
The Leordo Computation System

Erik Sandewall

Department of Computer and Information Science,
Linköping University, Linköping, Sweden

and

Unit for Scientific Information and Learning,
Royal Institute of Technology, Stockholm, Sweden

March 12, 2008

1

Abstract

The purpose of the research reported here is to explore an
alternative way of organizing the general software structure in
computers, eliminating the traditional distinctions between op-
erating system, programming language, database system, and
several other kinds of software. We observe that there is a lot
of costly duplication of concepts and of facilities in the conven-
tional architecture, and believe that most of that duplication
can be eliminated if the software is organized differently.

This article describes Leonardo, an experimental software
system that has been built in order to explore an alternative
design and to try to verify the hypothesis that a much more
compact design is possible and that concept duplication can
be eliminated or at least greatly reduced. Definite conclusions
in those respects can not yet be made, but the indications are
positive and the design that has been implemented so far has
a number of interesting and unusual features.

1 Introduction

Project Goal and Design Goals

Leordo is a software project and an experimental software system
that integrates capabilities that are usually found in several different
software systems:

• in the operating system

• in the programming language and programming environment

• in an intelligent agent system

• in a text formatting system

and others more. I believe that it shall be possible to make a much
more concise, efficient, and user-friendly design of the total software
system in the conventional (PC-type) computer by integrating capa-
bilities and organizing them in a new way.

The purpose of the Leordo project (1) is to verify or falsify this
hypothesis. This is done by designing and implementing an experi-
mental system, by iterating on its design until it satisfies a number of
well defined criteria, and by implementing a number of characteritic
applications using the Leordo system as a platform.

The implementation of the experimental system has passed sev-
eral such iterations, and a reasonably well-working system is in daily
use since several years. The following are the requirements that were
specified for that system and that are satisfied by the present imple-
mentation. We expect to retain them in future system generations.

1The project and the system were previously called Leonardo, but the name
was changed to Leordo in order to avoid a name conflict.

The system is of course organized in a modular fashion, where
the modules are called knowledge blocks and contain both algorithms,
data, and intermediate information such as ontologies and rules. There
shall be a designated kernel consisting of one or a few knowledge
blocks that is used as a basis on which other blocks can be built, for
the purpose of additional services and for applications. The following
were and are the requirements on the kernel:

• It shall contain self-describing information and corresponding
procedural capabilities whereby it is able to administrate itself,
its own structure, and its own updates.

• It shall provide the extension capabilities that make it possible
to attach additional knowledge blocks to it and to administrate
them in the same way as the kernel administrates itself.

• It shall provide adequate representations for the persistent stor-
age of all contents of the blocks in the kernel, as well as the
representations and the computational services for performing
computations on the same contents.

• It shall provide capabilities for adaptation, in particular to facil-
itate moving a system between hosts, and for defining alterna-
tive configurations based on different sets of knowledge blocks.

• Although the experimental system will be based on an exist-
ing, conventional operating system and ditto programming lan-
guage, it shall be designed in such a way that it can be ported
to the weakest possible, underlying software base.

The last item in these requirements is included because in prin-
ciple we believe that the services of the operating system and the
programming language and system, should just be parts of one inte-
grated computation system. The longer-term goal is therefore that
the Leordo system itself should contain the programming-language
and operating-system services.

Furthermore, the facilities in the kernel have been, and will con-
tinue to be designed in such a way that they do not merely serve the
above-mentioned requirements on the kernel itself; they shall also be
general enough to provide a range of applications with similar ser-
vices.

Above the kernel and below the specific application areas and
applications, there shall also be an extensible platform consisting of
knowledgeblocks that are of general use for a number of applications
of widely different character.

Illustration materials and annexes of the present article can be
found on the article’s persistent webpage at
http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/002/.
It is useful to have access to that webpage while reading the present
article.

2

Main Hypothesis for the Leordo Project

The main hypothesis for this project, for which we hope to obtain
either strong positive evidence or a clear refutation, is as follows:
It is demonstrably possible to design the kernel and a platform in
such a way that (1) repeated implementation of similar tasks is virtu-
ally eliminated in the kernel and platform, and (2) the total software
structure that is obtained when several applications are built on this
platform can also be essentially free from repeated implementations
of similar tasks.

Approach to the Design

The design of the system does not start by defining a programming
language, nor by defining a process structure or a virtual instruction
set. In Leordo, the first step in the design is to define an object-
oriented information structure that has some points in common with
RDF (2) and OWL (3), although also with significant differences. The
notation used for this purpose is called KRE, the Knowledge Repre-
sentation Expression language. It is used for all information in the
system, including application data, procedures, ontologies, parame-
ter structures, and whatever corresponds to data declarations in our
system. Full KRE is a knowledge representation language but the
present article will only describe those parts of KRE that are used
for the Leordo system design.

The element in the KRE structure is called an entity, and en-
tities can have attributes and properties. Attribute values can have
structure and are not merely links to other entities; they can be con-
structed by the formation of sets, sequences, and records, even recur-
sively. Moreover, entities can be composite expressions; they are not
merely atoms with mnemonic names. Property values are like long
strings and can be used for expressing e.g. a function definition, or a
descriptive comment. Because of this expressive power, KRE is best
viewed as a knowledge representation language.

We use the term ‘entity’ rather than ‘object’ for the elements in
KRE since the term ’object’ has a connotation of message passing and
a fairly restrictive view of class hierarchy, which are not applicable in
KRE.

Each knowledge block consists of a set of entity files; each entity
file consists of a sequence of entities; and each entity has its attributes
and properties.

The experimental system which is based on conventional operat-
ing systems, has in addition the following design. A Leordo individual
is a section of the file system in a computer hosting the individual,
that is, one directory and all its sub-directories, with all the files
contained in them (with the exception of auxiliary files such as .bak

2http://www.w3.org/RDF/
3http://www.w3.org/TR/owl-features/

3

files). Each entityfile in the Leordo sense (i.e., a sequence of entities)
is represented by one file in the sense of the file system; this file is
a text (‘ascii’) file adhering to a particular syntax. An activation of
the individual is obtained by starting a run with a host programming
language, where the run is initialized using some of the files contained
in the individual. The run usually includes interactions with a human
user, but maybe also with robotic equipment, Internet information
sources and resources, or other Leordo individuals. Entityfiles in the
individual can be read and written during the activation, for example
for storing information that has been acquired during the activation,
or for updating the software.

In accordance with the specified goals for Leordo, as described
above, the individual shall be self-contained and be able to model
its own structure, and to update it. In that sense the individual is
able to modify itself during the activation. The individual shall also
contain facilities for moving itself, or allowing itself to be moved from
one host to another, in ways that are reminiscent of mobile agents
(4).

The use of directories and files for representing aggregates of
Leordo entities is an intermediate solution. In the longer run we
wish to port Leordo to a persistent software system that is able to
represent entities directly, so that the structures and services that
are traditionally offered by an operating system and in particular by
its file system, can instead be implemented in the Leordo kernel or
platform.

Both the experimental system and the forthcoming persistent sys-
tem must use a host programming language. Functions, procedures,
classes, or whatever other building-blocks are used in the host lan-
guage will be represented by Leordo entities, and the definition of a
function (etc) is expressed in a property of that entity. Our main
experimental system has been implemented in CommonLisp; a part
of the core has also been implemented in Python. We expect that
the persistent system will be based on a language similar to Scheme.
Interpretation-oriented languages such as these are the best suited
for our approach.

Notation vs. System

The language design and the system design in our approach are
strongly interdependent. The language design has come first in the
present project, but the system design is by far the largest part of
the work and it has arguably the largest novelty value. The main
purpose of the present report is to describe the system design, but it
is necessary to describe the language design first.

4http://en.wikipedia.org/wiki/Mobile-agent

4

2 An Example of KRE

By way of introduction we show two examples of how the Leordo
Data Expression language, KRE, is used in Leordo. A more detailed
specification of KRE can be found in the report “The Leonardo Rep-
resentation Language (5).

KRE in the Common Knowledge Library

The Common Knowledge Library (6) (CKL) is an open-source repos-
itory for structured information ranging from ’facts’ to ’knowledge’.
It presently contains more than 60.000 entitites each having a number
of attributes. The KRE notation is the ’first language’ used by the
Common Knowledge Library. The reader is encouraged to browse its
website in order to obtain an impression of how information can be
represented using KRE.

One thing that is not immediately seen on the CKL website is,
however, the representation of meta-information. We use two kinds of
meta-information: type information and catalog information. Each
entity has an attribute called type where the attribute value is a new
entity representing the type of the given entity. Furthermore, for each
entityfile there is one entity that serves as the name of the entityfile;
one of the attributes of the naming entity is a sequence consisting of
the entityfile’s members. The name of an entityfile is itself the first
member of that list.

The type system is quite simple. For use in some applications
there is also a notion of classes which are similar to the ’concepts’ of
description languages, but this is not used in the system kernel.

Notice that entityfiles are used for expressing both programs and
data. Each named unit in a program, such as a function or a pro-
cedure, is represented as a KRE entity, with the program code in a
property of that entity. The entityfiles that are used within the sys-
tem differ in some minor ways from those shown on the CKL website.
For example, the provenance and IPR information occurs only in the
published files and not in system-internal files.

The operation of loading an entityfile is performed by activations,
and consists of reading the text file for the entityfile, such as the ones
used in the CKL, and constructing the corresponding data structures
in the activation. The operation of storing an entityfile is the reverse
operation of re-writing its text file by converting data structures to
corresponding, textual expressions. Loading and immediately storing
an entityfile has a null effect on its text file.

5http://www.ida.liu.se/ext/caisor/pm-archive/leonardo/001/
6http://piex.publ.kth.se/ckl/

5

Cooperating Agents

The next example shows how a distributed computational process
is organized in Leordo, and how the KRE language is used for rep-
resenting the control information. Consider the following method
description in Leordo:

--
-- method6

[: type method]
[: plan {[intend: t1 t2 (remex: lar-004 (query: makebid))]

[intend: t1 t3 (query: makebid)]
[intend: t4 t5 (query: propose-compromise)]}]

[: time-constraints {[afterall: {t2 t3} t4]}]
--

This is a plan, i.e. a kind of high-level procedure, for a situation
where two separate users have to give their respective bids for some
purpose, and when both bids have been received, one user has to
propose a compromise. This requires performing the action query:
three times with different arguments. The time when the first two
occurrences are to start is called t1; the third occurrence starts at a
time t4 which is defined as being when the first two occurrences have
ended. The time when the first mentioned occurrence ends is called
t2, and similarly for t3. The method consists of a set of intended
actions, and set of time constraints between them.

This plan is supposed to be executed in a particular individual
(called lar-003 in our specific run of the plan) but the first men-
tioned action is to be remote executed (therefore remex:) in another
individual called lar-004.

The KRE language is used for representing this plan, or script. In
this example there is an entity called method4 with three attributes
type, plan, and time-constraints. The value of the type attribute
determines what other attributes may be present.

This examples uses more of the KRE expressivity than in the
first example. It shows how expressions in KRE may be atomic ones
(symbols, strings, or numbers), or may be formed recursively using
the operators <...> for sequences, {...} for sets, [...] for records,
and (...) for forming composite entities. In the example, (query:
makebid) is a composite entity that has a type and attributes, just
like the atomic entity method4.

The webpage of the present article contains details from an ac-
tivation using the method shown above, and it illustrates how KRE
is used for the control information as the plan or script is executed,
and for retaining some of that control information afterwards.

6

3 Information Structure

The Structure of Knowledgeblocks

The total information in a Leordo system is organized as a set of
knowledgeblocks, and each activation of Leordo is initialized by load-
ing one specific knowledgeblock in that set. Some knowledgeblocks
require others, however, so that to load a knowledgeblock one first
loads those other knowledgeblocks that it requires, recursively, and
then one loads the entityfiles that are specified for the given know-
ledgeblock itself.

Each knowledgeblock consists of a set of entityfiles. One of those
entityfiles represents the knowledgeblock as a whole and contains
overall information about it; it is called the index of the knowledge-
block. The first entity in the index has the type kb-index which is
a subtype of entityfile, and this entity is used to designate the
knowledgeblock as a whole. This means that it can have both at-
tributes that pertain to its role as describing its own entityfile, and
attributes that pertain to the knowledgeblock as a whole.

One important use of the knowledgeblock index is to specify
where the textfiles for other entityfiles in the same knowledgeblock
are stored. The kb index specifies the mapping from entities as un-
derstood by Leordo, to actual file paths in the computer or filestore
at hand (7). This makes it straightforward to move entityfiles and
to redirect references to them, which has a number of uses including
that it makes it easy for several individuals to share some of their
files.

A few of the entityfiles in a knowledgeblock have special proper-
ties or play special roles, besides its index. This applies in particular
for ontology files. To the largest extent possible, entities in the core
Leordo system and in its applications are organized in terms of an
ontology which is subject to modularization like all other aspects of
the system. The kernel contains a ‘core ontology’, and every know-
ledgeblock contributes additional entities and links to the ontology,
thereby extending the core. Each activation of an individual contains
a working ontology that has been formed by loading and integrating
the ontology files of the knowledgeblocks that have been loaded.

Entities in a knowledgeblock can be of three kinds with respect to
mobility: software specific, individual specific, or host specific. These
are defined as follows. If an individual is moved to another host, then
it shall encounter host specific entities of the new host instead of those
it had on the old host, whereas software specific and individual spe-
cific entities are retained. On the other hand, if a knowledgeblock
is exported from one individual to another then only the software
specific entities are exported and they will be used with the individ-

7Some Leordo individuals are placed on detachable memory devices, such as
USB sticks, which means that they can have activations on different hosts without
their file structure having been ’moved’ in a conventional sense.

7

ual specific entities of the receiving individual. Individual specific
information includes the history and experience of the individual;
host specific information includes e.g. the locations and properties
of databases, printout devices, and other resources that the host can
offer to a visiting software individual.

In the present Leordo design, each entityfile is required to have all
its members of the same kind in this respect, so that the distinction
between software specific, individual specific, and host specific applies
to entityfiles as well. The knowledgeblock index specifies only the
locations of software specific entityfiles that belong to it. There are
separate catalogs for all host specific and for all individual specific
entityfiles.

Considerations for the Design of KRE

Knowledge Representation Expressions (KRE) is a textual represen-
tation for information structures, and the above examples have given
the flavor of this notation. The details of the syntax are described
in a separate memo that is available on the Leordo website (8). The
present subsection shall discuss the design considerations that guided
the definition of KRE.

The idea of allowing data structures to be expressed as text, and
to define input and output of data structures accordingly, was pio-
neered by John McCarthy with Lisp 1.5 (9). It has been adopted
in several interpretive or ’scripting’ programming languages that are
used extensively, such as Perl (10) and Python (11). It is also charac-
teristic of high level message formats, such as the KQML (12). With
partly different goals, this tradition has also been continued in the
XML family of information representation languages, including e.g.
RDF and OWL besides XML itself.

There are several possible motivations for representing informa-
tion structures textually, in text files or otherwise, and in particular:

1. For persistent storage of the information, between runs of com-
puter programs.

2. For presentation of the information to the user, and for allowing
her or him to edit the information.

3. As a message format, for transmitting chunks of information
from one executing process to another one.

4. For representation of internal system information, such as pa-
rameter settings for particular programs or services.

8http://www.ida.liu.se/ext/leonardo/
9http://www.lisp.org/alu/home

10http://www.perl.org/
11http://www.python.org/
12http://www.cs.umbc.edu/kqml/

8

These alternatives apply regardless of whether the text files are
used for representing pieces of code, application data, or declarations,
ontologies, or other metadata.

The choice of representation may depend on which of these are the
intended uses. In particular, if the second purpose is intended then it
becomes important to have a representation that is convenient to read
for the human. The poor lisibility of XML was apparently accepted
because it was thought that XML coded information should mostly
be seen and edited through graphical interfaces, and not directly by
users or developers.

In our case, we wish to use KRE for all four of the above men-
tioned purposes. We also have some other design requirements:

• The notation should be suitable for use in textbooks, research
articles, and manuals. This strongly suggests that it should
stay as close to conventional set theory notation as possible.

• Since the notation is going to be the basis for an entire com-
putation system, including its programming-language aspects,
it must be expressive enough for the needs of a programming
language.

• The notation is used for the ontology structure that is a back-
bone for the Leordo system. It must therefore be expressive
enough for what is needed in ontologies.

These requirements led to the decision of not using an existing
language or notation, but to design our own. The following aspects
of the KRE language should be emphasized in particular.

1. The use of multiple bracket types. Most programming lan-
guages use several kinds of parentheses and brackets, such as (...),
[...], {...}, and possibly others. On the other hand, representa-
tions for information structures often use a single kind of brackets,
such as (...) in Lisp and <...> in XML and other languages in the
SGML tradition. This is sufficient in principle, but it makes it neces-
sary to rewrite sets, sequences, and other “naturally parenthesized”
structures along the lines of

(set a b c)
(sequence a b c)

and so on. LRX uses the multiple brackets approach and allows
expressions such as

{a b c}
<a b c>

for sets and sequences, and in addition a few other kinds of brack-
ets. This difference is trivial from an abstract point of view, but it
makes surprisingly much difference for the ease of reading complex
expressions. Compare, for example, the KRE reprsentation of the
plan entity in example 2, which was as follows:

9

--
[: type method]
[: plan {[intend: t1 t2 (remex: lar-004 (query: makebid))]

[intend: t1 t3 (query: makebid)]
[intend: t4 t5 (query: propose-compromise)]}]

[: time-constraints {[afterall: {t2 t3} t4]}]
--

with a representation of just the second line of that information
in an XML-style (13) single-bracket notation:

--
<plan>

<planstep-set>
<planstep>

<intendstep>
<fromtime>t1</fromtime>
<totime>t2</totime>
<remote-execute>

<execute-at>
<indiv-name>lar-004</indiv-name>

</execute-at>
<execute-what>

<query-action>
<phrase>makebid</phrase>

</query-action>
</execute-what>

</remote-execute>
<intendstep>

<planstep>
--

Even the Lisp-style single-bracket representation is much less con-
venient to read than the multi-bracket representation:

--
(maplet type method)
(maplet plan

(set (record intend: t1 t2
(term remex: lar-004 (term query: makebid)))

(record intend: t1 t3 (term query: makebid))
(record intend: t4 t5 (term query: propose-compromise))

))
(maplet time-constraints

(set (constraint afterall (set t2 t3) t4)))
--

In a historical perspective it is interesting to compare the great
interest in legibility issues when programming languages are designed,

13http://www.w3.org/XML/

10

with the virtually complete disregard for the same issue in the design
of so-called markup languages for representing structured information
in general.

2. The use of composite expressions for entities. KRE is similar to
e.g. OWL in that it is based on the use of entities to which attributes
and properties are assigned. In the simplest cases, entities are written
as identifiers and attributes are expressions that are formed using set,
sequence, and record forming operators. However, entities can also
be composite expressions that are formed using a symbolic function
and one or more arguments which are again atomic or composite
expressions, for example as in

(payment: (membership: (member-number: 1452)
(year: 2006)))

for “the payment for the membership during year 2006, by member
number 1452”, or

(b: 356 (remex: lar-004 (query: makebid)))

for “the instance of the action (query: makebid) that was initi-
ated at time 356 for execution in the individual lar-004“. Entities
formed by composite expressions share the same characteristics as
atomic entities, for example that they have a type and can be as-
signed attributes and properties, and that they can be included in
entityfiles with their assignments.

The YAML (Yet Another Markup Language) (14) allows assigning
attributes to composite structures, but does not make it possible to
include such a composite structure as a term in a larger expression.

The use of composite entities has turned out to be very useful in
the design of ontologies and other knowledge representations. It is
included in the kernel of the Leordo system and is used in various
ways even for representing “system” information in the kernel, as the
second introductory example has showed. Another example is for
intermediate structures in the version management subsystem. On
higher levels of the design, there is an extension of LRX for represent-
ing formulas in first-order predicate calculus, in which case composite
entities are identified with terms in the sense of logic.

3. The use of event-state records. Records are formed in LRX
using the notation of the following examples:

[date: 2006 10 24]
[quantity: meter 42195]
[quantity: (per: meter second) 46]

for the date of October 24, 2006, for the quantity of 42195 meters,
and for the quantity of 46 meters per second, respectively. Records
differ from composite entities in that they are passive data objects
that can not be assigned attributes or properties.

14http://www.yaml.org/

11

One kind of records, called event-state records, actually allow
some of their components to change, but in restricted ways. They
are used for representing the current state of an action instance that
the system is performing during a period of time, or the current
observation state of an event that the system observes. An event
record such as (simple example)

[move-robot: r14 pos12 pos14 :start 16:22
:velocity [quantity: mps 4]
:current-pos [xy-coordinate: 47 12]]

where mps is an abbreviation for (per: meter second), may rep-
resent the current state of an event where the robot r14 moves from
position pos12 to position pos14. The record contains the three
direct arguments of the operator move-robot:, and after them the
three state variables of the event with the respective labels :start,
:velocity, and :current-pos. The values of the state variables,
except :start, can be changed while the event executes in order to
reflect the current state of the robot concerned. When the event ends
then the ending time is added as an additional state variable, other
state variables are added or removed so that the record becomes a
representation of the event as a whole and its final effects, the record
freezes, and no further changes are possible in it.

An event-state record such as this may be the value of an attribute
of an action-instance entity as formed by, for example, the symbolic
function b: that was introduced previously.

4 The Leordo Kernel and Platform

The Structure and Constituents

The Leordo Kernel consists of four knowledgeblocks, beginning with
the core which is called core-kb. By convention, the names of
knowledgeblocks end with “-kb“. The core satisfies all the require-
ments on the kernel except version management. In addition there is
chronos-kb that implements a representation of calendar-level time
and of events in the lifecycle of an individual, config-kb that is
used for creating new copies (”individuals”) of the system and for
configuring old and new individuals, and finally syshist-kb that im-
plements version management. Both reproduction and version man-
agement add entries to the system’s history of its own activities which
is maintained by chronos-kb. For example, a so-called synchroniza-
tion in the sense of version management is treated as an event in the
representation provided by chronos-kb.

The more basic aspects of self-modification in the system are im-
plemented in core-kb, however. This includes, for example, facilities
for allowing the user to edit attributes and properties of an entity,
and to add entities and entityfiles.

12

The core part of the Leordo ontology, called coreonto, is an en-
tityfile within the the initial knowledgeblock core-kb. Every other
knowledgeblock, including the other three kernel blocks, can have
their own ontology files that extend preceding knowledgeblocks.

The Core Knowledgeblock, core-kb

The following are the contents of the core block, as organized in a
number of entityfiles:

• The initial loading or ’bootstrap’ machinery. It consists of a
few entityfiles that are the very first ones to be loaded when an
activation is started, and it prepares the ground for subsequent
loading.

• The index file of the core knowledgeblock. (core-kb).

• The ontology file of the core knowledgeblock, which is at the
same time the core or “top-level” ontology of Leordo as a whole.
(coreonto).

• Miscellaneous additions to the core ontology that are needed
for historical or other reasons. (toponto).

• Definitions of procedures for loading entityfiles and parsing the
textual representation of entities. (leo-preload, leoparse).

• Definitions of elementary operations on the structured objects
in the Leordo data representation, such as sequences, sets, and
records. (leoper).

• Miscellaneous auxiliary functions that are needed in the other
entityfiles but which have a general-purpose character. (misc).

• Major timepoints in the history of the present instance of the
system (mp-catal).

• Functions for administrating entities, entityfiles, and knowledge-
blocks, for example, for creating them and for editing their at-
tributes. (leo-admin).

• Functions for writing the textual representation of entityfiles,
and for producing the textual representation of Leordo data-
structures from their internal ones. (leoprint).

• Definitions for a simple executive for command-line operation
of the system. (lite-exec).

The entityfile mp-catal mostly serves chronos-kb, but it is ini-
tialized in the core block which is why it is present in this list.

Many of these blocks are straightforward and do not require fur-
ther comment here; their details are described in the systems docu-
mentation. I have already described and discussed the data format for

13

the textual representation of entityfiles. The files for loading and stor-
ing that representation (leo-preload, leoparse, leoprint) are
direct implementations of the data format. Furthermore I shall dis-
cuss the ontology, the bootstrap machinery, the machinery for cata-
loguing entityfiles using knowledgebase index files, and the facility for
defining multiple configurations within an individual. Final sections
will describe the other parts of the kernel, namely, the facility for
administrating and ‘remembering’ information about calendar-time-
level events in the history of a Leordo individual, and the facility for
version management of entityfiles.

The Leordo Startup Machinery

One of the basic requirements on the Leordo Kernel is that it shall
be able to administrate itself, and as well it shall provide facilities
for self-administration of other knowledgeblocks that are built on top
of the four knowledgeblocks in the kernel. This self-administration
requirement includes several aspects:

• All program code in an implementation shall be represented as
entityfiles, without exceptions. This guarantees that general
facilities for administration and analysis of Leordo software can
apply even to the initial parts of the bootstrap process.

• Since interactive sessions with the Leordo system typically in-
volve loading information from the textual representation of
entityfiles, modifying their contents, and re-storing those enti-
tyfiles, it shall be possible to edit all entityfiles for software in
that way as well.

• However, it shall also be possible to text-edit the file represen-
tation of an entityfile and load it into an activation of Leordo,
in order for the edits to take effect there.

• In addition, there shall be a version management system that
applies to software entityfiles like for all other entityfiles.

The first three of these aspects is implemented using the core-kb
knowledgeblock; the fourth one using the separate syshist-kb know-
ledgeblock. Notice, however, that the first aspect is a step towards
(i.e., facilitates greatly) the fourth one.

The startup process for Leordo activations is actually a good illus-
tration of how a somewhat complex process can be organized around
its symbolic data structures. Appendix 4 describes this in some de-
tail.

Configuration Management

One Leordo individual may contain the software for a number of
applications, for example for simulation, for robotics, for document

14

management, and so on. However it may not be necessary, or even de-
sirable to have all of that software and its associated application data
present in a particular activation of the system. The individual should
therefore have several configurations that specify alternative ways of
starting an activation. The startup files that were described above
serve to define such configurations. In particular, the kb-included
attribute specifies which knowledgeblocks are to be loaded when the
system starts. Knowledgeblock dependencies whereby one know-
ledgeblock may require some other knowledgeblocks to be loaded first
are supported, and are represented by particular attributes on the
knowledgeblocks themselves.

Each configuration may also make some other specifications, for
example for extra information that is to be loaded in order to start it.
Furthermore, each configuration shall specify its user interface, in the
sense of a command-line interpreter, a GUI, and/or a web-accessible
service. This is done with the execdef attribute on the startup-file
that was described in Appendix 4.

The Knowledgebase Index Files

Each Leordo individual is represented as a directory structure, con-
sisting of a top-level directory and its various subdirectories on several
levels, with their contents. In a predecessor to Leordo, the Software
Individuals Architecture, we used fixed conventions for where the en-
tityfiles would be located within the directory structure, and relative
addressing for accessing them. This turned out to be too inflexible,
and for Leordo we have a convention where each entity representing
an entityfile is associated with the path to where the textual entityfile
is to be found.

At first it would seem that this should be one of the attributes
of the entity that names and describes the entityfile, and that is the
first element in the entityfile. However, it would be pointless to put
that attribute within the file itself, since the system needs it in order
to find the file so it can load it. One can think of two ways out of
this dilemma: either to divide the attributes of an entity into several
groups that can be located in different physical files, or to construct
a composite entity with the entityfile entity as its argument.

Both approaches have their pros and cons. Leordo does provide a
mechanism for overlays whereby one can introduce entities and assign
some attributes to them in one entityfile, and then add some more
attributes in an overlay, which is a separate file. However, that facility
is not part of the kernel, and we are reticent of putting too much into
the kernel. Also, overlays require the entity as such to have been
introduced first, before the overlay is added. The attribute for the
location of an entityfile is needed before the entity itself is available.

We have therefore chosen the other alternative. The following is a
typical entity in an index file for a knowledgeblock, such as core-kb:

15

-- (location: leoadmin)

[: type location]
[: filepath "../../../leo-1/Coreblock/leoadmin"]

@Comment
Loading entityfiles and knowledgeblocks, creating new ones,
etc.

It defines the location of the entityfile leoadmin by introducing a
composite entity (location: leoadmin) whose type is location,
and assigning a filepath attribute to it(15). Among the files that
occur at the beginning of the startup phase, self-kb, kb-catal and
core-kb consist mostly or entirely of such entities.

5 Other Kernel Knowledgeblocks

Until this point we have described the design of the core knowledge-
block, core-kb. The Leordo kernel also contains three other know-
ledgeblocks, beginning with chronos-kb that enables the Leordo ac-
tivation to register events and to have an awareness of the passing
of time and a notion of its own history. Based on it there is the re-
production facility, config-kb, and the versions management facility,
syshist-kb.

Both reproduction and version management are essential for the
evolution of the Leordo software through concurrent strands of incre-
mental change in several instances of the system, i.e. several Leordo
individuals. This is the decisive factor for considering these to be an
integral part of the system kernel. In addition, by doing so we also
provide a set of tools that can be used in applications of several kinds.
– The importance of having software tools for version administration
do not need to be explained; it has been proven through the very
widespread use of tools such as CVS (16).

The following are brief summaries of the services that are provided
by these knowledgeblocks in the kernel:

Awareness of Time in the Leordo Individual

The basic contributions in chronos-kb are the following:

• A facility for defining and registering significant timepoints.
Such a timepoint is registered with its date, hour, minutes, and
seconds, and it can be associated with the starting or ending of
events.

15Actually this attribute is called filename in the current system, for historical
reasons. This is due to be changed.

16http://www.nongnu.org/cvs/

16

• A facility for introducing events in a descriptive sense: the sys-
tem is told that a particular event starts or ends, and registers
that information.

• A facility for defining sessions which are composite events corre-
sponding to the duration of one activation of the Leordo system,
and for defining individual events within the session.

All of this information is built up within the Leordo system, and
is maintained persistently by placing it in entityfiles.

System History and Version Management

The system history is a kind of skeleton on which several kinds of
contributions can be attached. The first of these is the version man-
agement facility which consists of two parts, one that is local within
an individual, and one that requires the use of two individuals.

Local version management works as follows. The individual main-
tains a sequence of archive-points which are effectively a subset of the
timepoints that are registered by chronos-kb. Archive-points have
names of the form ap-1234, allowing up to 9999 archivepoints in one
individual. Each archive-point is associated with the archiving of a
selection of files from one particular knowledgeblock. The archiving
action takes a knowledgeblock as argument, obtains a new archive-
point, and for each entityfile in the knowledgeblock it compares the
current contents of the file with those of the latest archived version of
the same file. It then allocates a new directory, named after the new
archive-point, and places copies there of all entityfiles where a non-
trivial difference has been identified. The archive-point is an entity
that is provided with attributes specifying its timepoint, its know-
ledgeblock, the set of names for all entityfiles in the knowledgeblock
at the present time, and the set of names for those entityfiles that
have been archived.

However, the comparison between current and archived version of
the entityfile also has a side-effect on the current file, namely, that
each entity in the file is provided with an attribute specifying the
most recent archive-point where a change has been observed in that
particular entity. This makes it possible to make version manage-
ment on the level of entities, and not merely on entire files, which is
important for resolving concurrent updates of the same entityfile in
different individuals.

Local version management is useful for backup if mistaken ed-
its have destroyed existing code, but it does not help if several users
make concurrent changes in a set of entityfiles. This is what two-party
version management is for. In this case, there is one ’server’ individ-
ual that keeps track of updates by several users, and one ’client’
that does its own updates and sometimes ’synchronizes’(17) with the

17This is the usual term, although it is of course a terrible misuse of the word
’synchronize’.

17

server. Such synchronization must always be preceded by a local
archiving action in the client. Then, downward synchronization al-
lows the client to update its entityfiles with those changes that have
been incorporated into the server at a time that succeeds the latest
synchronized update in the client. If the current entityfile version in
the client is not a direct or indirect predecessor of the version that is
presently in the server, then no change is made. After that, an up-
ward synchronization identifies those entityfiles whose contents still
differ between the server and the client. If the version in the server
precedes, directly or indirectly, the current version in the client, then
the current version in the client is imposed on the server.

In the remaining cases, the system attempts to resolve concurrent
changes in a particular entityfile by going to the level of the individual
entities. If that is not sufficient, the user is asked to resolve the
inconsistency.

A particular technical problem arises because these synchroniza-
tion actions require the Leordo activation to read and compare several
versions of the same entityfile. The problem is that normally, reading
such a file makes assignments to attributes and properties of the en-
tities in the file, but for synchronization purposes one does not wish
the definitions in one file to replace the definitions that were obtained
from another file. This problem is solved using composite entities, as
follows: The procedure for reading an entityfile in KRE format has
an optional parameter whose value, if it is present, should be a sym-
bolic function of one argument. If it is absent then the file is read as
usual. If it is present, on the other hand, then that function is ap-
plied to each entity that is read from the file, obtaining a ’wrapped’
entity, and the attributes and properties in the file are assigned to the
wrapped entity. After this, the comparisons and updates can proceed
in the obvious way.

We have now seen two examples of how symbolic functions and
composite entities have been useful even for internal purposes within
the kernel. This illustrates the potential value of reorganizing the
overall software architecture so that certain, generally useful facilities
are brought into, or closer to the system kernel, instead of treating
them as specific to applications.

Configuration and Reproduction of Individuals

One of the important ideas in Leordo is that the system shall be self-
aware, so that it is able to represent its own internal state, to analyze
it and to modify it, and it shall be able to represent and “understand”
its own history. Furthermore, all of this shall occur in persistent ways
and over calendar time, and not only within one activation or “run”
of the system.

We believe that these properties are important for a number of
applications, but in particular for those that belong to, or border
on artificial intelligence, for example for “intelligent agents”. A sys-

18

tem that acquires information during its interactions with users and
with the physical world, and that is able to learn from experience
for example using case-based techniques, will certainly need to have
persistence. It does not make sense for the system to start learning
again each time a new activation is started. It is then a natural step
to also provide the system with a sense of its own history.

One must then define what is “the system” that has that persis-
tence and sense of its own history. What if the software is stored in
a server and is used on a number of thin clients that only contain
the activations? What if several copies of it are taken and placed on
different hosts? What if a copy of the system is placed on a USB
stick so that it can be used on several different hosts?

In the case of Leordo, the answer is in principle that each indi-
vidual is a self-contained structure that contains all of the software
that it needs. Different individuals may contain equal copies of that
software, but in addition each of them contains its own history and
its own “experience”. However, it is also perfectly possible for each
individual to modify its software so that it comes to differ from the
software of its peers.

What if additional copies (individuals) are needed, for example
because additional persons wish to use the system? The simplest
solution is to have an archive individual from which one takes copies
for distribution, but in any case that archive individual will change
over time, so a notion of version or generation of the entire individual
will be needed. But more importantly, separate strands of the Leordo
species may develop in different directions, and a particular new user
may be more interested in obtaining a copy of his friend’s Leordo
rather than one from the archive.

In principle, a new individual that is obtained from a Leordo
individual by copying its software but erasing its history and other
local information, is to be considered as an “offspring” and not as
a “copy”. If the copy is perfect and all history is preserved in it,
then it shall be called a “clone”. The administration of clones offers
additional problems that will not be addressed here.

For offspring, the following conventions are adopted. The making
of an offspring from an individual is to be considered as an action of
that individual, and is to be recorded in its history. Each individual
has a name, and the offspring of a particular individual are numbered
from 1 and up. No individual is allowed to have more than 999
offspring. The first individual under this scheme was called lar, and
its direct offspring are called lar-001, lar-002, etc. The offspring
of lar-002 are called lar-002-001, lar-002-002, and so forth. The
abbreviation lar stands for “Leordo Ancestry Root”.

The overall convention for the population of Leordo individuals is
now that new individuals can only be produced as offspring of existing
ones, so that the parent is aware of the offspring being produced and
so that no name clashes can occur in the population. Additional
information about when and where offspring are produced is of course

19

valuable, but can be considered as add-on information.
Notice in particular that version management information is not

inherited by offspring, and they start with an empty backup directory
as well as an empty memory of past events.

In principle, each new individual should obtain a copy of all the
software of its parent. In practice this is quite inconvenient when
several individuals are stored on the same host; one would like them to
be able to share some of the software files. This has been implemented
as follows: Each individual may identify another individual that is
known as its “provider”, and when its index files specify the locations
of entityfiles, they may refer both to files in its own structure, and
files in its provider. An individual is only allowed to update entityfiles
of its own, and is not supposed to update entityfiles in its provider
(18). When a new individual is created, then it is first produced with
a minimal number of files of its own, and it relies on its parent as its
provider for most of the entityfiles. After that, it is up to the offspring
to copy whatever software it needs from its provider to itself, until it
can cut that umbillical cord. Only then is it in a position to migrate
to other hosts. Besides, given adequate software, it may be able to
import knowledgeblocks and entityfiles from other individuals and
not only from its parent.

What has been said so far applies to Leordo-specific software.
In addition, applications in Leordo will often need to access other
software that is available in the individual’s host for its current acti-
vation, for example text editors and formatters. The kernel contains
a systematic framework for administrating this.

Facilities for reproduction of individuals were first developed in
the earlier project towards the Software Individuals Architecture. In
that project we considered reproduction and knowledge transfer be-
tween individuals to be very central in the architecture, besides the
abilities for self-modelling. In our present approch reproduction has
been relegated to a somewhat less central position, due to the expe-
rience of the previous project.

Other Facilities in the Kernel

The four knowledgeblocks in the kernel also contain a number of other
facilities that have not been described here. In particular, there is
a concept of a “process” in a particular sense of that word. Leordo
processes are persistent things, so they exist on calendar time and not
only within one activation of the system. Each process has its own
subdirectories where it maintains its local state between activations,
and each activation is an activation of one particular process. Each
process can only have one activation at a time, but different processes
can have activations concurrently.

18This restriction is not enforced at present, but users violate it at their own
risk.

20

6 Platform Facilities

The next layer in the Leordo software architecture, after the kernel, is
called the platform. This layer is under construction and is intended
to be open-ended, so that new contributions can be added continu-
ously as the need is identified and the implementation is completed.
The following are some platform-level knowledgeblocks that exist and
are in use at present.

Channels

Leordo channels are a mechanism for sending messages between indi-
viduals, for the purpose of requesting actions or transmitting infor-
mation. Each channel connects two specific individuals for two-way,
ansynchronous communication and is associated with a number of
attributes, including one specifying the data format to be used for
the messages. The KRE data format is the default choice.

Communicable Executive

The initial example in this article describing the interactions between
two Leordo individuals was executed using our communicable exec-
utive (CX). The basic command-line executive in the kernel is not
sufficient for it. CX performs incessantly a cycle where it does three
things:

• Check whether an input line has been received from the user.
If so, act on it.

• Check what messages have arrived in the incoming branch of
the currently connected channels for this individual. If so, pick
up the messages and act on them.

• Visit all the currently executing actions in the present individ-
ual, and apply an update procedure that is attached to each
of them. This procedure may perform input and output, up-
date the local state of the action, and terminate the action with
success or failure, if appropriate.

The communicable executive is a natural basis for several kinds
of applications, including for some kinds of robotic systems, dialog
systems, and simulation systems.

7 The Implemented Leordo System

History of the Experimental Implementation

The design for Leordo started in early 2005. It was based on the
earlier experience with the Software Individuals Architecture (SIA),
and with several earlier systems before that. The SIA was used as the

21

platform the a major part of the Linköping-WITAS Robotic Dialog
Environment, RDE (19), which contributed valuable background for
the present system.

During the almost three years of Leordo development we have
tried to make ‘laboratory notes’ documenting what steps were taken,
what design changes were made, and so on. We shall study the
possibility of extracting a more concise account of essential design
decisions and design changes from these laboratory notes.

Current Usage

The goal of the Leordo project, as stated in the introduction to this
article, is to validate or refute the project’s hypothesis concerning
the possibility of a fully integrated software system architecture. In
order to test this hypothesis it is necessary both to implement the
system kernel, and to use it for a few different applications of widely
different character.

Two such applications have been fully implemented and are in
regular use. This is a way of checking that the system is always kept
operational while it is being revised and extended continuously.

The present author uses a Leordo-based software application as
his standard tool for the preparation of articles and other documents
and for website pages, including the extensive CAISOR website (20).
This application has been in daily use since year 2006.

Secondly, Leordo is used for the management and extension of the
Common Knowledge Library and its website. This support system is
a fairly large collection of routines for acquisition, revision, and pre-
sentation of structured information, including version management,
IPR management, and type checking of large information structures.

Plans for the future include the porting to Leordo of the previ-
ously written applications for simulation of a robotic environment
and for user dialog with such a robot.

8 Discussion: the Need for Software System
Consolidation

The main goal of the Leordo project, as we stated initially, is to ex-
plore the possibility of obtaining a much simpler design of the overall
software system in a computer, in particular by reorganizing and re-
aligning its major parts so as to eliminate duplication of concepts and
of software facilities. It is not yet possible to evaluate the concrete,
experimental Leordo system design against that goal, but it is pos-
sible to identify how the new design relates to some of the concrete
redundances in conventional systems. They are as follows:

19http://www.ida.liu.se/ext/casl/
20http://www.ida.liu.se/ext/caisor/

22

Duplication of procedural language between operating system (shell
scripts) and programming languages. In Leordo there is a host lan-
guage which may vary between generations of the system, but which
shall in any case be a language of the ‘interpretive’ or ‘script’ type,
such as Scheme, Python, etc. The Leordo kernel provides the command-
script situation, and the language can be extended with more facil-
ities, and restricted using e.g. type system, in order to satisfy the
needs of other usage situations.

Duplication of notations and systems for type declarations of data
structures, between programming languages, database systems, com-
munication systems e.g. CORBA, etc. The two-layered approach to
the type system in Leordo was explained in the beginning of section
2. Exactly because the type system is not built into the system ker-
nel, we foresee that it shall be possible to design it in such a flexible
way that it can satisfy the varying needs of several kinds of contem-
porary type systems. This is of course one aspect of the main design
hypothesis that was stated at the beginning of the present report.

Scripting languages in various software tools, for example spread-
sheet systems, webpage languages such as Javascript, etc.. The idea
is that such tools ought to be implemented based on the Leordo ker-
nel and inherit its facilities, including in particular the use of the host
language.

Duplication between the file-directory system and database sys-
tems. Although the present, temporary implementation of Leordo is
based on a conventional OS and makes fairly extensive use of its file
system, the long-term idea is to replace it with an implementation of
entities and aggregates of entities that is done on directly on the base
software. This new information structure shall then subsume what
the file-directory system does today.

In the continued work on Leordo we are going to build a number of
applications for the purpose of obtaining additional experience with
these and other aspects of duplication. At the same time we shall be
vigilant about what new duplications may arise as the system and
the applications grow in size and complexity.

References

Due to the character of this material, most of the references are to
websites that provide information about a particular language or sys-
tem. These references have been placed in footnotes on the page
where the reference occurs.

References to published articles and released reports from the
Leordo project can be found on the project website, (21). References
to published articles from the preceding Software Individuals Archi-
tecture project (SIA) can be found on its past project website (22).

21http://www.ida.liu.se/ext/leonardo/
22http://www.ida.liu.se/ext/caisor/systems/sia/page.html

23

