although there is more activity with software architectures and integration of some
deliberative capabilities. The work closest to ours is that being pursued at Georgia Tech[10].
Rather than list publications, we refer the reader to the following (non-exhaustive) list of
websites for information about interesting university and institute UAV activities: Georgia
Tech[10], M.I.T[17], Carnegie-Mellon[2], U. of C., Berkeley[29], Stanford University[28],
ONERA RESSAC [22].

References

1. R. C. Arkin.Behavior-Based Robotics. MIT Press, 1998.
2. Carnegie Mellon University. http://www.ri.cmu.edu/projects/project_93.

html .
3. G. Conte, S. Duranti, and T. Merz. Dynamic 3D path following for an autonomous helicopter. In

Proceedings of the 5th IFAC Symposium on Intelligent Autonomous Vehicles, 2004.

8In fact, we use a new implementation, CRS, developed by C. Dousson at France Telecom (http:
//crs.elibel.tm.fr/en/ ).



4. P. Doherty, G. Granlund, K. Kuchcinski, K. Nordberg, E. Sandewall, E. Skarman, and J. Wiklund.
The WITAS unmanned aerial vehicle project. InProceedings of the 14th European Conference
on Artificial Intelligence, pages 747–755, 2000.http://www.liu.se/ext/witas .

5. P. Doherty, J. Kachniarz, and A. Szałas. Using contextually closed queries for local closed-world
reasoning in rough knowledge databases. In[23] , 2003.

6. P. Doherty and J. Kvarnström. TALplanner: A temporal logic based planner. InAI Magazine,
volume 22, pages 95–102. AAAI Press, 2001.

7. P. Doherty, W. Łukaszewicz, A. Skowron, and A. Szałas. Combining rough and crisp knowledge
in deductive databases. In[23] , 2003.

8. P. Doherty, W. Łukaszewicz, and A. Szałas. Approximative query techniques for agents using
heterogenous ontologies. InInt’l Conference on Principles of Knowledge Representation and
Reasoning (KR-04), 2004.

9. E. Gat. Three-layer architectures. In D. Kortenkamp, R. P. Bonassao, and R. Murphy, editors,
Artificial Intelligence and Mobile Robots, chapter 8, pages 195–210. MIT Press, 1998.

10. Georgia Tech University.http://controls.ae.gatech.edu/uavrf/ .
11. M. Ghallab. On chronicles: Representation, on-line recognition and learning. InProceedings of

the International Conference on Knowledge Representation and Reasoning (KR-96), 1996.
12. D. Harel. Statecharts: A viusal formalism for complex systems.Science of Computer Program-

ming, 8(3):231–274, 1987.
13. F. Heintz and P. Doherty. Dyknow: An approach to middleware for knowledge processing.Jour-

nal of Intelligent and Fuzzy Systems, 2004. Accepted for publication.
14. F. Heintz and P. Doherty. Managing dynamic object structures usin hypothesis generation and

validation. InProceedings of 2004 AAAI Workshop on Anchoring Symbols to Sensor Data, 2004.
National Conference on Artificial Intelligence.

15. D. Kortenkamp, R. P. Bonassao, and R. Murphy, editors.Artificial Intelligence and Mobile
Robots. AAAI Press/MIT Press, 1998.

16. T. Merz, S. Duranti, and G. Conte. Autonomous landing of an unmanned helicopter based on
vision and inertial sensing. InInternational Symposium on Experimental Robotics (ISER-2004),
2004.

17. M.I.T. http://gewurtz.mit.edu/research.htm .
18. K. Nordberg, P. Doherty, P-E. Forssen, J. Wiklund, and P. Andersson. A flexible runtime system

for image processing in a distributed computational environment for an unmanned aerial vehicle.
International Journal of Pattern Recognition and Artificial Intelligence, 2004. To appear.

19. P. Nyblom. A language translator for robotic task procedure specifications. Master’s thesis,
Linköping university, Sweden, 2003. LITH-IDA-EX-03/034-SE.

20. Object Computing, Inc.TAO Developer’s Guide, Version 1.1a, 2000. See alsohttp://www.
cs.wustl.edu/˜schmidt/TAO.html .

21. USA Office of the Secretary of Defence. Unmanned aerial vehicles roadmap, 2002-2025, 2001.
http://www.acq.osd.mil/uav_roadmap.pdf .

22. ONERA RESSAC.http://www.cert.fr/dcsd/RESSAC/ .
23. S.K. Pal, L. Polkowski, and A. Skowron, editors.Rough-Neuro Computing: Techniques for Com-

puting with Words. Springer–Verlag, Heidelberg, 2003.
24. P-O. Pettersson and P. Doherty. Probabilistic roadmap based path planning for autonomous un-

manned aerial vehicles. InProceedings of the Workshop on Connecting Planning and Theroy with
Practice, 2004. 14th Int’l Conf. on Automated Planning and Scheduling, ICAPS’2004.

25. Per-Olof Pettersson. Helicopter path planning using probabilistic roadmaps. Master’s thesis,
Linköping university, Sweden, 2003. LITH-IDA-EX-02-56.

26. E. Sandewall, P. Doherty, O. Lemon, and S. Peters. Words at the right time: Real-time dialogues
with the WITAS unmanned aerial vehicle. InProc. of the 26th German Conference on Artificial
Intelligence, 2003.

27. E. Skarman. On proportional navigation. Technical note, 2003.
28. Stanford University.http://sun-valley.stanford.edu/users/heli/ .
29. University of California, Berkeley.http://robotics.eecs.berkeley.edu/bear/ .


