
Coordination of actions in an autonomous
robotic system

Erik Sandewall1

Department of Computer and Information Science
Linköping University
Linköping, Sweden
erisa@ida.liu.se

Abstract. Robots are autonomous agents whose actions are performed
in the real world during a period of time. There are a number of gen-
eral constraints on such actions, for example that the same action can
not have two separate instances during overlapping time intervals, or re-
strictions that are due to which state variables affect the action or are
affected by it. Each process in the robot’s cognitive system that is to
request the initiation of an action must respect those restrictions. In this
article we describe the design and formal characterization of a separate
process, called an action coordinator, that manages these restrictions.

1 Topic

The familiar three-level architecture for robotic systems with high-level auton-
omy is defined in terms of a lower ‘process’ layer, a middle ‘reactive’ layer, and an
upper ‘deliberative’ layer. Such an architecture may be natural if the activities
of the robotic system are defined in terms of ‘actions’ with extended duration
in time. The deliberative layer will then be in charge of prediction and planning
in terms of such actions. It will also be capable of invoking actions through a
request to the reactive layer. The current state of the reactive layer at each point
in time will specify what are the currently ongoing actions and the current state
within the action, at least on a qualitative level. This current state, in turn, de-
fines the operational mode for the control algorithms that are used in the process
layer.

In such an architecture there are a number of restrictions on how actions
can be performed. The exact nature of these restrictions is an aspect of the
semantics for the actions, as represented by a particular logic of actions and
change. In the Cognitive Robotics Logic [4], the execution of an action a during
and interval of time from s to t is expressed by the formula D([s, t], a), and one
of the restrictions is that if D([s, t], a) and D([s′, t′], a) hold, then the intervals
[s, t] and [s′, t′] can not overlap in more than one single timepoint, unless they
are identical. In other words, we allow s′ = t but not s < s′ < t. There are also a
number of other restrictions, for example those having to do with the limitations
on when a particular action is executable in itself.



The task of enforcing such restrictions is assigned to the deliberative layer in
the classical three-level architecture. For example, this layer must be designed in
such a way that it will not invoke an action that is already going on. This means
that the deliberative layer must be one coherent entity. The generic three-layer
model is therefore not easily compatible with a distributed-AI approach where
the deliberative function is organized as a collection of independent agents each
of which has the capability of invoking actions. For example, it is not sufficient
to just queue the action requests of individual agents, since an agent may wish
to retract or add requests if an action can not be executed at the time or in the
way that this agent has requested.

In order to accomodate a collection of independent ‘agents’ that together
constitute the deliberative layer of the robotic system, it is natural to separate
the enforcement of restrictions on actions into an architectural unit of its own.
We shall refer to it as the action coordinator. The architecture will now consist
of four layers rather than three: the process layer, the reactive layer, the action
coordinator, and the swarm of deliberative agents. In procedural terms, every
such agent is able to issue action requests to the action coordinator, and the
action coordinator will send action initiation commands to the reactive layer if
and when it determines that this is appropriate. It will also inform the deliber-
ative agents about whether their requests have been accepted or not, and about
the termination of the actions they requested.

The function of the action coordinator is reminiscent of the concept of elec-
tronic institutions that has emerged in the field of distributed AI, particularly
in the context of auctions and negotiation in a community of agents[1]. One may
think of the action coordinator as a kind of electronic institution that is spe-
cialized for robotic applications which are characterized by layered architectures
and actions with duration.

The procedures surrounding the action coordinator can be understood in
terms of message-passing for the purpose of invocation and information. How-
ever, in a logicist framework where both the deliberative agents and the actions
themselves are characterized in logic, it is appropriate to also use logic for char-
acterizing the action coordinator and its interactions with the agents. This has
the advantage that additional, complex behavior can be ‘programmed’ in a clear
and transparent way into the action coordinator. In the present article we shall
describe the action coordinator using Cognitive Robotics Logic, CRL [4].

2 Cognitive Robotics Logic

The present section contains the basic definitions for CRL, using the same pre-
sentation as in [3] except that the use of composite actions has been removed.
We retain the constructs for success and failure of actions for continuity, and
in order to lay the ground for future extension of the results presented here,
although those constructs will not be used in the present article.



2.1 Standard constructs in logics with explicit time

The following is the basic notation that is generally used, with minor variations,
when time and action is represented using an explicit time domain. Three pri-
mary predicates are used. The predicates H for Holds and D for Do are defined
as follows. H(t, p) says that the “propositional fluent” (1) p holds at time t. In
other words, p is reified and H(t, p) is the same as p(t) in the case where p is
atomic. D([s, t], a) says that the action a is performed over exactly the closed
temporal interval [s, t]. Open and semiopen intervals are denoted (s, t), [s, t),
and (s, t] as usual.

Non-propositional fluents are also admitted, using the notation H(t, f : v)
where f : v is the propositional fluent saying that the fluent f has the value v.
Fluent-valued functions are allowed, and one of their uses is to define fluents for
properties of objects. For example, ageof(p) may be the fluent for the age of the
person p, used as in H(1998, ageof(john) : 36).

In the full notation there is also a third predicate, X, that is pronounced
occludes and is used for characterizing exceptions from the assumption of conti-
nuity of the value of fluents. Continuity includes persistence as a special case, for
discrete-valued fluents. X(s, f) expresses that at time s, the value of the fluent
f is not required to be continuous or to persist.

In all cases, s and t are timepoints (usually s for starting time and t for
termination time) and a is an action. We assume that time is discrete and linear,
and let θt represent the timepoint that precedes t. s < t is defined as s = θnt
for some n > 0.

Logics with explicit time are usually used in such a way that each model of
the axioms characterizes one possible history in the world, not a tree of possible
histories. Alternative histories are represented by different models(2). Therefore,
a timepoint t is sufficient for identifying the state of the world at time t in the
present model.

2.2 Ontology for invocation and success

For each kind of action, in many applications, there are certain conditions that
must be satisfied in order to be able to say that the action can be initiated
at all. Once initiated, it can either succeed or fail. The distinctions between
inapplicability, failure, and success depend both on the application as such, and

1 We have previously tried to maintain a terminological distinction between fluent as
a function from timepoints to corresponding values, and a feature as a formal object
that designates a fluent. With that terminology, the p and f that occur in the second
argument of H are features, not fluents. Similarly, the functions inv, app, and fail
that will be introduced later in this section, are functions from actions to features.
However, since it is so common to use the word ’fluent’ both for the function and
its designator, we follow that practice here.

2 However, it was shown in [2] that it is straightforward to generalize the time domain
so that it also accounts for the case of branching time.



on how one chooses to model it. In this subsection we specify the ontology (3)
for these concepts which will be used in the formalization in the next section.

An invocation of an action can cause it to begin its execution, which ends
with either success or failure. The matter is complicated by the requirement to
represent that it is sometimes impossible to execute an action. In our approach,
invocation of an action is possible at any time, but the invocation does not
necessarily lead to the execution of the action. In particular, it does not if the
action is inapplicable by definition (for example, turning on the light in a room
where there is no light) or if the action is already executing.

When an action begins to execute, it is said to initiate. Once an action
has (been) initiated, it must ultimately either succeed or fail. The distinction
between success and failure is done on the following pragmatic grounds: planning
goal achievement is done using the assumption that actions succeed, and using
knowledge about their results when they do succeed. The case where an action
fails is dealt with on a case-by-case basis once the failure has occurred.

For the same reasons, we assume that applicability is defined in such a way
that it can be determined at planning time. Those conditions that prevent an ac-
tion from having its effect and that can in general not be detected until execution
time, must be modelled as failure and not as inapplicability(4).

Each action has a temporal duration, which must be an interval that is
greater than a single point except for some specific cases defined below. Note, in
particular, that when an action is not applicable, it is considered not to execute,
it is not considered to fail instantly.

2.3 Syntax for invocation and success

Two representations will be used for the expression of success, failure, and ap-
plicability of actions. In one, we use specially constructed fluents, in the other,
variants of the D predicate that distinguish between action success and action
failure. The former representation is considered as the basic one, and the latter
is introduced as abbreviations or ‘macros’ that facilitate the writing of effect
rules for actions.

The following are three functions from actions to propositional fluents:
inv, where H(s, inv(a)) says that the action a is invoked at time s. At all

other times, H(s, inv(a)) is false.
app, where H(s, app(a)) says that the action a is applicable at time s.
fail, where H(t, fail(a)) says that the action a terminated with failure at

time t. H(t, fail(a)) is false at all times when the action is not executing, or
when it is executing but not terminating, or when it is terminating successfully.

3 We mean ontology in the classical sense of the word, not merely a taxonomical
structure

4 To be precise, in a well-formed plan, each action must be applicable in any state of
the world that may result, according to the effect laws, if the preceding actions are
successful. If some of them fail then later actions may be inapplicable in a way that
can only be detected at plan execution time.



In addition, we mention one function from propositional fluents to actions:
test, where test(p) or test(f : v) is an action that is always applicable, whose

duration is always instantaneous (expressed by D([s, s], test(p))), and that sat-
isfies

H(s, fail(test(p))) ↔ ¬H(s, p)

In other words, test(p) succeeds at time s iff p is true at s.
Notice that this function does not represent an action, and questions about

the executability of the tests, their possible side-effects, and the precision of the
results are not relevant for it. It is simply a kind of conditional operator in the
logic(5).

The following abbreviation is introduced:
Dv(s, a) for H(s, inv(a))∧(¬H(s, app(a))∨∃s′∃t[D([s′, t], a)∧s′ < s < t]): the

action a is invoked at time t but it is either not applicable, or already executing
at that time. (This is the case where invocation of the action does not initiate
an execution).

The priority of the propositional connectives is defined so that a → b ∧ c
means a → (b ∧ c).

2.4 Axiomatic characterization

The following set of axioms characterizes the obvious properties of these rela-
tions.

S1. If an action is being executed, then it must have been invoked and be appli-
cable and non-executing at invocation time:

D([s, t], a) → H(s, inv(a)) ∧ ¬Dv(s, a)

This implies:
D([s, t], a) → H(s, inv(a)) ∧ H(s, app(a))∧

¬∃s′∃t[D([s′, t], a) ∧ s′ < s < t]

S2. If an action is invoked, then it is executed from that time on, unless it is
inapplicable or already executing:

H(s, inv(a)) → ∃t[s ≤ t ∧ D([s, t], a)] ∨ Dv(s, a)

The full version of this axiom is slightly larger in order to also allow for composite
actions.

S3. An action can not take place during overlapping intervals:

D([s, t], a) ∧ D([s′, t′], a) ∧ s ≤ s′ < t → s = s′ ∧ t = t′

5 Actually, the test operator is mostly motivated for its use in composite action expres-
sions where it makes it possible to define conditional actions. The use of composite
actions is excluded in the present article, but we retain the definitions for the test
function anyway since it is integrated with the basic axioms.



S4,S5. Actions of the form test(p) are always applicable, and instantaneous:

H(s, app(test(p)))

D([s, t], test(p)) → s = t

S6. All other actions execute over extended periods of time: never immediately,
except for actions of the form test(p):

D([s, t], a) → s < t ∨ ∃p[a = test(p)]

S7. Actions only fail at the end of their execution:

H(t, fail(a)) → ∃s[D([s, t], a)]

S8. Definition of success for actions of the form test(a):

D([s, s], test(p)) → (H(s, fail(test(p))) ↔ ¬H(s, p))

Several of these axioms capture desirable properties directly. For others, all the
consequences are not immediately obvious. One useful consequence is the fol-
lowing theorem, previously reported in [3]:

Theorem 1. In any model for the axiom S3, let {[si, ti]}i be the set of all in-
tervals such that D([si, ti], a) for a specific action a. Then there is some ordering
of these intervals such that si < si+1 and ti ≤ si+1 for all i.

Proof. Suppose the proposition does not hold, and choose an order of the pairs
such that si ≤ si+1, and where each pair only occurs once. Also, choose j so
that either sj = sj+1, or sj < sj+1 < tj . If no such j is to be found, then the
ordering already satisfies the condition in the proposition.

However, the case sj = sj+1, tj 6= tj+1 contradicts axiom (S3). The case
sj < sj+1 < tj also contradicts axiom (S3). This concludes the proof. QED.

The value of this observation is that through it, it makes sense to use the
fluent fail(a) for characterizing the success or failure of an action with ex-
tended duration. If theorem 1 were not to hold, then it would not be clear from
H(t, fail(a)) which invocation the failure referred to. This consideration is also
the reason for the choice manifested in axiom S1: if an action a is invoked while
it is already in the midst of executing, then it is not represented as “failing”,
since this would confuse matters with respect to the already executing instance.
Instead, we use the convention that it is invoked, possibly applicable, but it does
not get to execute from that starting time.

We also obtain at once:

Theorem 2. In any model for the axioms S1 – S8, if D([s, t], a) and H(u, fail(a))
for some u in (s, t], then t = u.



Informally, we can think of each model in dynamical terms as a possible
history in the world being described, and what this theorem says is that if an
action is invoked and begins to execute, then if H(u, fail(a)) becomes true at
some timepoint u during the execution, the action halts and ends with failure,
and if it is able to proceed until its normal ending without H(u, fail(a)) becoming
true at any time, then it ends with success.

Any use of this logic will naturally be concerned with the effects of actions.
In Cognitive Robotics Logic and its background, the Features and Fluents ap-
proach, as well as its successors, this is specified using action laws, which in
particular make use of the occlusion predicate, and in combination with assump-
tions of persistence. In [6] we showed how this logic can be used for specifying
an architecture for a logic-based cognitive robotic system where rules specify-
ing failure conditions for an action can be written as implications where the
consequent has the form H(u, fail(a)).

2.5 Examples

The following additional abbreviations are introduced. They are generally useful
for writing effect rules and applicability restrictions rules for actions.

G(s, a) for H(s, inv(a)): the action a is invoked (“go”) at time s

A(s, a) for H(s, app(a)): the action a is applicable at time s

Ds([s, t], a) for D([s, t], a)∧¬H(t, fail(a)): the action a is executed successfully
over the time interval [s, t], it starts at time s and terminates with success at
time t.

Df([s, t], a) for D([s, t], a) ∧ H(t, fail(a)): the action a is executed but fails
over the time interval [s, t], it starts at time s and terminates with failure at
time t.

Dc([s, t], a) for ∃u[D([s, u], a) ∧ t ≤ u]: the action a is being executed, the
execution started at time s and has not been terminated before time t. (It may
terminate at t or later).

For both Ds and Df , s is the time when the action was invoked, and t is the
exact time when it concludes with success or failure.

As an example of the use of this notation, the following formula states that
a condition ϕ guarantees that an action always succeeds:

H(s, ϕ) ∧ G(s, a) → ∃t[Ds([s, t], a)]

Ordinary action laws specify the action’s effects when it succeeds. They are
therefore written as usual and with Ds on the antecedent side: if preconditions
apply and the action is performed successfully, then the postconditions result.

As a second example, consider the case of actions that are described in terms
of a precondition, a prevail condition, and a postcondition, where the postcondi-
tion is at the same time the termination condition for the action [7]. The prevail
condition must be satisfied throughout the execution of the action; if it is vio-
lated then the action fails. Simple pre/ post/ prevail action definitions can be



expressed as follows, if ϕa is the precondition of the action a, ωa is the postcon-
dition, and ψa is the prevail condition:

A(s, a) ↔ H(s, ϕa)
Ds([s, t], a) → H(t, ψa) ∧ H(t, ωa)
A(s, a) ∧ Dc([s, t], a) ∧ u ∈ [s, t) → H(u, ψa) ∧ ¬H(u, ωa)
Dc([s, t], a) ∧ ¬H(t, ψa) → Df([s, t], a)

The traditional case of only pre- and postconditions is easily obtained by
selecting ψa as tautology.

3 The Action Coordinator

We now proceed to using the Cognitive Robotics Logic for specifying the action
coordinator as described in section 1. We limit the problem to a relatively simple
action coordinator that does not take the success and failure of actions into
account.

3.1 CRL Formulation

Starting from the CRL formalism that was introduced in the previous section,
we define the action coordinator by extending the logic with an additional object
domain for agents, and with two new fluent-valued functions, inva and asta. The
fluent inva(g, a) will express an invocation of the action a by the agent g (i.e.,
a request for its initiation). The proposition H(s, inv(g, a)) is true iff the agent
g invokes a at time s.

Notice the difference between inv(a) that was introduced above, and inva(g, a)
that is introduced here. The relation between them will be specified and proved
below.

The action coordinator’s response to an invocation is represented using the
funtion asta, for ‘action state’. At each point in time, the fluent asta(g, a) has a
value representing the current response to an invocation of a that has previously
been issued by the agent g. The invocation is represented as a momentary con-
dition, but the response is represented as something that applies over an interval
of time. This frees the agents from ‘remembering’(6) what responses they have
received for their invocations.

The value of asta(g, a) shall be one of the following discrete values. If the
action is executed during the interval [s, t] on behalf of the agent g, then the
value is stex (for ‘start executing’) at initiation time s, ex (for ‘executing’) in the
interior of the interval, and nil at time t. Before any such execution has taken
place, the value is also nil. If an invocation inva(g, a) occurs when the value of
asta(g, a) is nil, then it switches to pend, for ‘pending’. It may retain this value
for some time, but it can also switch to either of stex meaning that the invocation
was honored by initiating the action, or to ref meaning that the invocation was

6 I.e., from having to retain that information in its local state.



refused. During and after execution the value is ex and nil as already explained,
and after execution the action is available for initiation again. If the action has
been refused, on the other hand, a renewed invocation inva(g, a) will change the
value of asta(g, a) from ref to pend.

The intended structure of possible transitions is illustrated in figure 1. Notice
that the stex state can only be visited during one single timestep at a time,
whereas all the other states can remain for several timesteps.

¾

--¾

6

?

¡
¡

¡
¡

¡¡ª
nil ex

pend stexref

Figure 1: State transitions for asta(g,a)

The transition from one value to another depends on the following factors. The
transitions from pend to stex or ref represent the decisions of the coordinator.
The transitions from stex to ex and from ex to nil, or directly from stex to nil
reflect the execution of the actions, and normally they are obtained from the
process layer where each action is executed. The transitions from nil or ref to
pend represent how the action coordinator receives and administrates invocations
of actions by the agents.

This transition structure is intended to represent an upper bound on admis-
sible transitions. Specific policies in the action coordinator can be represented
by restricting the transitions from pend to stex or ref, but not by relaxing any
of the transitions described here.

However, one extension that may be of interest is to have a way for agents to
discontinue an ongoing action. In this case the transition from ex to nil is caused
by a message to the action coordinator from a deliberative agent, and not from
the process layer. This requires an extension to the formalism for expressing how
the agent sends that message, and it is not considered in the present article.

3.2 Axioms for the CRL Formulation

The system of transition rules can be expressed using the following axioms.
Recall that the function θ represents the predecessor of a given timepoint, and
s < t represents that s = θnt for some n > 0. We introduce the auxiliary
predicate Blocked(s, a) that characterizes those conditions where an action can
not initiate even if some agent invokes it. It is formally defined as follows:

NS1. Blocked(s, a) ↔ ¬H(s, app(a)) ∨ ∃g[H(s, acta(g, a) : ex)]



The following axioms characterize the generic action coordinator.

K0. Fluents of the form acta(g, a) take (at most) one value at each point in time,
chosen among the five values mentioned above.

H(s, acta(g, a) : r) ∧ H(s, acta(g, a) : r′) →
r = r′ ∧ (r = ex ∨ r = pend ∨ r = nil ∨ r = ref ∨ r = stex)

We suppose that acta(g, a) also has a value for each combination of s, g, and a,
but an axiom to this effect does not appear to be needed for the proofs being
made below.

K1. If an action is being executed, then it must have been initiated, and from
the point of view of each initiating agent it goes through the states stex, ex, and
nil:

D([s, t], a) → s < t ∧ ∃g[H(s, acta(g, a) : stex)]∧
∀g[H(s, acta(g, a) : stex) → H(t, acta(g, a) : nil)∧

∀u[s < u < t → H(u, acta(g, a) : ex)]]

K2. If an action initiates, then it is executed from that time on and in a finite
interval of time, so that it has an ending time. It can only initiate if it is applicable
at that point in time:

H(s, asta(g, a) : stex) → H(s, app(a)) ∧ ∃t[D([s, t], a)]

K3. If an action is executing and not initiating from the point of view of an agent,
then it must have been in that state or initiating in the preceding timepoint with
respect to the same agent:

H(s, asta(g, a) : ex) → H(θs, asta(g, a) : ex) ∨ H(θs, asta(g, a) : stex)

K4. An action can only initiate for an agent if it was pending for that agent at
the preceding timepoint:

H(s, acta(g, a) : stex) → H(θs, asta(g, a) : pend)

K5. If an action is executing for one agent, or if it is inapplicable, then it can
not be initiated for any agent:

Blocked(s, a) → ∀g[¬H(s, asta(g, a) : stex)]

K6. Consider an action a that is inert (nil) or refused for a particular agent at
a particular timepoint. If it is invoked by the agent then it must be pending at
the next timepoint, otherwise it must retain the same value.

H(θs, asta(g, a) : r) ∧ (r = nil ∨ r = ref) →
(H(s, inva(g, a)) → H(s, asta(g, a) : pend))∧
(¬H(s, inva(g, a)) → H(s, asta(g, a) : r))

K7. An action can only switch from another state to being pending as the result
of an invocation from the agent in question:

(H(s, asta(g, a) : pend) ∧ H(θs, asta(g, a) : r) ∧ r 6= pend) → H(s, inva(g, a))



K8. If an action is pending from the point of view of an agent, then in the next
timestep it must be initiated, refused, or still pending:

H(θs, asta(g, a) : pend) →
H(s, asta(g, a) : stex) ∨ H(s, asta(g, a) : ref) ∨ H(s, asta(g, a) : pend)

K9. There exists a timepoint s0 such that asta(g, a) has the value nil for all times
≤ s0:

∃s0∀s, g, a[s ≤ s0 → H(s, asta(g, a) : nil)]

We also introduce the following policy rule.

P1. If an action is pending and applicable, then initiate it:
H(θs, asta(g, a) : pend) ∧ ¬Blocked(s, a) → H(s, acta(g, a) : stex)

This policy rule is the first example of a rule that restricts the transitions for
an action from being pending, to being initiated or refused. This particular rule
forces a pending action to initiate as soon as it is not blocked by not being
applicable, or by another instance of the same action being executed. One can of
course think of alternative rules that instead require the initiation to be delayed
or refused in specific circumstances. It is intended that rules K0 through K9
shall remain fixed, whereas policy rules can be exchanged.

3.3 Properties of the CRL Formulation

The logical structure that was defined in the previous subsection allows for a
number of interesting cases. In particular, consider a situation where two sep-
arate actions are pending and become unblocked at the same time, but where
it is not possible to execute them concurrently. With the axioms shown above,
including the policy rule P1, both will be initiated. We take the view that in
this case, one should set things up so that both actions do execute, but at least
one of them will fail, possibly after only one timestep. Although this convention
may seem peculiar at first, please notice that the conflict between two concur-
rent actions may also arise later on during their execution, and it may be due to
external events that could hardly have been predicted when the actions started.
Since we anyway have to accomodate actions that fail for such reasons in the
course of their execution, we can as well represent the starting-time conflict in
the same way.

The representation shown above allows one to express that each occurrence
of an action is done on the request of one or more agents. There must be at least
one agent for which it is being performed, according to axiom K1. If an action a
is pending for more than one agent g and then becomes unblocked at a particular
timepoint s, then the policy axiom P1 requires that the action initiates for all
those agents at the same time. However, if P1 is not used then it is possible to
initiate the action for some of the invoking agents but not for all of them, or to
not initiate it at all.



The rules K0 through K9 characterize the action coordinator in a number of
ways. Rules K1, K2, and K3 specify how the execution of an action, as expressed
using the D() predicate, is controlled by the action states as represented by
acta(g, a). Rules K6 and K7 specify how those action states interact with the
messages from the cognitive agents, as expressed using the inva(g, a) fluents.
Axioms K0, K4, K5, K8 and K9 specify the permitted values and permitted
transitions for the action states, although the other axioms also imply some
restrictions on those transitions.

We shall show below that the ‘K’ series axiomatization in axioms K0 through
K9 restricts the fluent acta(g, a) to the finite-state automaton that was infor-
mally described in a previous subsection. However, we first prove some other
results since along the way they provide a needed lemma. Notice that the ax-
ioms do not only represent the automaton; they also characterize the use of
multiple invoking agents and the relationship between their invocations.

3.4 Relation to previous formulation

We shall now demonstrate that the axioms S1, S2, S3, and S6 that were defined
above follow from the proposed axioms for the action coordinator, including
the policy axiom P1. In doing so we achieve two objectives. First, the action-
based behavior that was described by the ‘S’ series axioms is replaced by a more
finegrained machinery that is arguably a more precise description of how the
deliberative layer works in an intelligent autonomous agent. Secondly, we have
verified that the proposed specification for the new, four-layer architecture with
distributed cognitive capabilities is consistent with the logical architecture that
had been introduced before.

In order to properly relate the old and the new axiomatization, we shall need
an axiom that relates fluents of the form inv(a) to the constructs used in the new
axioms. Since in the ‘S’ series axioms, an action initiates if and only if inv(a)
holds at a timepoint where the action is applicable and not already executing,
we adopt the following axiom:

NS2. H(s, inv(a)) ↔ ∃g[H(θs, acta(g, a) : pend)]

Using this definition as the bridge, we shall show that the axioms S1, S2, S3 and
S6 in the old set of axioms can be obtained as consequences of the new set of ax-
ioms, and in particular axioms K0 through K5 plus K9 and the policy axiom P1.
Notice that P1 is necessary here, since the ‘S’ series axiomatization prescribed
that an invoked action shall start executing as soon as it is not blocked. Axioms
K6 through K8 will not be needed for these proofs, which is not surprising since
they represent the decision machinery for the agent coordinator.

The functions test and fail are outside this consideration, so that axioms
S4, S5, S7, and S8 are not to be treated. Also, axiom S6 is modified by removing
the reference to the test function, becoming

S6’. All actions execute over extended periods of time:



D([s, t], a) → s < t

We notice at once that S6’ is subsumed by the new axiom K1, and proceed with
the others.

The following is the definition for the abbreviation Dv(s, a) that was intro-
duced above, for reference:

NS3. Dv(s, a) ↔
H(s, inv(a)) ∧ (¬H(s, app(a)) ∨ ∃s′∃t′[D([s′, t′], a) ∧ s′ < s < t′])

We begin with a few lemmas.

Lemma 1. D([s, t], a) → H(s, inv(a))

Proof. Assume D([s, t], a). By K1, ∃g[H(s, acta(g, a) : stex)]. By K4, ∃g[H(θs, acta(g, a) :
pend)]. By NS2, H(s, inv(a)). QED.

Lemma 2. D([s, t], a) → ¬Blocked(s, a)

Proof. Assume D([s, t], a)∧Blocked(s, a). By K1 from D([s, t], a), there is some g
such that H(s, acta(g, a) : stex). According to K5 this contradicts Blocked(s, a).
QED.

Lemma 3. ∃g[H(s, acta(g, a) : ex)] ↔ ∃s′, t′[D([s′, t′], a) ∧ s′ < s < t′]

Proof. The right to left direction of the implication follows directly from K1.
For the left to right direction, assume H(s, acta(g, a) : ex). It follows from K3
that there are preceding timepoints from s and back where the value of acta(g, a)
is ex, until it arrives to one s′ where the value is stex, so that D([s′, t′], a) for
some t′, according to K2. Such a timepoint s′ must exist according to axiom K9.
According to K1 it must be the case that s′ < t′ and s < t′. QED.

Using Lemma 3 the definition of Dv() can be rewritten as
Dv(s, a) ↔ H(s, inv(a)) ∧Blocked(s, a).

We proceed now to the proofs of propositions S1, S2, and S3 which had the
status of axioms in the earlier articles.

Proposition S1. D([s, t], a) → H(s, inv(a)) ∧ ¬Dv(s, a)

Proof. Lemmas 1 and 2 give D([s, t], a) → H(s, inv(a)) ∧ ¬Blocked(s, a). By
tautology, D([s, t], a) → H(s, inv(a)) ∧ (¬H(s, inv(a)) ∨ ¬Blocked(s, a)) which
is equivalent to proposition S1 using the definition of Dv() as rewritten above.
QED.



Proposition S2. H(s, inv(a)) → ∃t[s ≤ t ∧ D([s, t], a)] ∨ Dv(s, a)

Proof. Assume H(s, inv(a)). By the definition of inv, ∃g[H(θs, acta(g, a) : pend)].
Policy axiom P1 gives H(s, acta(g, a) : stex)∨Blocked(s, a), and K2 gives ∃t[D([s, t], a)]∨
Blocked(s, a). Axiom K1 then gives ∃t[D([s, t], a) ∧ s ≤ t] ∨ Blocked(s, a). The
assumption gives ∃t[D([s, t], a) ∧ s ≤ t] ∨ (H(s, inv(a)) ∧ Blocked(s, a)) and the
rewritten definition of Dv() concludes the proof. QED.

Proposition S3. D([s, t], a) ∧ D([s′, t′], a) ∧ s ≤ s′ < t → s = s′ ∧ t = t′.

Proof. Assume D([s, t], a)∧D([s′, t′], a)∧s ≤ s′ < t. Furthermore, for the purpose
of proof by contradiction, assume s < s′.
K1 obtains ∃g[H(s′, acta(g, a) : ex)]. From NS1 it follows Blocked(s′, a).
However K1 also implies ∃g′[H(s′, acta(g′, a) : stex)], which according to K5 is a
contradiction. Therefore s = s′.

Next, assume t < t′. From D([s, t], a) and using K1, H(t, acta(g, a) : nil)
follows. From D([s, t′], a) and using K1, it follows H(t, acta(g, a) : ex). According
to K0 this is a contradiction. If t′ < t then the same contradiction is obtained
due to symmetry. It follows that t = t′. QED.

3.5 Finite-state characterization of action state

We return now to the finite-state characterization of action state.

Theorem 3. In any model for the axioms specified above, the sequence of values
that are assigned by H() to asta(g, a) for given g and a and for successive s, must
be restricted to the state transitions that are shown in figure 1. It can stay in
the same state for several steps in time, except for state stex where it can only
stay for one step in time.

Proof. Axiom K9 specifies that for initial timepoints the value must be nil. In
a given model satisfying the axioms, and for given g and a there, consider the
set of all intervals [si, ti] such that D([si, ti], a) holds and H(si, asta(g, a) : stex).
We have already proved that these intervals must be disjoint (proposition S3).
Within each of these intervals the transitions in figure 1 are satisfied according
to axiom K1. Furthermore, at the endpoint ti in each of those intervals the value
is nil.

Consider now the intervals from the ending time ti of one interval in this set,
to the starting time si+1 of the next interval. The state must be nil at ti and
stex at si+1. According to axiom K4 it must be pend at θsi+1. Consider now the
possible state sequences from nil to pend. Within that interval it can not take
the value stex because in that case axiom K2 contradicts the construction. It can
also not be ex for the same reason, using lemma 3. It is therefore restricted to nil,
ref, and pend, according to axiom K0. A transition from pend to nil would violate
axiom K8. Also, transitions between ref and nil in either direction would violate
axiom K6. The remaining transitions between these three values are allowed by
the diagram.



The timepoints before the first action interval and after the last one satisfy
the same restrictions. This concludes the proof. QED.

4 Additional facilities in the action coordinator

The specification of the action coordinator in the previous section provides a
simple-minded one that just invokes actions as they are requested while respect-
ing a minimal set of restrictions. It can be programmed by the proper choice of
policy rules and by axioms specifying the applicability fluent app(a). The defi-
nitions for app(a) are of course domain specific. They were not an issue in the
proofs in the previous section since applicability is used in the same way in the
‘S’ series and the ‘K’ series of axioms.

The general notion of an action coordinator strongly suggests that a number
of other facilities can also be included in it, in particular:

– The use of composite actions, where the action coordinator is in charge of
invoking successive sub-actions in a composite action. Plans can be seen as
composite actions.

– The definition of goal-directed behavior, where the action coordinator is able
to represent the relation between a goal and a sequence of actions that is
supposed to lead to that goal. If one of the actions in the sequence fails then
the action coordinator should identify a revised plan and start executing it
instead.

– A more detailed description of the execution of individual actions in the
robot’s physical world, for example by relating the logical description of
actions to their quantitative description using difierential equations.

We have addressed each of these topics in some earlier articles [3, 5, 6]. It now
seems possible that the concept of an action coordinator can provide a unifying
framework within which these and other aspects of deliberative behavior can be
addressed in a coherent way.

Acknowledgements

The initial ideas for this work occurred during a two-week visit to the IIIA in
Barcelona at the invitation of Ramón Lopez de Mantaras. I take this opportu-
nity to thank him and his colleagues there for their hospitality and for many
stimulating discussions.

References

1. Pable Noriega and Carles Sierra. Towards layered dialogical agents. In Proc. ECAI
Workshop on Agents, Theories, Architectures and Languages (ATAL’96), pages 69–
81. Springer Verlag, 1996.

2. Erik Sandewall. Features and Fluents. Oxford University Press, 1994.



3. Erik Sandewall. Relating high-level and low-level action descriptions in a logic of
actions and change. In Oded Maler, editor, Proc. of International Workshop on
Hybrid and Real-Time Systems, pages 3–17. Springer Verlag, 1997.

4. Erik Sandewall. Cognitive robotics logic and its metatheory: Features and fluents
revisited. Electronic Transactions on Artificial Intelligence, 2:307–329, 1998.

5. Erik Sandewall. Logic-based modelling of goal-directed behavior. In Anthony G.
Cohn, Lenhart Schubert, and Stuart C. Shapiro, editors, Proc. of Conference on
Principles of Knowledge Representation and Reasoning, pages 304–315, 1998.

6. Erik Sandewall. Use of cognitive robotics logic in a double helix architecture for
autonomous systems. In Michael Beetz, Joachim Hertzberg, Malik Ghallab, and
Martha Pollack, editors, Advances in Plan-Based Control of Robotic Agents, pages
226–248. Springer Verlag, 2001.

7. Erik Sandewall and Ralph Rönnquist. A representation of action structures. In
Proc. of [U.S.] National Conference on Artificial Intelligence, pages 89–97, 1986.


