
Elaboration Tolerance through Object-Orientation

Joakim Gustafsson and Jonas Kvarnström
Department of Computer and Information Science

Linköping University
SE-581 83 Linköping, Sweden
{joagu,jonkv}@ida.liu.se

Abstract

Although many formalisms for reasoning about action
and change have been proposed in the literature, their
semantic adequacy has primarily been tested using tiny
domains that highlight some particular aspect or prob-
lem. However, since some of the classical problems are
completely or partially solved and since powerful tools
are available, it is now necessary to start modeling more
complex domains. This paper presents a methodology
for handling such domains in a systematic manner using
an object-oriented framework and provides several exam-
ples of the elaboration tolerance exhibited by the resulting
models.

1 Introduction

Traditionally, the semantic adequacy of formalisms for
reasoning about action and change (RAC) has primarily
been tested using tiny specialized domains that highlight
some particular point an author wants to make. These
domains can usually be represented as a small number of
simple formulas that are normally grouped by type rather
than structure.

However, with some of the classical RAC problems
completely or partially solved, and with powerful tools
available for reasoning about action scenarios, it is now
possible to model larger and more realistic domains. As
soon as we start doing this, it becomes apparent that
there is an unfortunate lack of methodology for handling
complex domains in a systematic manner. There are few
(if any) principles of good form, like the “No Structure in
Function” principle from the qualitative reasoning com-
munity [7].

The following are some questions that must be an-
swered in order to develop such a methodology:

Consistency: How can complex domains be modeled
in a consistent and systematic way, to allow multiple de-
signers to work on a domain and to enable others to un-
derstand the domain description more easily?

Elaboration tolerance [17]: How do we ensure that
domains can initially be modeled at a high level, with the
possibility to add further details at a later stage without
completely redesigning the domain description? How do
we design domain descriptions that can be modified in a
convenient manner to take account of new phenomena or
changed circumstances?

Modularity and reusability: How can particular
aspects of a domain be designed as more or less self-
contained modules? How do we provide support for
reusing modules?

In this paper, we investigate the applicability of the
object-oriented paradigm [1, 4] to answering these ques-
tions. Using the order-sorted logic TAL-C [11] as a
basis, we model the entities that appear in a domain
as objects, encapsulated abstractions that offer a well-
defined interface to the surrounding world and hide the
implementation-specific details. The interface consists of
methods that can be called by other objects. Objects
are instances of classes sharing the same attributes and
methods. Classes are ordered in an inheritance hierar-
chy where a class can be created as a subclass of another
class, inheriting its attributes and methods and possibly
adding its own or redefining inherited methods.

Modeling entities as objects and interacting with them
using methods provides a high degree of consistency in
the domain model. The fact that attributes are hidden
and accessed using methods increases elaboration toler-
ance, and modularity and reusability are aided by mod-
eling self-contained classes that are independent of the
implementations of other classes.

In the remainder of this paper, we will introduce TAL-C
(Section 2), show how domains can be modeled in TAL-C
in an object-oriented manner (Section 3), present a model
of the Missionaries and Cannibals domain (Section 4) and
some elaborations of this domain (Section 5), briefly men-
tion the Traffic World domain (Section 6), and finally
conclude with related work (Section 7) and a discussion
of the results (Section 8).

1



2 The TAL-C Logic

TAL-C [11] is a member of the TAL (Temporal Action
Logics [9]) family of logics. The basic approach for rea-
soning about action and change in TAL is as follows.

First, represent a narrative in the surface language
L(ND), a high-level macro language for representing ob-
servations, action descriptions, action occurrences, do-
main constraints, and dependency constraints (causal
constraints).

Second, translate the narrative into the base language
L(FL), an order-sorted first-order language with four
predicates:

• Holds(t, f, v) – the fluent f takes on the value v at
time t,

• Occlude(t, f) – f is exempt from the default assump-
tions at t (see below),

• Per(f) – f is persistent: Unless occluded at t + 1, it
must retain the value it had at time t,

• Dur(f, v) – f is durational: Unless occluded at t, it
must take on its default value v.

A linear discrete time structure is used. The minimization
policy is based on the use of filtered preferential entail-
ment [21] where action descriptions and dependency con-
straints are circumscribed with Occlude minimized and
all other predicates fixed; due to structural constraints
on L(ND) statements, this circumscription is equivalent
to using a predicate completion procedure. The result is
filtered with two nochange axioms, the observations and
domain constraints, and some foundational axioms such
as unique names, domain closure (all value domains are
finite) and temporal structure axioms. The second-order
theory can be translated into a logically equivalent first-
order theory which is used to reason about the narrative.

The translation from L(ND) to L(FL) is straightfor-
ward and the reader is referred to [9, 11] for details.

2.1 Macros in L(ND)

Since the purpose of this paper is not to extend TAL but
to show how the object-oriented paradigm can be used to
succinctly structure large axiomatic theories, only those
L(ND) macros that will be used in the examples will be
described.

A fixed fluent formula has the form [t]f =̂ v and is true
iff the fluent f has the value v at time t. For boolean
fluents, the shorthand notation [t]f or [t]¬f is allowed.
The function value(t, f) denotes the value of f at t.

Fluent values are changed using the Set operator,
which has also been denoted I (interval reassignment) in
some articles. The formula Set([t]f =̂ v), translated into

Holds(t, f, v) ∧ Occlude(t, f, v), means that f must take
on the value v at time t and that the fluent is exempt
from the persistence or default value assumption at that
timepoint.

For both types of formulas, boolean connectives are
allowed within the temporal scope. The notation is ex-
tended for open, closed and semi-open intervals.

Formulas in L(ND) are formed from these expressions
in a manner similar to the definition of well-formed for-
mulas in a first-order logical language using the standard
connectives, quantifiers and notational conventions. Free
variables are assumed to be implicitly universally quanti-
fied.

3 Object-Oriented Modeling in
TAL

As has been shown previously [11, 12, 14], TAL is a flex-
ible and fine-grained logic suitable for handling a wide
class of domains. We will now show how to use object-
oriented modeling as a structuring mechanism for domain
descriptions, thereby supporting the modeling of more
complex domains and increasing the possibility of being
able to reuse existing models when modeling related do-
mains.

To simplify the task of the domain designer, some ex-
tensions to the L(ND) syntax will be introduced. These
extensions are not essential: The new macros and state-
ment classes can mechanically be translated into the older
syntax. We provide informal definitions in this article,
and the complete translations will be presented in a forth-
coming technical report.

3.1 Defining Classes and Attributes

In TAL, domains are traditionally modeled using a set of
boolean or non-boolean fluents, each of which can take a
number of arguments belonging to specific value domains.
Each value domain is specified by explicitly enumerating
its members.

In the object-oriented approach, we will instead con-
centrate on classes and objects. Each class will be mod-
eled as a finite value domain, and each object as a value
in that domain. Due to the order-sorted type structure
used in TAL, inheritance hierarchies for classes are eas-
ily supported by modeling subclasses as subdomains. We
will assume that the hierarchy has a single root called
object.

Attributes (fields) associated with objects of a specific
class are specified in attribute declarations, and may have
arguments. An attribute a(s1, . . . , sn) of type s in a class c
is translated into a fluent a(c, s1, . . . , sn) : s taking an
additional argument of type c.



As an example, consider a simple water tank domain.
Any water tank has a volume, a maximum volume and a
base area, all of which are Real values:
dom object
dom tank extends object
attr tank.volume,tank.maxvol : Real

This is translated into the value domains tank and
object and the two fluents volume(tank) : Real and
maxvol(tank) : Real.

We define the new syntax obj .attr(x1, . . . , xn) def=
attr(obj, x1, . . . , xn), where n ≥ 0; if n = 0, the paren-
theses may be omitted.

Subclasses inherit the attributes of their parents (for
example, the argument to the volume fluent can belong
to a subdomain of tank), and can add a new set of at-
tributes. A tank with a flow in or out of the tank can be
modeled as follows:
dom flowtank extends tank
attr flowtank.flow : Real

3.2 Creating Objects

Objects are declared using object statements. Declaring
an object as a member of a class c naturally also makes it
a member of its superclasses. The mechanically generated
domain closure axioms ensure that no objects exist except
those explicitly defined using object statements.
obj tank1: tank
obj tank2, tank3: flowtank

Note that since classes correspond to value domains, it is
possible to quantify over all objects belonging to a given
class.

Attributes are initialized at time 0 using ordinary logic
formulas (observation statements). This also allows the
use of partially specified attributes:
obs ∀tank .[0] tank .volume =̂ 0
obs ∀flowtank .[0] flowtank .flow ≤ 2

3.3 Methods

In a classical object-oriented view, a method is a sequence
of code that is procedurally executed when the method is
invoked. In our approach, however, a method is a set of
formulas that must be satisfied whenever the method is
invoked. Methods can be invoked over intervals of time,
and several methods can be invoked concurrently.

Three different kinds of methods are defined: Muta-
tors (which are called in order to change the state of
an object), constraint methods (which are not explicitly
invoked but must hold at all timepoints), and accessors
(which query the state of an object).

Mutators can be called to change the internal state of
an object, and are modeled as dependency constraints
triggered by invocation fluents.

To define a mutator method with n ≥ 0 arguments of
sorts 〈s1, . . . , sn〉 in class class, we first define a boolean
durational invocation fluent method(class, s1, . . . , sn)
with default value false. The method implementation
consists of one or more dependency constraints where
the precondition contains method(class, s1, . . . , sn). To
call the method for the object obj with the actual argu-
ments x1, . . . , xn at time t, we make the invocation fluent
method(obj , x1, . . . , xn) true at t.

In order to make the syntax more similar to that of
ordinary object-oriented languages, a method call macro
Call(τ, f) def= Set([τ ]f =̂ >) is introduced and we define
obj .method(x1, . . . , xn) def= method(obj, x1, . . . , xn); if n =
0, the parentheses may be omitted.

For example, we can define a mutator set volume(Real)
in class tank and set the volume of tank1 to 4.5 at time 2
as follows:
dep ∀t, tank ∈ tank, f ∈ Real

[t]tank .set volume(f) → Set([t]tank .volume =̂ f)
dep Call(2, tank1.set volume(4.5))

Constraint methods model behaviors that should al-
ways be active. Instead of being triggered by invocation
fluents, constraint methods are active at all timepoints.
In a sense, they could be viewed as mutators that are
continuously invoked. This allows many common RAC
constructions such as state constraints to be expressed
while keeping an object-oriented viewpoint.

The fact that the volume of water in a flowtank
changes according to the flow of water can be encoded
as follows:
dep Set([t + 1]tank .volume =̂

value(t, tank .volume + tank .flow))

Accessors are used for querying the state of an object,
either by retrieving the current value of an attribute or
by performing complex calculations.

Accessors are modeled using return value fluents that
should take on the desired return value at all time-
points. Like constraint methods, accessors do not need
to be triggered but are active at all timepoints. For
example, a simple query volume() method for a water
tank can be modeled by introducing a persistent fluent
query volume(tank) : Real and adding the following de-
pendency constraint:
dep Set([t] tank.query volume() =̂ value(t, tank.volume)

A slightly more complex accessor might determine
whether the tank is full:
dep Set([t] tank.query full() ↔

value(t, tank .volume) = value(t, tank .maxvol))



3.4 Explicit Class Structure

In some cases, for example when overriding method imple-
mentations (Section 3.5.1), there are advantages to allow-
ing logic formulas to directly inspect the class structure.

Since TAL has no built-in means for doing this, we me-
chanically construct a value domain classname contain-
ing all class names before the translation from L(ND) to
L(FL). We also declare and initialize a boolean fluent1

subclass(classname, classname), where subclass(c1, c2) is
true iff c1 is a subclass of c2. For the water tank example,
the definitions would be equivalent to the following:
dom classname = {object,tank, flowtank}
acc ∀t, c1 ∈ classname, c2 ∈ classname

subclass(c1, c2) ↔
((c1 = flowtank ∧ c2 = object) ∨
(c1 = flowtank ∧ c2 = tank) ∨
(c1 = tank ∧ c2 = object))

3.5 Elaborating a Domain

There are numerous ways of elaborating an existing do-
main definition.

A new top-level class or subclass can be added using
a dom statement. This requires trivial changes to the
automatically generated classname domain and subclass
fluent.

Also, any class can easily be extended with new at-
tributes and methods without the need to modify the ex-
isting parts of the class definition. Adding new methods
may yield a new definition of the automatically generated
Occlude predicate (the TAL approach to solving the frame
problem). However, the new definition can be created by
analyzing the new methods in isolation and adding new
disjuncts to the existing definition of Occlude.

Finally, methods implemented in a superclass can be
overridden (redefined) in a subclass.

3.5.1 Overriding Method Implementations

The fact that the implementation of a method method
in class classname is overridden for an object object,
due to object belonging to a subclass where method is
overridden, is explicitly modeled using the boolean fluent
override(object,method, classname). This fluent is dura-
tional with default value false: Overriding only occurs
where explicitly forced.

Method implementations should be conditionalized on
not being overridden, and methods should explicitly over-
ride implementations in superclasses. The former is
achieved by adding a suitable override expression in the

1Although we do not intend to change subclass relations over
time, TAL has no support for time-independent functions.

precondition of the method. For example, we could mod-
ify the set volume mutator as follows:
dep ∀t, tank ∈ tank, f ∈ Real

[t]tank .set volume(f) ∧
¬override(tank , set volume,tank) →

Set([t]tank .volume =̂ f)

The latter is done by adding a statement of the following
form each time a method methodname is defined in a class
currentclass:
dep ∀t, c ∈ classnames, i ∈ currentclass

[t]subclass(currentclass, c) →
Set([t]override(i, methodname, c)),

where i ranges over all instances of cur-
rentclass. For convenience, the macro
ClassMethod(currentclass,methodname) will
be used as a shorthand for statements of this type.

3.6 Type Identification

A constraint method query type(): classname is intro-
duced in the root class object to support type identifica-
tion. During the translation process, an implementation
is generated for every class class as follows:
dep ClassMethod(class, query type)
dep ∀t, self ∈ class

[t]¬override(self , query type,class) →
self .query type() =̂ class

4 Missionaries and Cannibals

McCarthy [17] illustrates his ideas regarding elaboration
tolerance with 19 elaborations of the Missionaries and
Cannibals Problem (MCP). We will now model the ba-
sic, unelaborated problem using the object-oriented con-
structions presented above. As we will show in the next
section, the ability to override methods and to add new
methods and attributes also provides a natural way to
model many of the elaborations.

4.1 Overview of the Design

The basic version of the MCP is as follows:

Three missionaries and three cannibals come to
a river and find a boat that holds two. If the can-
nibals ever outnumber the missionaries on either
bank, the missionaries will be eaten. How shall
they cross in order to avoid anyone being eaten?

Although we know we will eventually need to model some
elaborated versions of the domain, we will attempt to
ignore that knowledge and provide a model suitable for
this particular version of the MCP. This will provide a



better test for whether the object-oriented model is truly
elaboration tolerant.

We will define classes for objects, boats, places, and
banks. Like Lifschitz [15], we will model missionaries and
cannibals as groups of a certain size rather than as indi-
viduals. In the standard domain, there will be six (possi-
bly empty) groups: Missionaries and cannibals at the left
bank, at the right bank, and on the boat.

OBJECT

PLACE BOAT GROUP

CANGROUPBANK MISGROUP

Although one could use the model only for prediction and
then apply standard planning algorithms to solve each
problem, we instead model the possible choice of actions
at each timepoint within the logic, using incompletely
specified constraint methods: Whenever there are people
on board a boat, it will automatically move to another
(unspecified) bank, and whenever a boat is at a bank, an
unspecified number of missionaries and cannibals (possi-
bly zero) will move between the two places.

The state at time 0 is constrained to be the initial state,
where everyone is at the left bank. Due to the incomplete-
ness in the constraint methods, there will generally be an
infinite number of logical models where people and boats
move in various ways.

An additional constraint method ensures that the can-
nibals never outnumber the missionaries in any location.

Finally, to find a plan that moves everyone to the right
bank within the given constraints, we assume (like Lifs-
chitz [15]) that we know the length l of the plan to be
generated. By constraining the state at time l to be a
solution state, we ensure that any logical model must cor-
respond to a valid plan.2

4.2 Object

The root class object has a pos attribute representing
its location:
dom object
attr object.pos: place

The following methods are available:
Mutator set pos(place): Sets the position of the
object.

2Note that this procedure depends on the fact that all incomplete
information corresponds to possible choices of actions rather than
incomplete knowledge about the world.

dep ClassMethod(object, set pos)
dep [t]¬override(object, set pos,object)∧

object.set pos(place) →
Set([t]object.pos =̂ place)

Accessor query pos(): Returns the position of the object.
dep ClassMethod(object, query pos)
dep [t]¬override(object, query pos,object) →

Set([t]object.query pos() =̂ value(t, object.pos))

In the remainder of this paper, attributes will generally
be assumed to have accessors and mutators following this
pattern.

4.3 Place

A place may be connected to other places. This is repre-
sented using a boolean attribute connection with a place
argument.
dom place extends object
attr place.connection(place) : boolean

The following methods are added:
Mutator add connection(place2): Connects this place
to place2.

Mutator remove connection(place2): Removes the con-
nection to place2.

Accessor query connection(place2): Returns true if this
place is connected to place2.

4.4 Bank

A bank is a place where a boat can be located. The
standard MCP has two banks: The left bank and the
right bank.
dom bank extends place

4.5 Group

A group represents a group of people in a certain loca-
tion; subclasses such as cangroup and misgroup will be
used for specific types of people. It adds two new meth-
ods and a size attribute specifying the number of people
in the group.
dom group extends object
attr group.size : Integer

Mutator modify group(group2,Integer): The first argu-
ment specifies who is modifying the group, which is nec-
essary to allow multiple groups to add or remove people
from this group concurrently. The second argument spec-
ifies the number of people being added or removed.

This method does not follow the standard pattern
where each invocation triggers a separate rule. Instead, a



single rule sums the arguments of all concurrent invoca-
tions:3

dep ClassMethod(group, modify group)
dep [t]¬override(group, modify group,group) →

Set([t + 1]size(group) =̂
value(t, size(group))+X

{〈g,x〉 | g∈group∧[t] group.modify group(g,x)}

x

Constraint move persons(): Moves an unspecified num-
ber of people (possibly zero) between compatible groups
in connected locations. Group objects are assumed to be
compatible iff they belong to the same class; group classes
for missionary groups and cannibal groups are defined be-
low. For example, if there is a group of cannibals g1 on the
left bank and a group of cannibals g2 on the boat, and
the boat is at the left bank (the places are connected),
then cannibals may move between g1 and g2. Note that
groups never move – people move by changing the size
of two groups.

The exact number of people moved by this method will
be constrained indirectly by the goal as described in Sec-
tion 4.1.
dep ClassMethod(group, move persons)
dep [t]¬override(g1, move persons,group) ∧

g1.query type() =̂ g2.query type() ∧
[t + 1]g1.query pos().query connection(g2.query pos()) →
∃Integer [−value(t, g2.query size()) ≤ Integer ∧

Integer ≤ value(t, g1.query size()) ∧
Call(t + 1, g1.modify group(g2,−Integer)) ∧
Call(t + 1, g2.modify group(g1, Integer))]

The macro people at(τ,group, place) will denote the
number of people at place that belong to the given group
group at time τ :

people at(τ,group, place) =∑
{g | g∈group∧[τ ]g.query pos()=̂place}

value(τ, g.query size())

For example, given that left denotes the left bank,
people at(7,cangroup, left) denotes the number of
cannibals on the left bank at time 7.

4.6 Cannibals

A cangroup is a group of cannibals.
dom cangroup extends group

Constraint eat constraint(): Specifies that there cannot
be more cannibals than missionaries at any place.

3Throughout this paper we will use summation over a set as a
shorthand. Since TAL uses finite domains, each expression can be
rewritten as a finite expression using plain addition.

4.7 Missionaries

A misgroup is a group of missionaries. The class extends
group and adds no new methods or attributes.
dom misgroup extends group

4.8 Boat

A boat is used to cross the river. Its onboard attribute
points to the place onboard the boat (the pos of any
group onboard the boat).
dom boat extends object
attr boat.onboard : place

There are two methods:
Constraint boat limit(): There must never be more than
two passengers.

Constraint move boat(): If anybody is onboard a boat,
the boat automatically moves to another (unspecified)
bank. The destination bank is unspecified, and will be
constrained indirectly by the goal as described in Sec-
tion 4.1.
dep ClassMethod(boat, move boat)
dep [t]¬override(boat, move boat,boat) ∧

boat.query onboard() =̂ place ∧
people at(t,group, place) > 0 →

∃bank′ [bank ′ 6= value(t, boat.query pos()) ∧
Call(t + 1, boat.set pos(bank′)) ∧
Call(t + 1, place.add connection(bank′)) ∧
Call(t + 1, place.remove connection(bank))]

4.9 General Constraints

Apart from the classes and methods specified above, there
are also two constraints that prune uninteresting state se-
quences. First, we should never be idle – at each time-
point, at least one group should change sizes. Second,
there should be at least one person on the boat, except at
the first and last timepoint. These constraints sometimes
provide a considerable increase in speed when searching
for a solution.

4.10 Setting Up the Problem

In order to set up a problem instance, we first have to
instantiate some objects. The boat will be called vera,
there will be two banks (left and right), and there are
groups of missionaries and cannibals in all three places.
obj left,right : bank
obj onvera : place
obj vera : boat
obj cleft,cvera,cright : cangroup
obj mleft,mvera,mright : misgroup



The following observation statements specify the at-
tributes of these objects:
obs [0]vera.pos =̂ left ∧ vera.onboard =̂ onvera
obs [0]cleft.pos =̂ left ∧ cleft.size =̂ 3
obs [0]cvera.pos =̂ onvera
obs [0]cright.pos =̂ right
obs [0]mleft.pos =̂ left ∧mleft.size =̂ 3
obs [0]mvera.pos =̂ onvera
obs [0]mright.pos =̂ right
acc [0]group.size =̂ 0 ↔ (group 6= mleft ∧ group 6= cleft)
acc [0]place1.connect(place2) ↔

((place1 = left ∧ place2 = onvera) ∨
(place1 = onvera ∧ place2 = left))

Finally, a goal is required. We know that the minimal
plan length is 12:
obs [12]mright.size =̂ 3 ∧ cright.size =̂ 3

5 Elaborations

According to McCarthy [17], elaboration tolerance is “the
ability to accept changes to a person’s or a computer pro-
gram’s representation of facts about a subject without
having to start all over”.

Several ideas used in the object-oriented paradigm fa-
cilitate the creation of elaboration tolerant domain mod-
els. This is not surprising, since the reasons behind the
object-oriented paradigm include modularization and the
possibility to reuse code. Inheritance makes it possible
to specialize a class, adding new attributes, methods and
constraints. Using overriding, the behaviors of a super-
class can be changed without knowing implementation-
specific details and without the need for “surgery” (Mc-
Carthy’s term for modifying a domain description by ac-
tually changing or removing formulas or terms rather than
merely adding facts).

Using the object-oriented model of the MCP domain
defined above as a basis, we have modeled the 19 elabo-
rations defined by McCarthy; the complete elaborations
will soon be available at the VITAL web page [13]. It
should be mentioned that some of the elaborations are
rather vaguely formulated, and we do not claim to have
captured every aspect of each problem or that the for-
malism always allows the elaborations to be expressed as
succinctly as possible. However, we do feel that the main
points have been modeled in a reasonable manner.

Below, we show how to model a subset of the elabora-
tions. The timings were generated by the research tool
VITAL [13] on a 440 MHz UltraSparc machine. We also
provide some comparisons with the 10 elaborations im-
plemented by Lifschitz [15] in the Causal Calculator [16],
which was run on an unspecified machine. The timings
are not directly comparable and should not be taken as
claims regarding the efficiency of the two approaches.

5.1 Domain and Problem Specifications

We will consider each problem to consist of two parts:
The domain specification, which defines the classes being
used together with their attributes and the inheritance
hierarchy, and the problem specification, which defines the
object instances being used in a specific problem instance
together with the initial values of their attributes.

Our focus has been on elaboration tolerance for the
domain specification. Each elaboration may add new
classes, or add new methods or attributes to existing
classes. Note that no part of the original L(ND) domain
specification is removed or modified except the definitions
of the classname domain and the subclass fluent.

Although it would have been possible to use similar
techniques to model the problem specification in Sec-
tion 4.10 in a defeasible manner, we instead make the as-
sumption that one is generally interested in solving many
different problems in the same general domain and that
the specific problem instances (such as the number of
missionaries and cannibals, the set of river banks, and
which places are connected) are generated from scratch
each time. The problem instance definitions for the elab-
orations below are generally trivial and will usually be
omitted.

5.2 The Original Problem

The original problem is solved in 2 seconds by VITAL.

5.3 The Boat is a Rowboat (#1)

The fact that the boat is a rowboat can be modeled by
making vera an instance of a new class rowboat. The
problem is still solved in 2 seconds.
dom rowboat extends boat
obj vera : rowboat

5.4 Hats (#2)

The missionaries and cannibals have hats, all different.
These hats may be exchanged among the missionaries and
cannibals.

While missionaries and cannibals used to be inter-
changeable and could be modeled as groups, they must
now be seen as individuals. The following classes and
attributes are added:
dom hat extends object
dom person extends object
attr person.hat : hat
attr group.contains(person) : boolean

The contains attribute is non-inert.
Nobody belongs to two groups, and everybody belongs

to a group:



dep ClassMethod(person, unique)
acc [t]¬override(person, unique, person) ∧

group1.query contains(person) ∧
group2.query contains(person) → group1 = group2

dep ClassMethod(person, belongs)
acc [t]¬override(person, belongs, person) →

∃group.[t]group.contains(person)

Finally, an additional rule is added for modify group: If
g1 moves n of its people to another group g2, then there
should be exactly n individual persons that used to be-
long to g1 but now belong to g2.
acc [t]¬override(g1, modify group,group) ∧

[t + 1]g1.modify group(g2, Integer) ∧
Integer ≥ 0 ∧ g1 6= g2 →P

{p | p∈person∧[t]g1.contains(p)∧[t+1]g2.contains(p)} 1 = Integer

This problem is solved (without exchanging any hats) in
50 seconds.

5.5 Four of Each (#3)

There are four missionaries and four cannibals. In our
terminology, this is a change in the problem specifica-
tion rather than in the domain specification. We there-
fore modify the problem specification accordingly. The
problem is unsolvable, which is detected by VITAL in 26
seconds.

5.6 The Boat Can Carry Three (#4)

There are four missionaries and four cannibals. The boat
can carry three people.

In the original MCP, the number of people onboard a
boat was restricted to two. Although it was obvious that
it would be useful to be able to model boats of varying
capacities, we nonetheless deliberately chose to hardcode
the capacity in the original boat limit method in order to
test the elaboration tolerance of the model. Thus, we now
need to create a subclass that overrides the old constraint.
But this time, we will do it the right way:
dom sizeboat extends boat
attr sizeboat.capacity : Integer
dep ClassMethod(sizeboat, boat limit)
acc [t]¬override(sizeboat , boat limit, sizeboat) →

people at(t,group, value(t, sizeboat .query onboard())) ≤
value(t, sizeboat.capacity)

A solution is found in 15 seconds (18 for Lifschitz).

5.7 Not Everybody Can Row (#6 and
#7)

In elaborations 6 and 7, not everybody can row. Two new
classes for rowing cannibals and rowing missionaries are
introduced:
dom rowcangroup extends cangroup

dom rowmisgroup extends misgroup

The new constraint method boat.row limit() ensures that
no boat moves unless there is someone aboard who can
row.
dep ClassMethod(boat, row limit)
acc [t]¬override(boat, row limit,boat) ∧

boat.query pos() 6=̂ value(t + 1, boat.query pos()) ∧
boat.query onboard() =̂ place →

people at(t,rowcan, place) +
people at(t,rowmis, place) > 0

Elaboration 6: Only one cannibal and one missionary
can row. Apart from the additions to the domain specifi-
cation, the problem specification must be modified so that
one rowing and two non-rowing cannibals are created, in
addition to one rowing and two non-rowing missionaries.
This problem is solved in 27 seconds (compared to Lifs-
chitz’ 273 seconds).

Elaboration 7: No missionary can row. The problem
is unsolvable, which is detected in 2.5 seconds.

5.8 Big Cannibal, Small Missionary (#9)

There is a big cannibal and a small missionary. The big
cannibal can eat the small missionary if they are alone in
the same place.

We add the classes smallmisgroup for small mission-
aries and bigcangroup for large cannibals together with
a constraint method eat small that ensures that a small
missionary and a big cannibal are never isolated together.
dom smallmisgroup extends misgroup
dom bigcangroup extends cangroup
dep ClassMethod(bigcangroup, eat small)
acc [t]¬override(bigcangroup, eat small,bigcangroup) ∧

people at(t,bigcangroup, place) = 1 ∧
people at(t, smallmisgroup, place) = 1 →
people at(t,group, place) > 2

With this addition, the problem is solved in 12 steps in
209 seconds (compared to Lifschitz’ 22 seconds).

5.9 Jesus (#10)

One of the missionaries is Jesus Christ, who can walk on
water. A new group class is created:
dom jesusgroup extends misgroup

The move persons method from Section 4.5 is then
overridden with a variation where the condition [t +
1]group.query pos().query connection(group2.query pos())
is removed from the precondition, allowing Jesus to move
between non-connected places (that is, to cross the river
without a boat).

This problem is solved in 4 seconds.



5.10 Conversion (#11)

Three missionaries can convert an isolated cannibal. Add
a constraint method convert in class misgroup:
dep ClassMethod(misgroup, convert)
dep [t]¬override(misgroup, convert,misgroup) ∧

people at(t,misgroup, place) ≥ 3 ∧
people at(t,cangroup, place) = 1 →
Call(t + 1,misgroup.modify group(misgroup, 1)) ∧
Call(t + 1,misgroup.modify group(cangroup,−1))

This elaboration takes advantage of the true concurrency
in TAL [11]. For example, modify group automatically
handles situations where a cannibal is boarding a boat
while another is being converted to a missionary.

This problem is solved in 3 seconds. This cannot be
compared to Lifschitz’ solution, which does not permit
this kind of concurrency.

5.11 The Boat Might Be Stolen (#12)

Whenever a cannibal is alone in a boat, there is a 1/10
probability that he will steal it. Although TAL has no
support for probability reasoning, it is possible to de-
termine the probability that any particular boat will be
stolen using an attribute prob not stolen initialized to 1.0.
Whenever a cannibal is alone in a boat, the constraint
method update prob multiplies prob not stolen by 0.9; the
value of boat .prob not stolen at the final timepoint of a
model is the probability of that particular plan succeed-
ing.
attr boat.prob not stolen : Real
obs ∀boat.[0]boat.prob not stolen =̂ 1.0
dep ClassMethod(boat, update prob)
dep [t]¬override(boat, update prob,boat) ∧

boat .query onboard() =̂ place ∧
people at(t,group, place) = 1 ∧
people at(t,cangroup, place) = 1 →
Set([t + 1]boat .prob not stolen =̂ 0.9 ∗
value(t, boat .prob not stolen))

A plan is found in 7 seconds.

5.12 The Bridge (#13)

There is a bridge, where two people can cross concur-
rently. Add a bridge class and ensure that at most two
people can be on any bridge:
dom bridge extends place
dep ClassMethod(bridge, bridge limit)
acc [t]¬override(bridge, bridge limit,bridge) →

people at(t,group, bridge) ≤ 2

Then instantiate a bridge and connect it to the left and
right banks. This problem is solved in 2.5 seconds and
requires 5 steps. Since Lifschitz does not allow the use of
the bridge and the boat concurrently, the solutions cannot
be compared.

5.13 The Boat Can Be Damaged (#15)

The boat may suffer damage and have to be taken back
to the left side for repairs. In this elaboration, the boat
cannot move between banks instantaneously. We add a
new bank onriver and a new class slowboat for boats
that spend some time on the river before arriving.
dom slowboat extends boat
attr slowboat.emergency : boolean
obj onriver : bank

The original move boat method is overridden and split
into two parts: (1) If the boat is at a bank and someone
is on board, move to onriver, and (2) if the boat has been
on the river during crosstime timepoints and there has
been no emergency during this interval, move to another
bank. The second part takes advantage of TAL’s ability
to handle delays [8, 12]
dep ClassMethod(slowboat, move boat)
dep [t]¬override(slowboat, move boat, slowboat) ∧

slowboat.query onboard() =̂ place1 ∧
slowboat.query pos() =̂ place2 ∧
place2 6= onriver ∧

people at(t,group, place1) > 0 →
Call(t + 1, slowboat.set pos(onriver)) ∧
Call(t + 1, place.remove connection(place2))

dep [t]¬override(slowboat, move boat, slowboat) ∧
slowboat.query onboard() =̂ place ∧
slowboat.query pos() 6=̂ onriver ∧

(t, t + crosstime] slowboat.query pos() =̂ onriver ∧
(t, t + crosstime] slowboat.query emergency() =̂ ⊥ →
∃bank[[t] slowboat.query pos() 6=̂ bank ∧

Call(t + crosstime, slowboat.set pos(bank)) ∧
Call(t + crosstime, place.add connection(bank))]

If there is an emergency, the boat should move to the left
bank and be repaired:
dep ClassMethod(slowboat, emergency behavior)
dep [t]¬override(slowboat, emergency behavior, slowboat) ∧

slowboat.query emergency() ∧
slowboat.query onboard() =̂ place →

Call(t + 3, slowboat.set pos(left)) ∧
Call(t + 3, place.add connection(left)) ∧
Call(t + 3, slowboat.set emergency(⊥))]

If crosstime = 3 and the boat breaks once, at time 20,
this problem is solved in 49 seconds.

5.14 The Island (#16)

If an island is added, the problem can be solved with four
missionaries and four cannibals. Change the number of
people initially present on the left bank and add an island
object:
obj island instanceof bank

The problem is solved in 4862 seconds (compared to 1894
seconds for Lifschitz’ partial solution where three mission-
aries and three cannibals end up on the right bank).



5.15 Two Sets of People (#19)

There are two sets of missionaries and cannibals too far
apart along the river to interact. A new attribute con-
nected keeps track of which banks are connected:
attr bank.connected(bank) : boolean

Any boat moves nondeterministically between all banks.
The constraint method move connected ensures that the
origin and destination are connected.
dep ClassMethod(boat, move connected)
dep [t]¬override(boat , move connected,boat) →

boat .query pos().query connected(
value(t + 1, boat .query pos()))

This problem is solved in 16 seconds.

6 Traffic World

The object-oriented framework presented in this paper
has also been used for modeling the Traffic World scenario
proposed in the Logic Modeling Workshop [20], previously
modeled by Henschel and Thielscher [10] using the Fluent
Calculus [22]. This domain consists of cars moving in a
road network represented as a graph structure, together
with a TAL controller class that “drives” a car. A com-
plete TAL action scenario will soon be available at the
VITAL web page [13].

7 Related Work

Much work has been done in combining ideas found in
object-oriented languages with the area of knowledge rep-
resentation. One such area is description logics [5, 6], lan-
guages tailored for expressing knowledge about concepts
(similar to classes) and concept hierarchies. They are
usually given a Tarski style declarative semantics, which
allows them to be seen as sub-languages of predicate logic.
Starting with primitive concepts and roles, one can use
the language constructs (such as intersection, union and
role quantification) to define new concepts and roles. The
main reasoning tasks are classification and subsumption
checking.

Description logic hierarchies are very dynamic, and it
is possible to add new concepts or objects at runtime
that are automatically sorted into the correct place in
the concept hierarchy. Some work has been done in com-
bining description logics and reasoning about action and
change [3].

The modeling methodology presented in this paper uses
a simpler class hierarchy that is fixed at translation time.
Classes are explicitly positioned in the hierarchy, and
classes and objects cannot be constructed once the narra-
tive has been translated. Also, description logics do not

use methods or explicit time, both of which are essential
in the work presented here.

The approach presented in this chapter bears more
resemblance to object-oriented programming languages
such as Prolog++ [19], C++ or Java. In most such lan-
guages, however, a method is a sequence of code that is
procedurally executed when the method is invoked. In
our approach, a method is a set of rules that must be sat-
isfied whenever the method is invoked. Since delays can
be modeled in TAL, methods can be invoked over inter-
vals of time and complex processes can be modeled using
methods. It is also possible to invoke multiple methods
concurrently.

An interesting approach to combining logic and object-
orientation is Amir’s object-oriented first-order logic [2],
which allows a theory to be constructed as a graph of
smaller theories. Each subtheory communicates with the
other via interface vocabularies. The algorithms for the
object-oriented first-order logic suggest that the added
structure of object-orientation can be used to significantly
increase the speed of theorem proving.

The work by Morgenstern [18] illustrates how inher-
itance hierarchies can be used to work with industrial
sized applications. Well-formed formulas are attached to
nodes in an inheritance hierarchy and the system is ap-
plied to business rules in the medical insurance domain.
A special mechanism is used to construct the maximally
consistent subset of formulas for each node.

8 Discussion

This paper has presented a way to do object-oriented
modeling in an existing logic of action and change. This
allows large domains to be modeled in a more systematic
way and provides increased reusability and elaboration
tolerance.

The main difference between our work and other ap-
proaches to combining knowledge representation and
object-orientation is due to the explicit timeline in TAL.
Methods can be called over time periods or instanta-
neously, concurrently or with overlapping time intervals.
Methods can relate to one state only or describe processes
that take many timepoints to complete.

Although a number of new macros have been intro-
duced in this paper, those macros are merely syntactic
sugar serving to simplify the construction of domain de-
scriptions. Thus, the most important contribution is not
the syntax but the structure that is enforced on standard
TAL-C narratives to improve modularity and reusability.
It is also reasonable to believe that the added structure
could be used to make theorem proving in L(FL) more
efficient, although the current version of VITAL does not
take advantage of this.



9 Acknowledgements

This research is supported in part by the Swedish
Research Council for Engineering Sciences (TFR), the
WITAS Project under the Wallenberg Foundation and
the ECSEL/ENSYM graduate studies program.

References

[1] M. Abadi and L. Cardelli. A Theory of Objects.
Springer Verlag, 1996.

[2] E. Amir. Object-oriented first-order logic. Linköping
Electronic Articles in Computer and Information Sci-
ence, 2001.

[3] A. Artale and E. Franconi. A temporal description
logic for reasoning about actions and plans. Jour-
nal of Artificial Intelligence Research, Vol 9:463–506,
1998.

[4] G. Booch. Object-Oriented Design with Applications.
The Benjamin/Cummings Publishing Company, Inc,
1991.

[5] A. Borgida, R. Brachman, D. McGuinness, and
L. Resnick. CLASSIC: A structural data model for
objects. In Proceedings of the 1989 ACM SIGMOD
International Conference on Management of Data,
pages 58–67, Portland Oregon, May-June 1989.

[6] R. Brachman, R. Fikes, and H. Levesque. KRYP-
TON: A functional approach to knowledge represen-
tation. Computer, 16:67–73, 1983.

[7] J. de Kleer and J. S. Brown. A qualitative physics
based on confluences. Artificial Intelligence, 24:7–83,
1984.

[8] P. Doherty and J. Gustafsson. Delayed effects of
actions = direct effects + causal rules. Linköping
Electronic Articles in Computer and Information
Science, 1998. Available on WWW: http://
www.ep.liu.se/ea/cis/1998/001.

[9] P. Doherty, J. Gustafsson, L. Karlsson, and
J. Kvarnström. TAL: Temporal Action Logics
– language specification and tutorial. Linköping
Electronic Articles in Computer and Information
Science, 3(15), September 1998. Available at
http://www.ep.liu.se/ea/cis/1998/015.

[10] A. Henschel and M. Thielscher. The LMW
traffic world in the fluent calculus. Linköping
University Electronic Press. http://www.ida.liu.se/
ext/epa/cis/lmw/001/tcover.html, 1999.

[11] L. Karlsson and J. Gustafsson. Reasoning about con-
current interaction. Journal of Logic and Computa-
tion, 9(5):623–650, October 1999.

[12] L. Karlsson, J. Gustafsson, and P. Doherty. Delayed
effects of actions. In Proceedings of the Thirteenth
European Conference on Artificial Intelligence, pages
542–546, Aug 1998.

[13] J. Kvarnström and P. Doherty. VITAL. An
on-line system for reasoning about action and
change using TAL, 1997–2001. Available at http://
www.ida.liu.se/∼jonkv/vital.html.

[14] J. Kvarnström and P. Doherty. Tackling the
qualification problem using fluent dependency con-
straints. Computational Intelligence, 16(2):169–209,
May 2000.

[15] V. Lifschitz. Missionaries and cannibals in the causal
calculator. In Principles of Knowledge Represen-
tation and Reasoning: Proceedings of the Seventh
International Conference (KR2000), pages 85–96,
April 2000.

[16] N. McCain and the Texas Action Group. The causal
calculator. http://www.cs.utexas.edu/users/tag/cc/.

[17] J. McCarthy. Elaboration tolerance. In Common
Sense 98, London, Jan 1998.

[18] L. Morgenstern. Inheritance comes of age: Apply-
ing nonmonotonic techniques to problems in indus-
try. Artificial Intelligence, 103:1–34, 1998.

[19] C. Moss. Prolog++, The power of object-oriented
and logic programming. Addison-Wesley, 1994.

[20] E. Sandewall. Logic modelling workshop: Com-
municating axiomatizations of actions and change.
http://www.ida.liu.se/ext/etai/lmw.

[21] E. Sandewall. Filter preferential entailment for the
logic of action and change. In Proceedings of the
Eleventh International Joint Conference on Artifi-
cial Intelligence, (IJCAI-89), pages 894–899. Mor-
gan Kaufmann, 1989.

[22] M. Thielscher. Introduction to the fluent calcu-
lus. Electronic Transactions on Artificial Intelli-
gence, 3(014), 1998. http://www.ep.liu.se/ea/cis/
1998/014/.


