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Summary. Representing internal models of aspects of an autonomar’'sgurrounding
environment or of its own epistemic state and developingygoeechanisms for these models
based on efficient forms of inference are fundamental comptsrin any deliberative/reactive
system architecture used by an agent in achieving task.gdatsproblem is complicated by
the fact that the models in question necessarily have todmriplete due to the complexity
of the environments in which such agents are intended tatpaConsequently, the querying
mechanisms must be framed in the context obpan-world assumptiotWe propose an ar-
chitecture for such a system that involves generalizingsital deductive databases to rough
knowledge databases (RKDB), where relations in the da¢adaesdefined as rough sets. We
also propose the use obntextually closed querié€CQs) where a context for a query and a
local minimization policy are provided in terms of integritonstraints and techniques from
circumscription. The concept of a contextually closed yuera generalization of querying
in the context of a local closed-world assumptia@\) previously proposed in the litera-
ture.CCQs have the effect of dynamically reducing the boundary megaf relations relative
to a particular set of integrity constraints associatedhwie query before actually querying
the RKDB. The general problem of querying the RKDB us@@Qs is co-NPTME com-
plete, but we isolate a number of important practical caderevpolynomial time and space
complexity is achieved.

1 Introduction

Consider an autonomous system, such as a ground robot onzamued aerial ve-
hicle (UAV), operating in a highly complex and dynamic eviment. For systems
of this sort to function intelligently and robustly, it isefsil to have both deliberative
and reactive capabilities. Such systems combine the usaofive and deliberative
capabilities in achieving task goals. Reactive capaéditire necessary so that the
system can react to contingencies that arise unexpectadlyl@amand immediate
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response with little room for deliberation as to what thetlsesponse should be.
Deliberative capabilities are useful in the sense thatiaterepresentations of as-
pects of the system’s operational environment can be usprettict the course of
events in the near or intermediate future. These prediEtian then be used to deter-
mine more selective actions or better responses in thermtregaich will potentially
save the system time, effort, and resources in the coursehihdng task goals.

Due to the complexity of the operational environments inchitsuch robotics sys-
tems generally operate and the inaccuracy of sensor datg ti@oenvironment ac-
quired through different combinations of sensors, thestesys cannot be assumed
to have complete information or models about their surrauménvironment nor
the effects of their actions on these environments. On therdtand, the deliber-
ative component is dependent on synthesizing, managirdating, and using of
incomplete qualitative models of the operational envirenimepresented internally
in the system architecture. These internal models are usa@disoning about the
system’s environment and the effects of its actions on thir@mment while the
system attempts to achieve task goals. In spite of the lackmilete information,
such systems quite often have, or can acquire, additiof@nration that can be
used in certain contexts to assume additional knowledgetabe incomplete parts
of the specification. This information may be of a normativelefault nature, may
include rules of thumb particular to the operational doniaiquestion, or may in-
clude knowledge implicit in the result of executing a segsistion.

One potentially useful approach that can be pursued in dpired of on-line rea-
soning capabilities and representation of qualitative ef®af aspects of an au-
tonomous system’s operational environment is using fadit database technol-
ogy combined with techniques originating from artificialeétigence research with
knowledge-based systems. There are a number of differempasitions of tech-
nologies that may be pursued, ranging from more homogenegiegprogramming
based deductive database systems to heterogeneous stts¢rmsmbine the use
of traditional relational database technology with spewa front-end reasoning
engines.

The latter approach will be pursued in this chapter, but wittumber of modifica-

tions of the standard deductive database framework. Thesiioations are made
necessary by the requirement of representing and reasabmg incomplete qual-
itative models of the operational environments in whichoaomous systems are
embedded. A number of fundamental generalizations of stalgkmantic concepts
used in the traditional deductive database approach withaee:

e The extensional database (EDB) which represents and $tasesrelations and
properties about the external environment, or the systieemal environment,
will be given formal semantics based on the use of rough Sets19]. The
extension of a database relation or property will contaiplie# positive and
negative information in addition to implicitly represedteoundary information
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that is defined as the difference between upper and lowepajppations of the
individual relations and properties.

e The intensional database (IDB) will contain two rule setaegating implicit
positive and negative information, respectively, via &zilon of the rule sets
in the context of the facts in the EDB. Thwsed-world assumptionill notbe
applied to the resulting information generated from the HDB pair.

¢ An open-world assumptiowill be applied to the extensional and intensional
database pair, which can be locally closed dynamically lrygusf contextually
closed queriesA CCQ consists of the query itself, a context represented as
a set of integrity constrainfsand a local closure policy specified in terms of
the minimization/maximization of selected relations. Tdumtextually closed

guery layer CCQ layer) represents the closure mechanism and is used to answe

individual CCQs.

In effect, theCCQ layer permits the representation of additional normatiedault,
or closure information associated with the operationalrerwnent at hand and the
particular view of the environment currently used by therging agent. Together
with the rough set semantics for relations, a rough set kedgé base in this context
represents an incompletely specified world model with dyingmolicies that permit
the local closure of parts of the world model when queryirfgiiinformation.

The combination of the EDB, IDB, andCQ layer will be called the rough knowl-
edge database. The computational basis for the inferergieeensed to query the
RKDB will be based on the use of circumscription, quantifiémaation, and the
ability to automatically generate syntactic characteidrs for the upper and lower
bounds of rough relations in the RKDB.

1.1 Open-and Closed-World Reasoning

What is meant intuitively by open- and closed-world reasgfiiln traditional data-
bases, reasoning is often based on the assumption thanation stored in a spe-
cific database contains a complete specification of the egtjih environment at
hand. If a tuple is not in a base relational table, it is asslithat it does not have
that specific property. In deductive databases, if the tigotet in a base relational
table or any intensional relational tables generated titjyliby the application of
intensional rules, it is again assumed that it does not haeset properties. Un-
der this assumption, an efficient means of representingtivegaformation about
the world depends on applying tesed-world assumptiof€CWA) [1, 20]. In this
case, atomic information about the world, absent in a woddeh (represented as a
database), is assumed to be false.

1We accept a paradigm, according to which integrity constsaare statements about
database contents expressed as classical first-orderl&sitaee, e.g. [1]), that are to be
satisfied by the instances of the database. However, sine¢saveleal with incomplete in-
formation, we assume that the required satisfiability ifrieed to tuples containing only
complete information.
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On the other hand, for many applications such as the autonsmsystems appli-
cations already mentioned, the assumption of completerirdtion is not feasible
nor realistic, and the CWA cannot be used. In such casespamworld assumption
(OWA), where information not known by an agent is assumedcetariknown, is of-
ten accepted, but this complicates both the represengtiomd implementational
aspects associated with inference mechanisms and the nsgative information.
The CWA and OWA represent two ontological extremes. Quitergfa reasoning
agent does have or acquires additional information thanhjierthe application of
the CWA locally in a particular context. In addition, if it does have knowjedf
what it does not know, this information is valuable becatigan be used in plan
generation to acquire additional information by using ofsm®s.

In such a context, various formslo€w assumptions have been defined (see, e.g., [8,
10]), and planning systems have been proposed (see, €lg12]). The starting
point for the approach proposed by in [8] several authorkisfahapter is based on
the approach to query answering usir@w assumptions described in [10], where
the authors present a sound, but incomplete, tractableitigofor LCW reason-

ing intended for use in the XII Planner [13]. The approachcdbed in [10] was
substantially strengthened in [8] by

¢ Providing formal semantics for the case whe@wv assumptions and queries
are expressed by arbitrary first-order formulas. The seicgist based on the
use of formula circumscription and depends on minimizirrgfalas expressing
LCW constraints.

¢ Isolating a more expressive language f@w assumptions which subsumes
that used in [10], permits limited use of negation and disjiom and still retains
tractability.

¢ Providing a sound and complete, tractable deduction mefbrotthe more ex-
pressive language.

The semantics ofCW constraints, as defined in [8], depends on minimiziogV
constraints where it is specified that all relations in a t@mst vary. The mini-
mization process results in changing the varied databdatores as a side effect
of the process. Queries are then posed to the changed datétitial practice in
using the strengthened versionlafw assumptions showed that a finer granularity
in the minimization policy fol.CW assumptions was desirable as was a more intu-
itive methodology for expressingcW policies to understand the results and provide
intuitive semantics for the database changes. These datideave led to the pro-
posal for the modifications and generalizations of dedaadtiatabase technology
described above.

1.2 A New Approach to Rough Set Based LCW Technigues

In the current chapter, we propose semantics and methogfdogCW reasoning
that provides a more intuitive and general framework foegnatingLCW reasoning
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in knowledge databases used by intelligent agents. The ppwach differs from
and subsumes that of [8] in the following manner:

¢ It generalizes to deductive databases, whereas the pesapmroach described
in [8] is basically restricted to relational databases.

¢ Integrity constraints, absent in the previous approadie, ¢en an important role
in characterizing. CW assumptions in a principled manner. In most knowledge
databases, the relationships between pieces of informateexpressed by in-
tegrity constraints (e.g., defined by classical first-ofdemulas). When apply-
ing LCW policies locally to particular relations, one minimizegske relations.
However, in such cases, the integrity constraints have fréserved. This can
result in implicit changes to some additional relationswideer, the integrity
constraints are still preserved, thus the knowledge straatepresented con-
tinues to satisfy the desired properties. Such informatias missing in the
previous approach, thus it was much more difficult to undegsthe changes in
the resulting database and to develop pragmatic impleriemtachniques for
modifying and querying the knowledge database.

¢ Integrity constraints and local closure policies are deded from the knowl-
edge database itself and associated dynamically withisha@ agent queries.
The agents themselves possess local views and preferelnocesthe world
model that may or may not be shared by other agents or everathe agent
using a different query.

e The formula-circumscription technique used in the presiapproach is re-
placed by integrity constraints and standard circumsoripfThis modification
permits selected fixing, varying, and minimizing of speaiéitations in integrity
constraints, whereas the previous approach forced vapyirgl predicates in
anLCW constraint. This provides the user with more flexibility efithingLCwW
constraints and brings the new approach closer to the melibgyg used in
circumscription-based knowledge representation. It khbe emphasized that
the implementation is not always dependent on circumsoript

¢ At the semantic level we use rough sets to represent datatfassation as
a natural tooP Rough sets contain information about tuples known to be in a
relation (the lower approximation of the relation), tugk@®wn not to be in the
relation (the complement of the upper approximation of tiation) and tuples
for which it is unknown whether they belong to the relatione(tdifference
between the upper and lower approximation of the relation).

1.3 The Structure of This Chapter

In Sect. 2, we provide some notation and a number of defirstibnSect. 3, we de-
scribe the basic architecture for rough knowledge databasesisting of the exten-
sional, intensional, and contextual closure query layeBdct. 4, a detailed example
from the domain of unmanned aerial vehicles is provided toalestrate the need

2 As discussed, e.g., in [14], rough relations appear in @asidhin many important contexts.
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for the reasoning mechanisms we propose. In Sect. 5, wedwaypiecifications of
the languages used for the three rough knowledge datahgss,land in Sect. 6,
we provide the formal semantics for each of the three layerSect. 7, we provide
a high-level specification for an algorithm for computingeges to rough knowl-
edge databases and consider complexity and expressiviesess. In Sect. 8, we
isolate a number of important special cases based on t&stsdn using language
at the three database layers which guarantee efficient mischg for computing
gueries for these cases. In Sect. 9, we conclude with a suyrohegsults and some
considerations on future work.

2 Preliminaries

We deal with the first-order language with equaliy,over a fixed vocabulary with-
out function symbols, wher€onst is a finite set ofconstant symbol4/ is a finite
set offirst-order variablesandRel is a finite set ofrelation symbolsAny rough
relationR() is defined by

e The positive part of the relatigreontaining positive information and denoted
by R*() [it is simply the lower approximation d®()].

¢ The negative part of the relatipeontaining negative information and denoted
by R~ () [itis the complement of the upper approximatiorRgj].

¢ The boundary region of the relatipnontaining the unknown facts and denoted
by R*() [it is the difference of the upper and the lower approximatdR()].

By F, we denote the second-order language based on an alphabs syrabols
are those oRel, together with a denumerable $&tof n-ary predicate variables (for
eachn > 0). In the rest of the chapter, we shall use second-ordeuroiscription.
Our definition follows [15].

Definition 1. LetP be a tuple of distinct predicate constarg@be a tuple of distinct
predicate constants disjoint with, and letT (P,S) be a finite theory in the lan-
guager. Thesecond-order circumscription &f in T(P, S) with variableS, written

CIRC(T(P,9);P;S), is the sentence (in the language

T(P,9 AVOVY.{[T(®,¥)AD < P] » P < d}, (1)

Wherg5 andV¥ are tuples of predicate variables similarRandsS, respectively}
¢ < P stands for

/n\[VKCDi(@ — P(X)] andP < ® stands for/n\[VZP.(i) — Di(X)].
i=1 i=1

SA tuple of predicateiexpressioh_@is said to be similar to a tuple of predicate constants
iff X=(X1,---,%n), Y =(Y1,...,Yn) and, for all 1<i < n, X; andy; are of the same arity.
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In the following, we shall often writ€IRC(T; P; S) instead ofCIRC(T (P, S); P;S).
We also allow minimization of negative literals. Definitiarcan easily be adjusted
to this case, since minimizing a literal, salg, means maximizin&. Thus it suffices
to replace inequalities. of (1) by inequalities>, i.e., to reverse the corresponding
implication. We also require the following definition (sdec[7,8]).

Definition 2. Let Xbe a tuple of first-order variable®, be a tuple of relation sym-
bols,®(Q) be a first-order formula positive w.r.t. all symbols@aand¥(-Q) be a
first-order formula negative w.r.t. all symbols@ Then

¢ By asemi-Horn formulawe shall understand any formula of the following form

[VX.®(Q) = QX AW(-Q).

e By aweak semi-Horn formulave shall understand any formula of the follow-
ing form:

[®(Q) = QAP (-Q).

e By aweak Ackermann formulae shall understand a weak semi-Horn formula,
in which ® does not contain the relatidp.

Observe that in Definition 2, one can replace all occurrented! relations of@
by their negations. This is useful for the application of Idieams of quantifier
elimination techniques used in our algorithms.

3 The Architecture of Rough Knowledge Databases

Let us now discuss the architecture of rough knowledge datdas understood
in this chapter. The kernel of the database is the so-cakethsional database (see
Fig. 1). We assume that the extensional database contaitvpand negative facts.
The facts that are not explicitly listed in the extensiorethtbase are assumed to be
unknown in this layer of the database. Thus, in the exteasiatabase layer we ac-
cept the open-world assumption. The intensional datalag®e provides rules that
define some new relations, but also rules allowing one tonelixtle positive and
negative parts of the extensional relatidriBhe outermost, most advanced layer,
which we call thecontextual closure query layg)CCQ layer), consists of theCQ
inference mechanism which represents the query/answedraneen used by indi-
vidual CCQs applied to the two lower layers of the RKDB.

The extensional database consists of rough relations.rdoupto the methodology
developed in [5], the rules of the intensional databasetfon@s rough set trans-
ducers (see also Sect. 6.3), transforming combinatiormugfir extensional relations

4 We assume here that extensional and intensional datab@sesnsistent. Let us note that
the consistency condition, expressed in the language wadsmis tractable.
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Fig. 1. The architecture of knowledge databases

into new relations that satisfy the constraints of the istemal rules. As in the ex-
tensional database, the open-world assumption is accepted intensional layer.
Local closure context policies €C policies) allow us to minimize chosen relations
(or their complements), while at the same time preserviegrtegrity constraints
(ICs). Queries are posed via the outermost layer, but in sgpécations, it might
be useful to submit queries to the intensional or even eidaaklayer. This feature
can be provided in an obvious manner. We will focus onct€) layer.

4 A UAV Scenario Sensor Usage Example

The WITAS Unmanned Aerial Vehicle Project [3] is a long-term basicesgsh
project located at Linkdping University (LiU), Sweden catihe authors are partic-
ipants in the project. The current work with rough knowledigegabases andcC
reasoning is intended to be used in an on-line query-answeyistem which is part
of the UAV’s system architecture.

The long-term goal of the WITAS UAV Project is the developreithe technolo-
gies and functionalities necessary for successfully depdpa fully autonomous
UAV operating over road and traffic networks. While opergtover such an en-
vironment, the UAV should be able to navigate autonomouistiifeerent altitudes
(including autonomous takeoff and landing); plan for nissjoals such as locating,
identifying, tracking, and monitoring different vehiclges, and construct internal
representations of its focus of attention for use in achigytis mission goals. Addi-
tionally, it should be able to identify complex patterns ehlavior such as vehicle
overtaking, traversing of intersections, parking lotatgs, etc.

In the current project, we are using a Yamaha RMAX helicopsaihe experimental
physical platform on which to pursue our research. The bptir is equipped with

5 The Wallenberg Laboratory for Information Technology anat@nomous Systems (Pro-
nouncedvee-Tak



9 Using Contextually Closed Queries faEw Reasoning in RKDBs 227

a sensor platform that includes a geographical positiosystem (GPS), an inertial
navigation system (INS), elevation sensors, and a magoetipass, in addition to
a video camera.

The system architecture for the UAV consists of both detibiee and reactive com-
ponents, and the communication infrastructure for the aomepts is based on the
use of the standard object broker CORBA. There are a numbaglifferative ser-
vices such as task planners, trajectory planners, prediatiechanisms, and chro-
nicle recognizers, that are dependent on internal quabtagpresentations of the
environment over which the UAV operates. The knowledgeasgpntation com-
ponents include a soft-real time database called the dynmahjéect repository, a
standard relational database, a geographic informatistesycontaining road and
geographic data, and a number of front-end query-answeyisigms that serve as
inference engines and may be used by other components indhigeature. The
research described in this chapter provides a basis for fathe anference engines.
In addition to these components, there is an image progeesidule used for low
and intermediate level vision tasks and a helicopter contomlule which is used to
position the helicopter and camera dynamically and maingasitions during the
execution of task goals which may include highly dynamid&sasuch as tracking
vehicles through a small village with building obstacles.

Let's examine a particular scenario from the UAV operatl@aironment repre-
sentative of the use aiCC reasoning in the UAV context.

Suppose the UAV receives the following mission goal frongitsund control ope-
rator:

Identify and trackall moving vehicles in region X, and log the estimated
velocities and positions @l small blue vehicles identified for the duration
of their stay in region X, or until the UAV is low on fuel.

Achieving a mission goal such as this in a fully autonomousienis extremely
complex and would involve the concurrent use of many of tHidbdeative and re-
active services in the architecture, in addition to a grea df sophisticated rea-
soning about the operational environment. Both hard andreal-time constraints
must also be taken to consideration, particularly for gesrgwering during a plan
execution phase. In this example, we will focus on a pamrictylpe of reasoning ca-
pability made possible by the combined us&©€ reasoning and rough knowledge
databases.

The first step in achieving the mission goal would be to gereadask plan which
would include the following steps:

1. Fly to a position that permits viewing region X and possdot area surrounding
the region.

2. Focus the camera on region X, and maintain position, faous coverage.
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3. Initiate the proper image processing algorithms for ifging moving vehicles
in region X.

4. Use the sensor data gathered in the previous step to prdahaeviedge as to
what is seen or not seen by the UAV in region X.

5. Use the acquired knowledge to plan for the next seriestafracwhich involve
tracking, feature recognition, and logging.

6. Maintain execution of the necessary services and presasttil the mission
goal is completed.

We will concentrate on steps 3 and 4 whose successful coimpistdependent on
a combination of the open-world assumptib@C reasoning, and rough knowledge
database representation of relations and properties.

Observe that the mission goal above contains two univetatdraents, the first
asks to “identify and trackll moving vehicles in region X,” and the second asks
to “log the estimated velocities and positionsatif small blue vehicles identified.”
The meaning of the second universal is naturally dependetit®@meaning of the
first universal. To achieve the mission goal, the inferegarechanism used by the
UAV during plan generation and plan execution must be abdérémmscribe (in the
intuitive sense) the meaning ot moving vehicles in region X" and that ot
small blue vehicles identified.”

What the UAVcan perceive as movipgiven the constraints under which it is op
erating, the character of the dynamics of its current opmrat environment, and
the capabilities of its sensor and image processing fumalities in this context, is
not necessarily the same thing as wisatctually movingn region X. An additional
problem, of course, is that the inferencing mechanism ceapeeal to the use of the
closed-world assumption. If it could, it would register nmay objects in region X
andassumeria application of the CWA that no other objects are movinge@annot
appeal to this mechanism because the open-world assumgti@ing used. Even
if one could, this would be erroneous. Certainly, there maweéhicles in region
X that are moving but can not be perceived due to limitatissaiated with the
UAV’s capabilities, and there may also be vehicles outsédgan X that are moving.

The key to solving this particular representational proble to note that sensing
actions, such as step 3 in the plan sketch above, implicélyegate local or con-
textual closure information_LCC policies) and that the UAV agent can query the
rough knowledge database using the particular contextosdie that exists for the
purpose at hand. For example, the sensing action in stepv@ aod only generates
information about specific moving individuals the UAV carrgegve with its cur-
rent sensor and image processing capabilities, but it asermgtes knowledge that
this is all the UAV can see in the region of interest (ROI),ioegX. The nature of
this information is that it is specific knowledge of what th&MJagent does not see
rather than information derived via an assumption sucheaivA.

Of course, one has to (or more specifically, the UAV agent bpsupply the con-
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textual closure information. This will be supplied in terofsone or more integrity
constraints and ahCC policy consisting of particulatCC assumptions pertain-
ing to the minimization, maximization, fixing, or varying specific relations. The
specific closure context for this situation could be parapéd as follows:

After sensing region X with a camera sensor, assume thataling vehi-
cles in the ROI (X) have been perceived except for those wilyaature
whose color feature igadgray.

In the following example, we provide the particulars for negenting the scenario
above and reasoning about it using the proposed approach.

Example 1.[A UAV Scenario: Identify, Track, and Log]
Consider the situation where a UAV observes and classifiesvai¢h different sig-
natures based on colbFor the example, the domains considered consist of

e Cars= {c;,¢2,C3,C4,C5,C6 }-
e Regions= {rq,ra,r3,r1}.
e Signatures= {blue,roadgray, green, yellow}.

The following relations are also definéd:

Moving(c) the object is moving.

INROI(r) the regiorr is in the region of interest.
Seéc,r) the objeck is seen by the UAV in region
In(c,r) the object is in regionr.
Containedlrr,r') regionr is contained in regior!.
Sig(c,s) the objeck has signature.

Suppose the actual situation in the operational environroegr which the UAV
is flying is as depicted in Fig. 2. For the mission goal, the tA¥iitial region of
interest (ROI) is regioms.

At mission start, the following facts are in the UAV's ondiextensional database
(EDB):

{Containedltry,rp),Containedlrro,r3)}.

During mission preparation, the ground operator relaysaiewing information
to the UAV agent which is placed in the UAV’s on-line EDB:

{| n(CQ, rg), |n(C3, r3), MOViHQCQ),
Sig(cp, roadgray), Sig(cs, green), Sig(ce, roadgray), INROI(r3) }.

6 In an actual scenario, a vehicle signature would be more Enamd contain features such
as width, height, and length, or vehicle type.

7 In addition, a number of type properties, suchCas(), Regior{), etc. would also be de-
fined.
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Fig. 2. The situation considered in Example 1.

The following rules are associated with the intensionahdase:

Containedlrr,s) « 3t.[ContainedIrr,t) AContainedlit, s)], (2
INROI(s) + Jr.[Containedligs,r) A InROI(r)]. 3

The current EDB, together with the intensional databas&)Jvould allow the
UAV agent to infer the following additional facts:

{Containedllﬁrl, r3), |nRO|(r2), |nRO|(r1)}

Observe that complete information about Bentainedinand InROI relations is
not yet assumed due to the application of an open-world gssoimin the EDB and
IDB.

Assume that the UAV generates a plan similar to that destrétehe beginning
of this section and then executes steps 1-3 in this plan.nGfgesensor capabil-
ities under current weather conditions, suppose that thé aifent can assert the
following new set of facts in the EDB generated from its seradions and image
processing facilities (step 3 in the plan):

{In(c1,r1),In(cq,rs),Moving(c1),Moving(cs ), Moving(cs)
Sig(c1,blue), Sig(ca, yellow) }.

After executing the sensor action in step 3, the UAV's o HDB contains the
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following facts:

{In(c1,r1),In(ca,r2),IN(c3,r3),IN(Cayra), 4
Moving(cz), Moving(cz), Moving(cs), Moving(cs)

Sig(c1, blue), Sig(cy, roadgray), Sig(cs, green), Sig(cq, yellow),

Sig(ce, roadgray),ContainedIrry,ry),Containedlrro, r3),

INROI(r3)}.

At this point, observe that, due to the open-world assumptidas unknown whether
c3 is moving and it is unknown what regi@sg is in or what color it is. Additionally,
it is unknown what regiowg is in or whether it is moving.

Before proceeding with the execution of the rest of the plae,UAV must take
stock of what it knows about the RG4,. In other words, the UAV agent must query
the RKDB with a particular policy of contextual closure tdelenine not only what
it sees, butll that it sees under the current circumstances. The followiogure
context discussed above,

after sensing regioX with a camera sensor, assume that all moving ve-
hicles in the ROIX have been perceived except for those with a signature
whose color feature isoadgray,

can be represented as the following integrity constraint:

VX, 1, z[Moving(xX) A In(x,r) A INROI(r) A Sig(x, 2) A
z# roadgray] — Seéx,r), (5)

together with the following.CC policy:®
LCC[Seéx,r),Containedlrtx,y); Moving()] : (5). (6)

This combination states that relatioSe€x,r) and Containedlrix,y) are mini-
mized, relationMoving() is allowed to vary, and all other relations are fixed. The
integrity constraint (5) is to be preserved. In essencelJi¢ agent is assuming
complete information locally about tf@ontainedIrt) andSe€) relations by min-
imizing them. In addition, new information about moving medgo be derived, but
the only information abou$ig() and the other fixed relations that can be inferred is
what is already in the EDB. That is the effectfiding relations in this context.

Another way to view the integrity constraint (5) of the coditel closure is as the
equivalent:

VX, 1, 2[In(x,r) AINROI(r) A Sig(X, 2) A Z# roadgray A (7)
—Seéx,r)] — ~-Movingx),

8 The formal definition of an.CC policy is provided in Sect. 5.3, but we first treat it infor-
mally here.
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which states that “if an object is in the ROI and it has a visifilgnature relative

to the current capabilities of the UAV agent’s sensors, & AV agent does not

see it, then it is not moving.” The integrity constraint isended to represent strong
coupling between moving and seeing due to the characteeafdghsor capabilities
in this context.

After applying theLCC policy in theCCQ layer which includes integrity constraints,
the resulting EDB/IDB combination would contain (expligiand implicitly) the
following facts:

{In(cy,r1),In(ca,r2),IN(cs,r3),IN(Cayra),
Moving(c;),Moving(c,), Moving(cs), Moving(cs ), ~Moving(cs),
Sig(c1,blue), Siglcy, roadgray), Sig(cs, green), Sig(ca, yellow),
Containedlriry,r,),Containedliir,, r3),Containedlrry, r3),
—ContainedIrr,r’) for all pairsr,r’ other than listed above,
INROI(r; ), INROI(r), INROI(r3) }.

It is useful to note the following about the UAV agent’s knedge about the ROI,
resulting from its sensing action in step 3 and subsequesbreng about it. It still
has incomplete information about the relatiéné), Sig(), andInROI(). For exam-
ple, it is unknown what signature objegt has or where it is. The UAV agent now
knows that object; is not moving and it does have complete information about the
ContainedIn) relation.

What about the relatioBe€), which has been minimized? One can now infer the
following facts related to the relatidde€) and the ROlys:

e Sedcy,rs).
L] —|Se€écz, r3),—|S€éC3, r3), —|Se€éc4, r3), —|Se€éc6, r3).

c3 is not seen because it is not movikgis not seen because it is not in the RQ,

c; is not seen even though it is moving because of its signatlwst interestingly,

it is unknown whethets is seen because the UAV agent could not discern which
regioncs was in nor what its color signature was. In fact, since the @g&ént could
identify cs as moving, the failure to discern a region tgrcould be deduced as the
reason for this, due to the tight coupling between moving seeing. This could
provide a reason for focusing @g and trying to discern its regiorg iS not seen
because of its signature. What is interesting is that miration of Se€) does not
change the status of w.r.t. Moving(), i.e.,Moving(ce¢) remains unknown.

The fact thatSeécs,r3) andMoving(cs) remain unknown informs us of the sub-
tlety of minimization in the context of rough sets. The miidation of a relation
in the rough set context does not necessarily create a dafit the relation min-
imized. What it does do is move tuples in the boundaries ofanaore relations
into the positive or negative parts of the relation while tivegthe conditions of the
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integrity constraints, whereas other tuples still remaithie boundaries. This is very
important because it satisfies the ontological intuitiosoasated with open-world
reasoning.

It also worth emphasizing that if the integrity constraBit\as defined as an inten-
sional rule, like the following,

Seéx) < Moving(x) AIn(x,r) AINROI(r) A Sig(X, 2) A z# roadgray,

then the minimization o6e€) would not result in changes in the relatibtoving()
appearing in the body of the rule.

These subtle forms of inferencing are precisely what mayeleired for realistic
inferencing mechanisms in fully autonomous systems, sachat described here,
that may often be in situations where there is no commumindtr longer periods
of time between the autonomous agent and ground operatoesnins to be seen
whether such complex forms of inferencing can be implenteetéciently. This
aspect will be considered in the remainder of the chapter.

5 The Languages of RKDBs

5.1 The Language of Extensional Databases

An extensional database consists of positive and negatats.fThus, we assume
that the language of the extensional database is a setralditeée., formulas of the

form R(C) or =R(C), whereR € Rel is a relation symbol andis a tuple of constant

symbols. It is assumed that the extensional database isstamtsi.e., it does not

contain bothR(c) and—R(c), for some relatiorR() and tuplec.”

5.2 The Language of Intensional Databases

The intensional database is intended to infer new facts, positive and negative,
by applying intensional rules to the EDB. The process islaimb the approach
usingDatalog™ (see, €.9., [1]). The rules have the form,

where+ is either the empty string or the negation symbadnd any variable that
appears in the head of a rule [i.e., any variablg iofa rule of the form (8)] appears
also in the rule’s body (i.e., among variablexgf. .., X« in the rule).

The rules can be divided into two layers, the first for infiegripositive and the
second for inferring negative facts. The first layer of rulealled thepositivelDB

rule layer), used for inferring positive facts, has the form,
P(X) < £Pu(X),. ... £P(X); ©)

the second layer of rules (called thegativelDB rule layer), used for inferring
negative facts, has the following form:

—P(X) = £P1(X1),..., £P(X0). (10)
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5.3 The Language of Integrity Constraints andLCC Policies

Integrity constraints are expressed as formulas of clak§irst-order logic. Intu-
itively, they can be considered implicit definitions of ingtonal relations that will
be minimized or maximized by theCC assumptions in a specificCC policy. In
the following sections, to obtain tractable instances ef general algorithm, we
will impose some syntactic restrictions on the syntacticrf@f ICs together with
theLCC assumptions in a specificC policy (see Sect. 8).

LCC policiesare expressions of the form,
LCC[Ly,...,Lp;Kq,...,K]iIC, (11)

whereLy,...,Lp are (positive or negative) literalky, ..., K are relation symbols
not appearing i's, and IC is a set of integrity constraints. Literdls...,L, are
minimized and relationks, . ..,K; are allowed to vary. By ahCC assumption, we
mean a minimization or maximization of a single literal from...,Lp in (11).

In the following sections, we often omit the part “:IC” of (Lif the corresponding
integrity constraints are known from the context.

6 The Semantics of RKDBs

6.1 Notational Conventions

Let us denote the facts in the extensional database by EDBhenthcts in the
intensional database by IDB. L&,...,R, be all relations in the RKDB. For a
specific relatiorR in the RKDB, we denote the positive atomsk®in the EDB by
EDB"(R) and the negative atoms Bfin the EDB byEDB™ (R). Assume that

n
 ByEDB', we denote the positive part of the EDB whicH i$E DB" (R).
i=1
n
« ByEDB", we denote the negative part of the EDB whicl ifEDB" (R)).
i=1
The EDB is then equivalent 6DB* UEDB™.
For a specific relatiorR in the RKDB, we denote the positive atoms Rfin the
IDB generated by the positive intensional rules of form (@)DB*(R) (where it is
assumed thdDB*(R) = IDB*(R) \ EDB*(R)) and the negative atoms Bfin the

IDB generated by the negative intensional rules of form (DB~ (R) (where it
is assumed thdDB~(R) = IDB~(R) \ EDB~(R)). Assume also that

n
« By IDB™, we denote the positive part of the IDB which(ig IDB* (R)).
i=1
n
e By IDB™, we denote the negative part of the IDB whicH i§IDB™(R).
i=1
The IDB is then equivalent ttbB* U IDB™.
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Let D be a finite set (a domain of the database). The semantics sfasdrsymbols
and variables is given by an assignment of domain valuegtstanots and variables,
called avaluation

v:ConstuV, — D.

The valuationv is then extended to the vectors of constants and variabldsein
usual way. We also assume that the uniqgue names assumphi#y) fidlds, i.e., for

all different constants, ¢’ in the RKDB, we assume thatandc’ denote different
objects. In other words, the formuta# c; is satisfied for each j, wherei # j.

In the semantics defined in the following sections, all fefeg are interpreted as
rough sets of tuples, where no form of domain closure is redquilhe symboll-
will denote the RKDB entailment relation and the sympolill denote the classi-
cal two-valued entailment relation. By indexing relatiovith EDB, IDB, andLCC,
we indicate that they are considered in the particular ct@te relations of the ex-
tensional, intensional, areiCQ layer of the RKDB, respectively.

6.2 The Semantics of Extensional Databases

The semantics of the extensional database is given by ratglostuples. LeR()
be a relational symbol appearing in the extensional datafBdenR() is interpreted
as the rough set whose positive part contains all tuwgl&sfor which literalR(C) is
in the database, and the negative part contains all tupdg$or which literal -R(c)
is in the database. All other tuples are in the boundary regid().

EDB I R(@) iff R(a) € EDB'(R),
EDB Il -R(a) iff =R(a) € EDB (R),

whereR() is a relation of the EDB and is a tuple of constants.

Rough relations for the EDB are then defined as follows:

Ripg = {v(a) : EDBIFR(@)},
Reps = {V(a) : EDBIF-R(a)},
REps = {V(a) : EDBI}FR(a@) andEDBI}- —R(a)}.

6.3 The Semantics of Intensional Databases

The semantics of the intensional database is given by roetglo$ tuples after ap-
plication of the intensional rules to the extensional dasab Intensional rules can
be viewed as rough set transducers (see [5]). Basicallygtreet transducer takes
rough sets as input and generates new or modified rough setgmg meeting the
constraints of the transducer, a set of formulas.

To provide the semantics of the IDB, we will use the definitafnthe so-called
Feferman—Gilmore translation (see, e.g., [2]) as a basis.



236 P. Doherty, J. Kachniarz, A. Szatas

Definition 3. By aFeferman—Gilmore translation of formués denoted by G(a),
we mean the formula obtained fromby replacing all negative literals of the form
-R(y) by R™(y) and all positive literals of the formR(y) by R* (y).

LetS= (S, ..., Sp) contain all relation symbols of the forR"™ andR~, whereRis
a relation symbol in an IDB rule. For any relati&n all rules withS" (respectively,
§") in their heads should be gathered into a single formula@fdim,

VL[S (%) = ai(yi)],
where

ai()ﬁ)z\/ﬂz_j-ﬁij(z_j)
J

where;j(zj) denotes the bodies of the appropriate rules #rstands for- or —,
respectively.

Denote bypS[a(9)] the least, and byS[a(S)], the greatest simultaneous fixed-
point operator ofx(S) (for the definition of simultaneous fixed-points see, e.§.[9
DefineSpg = PS[FG(ay),...,FG(ap)]. In some cases the IDB might appear in-
consistent when there is a relati®g) such thalRt* "R~ # 0. In what follows we
require that the IDB is consistent, i.e., for all IDB relat&R(), R" "R~ = 0. This
consistency criterion can be verified in time polynomialie size of the database.

The semantics of IDB rules is then defined as follows:

IDBIIFR(a) iff a€ EDB"(R)UIDB*(R),
IDBIIF-R(a) iff a€ EDB™(R)UIDB™(R),
whereR() is a relation in the EDB or in the head of an intensional ralés a tu-

ple of constants, antDB* (R) andIDB~ (R) are computed from the simultaneous
fixed-point definitionSpg defined above.

Rough relations for the IDB are then defined as follows:

Ribs = {v(a) : IDBIFR(a)},

Rips = {V(a) : IDBIF=R(a)},

R = {v(@) : IDBIFR(@) andIDBIF-R(@)}.
Observe that

EDBIFR(a) impliesIDBIIFR(a),
EDBIIF-R(a) impliesIDBIIF-R(a).

Remark 1.If one wants to distinguish between facts entailed solelpbglication
of intensional rules, this can be done in a straightforwaathner, but as a rule, one
is interested in querying both the EDB and IDB together, theschoice of RKDB
entailment from the IDB.
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6.4 The Semantics of thecCQ Layer and LCC Policies

The inference mechanism associated with @i@®) layer is intended to provide a
form of contextual closureelative to part of the EDB and IDB when querying the
RKDB. A contextually closed quegonsists of

e Thequeryitself, which can be any fixed-point or first-order query.

e Thecontextrepresented as a set of one or more integrity constraints.

¢ A local closure policyrepresenting the closure context and consisting of a mi-
nimization policy representing the local closure.

An LCC policy consists of a context and a local closure poliggC policies may
also be viewed as rough set transducers with rough relatiche EDB and IDB as
input, a transducer consisting of one or more integrity transs and a minimiza-
tion policy, and modified rough relations in the RKDB as outpu

Let the EDB and IDB be defined as before, let IC denote a finttefdategrity con-
straints, and let RKDB.CCJ[L; K]:IC denote querying the three layers of the RKDB
with a specificL.CC policy LCC[L;K]:IC. Then?
RKDB:LCC[L;K]:ICIIF R(a) iff
CIRC(ICUIDBUEDB;L;K) |= R(&),
RKDB:LCC[L;K]:ICIIF —R(a) iff
CIRC(ICUIDBUEDB;L;K) |= —R(a),
where the notation is, as in Sect. 6.1, under the assumtatnite circumscriptive
theory is consistent.

Thus, theCCQ layer has the purpose of dynamically redefining some relatio
satisfy ICs in a particular query. A relatidR which is minimized, maximized or
allowed to vary is defined as the following rough relation:

Ricc = {v(@) : RKDB:LCC[L;K]:ICIIFR(@)},

Ricc = {V(a) : RKDB:LCC[L; K]:ICIIF-R(@)},

R = {v(&) : RKDB:LCC|L;K]:ICI}-R(@) and
RKDB:LCC[L;K]:ICIF-—R(@)}.

Intuitively, this means that the positive partif) contains tuples present in all ex-
tensions oR() satisfying the ICs, the boundary part contains tuples pitdeesome
extensions oR() satisfying the ICs, but not in all of them, and the negative pa
R() contains tuples not present in any extensioRQfsatisfying the ICs.

The relations that are not minimized, maximized, or alloteedhry are not changed;
thus their semantics is that given by the EDB and IDB layeth @ RKDB.

9 Observe that we abuse notation somewhat by using setsralditie, K for minimized and
varied predicate constants in the circumscription forn@lRC(). Formally, we should use
predicate constants contained.ijK, respectively.
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Remark 2.The inference mechanism associated with @@®) layer is almost al-
ways used with both layers of the EDB and IDB. If one wants tolapCC infer-
ence to just the EDB, this can also be done in a straightfatweamner.

7 The Computation Method

7.1 The Pragmatics of Computing Contextual Queries

A contextual query in its simplest form involves the (imfliggeneration of the
extension of a relatioR in the context of a set of integrity constraints and a mini-
mization policy and asking whether one or more tuples is a bezrof that relation.
Essentially, we are required to implicitly compWRg., R¢c, andR’. and deter-
mine whether the tuple or tuples are in any of the resultingyhoset partitions of
R. In Sect. 7.2, we will describe an algorithm to do this. Bagedhis specification,
we will be able to show that in some cases, whereltb€é policy associated with
the query is restricted appropriately, querying the refaR can be done very ef-
ficiently. One of the more important results is that one caiormatically generate
syntactic characterizations of each of the partitions obwegh set relation with-
out actually generating their explicit extensions. Thetagtic characterizations can
then be used to efficiently query the RKDB.

Since integrity constraints are not associated with the HDB pair, but with an
agent posing a query, the integrity constraints associaithdan agent are not nec-
essarily satisfied together with the EDB/IDB. Checkingsatbility is tractable in
this context, due to the first-order or fixed-point naturehs integrity constraints
and the finiteness of the database. Under additional symtedtrictions, the sa-
tisfiability of the circumscriptive theory can also be gudesed. In the case of in-
consistency, this would lead to the specification and coatpmrt of specific update
policies which is a topic for future research.

7.2 The Algorithm

The algorithm presented below applies to the general casgoithe problem which

is co-NPTIME complete (see Sect. 7.4). However, in Sect. 8, we show dpecia
zations of the algorithm to some cases, whereMETcomplexity is guaranteed.
The inputs to the algorithm are

e An extensional database EDB
¢ Anintensional database IDB

o A set of integrity constraints IC
¢ An LCC policy LCC[L;K]:IC

e Arelation symboR.10

10 The relation symboR can be viewed as part of the query which consists of a number of
relations that are required to compute the full query.
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As output, the algorithm returns the definition of the relatk() obtained by ap-
plying theLCC policy and preserving the ICs, according to the semantifisetbin
Sect. 6.

1. ConstrucC = CIRC(ICUIDBUEDB;L;K) representing the givercC policy
applied to the IDB together with the EDB.

2. Eliminate second-order quantifiers from the formula iatd in step 1. In ge-
neral, the elimination may fail, and the result is the ind@cond-order formula
C, however, if certain restrictions concerning the form ofdf@ assumed, the
elimination of second-order quantifiers is guaranteed $&=2. 8).

3. Calculate the intersection of all extensionsRofatisfying formuleC. If there
is not any relatiorR() satisfyingC, terminate and return the answer “unsatis-
fiable,” meaning that either the EDB and IDB pair is incoresist or the ICs
cannot be satisfied.

4. Calculate the union of all extensionsRsatisfying formuleC.

5. For any tuplea:

e if v(a) is in the intersection calculated in step 3, add) to R* ().
e if v(a) is not in the union calculated in step 4, add) to R ().
« if none of the above two cases applies, théa is in R*().

In practice, one uses particular second-order quantifierirghtion algorithms (see
e.g., [6,16,17,21]) that may fail. Since second-order idem are useless as results,
it is reasonable to return the answer “unknown” when the iaktion algorithm
used in step 2 fails. This implies that the algorithm is ordyrsd relative to the se-
mantics provided in Sect. 6.4.

Observe also that, in practice, it is often better to cateutae definitions of new re-
lations rather than calculating their extensions as in bowea algorithm. To achieve
this goal one can apply, e.g., techniques proposed in [4,7].

7.3 Expressiveness of the Approach

Noted that the approach we consider here subsumes that, ofgi@lely, consider a
policy LCW[B(R)] of [8], meaning that formul$(R) is to be minimized, whereas
all relations in, i.e. R, are allowed to vary. ThisCW policy is expressible by the
following LCC policy:

LCCISR < {VX[B(R) = S(X]},

wherex denotes all free variables ﬁ(F?) andSis a fresh relation symbol, not ap-
pearing among symbols R

An interesting question arises whether the current appraaws one to express all
tractableLCC policies, where by #&ractableLCC policy, we mean any CC policy
such that all minimized, maximized, and varied relatiorssRTiME-computable.
The following characterization shows that the method preskis strong enough
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to express all tractableCC policies. In other words, any tractabll€C policy can
always be reformulated in the form used in Lemma 1 below. kt.$: we provide
additional syntactic characterizationsl@fC policies that guarantee tractability.

Lemma 1. Given theLCC semantics fol.CC policies provided in Sect. 6.4 and
assuming that the database domain is ordered, all tractal@iepolicies can be
expressed as policies of the form,

LCCIL;K] : {Bi(X) — Li(X) : L € L},
where eaclf§j(X) is a first-order formula positive w.rk;.

Proof. Any relation computable in PME can be expressed by means of the least
fixed-point of a formula of the form,

Bi(x) — Li(x), (12)

provided that the database domain is ordered (see, e.jj. Si@ce all minimized,
maximized, and varied relations are assumed to be tracthlelecan be expressed
by the least fixed-points of formulas of the form (12), thusodly policyLCC[L;K] :

{Bi(¥ = L(X):LeL}. O

7.4 Complexity of the Approach

In general, the problem of querying the database in the poesaf unrestricted ICs
is co-NPTIME complete. On the other hand, some classe£af policies for which
the computation mechanism is in RIE can be isolated (see, e.g., [8] and also
Sect. 8.3).

8 Important Particular Cases

In this section, we consider a number of restrictions on Has allow us to compute
explicit definitions of the new relations as first-order anedi-point formulas. In
such cases, computing contextually closed queries is iMP.T

Let M(R) stand forlC U EDBUIDB, and assume that the ICs have the following
form:

VR[a(X) = BT). (13)

wherea andf are first-order formulas.

Definition 4. By a marking of relation symbols for the polickCC[L;K]:IC, we
understand a mapping assigning, to any relation symbol imothe local closure
policy LCCIL;K] and IC in theLCC policy, the least subset dimin,max} that is
closed under the following rules:
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1. For any relation symbd appearing irL positively, min is in the set of marks
of S
2. For any relation symb@ appearing ik negatively, max is in the set of marks
of S
3. Ifa(R) — B(S) isin IC, R Se LUK andSoccurs inB positively and is marked
by min, orSoccurs inf3 negatively and is marked by max; then,
¢ If Roccurs positively iro, min is in the set of marks d®.
¢ If Roccurs negatively i, max is in the set of marks &t.

4. If a(R) — B(S) is in IC, R, Se LUK anda contains a positive occurrence of
R andR is marked by max, oo contains a negative occurrenceRaNdR is
marked by min then:

¢ if Soccurs positively i3, then ‘max’ is in the set of marks &
o if Soccurs negatively i, then ‘min’ is in the set of marks @&.

An LCC[L;K]:IC policy is calleduniformif no relation symbol is marked by both
max and min.

Example 2.Let us consider the following integrity constraint:
[Car(x) ARedx)] — RedCarXx). (14)
The marking for the policy,
LCC[{RedCafx),Car(x)}; {Redx)}] : (14),

assigns the mark min to all the relation symbols. Thus theepd uniform. On the
other hand, the marking for the policy,

LCC[{RedCartx),~Car(x)}; {Redx)}] : (14),
assigns the mark min tBedand the markgmin,max} to Car andRedCar Thus
the latter policy is not uniform.
8.1 The Case of Universal.CC policies

Definition 5. By auniversalLCC policy, we understand any uniform policy,
LCCL;K]: IC,
in which IC is a set of constraints of the following form,
VI A[EPLR) A A £R(R)] = £P(X)}, (15)

wherePy, ..., B, P are relation symbols; is the vector of all variables occurring in
X1,y Xk, X, andX C X U ... U X.
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For universal integrity constraints, we will have a compiotamethod much more
efficient than that described in Sect. 7.2. In the rest ofghigion, we will consider
only universal.CC policiesLCCIL;K]:IC, for given sets of literal&,K and a set IC
of integrity constraints.

In the computation method for universal policies, we firgtstouct minimal rough

relations satisfying the EDB, IDB, and the integrity coasits, where minimality

is defined w.r.t. the so-calleidformation orderingconsidered by Fitting and van
Benthem (see, e.g., [2]) in the context of three-valueddegrlhe definition of in-

formation ordering follows.

Definition 6. Let R andSbe rough relations. We defineformation ordering de-
noted byRC S, as follows:

RCSE Rt cstandrR CS.

To find minimal w.r.t.C rough relations satisfying IC, EDB, and IDB, we will use
the following tautologies of first-order logic:

vk {a(R) = [BR) VMF)]} = vx {[a(R) A - (W]—>B( )
VX {[a(R) AM(Y)] = B(R)} = VX {a(R) — [B(R) V =M(¥]]

where it is assumed that all double negatiernsare removed.

}s (16)
}s

Definition 7. Let| be an integrity constraint of the form:

VX A[£RL(Y1) A - A ERm(Ym)] = £5(2)} . 17)

Let ¢ = LCC[L;K]:I be anLCC policy. By theexpansion of | w.r.t®, denoted by
Expf(1), we understand the least set of constraints of the form,

VX { l/\ Lic(%0)
k

obtained from (17) by applying the tautologies (16), suet #my (possibly negated)
literal of (17) containing a relation symbol occurring linK, is a consequent of
exactly one constraint.

a0

Example 3.Consider the integrity constraint

| £y {[-PO) ASK Y] = PO},
and the policy? = LCCIP; §:I. The expansion of w.r.t. 2 is defined as the follo-
wing set of constraints:
Exp’(1) = (V%Y. A{[-P(x) AS(x,y)] = P(y)}
V%,yA{[=P(y) AS(%,y)] = P(x)}
VXY A[=PO) A=P(y)] = =S(x y)}) -
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In the case of policy?’ =LCC[S;0]:1, the expansion df is defined as

Exp’ (1) = (¥x,y. {[-P(x) A=P(y)] = =S(x,y)}) .

Let us fix anLCC policy 2 =LCC[L;K]:IC. To compute the definition of minimal
w.r.t. C rough relations, satisfying the constraints IC, EDB, an@ |We consider
the following cases:

e If S ¢ LUK, then the positive part of the resulting relatid,(), contains
exactly the tuples present BDB"(S) U IDB*(S), and the negative part of
the resulting relation§™ (), contains exactly the tuples presenB®B (S) U
IDB™(S). _

If S= LUK, then we consider the set of integrity constraints:

{FG(a) : a € Expf(l) andl €IC },

where FG is the Feferman—Gilmore translation defined in di&m3.

We assume that the following integrity constraints, refferthe contents of
EDB and IDB, are implicitly given:

vy-{EDB'[S(y)] = S" ()},
vy.{EDB" [S(Y)] =+ S (V)}.
vy.{IDB*[S(y)] = S*(¥)},
Vy-{IDB”[Sy)] = S (¥)},

where the empty parSDB* (S(y)), EDB ™ (S(y)), IDB*(S(y)), andiDB~ (S(y))
are interpreted as false.

Now, for each§ € § gather all the ICs withﬁ+ as the consequent into the
following single formula:

W{ V Hz_ik-(ﬂk(§k)] - S*(@} (18)
| 1<k<k;
and all the ICs with§™ as the consequent into the following single formula:
Vy‘.{ V az,-.mi,-@] %&*(9)}- (19)
[ 1<j<ji

The following definitions of the positive and the negativetpd the required
minimal rough relations wrt policyP, indicated by the index, can now be
derived:

%(%EHS_@-[ V 3zwow(R).---, V az‘nk.cpnk(Ro] (20)

1<k<ky 1<k<kn
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S;M=uSY- | V 3z iRy, . V Fzmjbmi(R)|.  (21)
1<j<ia 1<j<jm
Observe that the syntactic restrictions placed on the I@sagquiee that the for-
mulas under the fixed-point operators are positive, thus,ntlonotone w.r.t.
Sand consequently, the fixed-points exist. Observe also féhaonrecursive
universalLCC policies, the fixed-point operators can be removed, and ¢fie d
nitions obtained are classical first-order formuts.

Having computed the suitable parts of the relations in adigrity constraints, one

can easily perform a consistency check, indicating whetieetCs can be satisfied
by the current contents of tiiEDBU IDB. For each relatioR(), one needs to assure
thatR"NR™ = 0.

Definition 8. Let 2 =LCCJL;K]:IC be anLCC policy. Therough negation for the
policy P, denoted by~ , is defined as follows:

e ~ satisfies the usual DeMorgan laws for quantifiers, conjonctind disjunc-
tion, and

e If Se LUK, then,

o If S¢ LUK, then,

def def
~pST)=S (), ~2S () =S,
def def
~p=ST) S-S, ~p=S ()=S0,
If the ICs are consistent witR DBU IDB, then the definitions of minimal and ma-
ximal rough relations satisfying the ICs and reflecting thmantics introduced in
Sect. 6.4 can be calculated as follol¥s:

Shin¥) = Sp, (22)
Sr?ﬁin(y) = ~r g;in(yji (23)
Shaxy) = Sp, (24)
S;ax(ﬂ =~ %ax(yj- (25)

11 In both cases, however, computing the defined parts of oelstan be done in time poly-
nomial in the size oEDBU IDB.

12 Observe that thecc policies provide us with direct information about whichatbns are
to be maximized, which are to be minimized, and which remaihanged.
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For nonrecursive universal policies, the fixed-point ofmsacan be removed, as
before.

Observe that definitions of varied predicates can now be atedby noticing that
these are the minimal w.ri&. rough relations satisfying the ICs in the new context
of minimized and maximized relations. It then suffices tolgplefinitions (20) and
(21) with minimized and maximized relations replaced byrtHefinitions obtained
as (22-25) , as appropriate.

Example 4.Consider the UAV sensing example introduced in Sect. 4. Hfiaition
of minimal Se€) is given by
Seé,(x,r) = Se€(x.r) Vv {3z [Moving" (x) AIn* (x,r)A
INROI* (r) A Sig' (x,2) Az # roadgray] } ,
Seg(x.r) = —Se€ (x,r) A {Vz [=Moving" (x) VIn~(x,r)V
INROI™ (r) V Sig™ (X,2) V z= roadgray] } .

The varied relatioMoving() is defined by

Moving,(x) = Moving"(x),
Moving,,(X) = Moving (X) V {3r3z [In*(x,r) AInROI*(r)A
Sig" (x,2) A z# roadgray A Seg,i,(x,1)] } .

Example 5.Consider the problem of determining whether a given car avad is
seen. We assume that large cars are usually seen. Our datairdains the follo-
wing relations:

Car() containing cars

Large() containing large objects

Seé) containing visible objects

Ab() standing for abnormal objects, i.e., large but invisiblgots.

Define the following integrity constraint IC:
Vx. {[Car(x) A Large(x) A —=Seéx)] — Ab(x)} .
We want to minimize abnormality, i.e., to minimize relatidb, while keeping the
relationsCar andLargeunchanged. The local closure policy is then
LCCI{AD(X)}; {Se€x)}.
According to Lemma 2.4, we obtain the following charactatians of Ab() and
Seé):
Abt. (x) = AbT (x) v [Cart (x) A Larget (x) A See
Abin(X) = Ab™(X) v [Car™ (x) V Large™ (x) v -~Se
Seg,(x) = Se€ (x) v [Car' (x) A Large’ (x) A Abr, (X)],
See, (X) = See (X).
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8.2 The Case of Semi-Horn.CC Policies
Assume that

1. Any integrity constraintC; is expressed as a formula of the form

VX [B;j () = Sj(¥)],

where for eachj = 1,...,n, Sj is a relation symbol an@;(X) is a first-order
formula.

2. AnyLCC assumptior_j, in the given_CC policy, has the forng; or —S;, where
S; is a relation symbol.

We now have the the following proposition.

Proposition 1. Under the above assumptions 1 and 2,

Circ(M(R);L;0) = M(R) A A\ W [-Lj(¥) V=A|(Y)], (26)
j=1

whereA;(y) is the following second-order formula:

Aj(ﬂzas_a@.{M(F?)/\ﬁL’j(y)/\ A V)Z[ﬁL{(@vLi(i)]}, (27)

1<i<n,i#]

in which R = SUK'U(R— S—K), L} stands forLj[S_<— S,K « K'] andM(R)
representtC’ UIDB' UEDB.

The following lemma holds under assumptions 1 and 2.
Lemma 2.

1. IftheLCC assumptior.j has the formnS; andp; is a semi-Horn formula, then
the elimination of second-order quantifiers is guarantadilie polynomial in
the size of formuld;.

2. If Bj is expressed as a weak semi-Horn formula, then the elinimafisecond-
order quantifiers is guaranteed in IRIE. The resulting formuld;(y) is a clas-
sical or fixed-point first-order formula. It is also guaraedehat elimination of
second-order quantifiers from the formdl&Circ(K) succeeds in time polyno-
mial in the size of formuld;. However, necessary computations may require
calculation of simultaneous fixed-points.

3. If Bj is expressed as a weak Ackermann formula, then the elirimafisecond-
order quantifiers is guaranteed in IRE, andA(y) is a classical first-order
formula. Elimination of second-order quantifiers from toenfiula3KCirc(K)
is also guaranteed in time polynomial in the size of fornfijla
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4. For of a consistent EDB, a uniforo€C policy, and nonrecursive integrity con-
straints Aj(y) is expressed by the following formula:

Aj(y) = LD (K + =K, =K’ + -K*),

in which allL; are replaced accordingly 3(K’) or —;(K’), =K; are replaced
by _'Ki+v andK; by —=K;".

5. If L; is of the formS; and—f; is a semi-Horn formula, then the elimination
of second-order quantifiers is guaranteed. However, thétireg formulaA, (y)
may have an exponential size w.r.t. the siz@pf

For semi-Horn formulas, the following lemma, simplifyingetinference method,
holds.

Lemma 3. If W(R) is a semi-Horn formula, then
IFR(&) iff Ruin = R(@),
IF=R(@) iff Rmax = —R(&),

whereRnmin (res_p.F?max) is a minimal (resp., maximal) relation satisfyiﬂqﬁ). In
this case, botRmin andRnax can be computed in RWE.

w(
w(

Z1 D

Thus, the general computation algorithm presented in 3ettan be specialized in
the following way: The inputs to the algorithm are the samm&sect. 7.2, however,
the LCC policy LCC[L;K]:IC is assumed to satisfy syntactic restrictions as formu-
lated in Lemma 2 by any of the points 1-4, accordingly. Notg #issumptions 1
and 2 from the beginning of this section, as required by Leriprghould also be
satisfied.

The specialized algorithm is formulated as follows:

1. ConstrucC = CIRC(ICUIDBUEDB;L;K) representing the givercC policy
applied to the IDB together with the EDB.

2. Eliminate second-order quantifiers from the formula wi#d in step 1. The
elimination is guaranteed to succeed inlRE. As a result, a first-order or fixed-
point formula is obtained.

3. Calculate the minimal extension Bfsatisfying formulaC. It can be done by
computing the minimaR from the second-order formulaR.C(R). As a result,
a definition of relatiorR, which is a definition oRY,,(), and a coherence con-
dition are obtained. If the coherence condition is not fiab&, terminate and
return the answer “unsatisfiable,” meaning that either b8 &nd IDB pair is
inconsistent or the ICs cannot be satisfied. All of the ab@mmaputations can
be performed in PTME.

4. Calculate the maximal extension Rfsatisfying formuleC. It can be done by
computing the maximdg from the second-order formulaR.C(R). As a result,
a definition of the complement &, is obtained. All of the above computa-
tions can be performed in PAIE.
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The algorithm presented above executes inMETand the necessary second-order
quantifier elimination can be performed automatically fgsthe techniques de-
scribed in [6,16,17,21]).

8.3 The Case of NonuniformLCC policies

Observe that in the case of nonunifot®C policies, we still might obtain tractable
subcases of the general case of policies. One such largeisldsfined in [8]. The
other classes are also discussed in Sect. 8.2, in particulsamma 2.

One of the promising methods depends on first computing theegmonding cir-
cumscription (applying the Doherty, tukaszewicz, Szalkg) algorithm of [6])

and then on computing the definitions of the required miniarad maximal rela-
tions by using the methodology developed in [4] and [7].

9 Conclusions

We proposed the use of rough knowledge databases to repiesemplete models
of aspects of an agent’s operational environment or worldehdRelations repre-
sented as tables were generalized to rough sets with pastifior positive, negative,
and boundary information. Then, we introduced the idea abraextually closed
query consisting of a query, a context represented as a $etegfity constraints,
and a local closure policy. TheCC policy, consisting of integrity constraints and
local closure policy, was applied to the intensional ancesional database lay-
ers before actually querying the RKDB. The combination obatextually closed
query and a RKDB provided the basis for an inference mechatfigit could be
used under the open-world assumption.

The inference mechanism and modeling approach has manigagns, particu-
larly in the area of planning with an open-world assumptighere sensor actions
and knowledge preconditions are essential components laragnd an efficient
query/answer system is used in both the plan generationxaatditton process. We
demonstrated the idea with a scenario from an unmanned aehi@le project. In
the general case, the problem of querying the RKDB usia@s is co-NPTIME
complete, but we could isolate a number of important prattases where polyno-
mial time and space complexity is achieved.

In the future, there are a number of interesting topics tepeurThe use of contextu-
ally closed queries in an open-world planner has alreadg bentioned. Another
particularly interesting issue has to do with updating tiB. Since each query-
ing agent “carries” its context with it, the issue of satisfii#dy of the integrity con-

straints relative to the EDB/IDB pair and satisfiability b&tpursuant minimization
policy are essential aspects of the approach. We have shatsdtisfiability can

be checked efficiently. Then, the research question is, twhauld be done when
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a query is not satisfiable relative to the EDB/IDB pair?” Thsisa question posed
and considered in the area of belief revision and update whiat is more tradi-
tionally called view update in the relational database .abeee final pragmatic issue
involves implementation of the techniques proposed in ¢higpter in an on-line
query/answering system for the WITAS UAV project discusisetthe chapter. Parts
of a prototype system have already been implemented andieatgxperiments in
a real-time context are planned for the future.
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