Chapter 19
Logic-Based Roughification

Linh Anh Nguyen and Andrzej Szatas

Abstract. The current chapter is devoted to roughification. In the most general set-
ting, we intend the term roughification to refer to methods/techniques of construct-
ing equivalence/similarity relations adequate for Pawlak-like approximations. Such
techniques are fundamental in rough set theory. We propose and investigate novel
roughification techniques. We show that using the proposed techniques one can of-
ten discern objects indiscernible by original similarity relations, what results in im-
proving approximations. We also discuss applications of the proposed techniques in
granulating relational databases and concept learning. The last application is partic-
ularly interesting, as it shows an approach to concept learning which is more general
than approaches based solely on information and decision systems.

19.1 Introduction

Rough sets are typically used to model vague concepts and relationships. They are
defined in terms of lower and upper approximations of crisp sets/relations, where
approximations are in place when objects may be indiscernible due to incomplete,
imprecise, and approximate data or knowledge. Indiscernibility of objects is mod-
eled by similarity relations, originally assumed to be equivalence relations [19]. In
general, the lower approximation of a set consists of objects whose similarity neigh-
borhoods are contained in the set, while the upper approximation consists of objects
whose similarity neighborhoods intersect the set. Similarity neighborhoods, often
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being equivalence classes, are then substantial ingredients of approximate modeling
and reasoning

The current chapter is devoted to roughification. In the most general setting,
we intend that the term roughification refers to methods/techniques of constructing
equivalence/similarity relations adequate for approximations. For example,

e in [19]] as well as many later works (see, e.g., [6} 20, [21] and references there),
equivalence relations are constructed from information tables and decision ta-
bles, for example, by reducing the number of attributes

e in [27, 28]E equivalence relations are constructed by rough discretization and
applied in clustering and classification

e in the light of [7], approximations can be constructed on the basis of logical
theories, by projecting them into weaker languages.

We propose and investigate novel roughification techniques allowing one to con-
struct suitable equivalence relations on the basis of background knowledge. We
assume that knowledge is expressed by means of logical theories in the form of
relational databases (relational roughification) and description logic theories (ter-
minological roughification). The main idea depends on placing objects in the same
equivalence class when they are indiscernible by a given logical theory. We show
that using the proposed techniques one can often discern objects indiscernible by
original similarity relations, so improve approximations. We also discuss applica-
tions of the proposed techniques in granulating relational databases and concept
learning. The last application is particularly interesting, as it shows an approach to
concept learning which is more general than approaches based solely on information
and decision systems.

The first technique we propose is relational roughification, allowing one to ob-
tain congruences on the basis of knowledge contained in relational databases. This
technique, in fact, allows us to granulate arbitrary relational structures. We start with
a simplified case, when such knowledge consists solely of similarity relations on ob-
jects, and show a natural technique (similarity-based roughification) allowing one
to construct equivalence relations. This technique leads to better approximations
than those offered by original similarities. As a general methodological outcome,
we show that indiscernibility can actually be modeled by equivalence relations even
if one initially uses weaker similarity relations, perhaps more intuitive in a given ap-
plication domain. This places those other approaches back in the rough set context
originally proposed and developed by Pawlak.

A more advanced version of roughification introduced in this chapter is based on
bisimulations in the context of description logics. Namely, indiscernibility related
to a given concept can be approximated using the largest auto-bisimulation with
respect to the sublanguage consisting of concept names, role names and construc-
tors the concept depends on. Such bisimulations are equivalence relations. We give

! For works, where similarity relations are not assumed to be equivalence classes, see [0, 8}
9,112} 12411291 130] and references there.

2 Where the term roughification has most probably been introduced in the context of
discretization.
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a logical account of this approach, investigate its theoretical properties and use it to
study the problems of concept learning and concept approximation in information
systems based on description logics.

Let us emphasize that all solutions we propose are tractable in the sense that
data complexity of computing constructed new equivalence relations is in PTIME in
the size of the underlying domain assuming that the underlying knowledge is given
by means of relational/deductive databases or knowledge databases expressed by
means of description logics.

The chapter is structured as follows. We start with basic definitions and preliminar-
ies (Section[19.2)). Then, in Section[I9.3] we continue with similarity-based roughi-
fication and, in Section[19.4] with relational roughification. Section[19.3]is devoted
to terminological roughification. Concluding remarks are contained in Section[19.6]

19.2 Preliminaries

Let A be a finite set, further called a domain. Elements of A are called objects. By
a relational structure we understand a tuple (A, {r;}ics), where for each i € I, r; is
arelation on A.

For the sake of simplicity, in the chapter we consider one-sorted domains only.
That is, we assume that objects are of the same type. The results we provide can be
generalized in a straightforward manner to many-sorted structures. This, however,
is not necessary for techniques we present.

A signature for relational structures consists of a finite set of individual names
(i.e. object names), a finite set of predicates (i.e. relation names), and an arity map-
ping that associates each of the predicates with a natural number called the arity of
the predicateﬁ

A relational structure over a signature X can be redefined to be a pair 1 = (A’ .1)
consisting of a non-empty set A, called the domain of I, and a function -/, called the
interpretation function of I, which maps each individual name a of X to an element
a’ of A’ and maps each n-argument predicate p of X to an n-argument relation p’
on Al

By a congruence on (A, {R;}ic;) we understand any equivalence relation ~ on
A which preserves all relations {R;}i¢;, that is, such that for any i € I, if R; is an
n-argument relation and x; & x},....x, ~ x),, then R;(x1,...,x,) = Ri(x],...,x,).

Let further 6 C A x A be a binary relation on A, representing similarity on el-
ements of A. It models indiscernibility on A in the sense that objects x,x’ € A are
indiscernible whenever 6(x,x") holds. The pair (A, o) is called a similarity space.

Given a similarity space S = (A,0) and A C A, Pawlak-like approximations of A
w.r.t. § are defined as follows:

3 For first-order logic, one would add to a signature also a finite set of function names and
information about their arities but we concentrate on relations only.
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o the lower approximation of A w.r.t. S, denoted by A s+ is defined by

Age E x| Wylo(x,y) — A} (19.1)

o the upper approximation of A w.r.t. S, denoted by Age is defined by

Aso © {x| By[o(x.y) NAG)]}- (19.2)

When § is known from context, we sometimes write A (respectively, A) to denote

the lower (respectively the upper) approximation of A w.r.t. S, that is, A = s+ and

A A

An information system in the rough set theory [[19} 21} 20]], called an RS infor-
mation system, is usually defined to be a pair (A,Attrs) of non-empty finite sets A
and Artrs, where A is the universe of objects, and Attrs is a set of attributes, that is,

functions A : A — Vy, where V4 is the set of values of attribute A, called the domain
of A.

19.3 Similarity-Based Roughification

Similarity-based roughification can be viewed as relational roughification intro-
duced in Section[19.4] Namely, a relational structure can contain solely a similarity
relation. However, similarities play a special role in defining relational roughifica-
tions. Also, intended applications make the technique interesting on its own. There-
fore we discuss it separately.

19.3.1 Definitions

Observe that even if two objects x,x” are indiscernible w.r.t. a given similarity rela-
tion o, that is, o(x,x’) holds, it still might be the case that they can be discerned if
there is an object x” such that 6(x,x”) and —=(x/,x"). The same holds when there
is an object X such that 6(x”,x) and —c(x”,x’). The first types of roughification
reflect this phenomenon.

Given a similarity space S = (A, G), by a forward similarity-based roughification
induced by § we understand relational structure ‘Rf = <A, p§>, where:

P (x,x") A [o(x,x") =o(x' ,x")]. (19.3)

By a backward similarity-based roughification induced by § we understand rela-
tional structure ‘R;‘ = <A7 p;‘), where:
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P35 (x,x") A [o(x",x) =o(x",x)]. (19.4)
By a similarity-based roughification induced by .S we understand relational structure
Kf‘ = <A7 p?), where
def
P E pinps. (19.5)

19.3.2 Properties

We have the following proposition.
Proposition 19.1. Let S = (A, 0) be a similarity space. Then:

e p and p§ are equivalence relations on A
o P is a congruence on S.

Proof. The first claim is obvious by definitions (19.3) and (19.4).
To prove the second claim, note that p' is the intersection of two equivalence
relations, so it is an equivalence relation, too. To prove that it preserves G, assume:

P (x1,x7) and p(x2,%)). (19.6)

We have to show that 6(x1,x2) = 6(x],x5). By (19.3)—(19.3) and (19.6), in particular
we have:

VX" [o(x1,x") = o (x],x")] and VY [0(y", x2) = (", x5)]. (19.7)

Taking x”" = x; and y”" = x| we have 6(x1,x2) = 6(x],x2) and 6(x},x2) = 6(x],x5),
so also o(x1,x2) = o(x],x5). O

We also have the following proposition.

Proposition 19.2. For any similarity space S = (A, ) with reflexive G, we have that
ps Co pi Coandpi Co.

Proof. Assume that ' (x,x"). By (I9.3), for all x”, o(x,x") = 6(x’,x"). In particular,
for X" = x’ we have o(x,x’) = (', x’). By reflexivity of 6, we have that 6(x’,x’)
holds, so we also have that 6(x,x") holds.

Analogously, using we prove pf C o. Of course, p’ C p?, which proves
the last inclusion. (]

Observe that reflexivity of ¢ corresponds to the property that for any set A, Ag+ CA
(see, e.g., [1Q]). On the other hand, the weakest requirement placed on approxima-
tions, A g+ C A gs, is equivalent to the seriality of o, that is, the property Vx3y[c(x, y)].
The following example shows that seriality is not sufficient to prove Proposition[19.2

Example 19.1. Let S = ({a,b,c}, ), where 6 = {(a,c),(b,c),(c,c)}. Obviously, G
is serial. On the other hand, p% (a,b) holds, while 6(a,b) does not. O
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Using Proposition[I9.2]one can show that each R, R, and K" approximates sets
better than §, as formulated in the following proposition.

Proposition 19.3. For any similarity space S = (A, G) with reflexive ¢ and any A C

A,
A5+ gA(QgD)-p gA<R5|><)+ QA QA(%N)T QA(%D)T gAST

19.3.3 Selected Applications

Proposition[19.3]shows that the similarity-based roughification may discern objects
better than the original similarity relation. This allows us to sharpen perceptual ca-
pabilities, improving its accuracy. The following example illustrates this idea.

Example 19.2. Let a set of objects, say A = {01,02,03}, be given. Assume that the
accuracy of a sensor platform does not allow us to discern certain objects on the
basis of their features. Such a situation is typically modeled by a similarity space
(A, 0) where, for example,

6(01,01),6(02,02),6(03,03),
6(01,02),6(02,01),6(02,03),6(03,02),

that is, o; is indiscernible from itself and o5, etc. On the other hand, one can discern
o1 and o0, by comparing them with 03. Such a comparison provides different results,
allowing one to detect what object is being perceived. (]

Similarity-based roughification can also be useful in decision rules mining. The ob-
tained rules can be judged, among others, w.r.t. their classification accuracy. One
faces here the overfitting/underfitting problem. Overfitting results in too many spe-
cialized rules, while underfitting causes poor classification results. The following
example illustrates how can one tune decision rules using similarities resulting in
better or worse approximations (by using Proposition[19.3)).

Example 19.3. In the machine learning process one often obtains rules like:
IF bad condition(x) THEN maintenance(x), (19.8)

where objects are classified to be in “bad condition” on the basis of chosen attributes,
say rust and moisture level. Particular examples in the training sets may be very
specific. For example, an object o with rust level 0.743 and moisture level 0.92 may
be marked as being in bad condition. One could then derive the following rule:

IF rust(x,0.743) AND moisture(x,0.92) THEN maintenance(x),
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which definitely is too specific. One would also like to deduce that all similar (w.r.t.
rust and moisture level) objects require maintenance, too:

IF 6(x,0) THEN maintenance(x),

where © is a similarity relation of a similarity space § = (A, ) with A consisting of
value pairs (rust, moisture).

Now, if a given G results in underfitting, one can use its roughification instead
(or any suitable relation ¢’ such that p’ C 6’ C ©). Then, by moving ¢’ between
the boundaries p5' and 6 one can tune rules when new objects appear and are being
classified. (]

19.4 Relational Roughification

Relational roughification extends similarity-based roughification. Given a relational
database, one can observe that object can be additionally discern by relations in-
cluded in the database.

19.4.1 Definitions

Assume that a similarity space § = (A, 6) is given and K™ = (A, p?> is the similarity-
based roughification induced by S.

Assume now that additional knowledge is provided by a relational or a deductive
database. Even if two objects are indiscernible by p’, they may still be discernible
by relations included in the database. For example, it might be the case that p*’(0,0")
holds, while for a relation R in the database, it could be R(@,0,b) and —R(@,0',b). In
such a case we can discern o and o’ using R. We then have the following definition.

Given a similarity space S = (A,G), by a relational roughification induced by
S and ﬁn m-argument relation R we understand relational structure ‘J{sR = <A7 p§>,
where

ps = P — {(xx), (¥, x) | T o [R(x1, % X 1) A (19.9)
=R(x1,.. X xme1)]}-

Let us emphasize that in (I9.9) we do not fix the position of x. For example, if R is
a two-argument relation then (19.9) is to be understood as:

Py = pT— ({(x,x’),(x’,x) | Tx1[R(x1,x) A =R (x1,x)]} U (19.10)
{06,2), (o ,2) | Bt [R(x,x1) A =R(X ,x1)]}).

4 Recall that p?‘ is the similarity-based roughification induced by § and defined by (19.5)).
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Observe that one can also consider tuples of relations rather than single relations.
Namely, let {R;}cr be a (finite) tuple of relations. Then:

., def ;
p:{sRl}lel = ﬂp§1 (1911)

iel

19.4.2 Properties

Let us first prove that the construction provided in the previous section indeed results
in an equivalence relation.

Proposition 19.4. Let S = (A,G) be a similarity space and R be a relation,
RCAX...XA Then p§ is an equivalence relation on A.

Proof. By Proposition[I9.11 p is an equivalence relation.

Suppose p§ is not an equivalence relation. This could be caused by removing
in a pair (x,x’) from p%. Let us now show that this cannot violate reflexivity,
symmetry nor transitivity.

First note that reflexivity is preserved since there cannot exist x,...,X,_; such
that R(xy,...,x,...,x,—1) and, at the same time, =R(x1,...,X,...,Xm—1)-

Suppose now that (x,x") € p® and (x',x) & pX. This cannot happen since pairs
(x,x") and (x'x) are either not removed from p% or are removed both. Therefore,
symmetry is preserved.

Suppose that (x,x’), (x',x") € p& and (x,x") & p%. Since p§ C p%', we have that
(x,x'),(¥,x") € p, so also (x,x”) € p. Thus the assumption that (x,x”) & p%
implies that (x,x”) has been removed in (19.9), meaning that there are x1,...,x,—_1
such that

either R(xy,...,%, ..., Xm—1) A=R(x1, .., X" .. xm—1)
or “R(xp, X X 1) AR(x1, X X))

Consider the first case [ Since R(x1,...,%,...,Xxm—1) holds and (x,x") € p§, we con-
clude that R(xy,...,x',...,xu—1) holds (otherwise the pair (x,x’) was removed
in (I9.9)). Now from the fact that R(xy,...,x,...,x,—1) holds and assumption that

(¥',x") € p&, we also have that R(x1,...,x”, ..., x,_1) and a contradiction is reached.
(I

The intersection of any collection of equivalence relations is also an equivalence
relation. We then have the following corollary.

Corollary 19.1. Let S = (A,G) be a similarity space and {R;}ics be relations such
that forallic I, R; CAx ... x A Then pgRi}iEI is an equivalence relation on A. [J

5 The second case can be proved analogously.
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Granular computing has been considered an important issue in rough set theory
and applications [15 123} 25 126} [17 22]. The following proposition shows that the
constructed equivalence relation can serve as a basis for granulating relations.

Proposition 19.5. Ler S = (A,6) be a similarity space and R be a relation,
RCAx...xA Then pR is a congruence on (A,R).

Proof. By Proposition[I9.4] p¥ is an equivalence relation. To show that it preserves
R, assume that:
P§(X17x/1)7~~~al3§(xm,x;1)~ (1912)

We have to show that
R(x1,..sxm) =R(X),...,x),). (19.13)

To prove (19.13)), we proceed by induction on 0 < k < m:

R(X1y ey Xhy Xt 1 -+ 5 %m) = RO o X X1 -5 X)) (19.14)

1. If k = 0 then (19.14) is obvious.
2. Assume that the theorem holds for 0 < k < m. We shall show that it also holds
for (k+1):

R(X1,. -y Xpey Xk 1,Xk12, - - - s Xm) = (by inductive assumption (19.14))

R(X},. .. X, Xig 1, X042, - -, Xm) = (by definition (I9.9), assumption (19.12))
/ / /

R(xl,...,xk,xk+1,xk+2,...,xm).

By analogy to Proposition[19.5] one can prove the following proposition providing
a technique for granulating relational databases (see also Section[19.4.3).

Proposition 19.6. Ler S = (A,0) be a similarity space and (A,{R;}icr) be a rela-

tional structure. Then pgR[}[e’ is a congruence on (A,R). O

By (19:9), we have that p% C p%. By Proposition [[9.2] we then have the following
proposition.

Proposition 19.7. For any similarity space S = (A, G) with reflexive 6 and relation
RonAx...xA,wehavethatp?QG. (]

As a consequence we have the following proposition.

Proposition 19.8. For any similarity space S = (A, ) with reflexive G, any relation
RonAx...xAandanyA CA,
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Remark 19.1. Note that relational roughification starts with some initial similarity
relation and then improves its accuracy. If such a relation is not given, one can start
with the total similarity relation ¢ LTAXA I (A, {R;}icr) is a relational structure
then the resulting equivalence classes of png’}’El consist of objects indiscernible by
relations {R;};c;. However, when 6 = A x A, similarity-based roughification pro-
vides no improvement, as in this case we have p™* = c. (]

19.4.3 Granulating Relational Databases

A relational database is a relational structure of the form (A, {R;}icr) with finite A
and /. Relational roughification allows us to granulate such databases in the sense
that rather than using objects, we can use equivalence classes. Since an equivalence
class may be represented by an arbitrary object it contains, such a granulation allows
us to reduce the size of the database as well as consider classes of similar objects
rather than singletons.

More precisely, given a relational database DB = (A, {R;}ic;) and a similarity
space S = (A, ), by a granulation of DB w.r.t. S we understand

DB/p{ & <A/ pLier, {[Ri}iel> 7 (19.15)
where:
o A/pUFHEr &) v € A} is the set of equivalence classes of p <<l
. def
o fori € L, Ri([lxll,- - [lmll) = Rixrs ., xm).

By Proposition[19.6] R; (i € I) are well-defined.

Given a relational database DB = (A,{R;}ic;) and a similarity space S = (A, ),
rather than storing all tuples of relations in DB, it suffices to store tuples with rep-
resentants of equivalence classes only. In addition, one needs to store pgRi}iEI in the
database, but the reduction od database size can be considerable.

19.5 Terminological Roughification

In this section we study roughification for information systems specified using the
formalism of description logics (DLs). Such logics describe the domain of interest
by means of individuals, concepts and roles [3,4,[16]]. A concept stands for a set of
individuals, while a role stands for a binary relation between individuals. DLs are
fragments of classical first-order logic and variants of modal logics. Indiscernibility
in DLs is related to bisimulation.
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In Sections[19.3]and[19.4l we had a particular similarity relation as a starting point
for the construction of the final equivalence relation (but see Remark[19.1)). Here we
do not need such a starting relation. But whenever it is given, we can place it among
roles.

19.5.1 Description Logics and Information Systems

A DL-signature is a set £ = Xy U Zc U Xg, where %, is a finite set of individual
names, X¢ is a finite set of concept names, and Xg is a finite set of role names.
Concept names are unary predicates, while role names are binary predicates. We
denote concept names by letters like A and B, role names by letters like » and s, and
individual names by letters like a and b.

We will consider some (additional) DL-features denoted by I (inverse), O (nom-
inal), Q (quantified number restriction), U (universal role), Self (local reflexivity of
a role). A set of DL-features is a set consisting of some of these names.

Let X be a DL-signature and @ be a set of DL-features. Let L stand for AL g ,
which is the name of a description logic corresponding to propositional dynamic
logic (PDL). The DL language Ly ¢ allows roles and concepts defined recursively
as follows:

o if r € X then ris role of Ly ¢
e if A € X then A is concept of L5 ¢
e if R and § are roles of Ly ¢ and C is a concept of Ly ¢ then

€, RoS,RUS, R* and C? are roles of L5 ¢

T,L1,-C,CnD,CuUD,VR.C and 3R.C are concepts of Ly ¢

if I € ®then R~ is arole of Ly o

if O € ® and a € X; then {a} is a concept of Lz ¢

if Q € ®, r € Zg and n is a natural number then > nr~.C and < nr.C are

concepts of Ly ¢

o if {Q0,1} C D, r € Xg and n is a natural number then > nr~.Cand <nr~.C
are concepts of L5 ¢

o if U € ®then U is arole of Ly o

o if Self € ® and r € Xy then 3r.Self is a concept of Lz ¢.

An interpretation in Ly ¢ is a relational structure I = (A’,-7) over X. The interpre-
tation function - is extended to complex roles and complex concepts as shown in
Figure where #I stands for the cardinality of the set I".

An (acyclic) knowledge base in Ly o is a pair KB = (7, 4), where:

e A4 is a finite set, called the ABox of KB, consisting of individual assertions of
the form A(a) or r(a,b), where A € ¢, r € Zpand a,b € Xy

e T is afinite list (@1, ...,¢n), called the TBox (terminological box) of KB, where
each @; is a definition of one of the following forms:

e A =C, where C is a concept of Ly ¢ and A € Z¢ is a concept name not
occurring in C, 4 and @1,...,Q;_1
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(RoS)! = RTosST T = AT
(RU )I—Rfusf 11=0
(&) = @' (-0)f = anc!
(C ‘7)17{xx>\C1( )} (cnbp)yl =cInp!
el = {{x,x) |x €A} (cup)! =c'ubp!
Ul = Al x Al {a}! = {a"}
(R = (RH)™! (3rSelf)! = {x e AT | r!(x,x)}

(VR.C)T = {x € AT|Vy[R(x,y) implies CT(y)]}

(3R.C)! = {x e AT | Fy[R!(x,y) and C'(y)]
(>nRC)" = {xe A [#{y|R(x,y) and C' ()} > n}
(<nRC)" = {xe Al [#{y|R(x,y) and C'(y)} <n}

Fig. 19.1. Interpretation of complex roles and complex concepts

e r =R, where R is arole of Ly ¢ and r € X is a role name not occurring in
R, 4 and @1,...,0;—1.

The concept (respectively, role) names occurring in 4 are said to be primitive con-
cepts (respectively, roles), while the concept (respectively, role) names occurring
in the left hand side of ‘=" in the definitions from ‘T are called defined concepts
(respectively, roles).

An interpretation I in Lz ¢ is a model of KB = (7T, 4) if

for every assertion A(a) € 4, we have a’ € A’

for every assertion r(a,b) € 4, we have (a’,b") € r!
for every definition (A =C) € T, we haveAI c!
for every definition (r = R) € T, we have r/ = R.

Example 19.4. Let

¥; = {Alice,Bob, Claudia, Dave, Eva, Frank,George}
Yc = {Human, Female,Male, Adult, Man, Woman,
Parent, ParentWMC, DecendantOfAlice}
g = {has child,has descendant,has parent,has ancestor}

A = {Female(Alice), Female(Claudia), Female(Eva), Adult(Alice),
Adult(Bob),Adult(Claudia),Adult(Dave),Adult(George),
has child(Alice,Dave),has child(Bob,Dave),
has child(Claudia,Eva),has child(Dave,Eva),
has child(Claudia,Frank),has child(Dave, Frank)}
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T = (Human=T,
Male = —Female,
Woman = Human M Female M Adult,
Man = Human M Male M Adult,
Parent = 3has child. T,
ParentWMC = (>5has child. T),
has descendant = has child o has child*,
has parent = has child
has ancestor = has parento has parent”,
DecendantOfAlice = Jhas ancestor.{Alice}).

Then KB = (T, 4) is a knowledge base in Lz ¢, with ® = {I,0,Q}. The definition
Human = T states that the domain of any model of KB consists of human beings.
Note that, Female and Adult are primitive concepts, and has child is a primitive role
of KB. (]

A knowledge base as defined above is similar to stratified logic programs [1]. Hence,
we define the standard model of a knowledge base KB = (7, 4) in L5 ¢ to be the
interpretation I such that:

AT =% (i.e. the domain of I consists of all the individual names of X)
if A is a primitive concept of KB then A’ = {a | A(a) € 4}

if 7 is a primitive role of KB then r! = {(a,b) | r(a,b) € 4}

if A € Z¢ but A does not occur in KB then A7 = 0

if r € Zg but r does not occur in KB then r/ =0

if A = C is a definition from 7 then A’ = C!

if » = R is a definition from 7 then r/ = R'.

An information system specified by a knowledge base in Ly ¢ is defined to be the
standard model of the knowledge base in L5 ¢. Note that such an information system
is finite.

Example 19.5. Consider the knowledge base KB given in Example[19.4] The infor-
mation system specified by KB is the interpretation I with:

A! = {Alice, Bob, Claudia, Dave, Eva, Frank, George}
x! =x, forx € {Alice,...,George}
Human® = A"

Female! = {Alice, Claudia, Eva}
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Male' = {Bob, Dave, Frank, George}
Adult" = {Alice, Bob, Claudia, Dave,George}
Woman! = {Alice, Claudia}
Man"' = {Bob, Dave, George}
has child' = {(Alice, Dave) ,(Bob,Dave)
(Claudia,Eva) ,(Dave,Eva) ,
(Claudia, Frank) ,{Dave, Frank) }
has parent’ = (has child")™!
has descendant’ = has child" U (has child" o has child")
has ancestor’ = (has descendant’ )_1
Parent’ = {Alice, Bob, Claudia, Dave}
ParentWMC' =0
DecendantOfAlice’ = {Dave, Eva, Frank}. a

Observe that any RS information system with discrete (or Boolean) attributes can
be represented as an information system in Ly ¢ with £ = 0 and ® = 0. Namely,

e if an attribute A of an RS information system is Boolean, that is, V4 = {true,false},
then it can be treated as a concept name, standing for the set {x € A | A(x) =
true}

e if A is a discrete attribute, with V4 = {vy,..., v}, then it can be replaced by
concept names A,,,...,A,,, where each A, is interpreted as the set {xeA|
Alx)=vi} B

Example 19.6. Let

Artrs = {Brand, Color,OpenOnSunday}
Virana = {grocery,RTV }
Veolor = {red, green,blue}
A = {shopi,shopa,shops,shops,shops}

and let attribute values of the objects be the following:

Brand  Color OpenOnSunday

shop RTV red true
shop; RTV green true
shops RTV blue true
shopy  grocery  red false
shops  grocery green false

6 For example, if Color is an attribute with possible values red, green and blue, then we
can replace it by concept names Red, Green, Blue, and instead of writing, for example,
Color(x) = red, we can write Red (x).
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Then the RS information system (A,Attrs) can be represented by the information
system [ in Ly ¢ specified as follows:

D=0
=0
= {shopi,shopy,shops,shops,shops}
Y¥c = {RTV,Grocery,Red, Green,Blue, OpenOnSunday}
Al =%,
RTV! = {shop1,shops,shops}
Grocery' = {shopy,shops}
Red" = {shop,shops}
Green' = {shop,,shops}
Blue! = {shop;}
OpenOnSunday' = {shop1,shop,,shops}. O

19.5.2 Bisimulation and Indiscernibility

In [5] Divroodi and Nguyen studied bisimulations for a number of DLs. In this sub-
section we generalize their notions and results to model indiscernibility of objects
and study the problem of learning concepts. Let:

e X and X be DL-signatures such that =¥ C X

e ® and @' be sets of DL-features such that ®' C @

e [ and I’ be interpretations in Ly o.
A binary relation Z C A7 x A" is called an Lyt gt-bisimulation between I and I' if
the following conditions hold for every a € 2'}', Ac ZZ, re Z;, x,yeAl X yeAl:

Z(a',a") (19.16)

Z(x,xX) = [AT(x) & AT (x)] (19.17)

Z(e, ) Al (x9)] = B € AT [Z(ny ) ArT ()] (19.18)

Z(x, ) AT ()] = 3y € A[Z(n ) Ar (x,y)], (19.19)
if I € ® then

1ZGx, XY A (3,x)] = 3y € AT [Z(n ) A (V1) (19.20)

Z0e, ) AT ()] = 3y € AT[Z(n,y) Ar (3,0), (19.21)
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if O € @ then

ZxX)=x=a' ox =d"], (19.22)
if Q € ® then

if Z(x,x’) holds then, for every r € i , there exists a bijection

/ (19.23)
h:{y|r'(x,y)} = {y | r"(x',y')} such that h C Z,
if {Q,1} C ® then (additionally)
if Z(x,x") holds then, for every r € xh, there exists a bijection (19.24)
h:{y|ri(v,x)} = {y| r’'(y/,¥')} such that h C Z, '
if U € @ then
Vxe ATAY € AT Z(x,x') (19.25)
v e A Ix e AT Z(x, ), (19.26)
if Self € ®' then
Z(x,x) = [rl(x,x) & rll(x/,x’)]. (19.27)

A concept C of Ly; ¢+ is said to be invariant for Ly: gi-bisimulation if, for ev-
ery interpretations I and I’ in L5 ¢ with £ D " and ® D @', and every Lyt gi-
bisimulation Z between I and I’, if Z(x,x’) holds then x € C iff ¥’ € CT'.

The following theorem can be proved in a similar way as [5} Theorem 3.4].
Theorem 19.1. All concepts of Ly; o+ are invariant for Ly gi-bisimulation. g

An interpretation [ is finitely branching (or image-finite) w.r.t. Ly: g+ if, for every
xe Al andevery r € I, :

o the set {y € AT | r!(x,y)} is finite

e if 7 € @ then the set {y € A’ | r’(y,x)} is finite.
Letx e Al andx’ € AT We say thatx is Lyt g -equivalent to X' if, for every concept
Cof Ly g, x€CLiff X € CT.

The following theorem can be proved in a similar way as [5} Theorem 4.1].

Theorem 19.2 (The Hennessy-Milner Property). Let £ and X' be DL-signatures

such that X C %, ® and @ be sets of DL-features such that ®° C ®. Let I and I’
be interpretations in Ls @, finitely branching w.rt. Ly: g and such that for every
aey, alis Ly gt-equivalent to al’. Assume U ¢ @ or 2'}' #0. Then x € Al is
Ly+ gt -equivalent to x' € A" iff there exists an Lyt pi-bisimulation Z between I and
I’ such that Z(x,x') holds. O

We now have the following corollary.



19 Logic-Based Roughification 533

Corollary 19.2. Let X and X' be DL-signatures such that X' C X, let ® and ®F
be sets of DL-features such that ®° C ®, and let I and I' be finite interpretations

!
in Ly o. Assume that E; + 0 and, for every a € ¥, a' is Lyt pi-equivalent to al.
Then the relation {(x,x') € A x AT | x is Lyt gt-equivalent to X'} is an Lg: g
bisimulation between I and I'.

We say that I is Ly+ i-bisimilarto I if there exists an Ly 4 -bisimulation between

I'and I'. We say that x € A" is Lyt g-bisimilar to x' € A" if there exists an Ly gi-
bisimulation between I and I’ such that Z(x,x’) holds.

Remark 19.2. By Theorem Ly+ pi-bisimilarity formalizes indiscernibility by
the sublanguage Lyt 4. Thisis an important feature with many applications (see [[7}
14, 31]) for a more general context and numerous applications). Here let us empha-
size that such indiscernibility relation provides the best approximations of a given
concept expressed in the chosen sublanguage. Note that in [7, 114, 31]] the underlying
indiscernibility relation has not been constructed. (]

An Ly gi-bisimulation between I and itself is called an Lyt o+ -auto-bisimulation
of I. An Ly pi-auto-bisimulation of I is said to be the largest if it is larger than or
equal to (2) any other Ly 4:-auto-bisimulation of 1.

Given an interpretation / in Ly ¢, by ~si ot ; We denote the largest Ly g -auto-
bisimulation of I, and by =y: ¢+ ; we denote the binary relation on A" with the
property that x =g+ g+ ; X' iff x is Ly gi-equivalent to x'.

Theorem 19.3. Let ¥ and X' be DL-signatures such that T C X ® and ©F be sets
of DL-features such that ®F C ®, and I be an interpretation in Ls . Then:

o the largest Ly: g -auto-bisimulation of I exists and is an equivalence relation
e if I is finitely branching w.rt. Lg; @t then the relation =y; g 1 is the largest
Ly gi-auto-bisimulation of I (i.e. the relations =+ @t g and ~si i 1 coincide).
O

Theorem[19.3]can be proved as [5, Proposition 5.1 and Theorem 5.2].

By terminological roughification we mean any technique that uses the largest
Lsi pi-auto-bisimulation relations as the equivalence relation for defining
approximations.

The intended application areas are, in particular, concept learning and concept
approximation in description logic-based information systems. Such applications
and related techniques are studied in the next two subsections.

19.5.3 Concept Learning

Before presenting a method for learning concepts we first prove a theoretical result.
We say that a set Y is divided by a set X if Y\ X £ 0 and Y N X = 0. Thus, Y is not
divided by X if either Y C X or Y NX = 0. A partition P = {Y1,...,Y, } is consistent
with a set X if, for every 1 <i <n,Y; is not divided by X.
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Theorem 19.4. Let I be an information system in Ly ¢, and let X C AL ST C Y and
O C . Then:

1. if there exists a concept C of Ly: g such that X = C! then the partition of A
by ~si @t 1 is consistent with X

2. if the partition of AT by ~sit @t g IS consistent with X then there exists a concept
C of Lyt ot such that CT =X.

Proof. As I is finite, it is finitely branching w.r.t. Ly+ g:. By Theorem[19.3] ~y+ o ;
coincides with =i g . 7 o
Consider the first assertion and assume that X = C? for some concept C of Lyt gt -
Since ~s+ gt ; coincides with =g+ g 1, if x and X" belong to the same equivalence
class by ~yi gt 7, then x is Ly gi-equivalent to x’, and hence x € cliff X € C!,
that is, {x,x'} is not divided by C’. Therefore, the partition of A’ by ~yit @i 1 18
consistent with X. '
Consider the second assertion and assume that the partition of Al by ~y+ g ; is
consistent with X. Let the partition be {Y1,...,Y,} U{Z,...,Z,}, where X = YU
...UYy. Since ¥; and Z; are different equivalence classes of =y; ¢+ ;, we have that
for each pair (i, j) with 1 <i<mand 1 < j < n there exists a concept C; jof Lyy@
such that ¥; C Ci{j and ZjﬂCi{j =0.Foreach 1 <i<m,letC;=Ci M...MCip.
Thus, Y; C CZ-I, and ZjﬂCl-I =0Qforall 1 <j<n. LetC=CU...UGC,. Then, for
all1 <i<m,Y;CC! andforalll1<j<n, ZjﬂCI = 0. Therefore, C' =X. O

Let I be an information system in Ly ¢, which can be either explicitly given as
a finite interpretation in Ly ¢ or specified by a knowledge base KB = (7,4) in
Ly . Let Ay € Z; be a concept name standing for the “decision attribute”. In the
case when [ is specified by KB, assume that A, is not defined by the TBox T of KB.
Suppose that A; can be expressed by a concept C in Ly ¢ not using Ay, and I is
given as a training information system. How can we learn that concept C on the
basis of I? That is, how can we learn a definition of A; on the basis of I?

On the basis of machine learning techniques one can suggest that A, is definable
in Ly: o, for some specific = C =\ {44} and ®" C ®. One can even guide the ma-
chine learning process by extending X, ® and 7 with new concepts and new roles
together with their definitions before suggesting X" and ®'. Without such sugges-
tions, one can take ' = X or ®' = @, or use some method to try different possible
values of X and ®T.

In this subsection we assume that ¥ C X\ {44} and @' C ® are given, and the
task is to study a definition of Ay in Ly ¢+ on the basis of 1.

Our idea for this problem is based on the following observation:

if Ay is definable in Ly: g+ then, by the first assertion of Theorem[19.4]
A must be the union of some equivalence classes of A’ W.r.t. ~gi g ;.

Our general method is as follows:

1. Starting from the partition {A’}, make subsequent granulations to reach the
partition corresponding to ~y+ g ;-
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e The granulation process can be stopped as soon as the current partition is
consistent with A ”Il (or when some criteria are met).

e The task can be done in the spirit of [5| Algorithm 1] for the case ®' C
{I,0,U}, which is based on Hopcroft’s automaton minimization algorithm
[L3]. That algorithm of [5] runs in polynomial time and it can be extended
to deal also with the other cases of ®F. Also, one can use another strategy,
optimizing some measure related to “quality” of the generated partition, but
not time complexity.

e In the granulation process, we denote the blocks created so far in all steps
by Y1,...,Y,, where the current partition {Y;,,... 7Yik} consists of only some
of them. We do not use the same subscript to denote blocks of different
contents (i.e., we always use new subscripts obtained by increasing n for
new blocks). We take care that, for each 1 <i <n:

e Y; is characterized by an appropriate concept C; (such that ¥; = CiI )

e we keep information about whether ¥; is divided by A é

o ifY; C Aé then LargestContainer[i] :== j, where 1 < j < n is the sub-
script of the largest block ¥; such thatY; C Y; C A”Il

2. At the end, let ji,..., j, be all the indices from {iy,...,ix} such that ¥;, C A}

for 1 <t <h,andlet{ly,...,l,} = {LargestContainer(j;] | 1 <t < h}.LetC be
a simplified form of C;, U...LUC;,. Return C as the result.

Example 19.7. Consider the information system given in Example [19.5] Assume
that we want to learn a definition of concept Parent in the sublanguage Ly+ 4+, Where

> = {Adult, Female, has child} and ®' = 0. The respective steps are:

1. Yy := AL, partition .= {Y,}
2. partitioning Y, by Adult:

o Y5 := {Alice,Bob,Claudia,Dave,George}, C, := Adult
o Y3 := {Eva,Frank}, C3 := —Adult
e partition := {Y»,Y3}
3. partitioning Y» by Female:
o Yy := {Alice,Claudia}, C4:= CyM Female
e LargestContainer[4] := 4 (as Yy C Parent")
e Vs := {Bob,Dave,George}, Cs:= CyM—Female
e partition := {Y3,Y4,Ys}
4. partitioning Y3 by Female:
e Y5 := {Eva}, Ce:=C3MFemale
e V7 := {Frank}, C7 := C3M—Female
e partition := {Y4,Ys,Ys,Y7}
5. partitioning Yy by has child:

o Y3 := {Alice}, C3:=CsMIhas child.Cs
e LargestContainer|[8] := 4
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e ¥y := {Claudia}, Cy := C4M—3has child.Cs
e LargestContainer[9] := 4
e partition := {Y¥s5,Ys,Y7,Y3, Yo}

6. partitioning Y5 by has child:

e Y19 :={Bob,Dave}, Cio:= CsM3has child. T
e LargestContainer[10] := 10 (as Yo C Parent’)
e Yi1 :={George}, Ci| :=CsM—3has child. T
e partition := {Y¥s,Y7,Y3,Y9,Y10,Y11}.

The obtained partition is consistent with Parent’, with Yg, Y9, Yio contained in
Parent”, and Yg, Y7, Y11 disjoint with Parent!. (It is not yet the partition correspond-
Ing to ~yi i 7-)

Since LargestContainer[8] = LargestContainer[9] = 4, the concept we take into
account before simplification is C4 LI Cyg, which is

(Adult ™ Female) U (Adult 1 —Female N Shas child.T).
This concept can be simplified to the following equivalent form
Adult M (Female ) 3has child. T)

which does not match the intended definition Parent = Jhas child. T. However, it
is equivalent in I to an acceptable definition Parent = Adult ™ Jhas child. T, as all
women in [ are parents. (I

Example 19.8. Consider again the information system given in Example
Assume that we want to learn a concept definition of X = {Dave, Eva, Frank} in
the sublanguage [@7@, where =7 = {Alice, has child, has parent, has descendant,

has ancestor} and ®' = {O}. This task can be realized as follows:

1. Yy := AL, partition := {1}
2. partitioning Y] by Alice using (19.22):

o Y5 :={Alice}, Cp:={Alice}
e Y3 := {Bob, Claudia, Dave,Eva, Frank,George}, C3 := —{Alice}
e partition := {Y»,Y3}

3. partitioning Y3:

e The “selectors” are:
e Jhas child.Cs, 3has parent.Cy, has parent.Cs,
e Jhas descendant.Cs, 3has ancestor.C,, Jhas ancestor.Cs.

o If we apply the entropy gain measure then the best selectors are
Jhas parent.Cs, 3has ancestor.C,, Jhas ancestor.Cs. Each of them parti-
tions Y3 into the following Y4 and Y5, but uses different C4 and Cs:

o Y, :={Dave,Eva, Frank}
o Y5 := {Bob, Claudia, George}.
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4. Since the current partition {Y», Y4, Ys } is consistent with X, the returned concept
is C4, which can be one of the following:

o —{Alice} M 3has parent.—{Alice}
e —{Alice} M 3has ancestor.{Alice}
e —{Alice} M 3has ancestor.—{Alice}.

5. If we test these solutions on the information system specified by the knowl-
edge base that extends KB with the assertion has child(Bob,George) then the
solution —={Alice} M Jhas ancestor.{Alice} has the best accuracy. O

Let us now describe our method in more details.

Let the current partition of A be {¥;,,....Y; }. Consider partitioning of a block
Y, (1 < j <k). We want to find a concept D of Lz*,cbh called a selector, to partition
Y;;. Such a selector should actually partition Y¥;; into two non-empty parts (i.e. ¥;;

should be divided by D). It can be proved that to reach the partition corresponding
to the equivalence relation ~g; o ; it suffices to consider the following kinds of
selectors:

e A, where A € ZZ: this is related to (19.17)

e Jr.C,, wherer € Z; and 1 <t < k: this is related to (19.18)) and
e inthe case [ € ®':

Ir~.C;,, where r € Z; and 1 <t < k: this is related to and (19.21)
e in the case O € ®':

{a}, where a € ] : this is related to
e in the case Q € ®:

>1r.C;, and §mr.Ci1,wherer€ZL, 1 <t<k,0<I<#C;, and 0 <m < #C;;:
this is related to (19.23)

e in the case {Q,1} C ®T:

>1r~.C;, and §mr‘.C,-l,wherer€Z;, 1<t <k,0<I<#C;,and0 <m < #C;:

this is related to (19.24)

e in the case Self € ®F:
3r.Self, where r € Z}E: this is related to (19.27).

Note that the conditions and are always satisfied when I’ = I and Z
is an equivalence relation.

In practice, we prefer as simple as possible definitions for the learnt concept.
Therefore, it is worth to consider also the following kinds of selectors (despite that
they are expressible by the above mentioned ones), where n is the largest block
subscript used so far:

e Jr.C;, Ar.T and Vr.C;, where r € Z; and 1 <i<n
e inthe case [ € ®": 3r—.C;, Ir—. T and Vr—.C;, where r € ZL and1<i<n
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e in the case Q€ ®F: >1r.C; and <mr.C;,
where r € £, 1 <i<n,0<1<#C;and 0 < m < #C;

e in the case {Q,1} C ®": >1r.C; and <mr~.C;,
where r € Zh, 1 <i<n,0 <[ <#C; and 0 < m < #C;.

A concept C characterizing A, in the training information system / may not match
the intended meaning of A,. In particular, all of the above mentioned kinds of se-
lectors do not use role constructors (like RS, RoS or R*). However, the user
acquainted with the machine learning problem for A; may extend X and the TBox
of the knowledge base specifying I to define new complex roles and then choose
an appropriate X', One can explicitly consider also selectors that use complex roles.
This latter approach, in our opinion, is not appropriate, as the search space will be
too large.

We now describe partitioning the block Y;; using a selector D. Recall that ¥,
should be divided by D’. The partition is done as follows:

e s:=n+1,t:=n+2, n:=n+2, )’S::CijI_ID, Y,::CijI_IﬂD
° IfY,-_/.QAé then

o LargestContainer|s| := LargestContainer]i ]

o LargestContainer|t| := LargestContainer]i;]

else if ¥; C Al then LargestContainer[s) := s
else if ¥; C A} then LargestContainerlt] := 1.
e The new partition of A’ becomes {Y;,,...,Y; } \ {¥;;} U{Y,¥; }.

An important matter is: which block from the current partition should be partitioned
first? which selector should be used to partition it? This affects both the “quality”
of the final partition and time complexity of the process. Some guides and possible
strategies are given below:

e If two selectors D and D’ partition Y; ; in the same way then the simpler one is
“better”. For example, if D = 3r.C;, D' = 3r.Cy, Y,y C Y}, and D, D’ partition
Y;, in the same way, then C; is simpler than C,, and D is more preferred than
D’. This technique together with the use of LargestContainer guarantees that
one can continue granulating the partition without the risk of worsening the
“quality” of the final result. (Remember, however, that different paths resulting
in the same partition may give different results, with different “quality”.)

e One may prefer to partition a block divided by A é first. Partitioning such a block,
we may use some measure to choose a selector. A possible way is to use the
entropy gain measure. Among the blocks of the current partition that are divided
by Aé, to choose a block to partition we can also use some measure. Once
again, it may be the entropy gain measure, taking into account also the possible
selectors.

e Note, however, that one may be able to partition a block divided by Aé only
after a block not divided by A é has been partitioned.
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e Simplicity of selectors and concepts characterizing blocks should be taken into
account (e.g., by combining it with the entropy gain measure). Let’s say the
form A is simpler than 3r.B and {a}. One may put some limits on the number of
nominals and the nesting depth of V¥ and 3 in a concept characterizing a block.

e As a possible strategy, one may follow the idea of Hopcroft’s automaton mini-
mization algorithm. The hope is that reducing the total number of created blocks
(in the whole granulation process) makes the concepts characterizing the blocks
of the final partition simpler. Besides, apart from quality of the result, time com-
plexity is also important.

As usual, we may also use backtracking to find different solutions. During the
search, only the best choices are tried and we will keep only a bounded number
of the best solutions (according to some measure). The final solution will be the one
that has the best accuracy on a test information system.

Simplifying a concept C to obtain a final definition for A; can be done as follows:

1. We first normalize C while preserving equivalence, for example, by using the
method proposed in [[18]. Such normalization uses negation normal form, which
may be essential for cutoffs described below.

2. Given a test information system I’, we then simplify the obtained concept, with-
out preserving equivalence, by representing the concept as a tree and repeat the
following operations until accuracy of the definition cannot be improved on I':

e Cut off a leaf of the tree if it improves accuracy of the definition on I’.

e If a subconcept of the definition can be replaced by a simpler one (e.g., T
or L) while not decreasing the accuracy on I’ then do that replacement.

e After each simplification, normalize the concept (preserving equivalence).

The other problems deserving consideration are: allowing a definition C not exactly
matching Ay on I, and classifying a new object when inconsistencies occur. The
first problem can be dealt with by using standard methods and some measures. Con-
sider the second problem. Inconsistencies may occur as in the following situation:
converting a training RS information system Iy with a decision attribute Color and
Veolor = {red, green,blue} to a training information system I in DL with concepts
Red, Green, Blue to be learnt, one may get concepts Creq, Coreen> Cpiue as the result
of the learning process, which overlap on a real information system I”. A decision
on whether an object x of I"” which belongs, for example, to both Crle/;, and Cgl;/een
should be classified as red or green can be made based on the accuracy of C,,4 and
Cgreen 0N a test information system [ .

Note that an attempt to extend concept approximation using description logics
was taken in [[11] by using contextual indiscernibility relations used to represent un-
certain concepts. A context is defined in [[L1] as a set of concepts. Roughly speaking,
[[L1]] proposes to define new atomic concepts by complex concepts and then to use
those new atomic concepts for machine learning, applying traditional methods not
based on description logics. The method we proposed is based on bisimulations and
we find it much more promising for applications.
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19.5.4 Bisimulation-Based Approximation of Concepts

The next problem we want to address is to learn a concept Ay not by giving its
definition C (where A is a concept name and C is a complex concept), but by giving
a pair (C,C) of concepts, where C plays the role of a lower approximation of A; and
C plays the role of an upper approximation of A;. This follows the lines of Pawlak’s
rough set theory.

The problem is specified as follows:

e given: a training information system I in Ly ¢, a concept name Ay € X¢, and
a sublanguage Ly o of Lz ¢ with ' C T\ {A,} and @' C @

e goal: we want to learn an approximate definition of Ay, that is, a pair (C,C) of
concepts in the sublanguage Ly g+ such that clc Aé C CI and C!, CI closely
approximate A é. '

The result of such learning can be improved by a test information system.
Our method for this problem, as described below, is based on bisimulation:

e Compute the partition of A’ by ~st ot 1» further denoted by {Y,...,Y; }, to-
gether with concepts C;, characterizing Y;, (i.e. Cl{ =Y, for 1 <t <k) as de-
scribed in the previous subsection.

e Take C=Cj U...UCj,, where ji,..., j are all the indices among iy,... i such
thatY;, CAl forall 1 <t <h.

e Take C =Cy, I_I...I_ICJ-;,, where j|,..., j,, are all the indices among ip, ..., i
such that ¥, NAL#0forall 1 <t <Wh.
e Normalize C and C, while preserving equivalence.

The pair (C,C), obtained as above, is a pair of concepts in Ly ¢+ that approximates
A4 on I most closely (in the sense that C! C A} C ¢’ and the sets A\ CT and

c’ \ A} are the smallest ones).

The accuracy on I does not imply accuracy on other information systems. Fol-
lowing the Ockham’s razor principle, we pay attention to simplicity of (C,C) in
order to increase their overall accuracy. Here, we can use the following techniques:

e We use LargestContainer (see Subsection to obtain a simpler form for
C.

e In the granulation process of A, we can stop as soon as the current partition is
good enough according to some measure, and use it to compute C and C.

e Using a test information system we can simplify C and C (without preserving
equivalence) by applying different kinds of simplification as discussed in the
previous subsection, taking into account the accuracies of the lower and upper
approximations on the test information system and the relation between them.

Example 19.9. Consider again the information system given in Example We
want to learn a concept definition or a concept approximation for the set X = {Alice,
Bob, Claudia} in the sublanguage Ly+ g+, where = = {Adult, has child} and ®" =
0. This task can be realized as follows:
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1. Y := AL, partition .= {Y,}
2. partitioning Y, by Adult:

o Y5 := {Alice,Bob,Claudia,Dave,George}, Cy := Adult
o Y3 := {Eva,Frank}, C3 := —Adult
e partition := {Y»,Y3}

3. partitioning Y> by Jhas child. T:

o Yy := {Alice,Bob,Claudia,Dave}, Cy:= C,M3has child. T
o Y5 := {George}, Cs:= CoM—3has child. T
e partition := {Y3,Y4,Ys}

4. partitioning Y4 by Jhas child.C, (we use the selector Jhas child.C, instead of
Jhas child.C4 because it is simpler and has the same effect):

o Y5 := {Alice,Bob}, Cg:= CsMIhas child.Cy
e Y7 := {Claudia,Dave}, C7:= C4M—3has child.C,
e partition := {Y3,Ys,Ys, Y7}

5. The current partition cannot be granulated anymore. (It corresponds to ~y+ g ;.)

6. Since only Y from the current partition {¥3,Ys,Ys,Y7} is a subset of X, the
lower approximation of X is characterized by Cs = Adult M Jhas child. T 1
Jhas child.Adult, which can be simplified to Adult M 3has child.Adult.

7. Since only Y5 and Y7 from the current partition {¥3,Ys,Ys,Y7} overlap with X,
the upper approximation of X is characterized by Cg LI C7, which can be simpli-
fied to C4 = Adult ™ 3has child. T . O

19.6 Conclusions

In the current chapter, we have studied roughification methods allowing one to con-
struct indiscernibility relations on the basis of background knowledge. We have first
studied indiscernibility based on similarity relations, showing that such relations
can be turned into equivalence relations providing more accurate approximations.
Next, we introduced roughifications based on relational databases and finally ter-
minological roughifications, where indiscernibility coincides with indiscernibility
by formulas of considered description logics. To our best knowledge, the proposed
techniques and their applications are novel. It is worth emphasizing that our work
is a pioneering one that uses bisimulation for machine learning in the context of
description logics.

We have considered applications of the proposed techniques for improving
accuracy of approximations, granulating relational databases as well as in concept
learning and concept approximations. The last mentioned application areas have
usually been studied in the context of information systems using only attributes (and
sometimes also “external” relational structures) [21} 20]. In approaches based on
RS information systems, concepts are usually characterized by formulas built from
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unary predicates (corresponding to attributes), using propositional connectives. On
the other hand, concept learning and concept approximation in information sys-
tems based on description logics require new methods and algorithms. Most ideas
for them may be inspired from the traditional ones (like the ones based on deci-
sion rules, decision trees, reducts, and local reducts). However, additional ideas are
needed to generalize such approaches to the case of description logics. We have
shown that bisimulation is a good starting point.

As interesting continuations of the research reported in this chapter we consider
extensions of roughifications techniques by considering other logical formalisms.
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