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ABSTRACT. The starting point of this research is the multimodal approach to modeling
multiagent systems, especially Beliefs, Goals and Intention systems. Such an approach
is suitable for specifying and verifying many subtle aspects of agents’ informational and
motivational attitudes.

However, in this chapter we make a shift in a perspective. More precisely, we
propose the method of embedding multimodal approaches into a form of approximate
reasoning suitable for modeling perception, namely a similarity-based approximate rea-
soning. We argue that this formalism allows one to both keep the intuitive semantics
compatible with that of multimodal logics as well as to model and implement phenomena
occurring at the perception level.

1. From Quantitative to Symbolic Modeling of Multiagent Systems

The overall goal of modeling reality is to create its adequate description. Especially in
the initial phases of modeling, the proper choice of the underlying formalisms is essen-
tial, as it provides means for knowledge representation and reasoning, reflecting both the
properties of an environment and the application in question. In order to adequately make
the choice, one should take into account the quality of information available during the
entire model life cycle including its development, use and maintenance. Clearly, many
important issues are involved here. This chapter concentrates on the quality of available
information such as possible incompleteness, uncertainty and imprecision. The underly-
ing formalism cannot be adequately chosen without addressing these issues.

Formal approaches to multiagent systems are concerned with equipping software agents
with functionalities for, first, reasoning and communicating, and then, acting. The major-
ity of formal frameworks starts from the set of beliefs usually represented in a symbolic,
qualitative, and somehow idealized, way. However, as illustrated in Figure 1, the basic
layer of intelligent systems is perception.
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FIGURE 1. Layers of intelligent systems.

In our simplified view, perception captures the agent’s ability to observe its environment.
This observation functionality might be implemented on top of a sensor platform of a mo-
bile robot designed to act in the physical world. The results of perception, e.g., sensors’
measurements, are inherently quantitative. Therefore we naturally deal with a meta-level
duality: sensors provide quantitative characteristics, while reasoning tasks require sym-
bolic, i.e., qualitative, representations and inference mechanisms. As agents are equipped
with different perceptual capabilities and typically perceive the environment from differ-
ent perspectives (see Figure 2), the integration of perception with higher level, possibly
approximate, knowledge structures is unavoidable.

FIGURE 2. Perception in multiagent systems.
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It is a well known phenomenon that the lack of precise information about the environment
leads to consideration of its various variants, some of them being superfluous. Then, in the
course of completing information, non-feasible variants become excluded. For example,
if we do not know whether a specific object is a car, once we find it out, our knowledge
becomes certain. Therefore there is no need to consider other variants anymore. On the
other hand, in real-world applications the knowledge might be complete, but still uncer-
tain. For example, no matter how many measurements of car’s height we make using
a short ruler, we can learn the result only up to a given precision which, at a certain point,
cannot be further improved. While we cannot be sure about the actual result of measure-
ment, we are able to approximate it. This observation constitutes the first underpinning
principle of this chapter.

Another underpinning principle of this research is the multimodal approach to modeling
BGI systems ([35, 37, 38, ?, 42, 61]).3 BGI logics naturally serve as a high level spec-
ification of a multiagent system. Nevertheless, the commonly accepted methodological
assumptions are subject to such substantial restrictions like:

• a high complexity of modal logics is known and not easy to overcome
• incomplete and uncertain information has not been adequately tackled.

On the other hand, this approach allows one to specify and verify various subtle properties
concerning agents’ cooperation, coordination, coalition formation, communication, etc.
A typical property expressible in multimodal BGI logics could be

(13) Bel j(Inti(keep low temperature))→ Goal j(keep low pressure),

meaning that if agent j believes that agent i intends to keep the temperature low, then
agent j aims to keep the pressure low.

In this chapter we make a shift in the multimodal perspective. Assuming that approximate
results of agents’ perception and vague concepts referring to reality commonly appear in
multiagent environments, any description of a reality is an approximation of its factual
state. Accepting this point of view, our aim is to equip agents with a pragmatic and
tractable machinery to verify whether a particular state of the world, actual or hypotheti-
cal, surely or possibly satisfies their beliefs, goals and intentions.

For example, we will be able to express properties like

(14) [σt]low temperature ∧ 〈σp〉low pressure.

Assuming that the accuracy of temperature and pressure sensors is modeled respectively
by similarity relations σt, σp, formula (14) expresses the property that temperature is
surely low and the pressure might be low. Here [σt] and 〈σp〉 are modal operators, pre-
cisely described in Section 6.

The immediate gain is that we deal with the first-order formalism allowing one to embed
models of sensors and perception,4 and to deal with vague concepts. For a discussion how
to approach vague concepts within the similarity based framework, see also [?]. Observe

3BGI is an acronym for Beliefs, Goals and Intentions traditionally called Beliefs, Desires and Intentions.
4For the idea of embedding sensors’ models within the similarity structures framework, see [?].
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that specifications like (13), in fact, contain vague concepts which have to be further mod-
eled.5 Assuming that agents actually work over relational or deductive databases and that
similarities themselves are tractable, we stay within a very pragmatic, tractable frame-
work, allowing one to implement multimodal BGI specifications in an efficient manner.

The chapter is structured as follows. In Section 1 we discuss problems appearing in mod-
eling of multiagent systems, especially in the context of perception. Next, in Section 2,
we emphasize the rôle of approximate concepts and theories. In Sections 3 and 4 we recall
the multimodal approach to modeling BGI systems and similarity structures, respectively.
In Section 5 we discuss the perspectives of single agents, while Section 6 is devoted to
calculus based on the Propositional Dynamic Logic allowing for modeling the perspec-
tives of teams of agents. Section 7 introduces the language and semantics for expressing
properties of approximate BGI systems. Finally, Section 8 concludes the chapter.

1.1. Agents with Sensors: An Example. To illustrate some points addressed in this
chapter, consider the following example.

EXAMPLE 10.1. Assume that the overall maintenance goal of the system is to keep the
situation sa f e. For simplicity we assume that there is one agent only and omit in formu-
las indices referring to agents. The safety depends on the temperature and pressure as
follows, where situations are characterized by temperature and pressure pairs:

it is believed that a given situation is safe if and only if temperature t is
not high or when temperature t is high while pressure p is moderate.

Formally:

(15) Bel
(
sa f e(t, p) ≡

(
¬high(t) ∨ (high(t) ∧ moderate(p))

))
.

Among the many possible goals of the system, some include the sufficient conditions to
keep the situation safe:

(16) Goal(¬high(t)), Goal(high(t) ∧ moderate(p)).

One of the system intentions, which create a consistent subsets of goals (see Section 3), is
the one to keep the temperature high and the pressure moderate:

(17) Int(high(t) ∧ moderate(p)).

Note that (17), in suitable multimodal logics (see, e.g., [35, 37, 38] and Section 3), is
equivalent to the conjunction Int(high(t))∧Int(moderate(p)). Therefore, one can consider
two intentions:

(18) Int(high(t)), Int(moderate(p)).

The above beliefs, goals and intentions, expressed by (15), (16) and (18), contains con-
cepts high(t) and moderate(p) which, in a given situation, have to be further specified.

5Vagueness in the context of modal logics has been discussed, e.g., in [?], but this approach seems not
very natural for modeling perception.
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We provide this specification by the following beliefs:

Bel
(
high(t) ≡ 60 ≤ t ≤ 100

)
(19)

Bel
(
moderate(p) ≡ 0 ≤ p ≤ 4

)
.(20)

Assuming that in the considered environment the temperature is in the interval [−20, 100],
we also have that

(21) Bel(¬high(t) ≡ −20 ≤ t < 60).

Thus we have:

(22) Bel
(
sa f e(t, p) ≡ −20 ≤ t < 60 ∨

(
60 ≤ t ≤ 100 ∧ 0 ≤ p ≤ 4

))
.

Let us consider two agents ag1 and ag2 cooperating in this system:

• ag1 responsible for measuring temperature
• ag2 responsible for measuring temperature and pressure.

The agents are equipped with sensors:

• for i ∈ {1, 2}, agent agi is equipped with sensor τi for measuring temperature
with an associated predicate Ti(t) (Ti(t) is TRUE when the temperature is ap-
proximately t)

• agent ag2 is additionally equipped with sensor π for measuring pressure with
an associated predicate P(p) (P(p) is TRUE when the pressure is approximately
p).

Sensors τi and π function up to a given accuracy. Therefore measurement errors inevitably
appear. Here it is assumed that measurement errors are not greater than ετi for sensors τi

and επ for sensor π. In this context some modeling questions naturally arise.

(1) What is the meaning of beliefs, goals and intentions when sensors’ measure-
ments deviate from reality?

(2) Can we use crisp definitions (as (19), (20) or (22)) in the presence of inaccurate
perception? (For example, should it be believed that the situation is safe, when
t = 100 and p = 4?) Measurement errors have to be taken into the consider-
ation here (see the continuation of this discussion provided in Examples 10.3,
10.4, 10.10, 10.13).

(3) What calculus should be used to fuse results of observations of different, pos-
sibly heterogenous agents’? It is especially important when sensors accuracies
are not the same (see Examples 10.10, 10.13).

In this chapter we make a step towards introducing approximate reasoning into multi-
agent context. More precisely, we propose the method of embedding multimodal ap-
proaches into a form of approximate reasoning suitable for modeling perception, namely
a similarity-based approximate reasoning. We argue that this formalism allows one to
both keep the intuitive semantics compatible with that of multimodal logics and to model
and implement phenomena occurring at the perception level.
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It is a position chapter, as we mainly address methodological issues and possible avenues
to solve them. Typical logical issues like providing proof systems and investigating their
meta-properties is left for further research. We substantially extend our approach of [?]
(see Sections 2, 3, 4 and 5) and combine it with calculus proposed by P. Doherty and
ourselves in [?] (see Section 6). The substantially new material is included in Sections 2
and 7 as well as in many discussions and a series of examples.

2. Approximate is Ubiquitous

Traditional modeling is usually centered around crisp (precise) definitions of the modeled
reality. The prerequisite is that the objective reality is or can be crisply modeled. For
example, when talking about speed of cars on a road, one uses a crisp definition stating
that the speed of a car is the rate of change of its displacement from a given starting
point. Then one uses quantitative representation of distance and time and calculates the
speed, assuming that the result is precise. Despite the fact that numbers representing
measurements might not be accurate, when using qualitative descriptions like fast or slow,
it becomes difficult to provide their precise definitions. We might classify some speeds to
surely be fast, some to surely not be fast, while having difficulties to classify some others.

According to the literature (see, e.g., [?]), a concept is approximate (vague) when it has
borderline cases, i.e., some objects cannot be surely classified to the concept or to its com-
plement. Approximate concepts and phenomena frequently appear in computer science,
in particular in AI and knowledge representation.

McCarthy [?] argues that computer science logics should be able to deal with:

• approximate objects and not fully defined concepts, lacking “if-and-only-if”
definitions

• approximate relations among approximate entities
• approximate theories comprising approximate concepts and relations.

The majority of the environments in which intelligent systems are situated are unpre-
dictable, dynamic, and also very complex. Therefore, the relevant knowledge represen-
tation formalisms need to be partial and approximate in their very nature. Importantly,
we expect that intelligent systems are capable to dynamically construct representations of
observed objects and to integrate these representations with other static aspects.

EXAMPLE 10.2. A team of robots can be given a goal “to remove snow from a road
and leave the road safe enough for driving”. In this description not only the concept
“safe enough” is vague. Most probably robots deal with other approximate concepts and
actions with approximate effects. Even the concept of “snow” becomes approximate, e.g.,
in the middle of the melting process or, on the contrary, when it is freezing.

Beyond doubt, any sensible description of physical world includes approximate concepts
and relations. Consequently, they appear at all levels of intelligent systems dealing with
practical applications:

(1) at the object level
(2) at the description (definition, specification) level



2. APPROXIMATE IS UBIQUITOUS 201

(3) at the reasoning level.

The lowest object level deals with approximate objects of an application in question. Al-
though approximativeness results from various reasons, in our analysis we will focus on
the agent-level, assuming that agent’s activity starts more or less explicitly from a percep-
tion.

Whatever form of perception is considered, it is hardly assumed to be perfect. Most
of the time, its results are imprecise or, in the worst case, even misleading. Therefore,
it is increasingly important to build the bridge between low-level sensory data and its
fusion with qualitative knowledge structures. Importantly, multiagent environments are
often as complex as those faced by humans: partial and approximate in their very nature.
These unpleasant properties need to be reflected in adequate knowledge structures and
techniques.

Next, the intermediate description level consists of approximate predicates, approximate
specifications (axioms) and approximate rules.

Finally, the reasoning level involves approximate predicates inherited from previous lev-
els, in addition to approximations of precise predicates, resulting from incomplete rea-
soning processes. It happens that such processes cannot sometimes be fully carried out,
due to their high complexity, the lack of sufficient resources or other reasons.

The above distinction leads to a more precise classification of approximate concepts ap-
pearing in complex knowledge-based systems:

• perception layer (readings of object and environment attributes)
– limited accuracy of sensors and other devices
– time and other restrictions placed on completing measurements
– environmental conditions
– noise, limited reliability and failure of physical devices

• information fusion layer (semantical structures resulting from measurements)
– approximative nature of perception
– possible inconsistences in measurements
– a possible partiality of available information

• knowledge representation layer (including concepts definitions, and rules)
– the use of approximate concepts while defining the crisp ones
– the use of approximate definitions of new concepts starting from the crisp

ones
– approximations of definitions due to a complexity of the classification

problem
– the use of approximate theories on agency

• planning and reasoning layer
– bounded resources, typically time limits for planning and reasoning
– an incomplete, uncertain and imprecise knowledge
– a cumulation of approximate knowledge fussed on earlier stages

• communication layer
– strictly linguistic restrictions

∗ linguistic quantifiers like ”usually”, ”most”, ...
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∗ linguistic modifiers like ”more”, ”less”, ...
– technical limitations and failures of communication media.

In the sequel we shall focus on a special class of approximate concepts constructed by
means of similarities and approximations.

3. Multimodal Models of BGI Systems

The BGI model of agency comprises beliefs referring to agent’s informational attitudes,
goals (or desires), intentions and then commitments defining together its motivational
stance. In general, these attitudes refer to the multiagent environment that comprise both
environment itself and agents acting in it. A “mental state” of an BGI-agent ag is charac-
terized by:

• beliefs: BelagA expresses that agent ag beliefs that a condition A is satisfied;
• goals: GoalagA expresses that agent ag aims to reach the state of the environ-

ment satisfying A
• intentions: IntagA expresses that agent ag intends to reach the state of the envi-

ronment satisfying A.

While goals, reflecting a variety of (long or short term) agent’s perspectives, might be
inconsistent, intentions create a consistent subset of goals the agent chooses to focus on.
In [35, 37, 38] it is shown how intentions initiate a goal-directed activity, finally reflected
in commitments.

EXAMPLE 10.3 (Example 10.1 continued). Assume that agent ag1 considered in Exam-
ple 10.1 is capable to regulate temperature and agent ag2 is capable to adjust pressure
based on the temperature readings. In this case, intentions expressed as (18) can be
distributed among these agents:

(23) Intag1 (high(t)), Intag2 (moderate(p)).

Observe that both agents can share belief (15), while (19) can naturally be associated
with ag1, and (20) with ag2. Therefore the set of ag1 beliefs is the following:

(24)
Belag1

(
sa f e(t, p) ≡

(
¬high(t) ∨ (high(t) ∧ moderate(p))

))
Belag1

(
high(t) ≡ 60 ≤ t ≤ 100

)
Analogically, for ag2 we have:

(25)
Belag2

(
sa f e(t, p) ≡

(
¬high(t) ∨ (high(t) ∧ moderate(p))

))
Belag2

(
moderate(p) ≡ 0 ≤ p ≤ 4

)
.

Observe that belief (22) is obtained by gathering knowledge distributed between ag1 and
ag2 (for the discussion of distributed knowledge we refer the reader to [42, 61]).

Traditionally, BGI systems have been formalized in terms of multimodal logics tailored to
model agents’ informational and motivational attitudes. Beliefs, goals and intentions can
naturally be expressed via modal operators (see, e.g., [35, 37, 38, ?, ?]). The underlying
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semantics is based on Kripke structures, providing a general modeling machinery. How-
ever, already an individual level of agent’s specification, in the light of limited perception
capabilities, uncertain and imprecise information is problematic.

The theory of informational attitudes has been formalized in terms of epistemic logic
in [42, 61]. As regards motivational attitudes, the situation is much more complex. In
Distributed Cooperative Problem Solving, a group as a whole needs to act in a coherent
pre-planned way, presenting a unified collective motivational attitude staying in accor-
dance with individual ones, but having a higher priority. All in all, in BGI systems agent’s
attitudes are considered on the three levels: individual, bilateral, and collective. A co-
herent and conceptually unified theory of motivational attitudes has been developed by
Dunin-Kȩplicz and Verbrugge (see, [35, 37, 38, ?]).

Despite many advantages, (multi)modal logics are often questioned when:

• complexity is an issue
• perception modeling is substantial
• vague concepts over (pseudo) continuous/dense domains are present.

Unfortunately, these problems become essential in multiagent environments where we
usually deal with both agents’ bounded resources and also limited precision of sensors,
video cameras and other equipment. It is commonly agreed that approximative nature
of real-world environments is either not adequately captured by modal theories or the
constructed models become too complex.

It appears, however, as we show in this chapter, that the notion of similarity structures [?,
?] can successfully substitute or complement modal logics. These structures keep intu-
itive Kripke-like semantics and permit to use results from modal logics, while substan-
tially simplifying calculations and reduce the complexity of reasoning. In the sequel, we
propose a method that originates from the following observations:

(1) many agent theories are expressed in multimodal logics
(2) there is a natural correspondence between modal theories and similarity struc-

tures
(3) similarity structures can be used to define approximations of concepts and rela-

tions
(4) these approximations lead to approximate reasoning that is tractable over rela-

tional and deductive databases.

These issues inspired us to isolate and define approximate BGI systems, denoted by αBGI
, where agents’ beliefs, goals and intentions are expressed by means of approximate the-
ories (see Section 7). In practice, such theories are usually represented by deductive
databases. As the database technology can be adjusted to reflect the approximate phe-
nomena, we deal with approximate databases [?]. Perhaps the most impressive advantage
of such an approach, that is of using approximate databases, is a tractable querying ma-
chinery. It is achievable, when the similarity relation as well as all the underlying oper-
ations (like the arithmetical ones), are tractable once using traditional tractable querying
machinery. (See [?] for an in-depth discussion).
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4. Similarity Structures

4.1. Preliminaries. A natural generalization of crisp relations are rough sets and
rough relations, as introduced by Pawlak in [?]. These can be further refined to ap-
proximate relations based on a notion of a similarity structure. More precisely, we use
similarity-based neighborhoods (see, e.g., [?, ?]), covering the underlying domain. Thus,
the lower and upper approximations of relations are defined in terms of neighborhoods
rather than equivalence classes which is the case in rough sets. Approximate relations
and similarity structures have been shown to be versatile in application requiring approx-
imate knowledge structures [?, ?, ?].

To appropriately reflect the inherent properties of the application domain, proper con-
straints on similarity relations defining upper and lower approximations have to be identi-
fied. For example, sometimes the relation should not be transitive since similar objects do
not naturally chain in a transitive manner. In order to represent arbitrary notions of sim-
ilarity in a universe of individuals, similarity relations have no initial constraints. These
issues are discussed in the context of rough sets (see, e.g., [?, ?, ?]).

DEFINITION 10.1. By a similarity structure we mean any pair S = 〈U, σ〉, where U is
a non-empty set and σ ⊆ U × U. By a neighborhood of u w.r.t. σ we mean nσ(u) def

= {u′ ∈
U | σ(u, u′)}. For A ⊆ U, the lower and upper approximation of A w.r.t. S , denoted by:
AS + and AS ⊕ , are defined by:

AS + = {u∈U: nσ(u)⊆A}
AS ⊕ = {u∈U: nσ(u) ∩ A , ∅}.

FIGURE 3. Approximations.

Let S = 〈U, σ〉 be a similarity structure and let A ⊆ U. Then (see also Figure 3):

• AS + contains elements which surely belong to A (since all elements similar to
the considered one belong to A)

• AS ⊕ contains elements which may or may not belong to A and we are unable to
judge what is the case (due to the indiscernibility of similar objects)6

6In addition to elements surely belonging to A.
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• AS ±
def
= AS ⊕ − AS + contains elements which may or may not belong to A and we

are unable to judge what is the case
• AS −

def
= −AS ⊕ contains elements which surely do not belong to A (since all

elements similar to the considered one do not belong to A)
• AS 	

def
= −AS + contains elements which may or may not belong to −A.

In the rest of the chapter, when similarity structure S = 〈U, σ〉 is known from the context,
we often write Aσ+ rather than AS + and similarly for other approximation operators.

PROPOSITION 10.1. Let S = 〈U, σ〉 be a similarity structure. Then:

AS + = {u ∈ A | ∀v (σ(u, v)→ v ∈ A)}
AS ⊕ = {u ∈ A | ∃v (σ(u, v) ∧ v ∈ A)}.

Observe the strong similarity between characterizations of lower and upper approxima-
tions provided in Proposition 10.1 and definitions of semantics of 2 and 3 in Kripke
semantics of modal logics.

4.2. Kripke Structures for Similarity-Based Reasoning. Up to now we have shown,
how to construct approximations starting from similarity structures. On the other hand,
the semantics of logics for multiagent systems typically originates from Kripke structures.
Therefore, we should address the question how to reflect a possible world semantics in
our framework.

An obvious way to construct the accessibility relation R for similarity-based reasoning is
to take the similarity relation σ and set

R(w,w′)
def
≡ w differs from w′ on the value of at most one variable

(tuple of variables), say x, such that the value of x in w is similar
to the value of x in w′, i.e., when σ(w(x),w′(x)) holds, where w(x)
stands for the value of x in w.

Along this line of modeling, we do not really need Kripke structures, assuming that un-
derlying similarity structures are known. When similarities are defined over continuous
domains, we rather want to avoid the continuum of accessible worlds. Similarity relations
include the whole information about such Kripke structures, so just one (current) world
equipped with a suitable similarity structure (or a couple of structures) is sufficient.

REMARK 4.1. Observe that a substantial difference between multimodal BGI systems
and our approach is that beliefs, goals and intentions are modeled separately via different
accessibility relations, while similarity structures do not need to be specific for beliefs,
goals or intentions. In a typical situation the same collection of similarity structures,
reflecting perception, serves for modeling beliefs, goals and intentions.

However, other options are also justified. For example, during surveillance mission one
team of agents, equipped with a specific sensor platform, may recognize the situation
and construct a relevant database containing approximate beliefs. Then, another group of
agents may plan and act along the previously done recognition. Both groups may differ
with respect to their capabilities to perceive.
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4.3. Correspondences between Approximations and Similarity. As observed in
Proposition 10.1, there is a close relationship between correspondences among approx-
imations and similarities and those considered in modal correspondence theory, when
modal 2 is considered as AS + , and 3 as AS ⊕ .

Let S = 〈U, σ〉 be a similarity structure. Then

(1) AS + ⊆ AS ⊕ is equivalent to the seriality of σ
(2) AS + ⊆ A is equivalent to the reflexivity of σ
(3) A ⊆ (AS ⊕ )S + is equivalent to the symmetry of σ
(4) AS + ⊆ (AS + )S + is equivalent to the transitivity of σ.

In paper [?] a technique analogous to those of modal correspondence theory has been con-
sidered. This technique supports automatizing the search for suitable correspondences.

5. A Single Agent’s Perspective

It is commonly assumed that, despite the well known disadvantages of multimodal logics,
like the omniscience problem, agents’ individual beliefs, goals and intentions are charac-
terized by modalities of the universal flavor (“boxes”). In αMAS we translate them into
lower approximations w.r.t. suitable similarity structures. We then obtain characterization
of situations that surely satisfy given beliefs, goals and intentions. This is a very natural
approach for such properties, as sa f e. On the other hand, in the case of dual properties
one is often interested in characterization of possible situations. For example, when con-
sidering dangers, it is essential to recognize when the situation might be dangerous before
it surely is such. Therefore we additionally use upper approximations to express what
might be believed, what might be a goal or what might be an intention.

The required characteristics of accessibility relations in BGI logics has to be ensured by
the relevant semantical properties of the underlying similarity relations. If only approx-
imation operators are given, without similarities themselves, one can use the approach
outlined in [?] and apply the correspondences between approximations and similarities.

EXAMPLE 10.4 (Examples 10.1, 10.3 continued). Recall that we have considered sensors
τ1, τ2 for measuring temperature and π for measuring pressure with the measurement
errors not greater than ετ1 , ετ2 and επ (for τ1, τ2 and π, respectively). We then have three
similarity structures, S τ1 , S τ2 and S π reflecting the measurement errors of τ1, τ2 and π,
respectively.

More precisely, S τi (i ∈ {1, 2}) can be defined, e.g., to be 〈T, στi〉, where

T def
= [−20, 100] and στi (t, t

′)
def
≡ |t − t′| ≤ ετi .

Similarly S π can be defined, e.g., to be 〈P, σπ〉, where

P def
= [0, 10] and σπ(p, p′)

def
≡ |p − p′| ≤ επ.
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FIGURE 4. The area representing the crisp definition of sa f e (marked
by the thick line) and its approximations (marked by dotted lines).

In such a case,

[−20, 60)S +
τi

= [−20 + ετi , 60 − ετi ) [−20, 60)S ⊕τi
= [−20, 60 + ετi )(26)

[60, 100]S +
τi

= [60 + ετi , 100 − ετi ] [60, 100]S ⊕τi
= [60 − ετi , 100](27)

[0, 4]S +
π

= [επ, 4 − επ] [0, 4]S ⊕π = [0, 4 + επ].(28)

Note that the upper approximation of [60, 100] in (27) is [60 − ετi , 100] rather than [60 −
ετi , 100 + ετi ] since the universe T is [−20, 100].

Let us now approximate intentions to keep the temperature high and to keep pressure
moderate like in Example 10.1. As calculated in (27), the first intention:

• is surely satisfied when t is in the lower approximation of the interval [60, 100],
i.e., when t ∈ [60 + ετi , 100 − ετi ], also expressed as 60 + ετi ≤ t ≤ 100 − ετi

• might be satisfied when t is in the upper approximation of the interval [60, 100]
i.e., when t ∈ [60 − ετi , 100], which can be expressed as
60 − ετi ≤ t ≤ 100.

Similarly, according to (28), the second intention is surely satisfied when
επ ≤ p ≤ 4 − επ and might be satisfied when 0 ≤ p ≤ 4 + επ.

However, in real life the situation is not always that simple. For example, how can we
deduce that the situation is (surely) safe? Using characterizations provided as (26) and
(28), one could be tempted to define the lower approximation of sa f e to be

(29) −20 ≤ t < 60 − ετi ∨
[
60 + ετi ≤ t ≤ 100 − ετi ∧ επ ≤ p ≤ 4 − επ

]
.

Unfortunately, formula (29) does not properly reflect this approximation. In fact, Figure 4
shows the correct approximations. In particular, when the temperature is 60 and pressure
is 2, formula (29) is not satisfied, while such a point is actually in the lower approximation
of sa f e.

In Example 10.4 we dealt with combining similarity relations and using suitable calculus
on approximations. The problem of combining similarity relations and applying them
within the framework of modal logics has been addressed, e.g., in [?, ?]. However, rea-
soning based on these approaches is quite complex. In the sequel we will investigate
whether using similarity structures and relational or deductive databases will improve the
complexity of reasoning.
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6. Team’s Perspective

In multiagent settings paradigmatic activities, like coordination and negotiations naturally
need agents’ awareness about other and about their environment. Therefore, awareness
becomes a vital ingredient of modeling. Sharing and/or fusing knowledge of agents calls
for sometimes subtle methods of lifting individual beliefs to a group level. In this section
we recall ideas of [?] needed for definition of the αBGI language and semantics (see
Section 7), where Propositional Dynamic Logic (PDL) has been reinterpreted and applied
to fuse similarities representing agents’ perception.

6.1. Propositional Dynamic Logic. Originally, PDL has been introduced as a tool
for expressing properties of programs and reasoning about them (see, e.g., [?]). Below
we use it as a calculus on similarity relations. More precisely, programs in PDL are
binary relations on states. We replace programs by (binary) similarity relations. Program
connectives can then used to build up complex similarities for groups of agents. The
resulting calculus has been discussed in [?].

6.1.1. Syntax. The language of PDL consists of formulas and programs.7 In what
follows we shall replace the term “programs” by “similarity relation symbols”. Let P
and S be countable sets of propositions and similarity relation symbols, respectively.
Relational expressions and formulas are built from P and S using:

• propositional connectives (¬,∨,∧,→, ≡);
• modalities indexed by similarity relation symbols [σ], 〈σ〉;
• relational operators ; ,∪ ,∩ ,∗ ,−1 and test operator ?.

More precisely, similarity expressions, denoted by E, are built inductively assuming that
S ⊆ E and whenever σ1, σ2 ∈ E and A ∈ F then

[σ1;σ2], [σ1 ∪ σ2], [σ1 ∩ σ2], [σ∗1], [σ−1
1 ], [A?] ∈ E.

If A, B are PDL formulas and σ is a similarity expression then

¬A, A ∨ B, A ∧ B, A→ B, A ≡ B, [σ]A, 〈σ〉A

are also PDL formulas.

6.1.2. Semantics. The semantics of PDL is defined using the notion of Kripke frames
of the form K = 〈U,Π,Σ〉, where

• U is a set of objects
• Π : P −→ 2U (for each proposition A, Π assigns a set of objects, for which A is

TRUE)
• Σ : S −→ 2U×U (for each similarity relation symbol σ, Σ assigns a binary

relation on U).

LetK = 〈U,Π,Σ〉 be a Kripke structure, a ∈ U, A, B be formulas and σ1, σ2 be similarity
relation symbols. The satisfiability relation is then defined as follows:

7We actually deal with the concurrent dynamic logic with converse, as we consider operators ∩ and −1,
too — see [?, ?, ?].



6. TEAM’S PERSPECTIVE 209

• K , a |= A iff a ∈ Π(A), when A ∈ P
• K , a |= ¬A iff K , a 6|= A
• K , a |= A ∨ B iff K , a |= A or K , a |= B
• K , a |= [σ]A iff for any b ∈ U such that σ(a, b) we have K , b |= A
• K , a |= 〈σ〉A iff there is b ∈ U such that σ(a, b) and K , b |= A,

where Σ is extended to cover all expressions on similarity relations recursively:

• Σ(σ1;σ2) def
= Σ(σ1) ◦ Σ(σ2), where ◦ is the composition of relations

• Σ(σ1 ∪ σ2) def
= Σ(σ1) ∪ Σ(σ2), where ∪ at the righthand side of equality is the

union of relations
• Σ(σ1 ∩ σ2) def

= Σ(σ1) ∩ Σ(σ2), where ∩ at the righthand side of equality is the
intersection of relations

• Σ(σ∗) def
= (Σ(σ))∗, where ∗ at the righthand side of equality is the transitive

closure of a relation
• Σ(σ−1) def

= (Σ(σ))−1, where −1 at the righthand side of equality is the converse
of a relation

• Σ(A?) def
= {〈a, a〉 | K , a |= A}.

6.2. Useful Properties of Approximations Expressible in PDL. One can easily
observe that modalities of PDL can be used to express properties of approximations.
Namely:

(1) [σ]A expresses the lower approximation of A w.r.t.. σ, i.e., Aσ+

(2) 〈σ〉A expresses the upper approximation of A w.r.t.. σ, i.e., Aσ⊕ .

EXAMPLE 10.5.

(1)
(
[σ1]on road ∧ 〈σ2〉 f ast

)
→ car — if according to σ1 an object is surely on

road and according to σ2 its speed might be fast, then conclude that it is a car.
(2)

(
〈σ1〉hot∨〈σ2〉hot

)
→ dangerous — if according to σ1 or to σ2 an object might

be hot, then conclude that it is dangerous.

Expression σ∗ defines the transitive closure of a relation σ, i.e., it makes an object o
similar to an object o′ if there is k ≥ 1 and a chain of objects o1, . . . , ok such that o1 =

o, ok = o′ and for all 1 ≤ i ≤ k − 1, oi is similar to oi+1, i.e., σ(oi, oi+1) holds.

EXAMPLE 10.6. In the rough set theory [?], the underlying similarity relations are equiv-
alence relations so rather than considering arbitrary relations σ, one should consider
their reflexive, symmetric and transitive closures, (σ ∪ id ∪σ−1)∗, where id is the identity
relation (e.g., defined by the test statement TRUE?).

Other typical operations on programs can be interpreted in multiagent setting as follows,
where σ1 and σ2 are similarity relations of the two agents ag1 and ag2:

• σ1;σ2 is the composition of relations, i.e., it makes an object o1 similar to an
object o2, if agent ag1 finds o1 similar to some object o′, and ag2 considers
object o′ similar to o2
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• σ1∪σ2 is the set-theoretical union of relations, i.e., it makes an object o1 similar
to an object o2, if at least one of agents ag1, ag2 considers objects o1 and o2
similar

• σ1 ∩ σ2 is the set-theoretical intersection of relations, i.e., it makes an object
o1 similar to an object o2, if both agents ag1 and ag2 consider objects o1 and o2
similar.

EXAMPLE 10.7. Assume that agent ag1 observes objects o1, o2 and finds that they are of
a similar color (σ1(o1, o2) holds). Assume further that ag2 observes objects o2, o3 and
finds their color similar, too (σ2(o2, o3) holds). We are interested whether the color of o1
is similar to the color of o3, as expressed by(

(σ1;σ2) ∪ (σ2;σ1)
)
(o1, o3).

Therefore, e.g., 〈(σ1;σ2)∪(σ2;σ1)〉red expresses that a given object might be red accord-
ing to the fused knowledge of ag1 and ag2. On the other hand, [σ1 ∩σ2]red expresses the
fact that both agents find a given object to be red.

Test permits to create conditional definitions which can be viewed as a sort of meta-
reasoning over similarities, as illustrated by the following example.

EXAMPLE 10.8. In some circumstances the choice of similarity may depend on the state
of the environment. For example, if the temperature is high, the observed process might
be more sensitive on pressure (reflected by similarity σ1) than when the temperature is
not high (reflected by similarity σ2). Then(

high temp?;σ1
)
∪

(
(¬high temp)?;σ2)

)
expresses the guarded choice between σ1 and σ2 dependent on the temperature (“if the
temperature is high then use σ1 otherwise use σ2”).

6.3. Reasoning over Concrete Similarity Structures. The version of dynamic logic
we consider is highly undecidable (see, e.g., [?]). Removing the ∩ operator makes the
logic decidable but still quite complex. When dealing with concrete similarity structures,
the calculus is useful in practice.

EXAMPLE 10.9. Consider a sensor measuring a given parameter, say ρ in the scale
[0, 10]. Assume that the measurement error is not greater than 0.5. Thus we deal with

a similarity structure 〈U, σ〉, where U def
= [0, 10] and σ(x, y)

def
≡ |x− y| ≤ 0.5. Assume also

that

the value of ρ is acceptable when ρ ∈ [2.6, 6.8].

Suppose that we are interested in evaluating formula 〈σ〉acc, where acc abbreviates “ac-
ceptable”. Then it can easily be seen that

〈σ〉acc ≡ ρ ∈ [2.1, 7.3] and [σ]acc ≡ ρ ∈ [3.1, 6.3].

Therefore one can use these definitions instead of modal operators.

EXAMPLE 10.10 (Examples 10.1, 10.3, 10.4 continued). In Example 10.4 two similarity
structures, S τ1 and S τ2 , reflecting perceptual limitations of agents ag1 and ag2, have been
associated with temperature sensors. Different measurement results can lead the two
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agents to inconsistent points of view and mismatch in understanding the current situation.
For example, assume that measurement errors considered in Example 10.4 are ετ1 = 0.1
and ετ2 = 0.15. Then the reading of ag1 could be 61.01 while at the same time the
reading of ag2 could be 58.88. According to the crisp definition of high, given by (19),
ag1 considers the temperature high, while ag2 considers it not high. Moreover, from
(27) and further discussion it follows that the temperature is surely high for ag1, while
the temperature reported by the sensor of ag2 is for ag1 surely not high. This calls for
fusing information from different sources. The problem of mutual understanding among
communicating agents has been addressed in [?, ?]. Here we use more general calculus
for information fusion, proposed in [?] and discussed in the current section.

Importantly, a uniform principle fitting well to all situations is not to be expected here.
For example, the similarity relation σ, reflecting fused reading of temperatures could be

• σ
def
= στ1 , when it is justified to trust the first sensor more than the second one

• σ
def
= [moderate(p)?;σ1] ∪ [(¬moderate(p))?;σ2], when the first sensor works

within a “moderate” scale of pressures only
• etc.

Observe that the resulting σ can still be tuned. The intuition is that by adding successive
iterations, the resulting similarity is more situation-sensitive. For example, safety may be
increased by iterating σ,

• σ itself may be used for a normal safety level
• σ ∪ (σ;σ) can be used for an increased safety level
• σ ∪ (σ;σ) ∪ (σ;σ;σ) can be used in circumstances, when a relatively higher

safety is required
• etc.

REMARK 6.1. Even if the considered version of dynamic logic is highly undecidable
(see, e.g., [?]), dealing with similarity structures and relational or deductive databases
makes the situation tractable, assuming that the underlying similarity relation is tractable.
Importantly, in practical reasoning systems one is usually interested in querying databases
rather than verifying whether a given formula is a tautology or is satisfiable.

In order to compute the set of objects x satisfying 〈σ〉A one simply queries the database
using the first-order formula

∃y(σ(x, y) ∧ A(y)), where y refers to objects (e.g., specified by rows
in database tables).8

Similarly, computing [σ]A depends on supplying to the database the query

∀y(σ(x, y)→ A(y)).

Operators on similarity relations allowed in the proposed language are first-order defin-
able, except for ∗ which, as transitive closure, also leads to tractable queries (see, e.g., [?]).

8This query computes all values of x satisfying ∃y(σ(x, y) ∧ A(y)).
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Note also that restricting full PDL to its fragments can improve complexity significantly.
For example, its tractable Horn fragment suitable for approximate reasoning has been
isolated in [?].

7. The αBGI Language and Semantics

In what follows we assume that L is the base language, i.e., the set of basic formulas. It
can be the language of the classical propositional logic, of the classical first-order logic,
of the version of PDL discussed in Section 6.1 or any other logic suitable for a particular
application domain. In applications, L is typically a language of underlying relational or
deductive database.

It is assumed that the semantics of L is given by assigning to each formula the set of
elements (objects) of the underlying domain, i.e., for a given domain U there is a mapping
Π : L −→ 2U . Intuitively, for A ∈ L, Π(A) is the set of objects for which A is true.9 In
many applications Π can be defined by database queries.

EXAMPLE 10.11. Assume we have two objects: the first one, o1, large and red and the
second one, o2, small and red. In this case U = {o1, o2}.

• Let the base language be the classical propositional logic with two propositions
large and red. Then, for example, it is natural (although not necessary, as we
leave much freedom here) to set Π(red) = {o1, o2} and Π(large ∧ red) = {o1}.

• Let the base language be the classical first-order logic with two unary relations
Large, Red and one binary relation Ob j consisting of tuples describing objects
in U,

Ob j def
= {〈large, red〉, 〈small, red〉}.

Then, Π(Red(x)) is {o1, o2}, while Π(∃x(Ob j(large, x))) is {o1}.
A bit more intriguing question could be related to the case when formulas

have free variables, e.g., what should be Π(Ob j(large, x)). One of natural solu-
tions is to apply the standard querying machinery (e.g., the classical first-order
queries, as described in [?]). The result would be x = red. Therefore Π should
return all red objects, i.e., {o1, o2}.

REMARK 7.1. It is worth emphasizing that objects can be relatively simple, belonging to
concepts like “red”, “large”, etc. as well as arbitrarily complex, like “safe speed”, “bad
weather conditions”, “criminal activity”, etc.

7.1. Syntax. We assume thatA is the set of agents and L is the base language.

As in Section 6.1, we assume the setS of similarity relation symbols. Recall the E denotes
the set of similarity expressions.

The set of αBGI formulas, denoted by F , is the smallest set closed under classical propo-
sitional connectives, such that L ⊆ F and for a ∈ A, A ∈ F and σ ∈ E,

Bel〈σ〉a A, Bel[σ]
a A,Goal〈σ〉a A,Goal[σ]

a A, Int〈σ〉a A, Int[σ]
a A ∈ F .

Intuitively, assuming that the perception of agent a is modeled by similarity expression σ,

9Observe that this approach is compatible with semantics of dynamic logic, given in Section 6.1.2.
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• Bel〈σ〉a A means that from the point of view of agent a the state of the world
possibly satisfies belief A

• Bel[σ]
a A means that from the point of view of agent a the state of the world surely

satisfies belief A,

and analogously for modalities expressing goals and intentions Goal〈σ〉a , Goal[σ]
a , Int〈σ〉a ,

Int[σ]
a .

7.2. Semantics. Let L be the base language. Assume we are given a Kripke struc-
ture K = 〈U,Π,Σ〉, as in Section 6.1.2, except that the mapping Π is defined for all
formulas in L, Π : L −→ 2U . The semantics of αBGI formulas is given by extending Π

to cover all αBGI formulas, where X ∈ {Bel,Goal, Int}:

Π(¬A) def
= −Π(A)

Π(A ∨ B) def
= Π(A) ∪ Π(B)

Π(A ∧ B) def
= Π(A) ∩ Π(B)

Π(A→ B) def
= −Π(A) ∪ Π(B)

Π(A ≡ B) def
= (−Π(A) ∪ Π(B)) ∩ (−Π(B) ∪ Π(A))

Π(X〈σ〉a A) def
= {o ∈ U | ∃o′(Σ(σ)(o, o′) ∧ o′ ∈ Π(A))}

Π(X[σ]
a A) def

= {o ∈ U | ∀o′(Σ(σ)(o, o′)→ o′ ∈ Π(A))}.

For any αBGI formula A ∈ F , Kripke structure K = 〈U,Π,Σ〉 and any o ∈ U, we define
the satisfiability relation |=αBGI by setting:

K , o |=αBGI A iff o ∈ Π(A).

EXAMPLE 10.12. Agent ag classified the objects from U according to their colors:

Belag(light ≡ (white ∨ yellow)).

However, ag cannot distinguish between yellow and orange, which is modeled by the
similarity relation

σ
def
= {〈o1, o2〉 | o1, o2 ∈ Π(yellow) ∪ Π(orange)} ∪ {〈o, o〉 | o ∈ U}.

Assuming further that

Π(white) = {o1},Π(yellow) = {o2, o3},Π(orange) = {o4},

we have Π(Bel〈σ〉ag light) = {o1, o2, o3, o4}, while Π(Bel[σ]
ag light) = {o1}.

EXAMPLE 10.13 (Examples 10.1, 10.3, 10.4, 10.10 continued). In Example 10.3 (for-
mula (23)) there have been two intentions,

Intag1 high(t) and Intag2 moderate(p).
According to calculations given in Example 10.4 (see formulas (27), (28) and the follow-
ing discussion), assuming ετ1 = 0.1 and επ = 0.2, we have

Int
[στ1 ]
ag1 high(t) ≡ 60 + ετ1 ≤ t ≤ 100 − ετ1 ≡ 60.1 ≤ t ≤ 99.9

Int
〈στ1 〉

ag1 high(t) ≡ 60 − ετ1 ≤ t ≤ 100 + ετ1 ≡ 59.9 ≤ t ≤ 100.1
Int[σπ]

ag2 moderate(p) ≡ επ ≤ p ≤ 4 − επ ≡ 0.2 ≤ t ≤ 3.8
Int〈σπ〉ag2 moderate(p) ≡ 0 ≤ p ≤ 4 + επ ≡ 0 ≤ t ≤ 4.2.



214 10. AGENTS IN APPROXIMATE ENVIRONMENTS

Let us return to the question of proper approximations of beliefs in a specification of a
sa f e situation (see Example 10.10: formula (29) and later discussion). Safety condi-
tion (22) refers both to temperature and pressure. It is therefore necessary to create a new
similarity structure on tuples 〈t, p〉 representing states described by temperature and pres-
sure, on the basis of the two underlying similarity structures. Such a construction heavily
depends on an application in question (see, e.g., [?, ?]). For example, a finer granularity
for pressure might be required when temperature exceeds a certain threshold.

Here, to keep things simple, let us assume that the adequate similarity structure is de-
fined over the cartesian product [−20, 180] × [0, 10] of intervals representing domains of
temperatures and pressures (as assumed in Example 10.4), where the similarity relation,
denoted by σ×, is defined by

σ×(〈t1, p1〉, 〈t2, p2〉)
def
≡ στ1 (t1, t2) ∧ σπ(p1, p2).

In this case,

Bel[σ×]
ag2 sa f e(t, p) ≡ [(−20 + ετ1 ≤ t ≤ 60 − ετ1 ) ∧ (0 ≤ p ≤ 10 − εp)]

∨ [(−20 + ετ1 ≤ t ≤ 100 − ετ1 ) ∧ (0 ≤ p ≤ 4 − επ)]
Bel〈σ×〉ag2 sa f e(t, p) ≡ [(−20 − ετ1 ≤ t ≤ 60 + ετ1 ) ∧ (0 ≤ p ≤ 10 + εp)]

∨ [(−20 − ετ1 ≤ t ≤ 100 + ετ1 ) ∧ (0 ≤ p ≤ 4 + επ)],

as indicated in Figure 4.

7.3. The Complexity of Queries. Assume that a given Kripke structureK = 〈U,Π,Σ〉
satisfies:

• U is a finite set such that | U |= n, for a natural number n > 0
• for any A ∈ L and o ∈ U, condition o ∈ Π(A) can be verified deterministically

in time polynomial w.r.t. n
• for any σ ∈ S, and o1, o2 ∈ U, condition Σ(σ)(o1, o2) can be verified determin-

istically in time polynomial w.r.t. n.

Under these assumptions, for any αBGI formula A and any o ∈ U, the satisfiability condi-
tionK , o |=αBGI A can also be checked deterministically in time polynomial w.r.t. n. This
can be seen by treating formula A as a query to K considered as a deductive database.

8. Conclusions

Usually, modeling multiagent systems starts from an idealized level of agents’ beliefs.
Our approach is grounded where agent activities actually start: at the level of modeling
results of agents’ perception. This change of perspective enabled a shift from the multi-
modal modeling of BGI systems to approximate multiagent systems called αBGI. Taking
into account a dynamic and unpredictable environment the agent acts in, it is justified
to assume that information available to agents via their sensor platforms is incomplete,
uncertain and imprecise. To reflect this unfavorable combination of properties, we have
equipped agents with a powerful machinery to verify whether a particular state of the
world, actual or hypothetical, surely or possibly satisfies their beliefs, goals and inten-
tions.
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The immediate gain is that the introduced first-order formalism permits both to embed
typical models of sensors and perception and to deal with vague concepts. Assuming that
agents actually work over relational or deductive databases and that similarities them-
selves are tractable, we have obtained a pragmatic, tractable framework, allowing one to
implement αBGI specifications in an efficient manner.

We have also reinterpreted dynamic logic to serve as a calculus on similarities. This
way some subtle methods of fusing information available from heterogenous sources are
naturally expressible. We proposed the calculus to become a vital component of αBGI
specifications. In summary, we focused on methodological issues and proposed how to
deal with them. Typical logical issues like providing proof systems and investigating their
meta-properties are left for further research.
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