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TACKLING THE QUALIFICATION PROBLEM USING
FLUENT DEPENDENCY CONSTRAINTS
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In the area of formal reasoning about action and change, one of the fundamental representation
problems is providing concise modular and incremental specifications of action types and world models,
where instantiations of action types are invoked by agents such as mobile robots. Provided the
preconditions to the action are true, their invocation results in changes to the world model concomitant
with the goal-directed behavior of the agent. One particularly difficult class of related problems,
collectively called the qualification problem, deals with the need to find a concise incremental and
modular means of characterizing the plethora of exceptional conditions that might qualify an action, but
generally do not, without having to explicitly enumerate them in the preconditions to an action. We
show how fluent dependency constraints together with the use of durational fluents can be used to deal
with problems associated with action qualification using a temporal logic for action and change called
TAL-Q. We demonstrate the approach using action scenarios that combine solutions to the frame,
ramification, and qualification problems in the context of actions with duration, concurrent actions,
nondeterministic actions, and the use of both Boolean and non-Boolean fluents. The circumscription
policy used for the combined problems is reducible to the first-order case.

Key words: action theories, nonmonotonic reasoning, temporal logic, qualification problem, circum-
scription.

1. INTRODUCTION

The primary focus of research in the area of formal reasoning about action and
change considers representation problems associated with an autonomous agent, such

Ž . Ž .as a mobile robot UGV or an unmanned aerial vehicle UAV , interacting with a
highly complex and dynamic environment in which the agent behaves in a goal-directed
manner. A primary goal of the research is to develop modeling and verification tools
that can be used by engineers in the development of such agents and by the agents
themselves, who require both representations of the environment and limitations of
their behavior in the environment in order to execute tasks to achieve goals. Due to
the dynamic and causal nature of an agent’s interaction with its environment, temporal
logic formalisms are ideal candidates for world modeling, task and planning specifica-
tion, and causal reasoning. The use of temporal logic formalisms provides a suitable
basis for both specifying and verifying the complex activity associated with agent
interaction with complex environments.

When one focuses on the type of complex environments associated with UGVs and
UAVs, it immediately becomes clear that it is in general computationally, epistemolog-
ically, and ontologically infeasible to completely represent the environment an agent is
embedded in and the action types it has at its disposal when interacting with its
environment. This leads to the use of nonmonotonic extensions to temporal formalisms
which contribute to providing succinct and modular representations of incomplete
world model specifications and action type specifications. This article focuses on the
representation of action type specifications and agent task representations in terms of
narratives. In our approach, narratives consist of different classes of statements, which
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include action type specifications, timed action occurrences, observations, domain and
dependency constraints, and additional timing information relating statements to each
other. Narratives can be viewed as agent programs to be executed by an agent, or as
hypothetical courses of action an agent can reason about when generating its own
plans, or simply trying to understand how its future actions will affect its external
environment, or to what degree its past actions have achieved its previous goals.

Three difficult modeling problems associated with the formal specification of
action types in the context of complex, dynamic environments are the frame, ramifica-
tion, and qualification problems. These problems have been a topic of continual
research in the action and change community. Briefly, the frame problem concerns the
need to find a concise and efficient means of representing and reasoning about what
does not change when an action or actions are executed by an agent. The ramification
problem concerns the need to separate the representation of the direct effects of an
action type description from the plethora of indirect effects that may ensue when the
action is executed successfully. An important aspect of the problem is to deal with the
context dependent and causal nature of the chains of indirect effects that may ensue.
The qualification problem, which is the problem we focus on, concerns the need to find
a concise, incremental, and modular means of characterizing the plethora of excep-
tional conditions that might qualify an action, but generally do not, without having to
explicitly enumerate them in the precondition to the action type. A solution to one of
these problems generally implies a solution to the other two due to the interactions
between preconditions, postconditions, and indirect effects of action occurrences.

Ascertaining whether one has solutions to each of these problems is as difficult as
finding the solutions themselves. The reason for this is that solutions may work well
when based on a particular set of assumptions regarding the ontological nature of the
environment an agent is embedded in and the particular epistemological constraints
placed on the agent itself, but may not work well when these assumptions and
constraints are relaxed. Rather than there being one frame, ramification and qualifica-
tion problem, we would claim that there are different solutions for different combina-
tions of epistemological and ontological assumptions. This working hypothesis is well in

Ž .line with the approach used by Sandewall 1994 in his study of the frame problem
using the Features and Fluents framework.

For example, some ontological assumptions concerning action types are whether
actions with duration, nondeterministic actions, or concurrent actions are possible. An
epistemological assumption would be whether an agent has complete knowledge about
all the effects of an action, or whether one can assume complete and accurate sensory
data about the environment. An additional factor when evaluating a solution pertains
to what types of reasoning tasks one has in mind for the agent. If one is concerned with
a predictive mechanism for the agent used when generating a plan, a solution to the
qualification problem which works here might not work if one is concerned with a
postdictive mechanism for the agent used after executing a number of actions in a plan
and gathering sensor data about the results.

We will first informally discuss some of the different ontological and epistemologi-
cal choices that may affect the nature of solutions to the qualification problem. We will

Ž .then present a complex narrative description, the Russian Airplane Hijack RAH
Scenario, which in order to be adequately represented in any logical formalism would
require robust solutions to the frame, ramification, and qualification problems. We say
robust because a description of the RAH world requires the representation of
concurrent actions, incomplete specification of states, ramification with chaining, the
use of non-Boolean fluents, fine-grained dependencies among objects in different
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Žfluent value domains, actions with duration, two types of qualification weak and
.strong , and the use of explicit time, in addition to other features. To our knowledge,

this provides one of the more challenging benchmark examples in the literature. It is
challenging in the sense that it involves solutions to all three representation problems
and the ontological assumptions pertaining to allowable action types are relatively
complex.

The RAH narrative description will be used as a vehicle for considering different
facets of the qualification problem and demonstrating our solutions to the problem. To

Ž .do this, we will first introduce TAL-Q Temporal Action Logic with Qualification , an
Ž .extension to the already existing TAL family of logics see Doherty et al. 1998 which

has sufficient expressivity to model the RAH scenario. TAL-Q is an incremental
Ž .extension of an earlier logic called TAL-C Karlsson and Gustafsson 1999 , just as

Ž .TAL-C is an incremental extension of TAL-RC Gustafsson and Doherty 1996 . In
fact, the logical language and minimization policy is roughly the same for TAL-RC,
TAL-C, and TAL-Q. The advantages of leaving the logic and minimization policy intact
are that the new class of narrative descriptions that can be represented in TAL-Q
subsumes previous classes and that any circumscribed scenario in TAL-Q is provably
and automatically reducible to a first-order theory implemented in an on-line research

Ž .tool developed by our group called VITAL Kvarnstrom and Doherty 1997 , which¨
permits the visualization and querying of narrative descriptions.

After introducing TAL-Q, we will use it to represent the RAH narrative descrip-
tion. This will be done in stages. Initially, we will represent the narrative under the
assumption that actions always succeed. We will then modify the representation with
qualification conditions for action types and a mechanism for reasoning about qualified
action types based on the use of durational fluents and dependency constraints. The
use of durational fluents in combination with a simple form of circumscription provides
a flexible means for incorporating a default mechanism into TAL-Q.

We will then use TAL-Q to consider a number of additional aspects pertaining to
qualification in the context of different ontological choices such as the use of concur-
rent actions. We will also briefly consider two alternative approaches to qualification
that can be represented using TAL-Q. Finally, we will direct our attention toward a
number of benchmark examples in the literature, representing them using TAL-Q, and
then compare our approach to qualification with a number of other approaches in the
literature.

2. THE QUALIFICATION PROBLEM

Before it is possible to design or assess any approach to solving the qualification
problem, we must define in more detail what the qualification problem is.

Let us assume that there is an environment, a ‘‘real world,’’ in which actions can be
executed by one or more agents. Let us also assume that each action has a well-defined
intended effect. For example, in the well-known blocks world, the intended effect of the

Ž .action putdown x is that in the resulting state, the block x the agent is currently
holding should be on the table and all other blocks should be unaffected by the action.

When reasoning about this world using a temporal action logic, we need a correct
description of the preconditions and effects of each action type that can be used by an
agent. If it is possible to find a model of the world that is both simple and correct, at
least at some level of abstraction, it should be straightforward to find such a descrip-
tion of preconditions and effects of actions. However, in more complex worlds,
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describing an action may be far more difficult, and the resulting preconditions may be
extremely complicated. This complexity is often due to the large number of conditions
that are almost always false, but when satisfied, can cause an action to fail to achieve
its intended effects. We will call such exceptional conditions qualifications, and if one

Žor more of an action’s qualifications hold, the action will be said to be qualified. In
.some cases, even ‘‘nonexceptional’’ conditions will also be considered as qualifications.

The potentially large number of qualifications to an action leads to a number of
representational and implementational difficulties that are collectively called the
qualification problem. Some of these difficulties are discussed below.

2.1. Restricting the Problem

The qualification problem is a complex problem with many different aspects, and it
would be very optimistic to assume that we can design a single solution that covers all
these aspects. Instead, it is necessary to determine in advance which aspects of the
problem should be addressed by the solution we are designing or assessing, which

Ž .reasoning tasks such as prediction or planning should be supported by the solution,
and which ontological and epistemological assumptions will be made regarding the
worlds for which the solution should be applicable and the agents that will apply it.
Below, we will consider these questions in some more detail.

Aspects of the Qualification Problem. Although the difficulties associated with the
qualification problem are closely related, it is possible to isolate several aspects of the
problem that may be tackled separately. Some of these aspects pertain to the following:

v Due to incomplete knowledge about the world one is reasoning about, it may be
impossible, or at least very difficult, to find and enumerate all qualifications to an
action. A classical example of this aspect of the qualification problem is the ‘‘potato

Ž .in tailpipe’’ problem Ginsberg and Smith 1988 : In order to start a car, there must
be nothing wrong with the battery, there must be gas in the tank, there must not be
a potato in the tailpipe, and so on. No matter how many conditions we manage to
think of, there will surely always be more.

v Even when it is possible to know all qualifications to an action, the complexity of
these conditions may require a highly expressive logic, unless we are willing to
abstract away from some aspects of the world and be satisfied with incomplete
specifications and a mechanism to deal with this incompleteness.

v The information we do have about the conditions under which an action is qualified
needs to be represented in a modular manner, so that conditions may be added or
removed incrementally.

v Assuming that actions are normally not qualified, the need to explicitly prove that
each qualification condition does not hold may be computationally inefficient.

In this article, we will mainly concentrate on the representational problems associated
with qualification}that is, modular and incremental representations of qualified
action types.

In order to assess or design a solution to the qualification problem, we also need to
specify the reasoning tasks that will be used by an agent in achieving goals via
execution of actions. For example, an agent interested in determining why an action
failed using postdiction may need a different solution than an agent that is solely
interested in predicting the results of invoking a sequence of actions.
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We will mainly consider off-line reasoning tasks such as prediction, postdiction,
and planning.

Ontological and Epistemological Assumptions. It is also necessary to determine
which ontological assumptions will be made regarding the world in which the solution
will be applied, as well as which epistemological assumptions will be made about the
agent’s knowledge of the world and of the effects of its actions. Perhaps the most
important such assumption is that of what will happen in the world if the agent invokes
a qualified action. The following are some of the assumptions that may be reasonable,
depending on the world that is being modeled:

v Invoking a qualified action has no effect at all on the world.
v Invoking a qualified action affects the world, but we always know what effects it will

have even when it is qualified.
v Invoking a qualified action affects the world in an unknown way, but only during the

time interval when the action is being executed.
v Invoking a qualified action affects the world in an unknown way, and may trigger

unknown chains of events that continue affecting the world after the action has
finished executing.

However, there are also many other assumptions that may affect the applicability of a
solution. The following are some examples of additional questions that need to be
answered:

v Is there complete information about the initial state in a narrative? Is there any
information about any other state in terms of observations made by the agent?

v Can actions be context-dependent? Can they be nondeterministic? Can they have
Žduration, and if they can, do they have internal state that is, may fluents change,

.discretely or continuously, within the duration of an action ? Can they have delayed
effects? Can there be concurrent actions? If so, can actions overlap partially?

v Can there be dynamic processes continuously taking place independently of the
actions invoked by the agent?

v In the presence of incomplete information and nondeterministic actions, are there
domain constraints that exclude certain ‘‘impossible’’ states? Are there domain
constraints that exclude certain ‘‘impossible’’ sequences of states? Can domain
constraints vary over time?

v ŽAre actions allowed to have indirect side effects? Can side effects be delayed take
.place after the action has finished executing ? Can they trigger other side effects?

Clearly, the more complex the ontological and epistemological assumptions are, the
more restricted our choices will be when attempting to solve the qualification problem
for that particular class of worlds. Consequently, we need to determine these assump-
tions in advance.

Ideally, we would like to formally assess the correctness of different solutions to
the qualification problem relative to a given class of narrative descriptions, specified via

Ž .epistemological and ontological assumptions as Sandewall 1994 has done for the
frame problem. However, extending Sandewall’s framework for qualification}as well
as ramification, concurrent actions, and other extensions we may want to use in
combination with qualification}is outside the scope of this article. Instead, we will
discuss in a more informal manner some of the questions that need to be considered
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when a solution to the qualification problem is designed and some of the effects the
choice of reasoning task and our assumptions about the class of worlds we are
reasoning about may have on the answers to these questions. We will then provide
formal, but formally unassessed, solutions using TAL-Q. Some of the existing solutions
in the literature will also be considered from this point of view in Section 10.

2.2. Designing a Solution

We have now considered four questions: Which aspects of the qualification
problem a solution should address, which reasoning tasks it should support, which
ontological assumptions should be made regarding the worlds to which it is applicable,
and which epistemological assumptions should be made regarding the agents that
should apply it. For each of these questions, the answer will depend mainly on the class
of problems we are trying to solve. For example, for anyone developing an agent

Ž .controlling a UAV unmanned aerial vehicle , the computational aspects of the
qualification problem are very important; prediction, postdiction and planning may all
be useful; and one must probably be able to model context-dependent concurrent
actions with duration.

However, there are also certain design choices that may be made more or less
independently of the problem or class of problems that should be solved. Some of these
choices are discussed in this section.

How Should Qualification Conditions Be Expressed? By definition, an action is
qualified if it is somehow prevented from having its intended effects. There are
basically two aspects to the problem. In an offline mode, for example, when an agent is
generating a plan, a predictive mechanism might simulate the possible future state of
the world given that the agent executes a sequence or partially ordered sequence of
actions and find that the sequence violates certain domain or dependency constraints.
In this case, either the domain or dependency constraints have been incorrectly
specified, or the action type descriptions are not precise enough and a qualification
condition for one or more actions has to be added. In an online mode, the agent
actually executes sequences of actions and finds that one or several have not achieved
their intended effects. This information is derived from actual sensory data. Since the
world is its own model, either one has inaccurately specified the ontological assump-
tions that pertain to the world or a rare qualifications has arisen and that qualification
condition should be added to the agent’s action type specification in an incremental
manner so the next time the condition arises, the action will not be executed due to the
explicit qualification. So, the qualification problem does not rule out adding a number
of qualifications to an action, but any solution tries to minimize the number of explicit
qualifications per action, and those that are added are added in a modular and
incremental manner. Note that very little research has been done regarding the online
execution and modification of action types. Most of the research has focused on
generating the proper conclusions in offline or simulation mode, assuming one already
has explicit information about at least some of the qualifications per action, and on
specifying a mechanism for adding new qualifications in an incremental and modular
manner. In this article, we will also focus on the offline mode.

Most formalisms for reasoning about action and change are based on the two-state
assumption. There is an initial state in which an action is invoked and a result state in
which the effects of the action become true provided the preconditions to the action
are true in the initial state. TAL-Q is an exception due to its use of actions with
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duration and its use of explicit time. There are basically two classes of solutions in the
literature, one focusing on the initial state of an action and the other focusing on the
effect state.

When focusing on the initial state, one very straightforward solution would be to
strictly treat qualification constraints as preconditions to actions}conditions that must
or must not hold in the state in which an action is invoked. For example, the start
action can be considered qualified if potato in tailpipe is true in the state where an
action will be executed. Most solutions in this class encode an assumption that if one
cannot explicitly prove that a known qualification to an action is true then that action
can be executed. If actions may have duration and internal state, this approach can be
extended by also allowing conditions at any time within the interval when the action is
executed}for example, even if there was no potato in the tailpipe when the start
action was invoked, one may be inserted during its execution.

ŽIn approaches focusing on the effect state such as Ginsberg and Smith 1988; Lin
.and Reiter 1994 , an action is considered qualified whenever its intended effect would

contradict a domain constraint in the effect state. In a sense, this implies a form of
hypothetical reasoning that could only be used in off-line mode, where one checks
whether the execution of an action would lead to a contradiction in the result state. In
Ginsberg and Smith, if this is the case, the action has no effect and the execution and
effect states for the action are the same. In the case of Lin and Reiter, a form of
precompilation is used to modify the specified preconditions of each action to include
the negation of every condition that would cause a contradiction. This assumes that
one already has explicit qualification conditions in the theory. As before, this approach
can of course be extended to actions with duration and internal state by considering an
action qualified whenever it would contradict a domain constraint at any time during

Žits execution. Also, if domain constraints can span multiple states e.g., relating fluents
.in one state to fluents in its successor , an action could be considered qualified

whenever executing it must eventually result in such a domain constraint being
contradicted.

We will pursue the precondition-based approach with TAL-Q, but with a much
richer ontology of actions. This richer ontology would lead to problems in the latter
approach. For example, if actions can be executed concurrently, it could be the case
that the combined effect of two concurrent actions contradicts a domain constraint, but
either action alone does not. Do we predict that one action succeeds, which may
sometimes be the case, or that neither one does? Additional problems would arise if
we allowed delayed side effects, nondeterministic actions, or any of a number of other
features that have generally not been considered together with qualification. These
problems make the latter approach much less intuitive for these extensions to the
logics than it is for a situation calculus]type logic or belief-update approach described

Ž . Ž .in Lin and Reiter 1994 and Ginsberg and Smith 1988 . Due to the added expressivity
of TAL-Q, these issues must be dealt with in our solution.

What Should Be Entailed about the Effects of In¨oking a Qualified Action? In a
number of formalisms, one can reason not only about the effects of actions that are
unqualified, but also those that are qualified. In other words, an action is invoked even
though not all conditions that would guarantee its intended effects are satisfied.
Reasoning about this type of situation is perhaps more appropriate when considering
the online mode, but still has to be defined even for offline mode reasoning if the
formalism allows invocation of qualified actions. Ideally, we would like our approach
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to the qualification problem to be able to represent whatever knowledge}or lack
of knowledge}we have regarding the effects of invoking actions, whether qualified
or not.

However, there are cases where this might not make sense, or is simply unneces-
sary. Suppose, for instance, we have an interest in the planning task in offline mode. In
this case, reasoning about the effects of qualified actions does not make much sense,
since the point to generating a plan is to generate a sequence of actions we assume are
all executable and have their intended effects. What would be important is being able
to reason about under what conditions an action might be qualified so as to avoid using
it under those conditions in the plan generation phase. On the other hand, if one is
using the formalism in the online mode, reasoning about the effects of invoking
qualified actions may be very important because an agent might on occasion invoke an
action without being aware it is qualified}due to faulty sensors, for example. In this
case, being able to reason about at least some of the effects of the action would be
quite useful in a postdictive or diagnostic phase of reasoning.

Whatever choice is made, it should be made very clear why the choice is being
made and what the ontological justification is. Quite often, the choice is simply a side
effect of the solution chosen for solving the qualification problem. As we shall see in
Section 10, many formalisms behave differently in this respect.

Should It Be Possible to Reason about Qualification within the Logic? One final
design issue is whether qualifications to actions should be first-class objects which can
be explicitly reasoned about in the formalism itself. This is particularly important in the
online reasoning mode, where execution monitoring is a central part of an agent’s
execution mechanism and determines future courses of action and modification of
existing courses of action.

2.3. Reasoning about Undesirable Actions

A problem that often appears during planning is that of determining which actions
would have effects that are undesirable. Although this may at a first seem unrelated to
the qualification problem, it turns out that both problems can often be specified in
terms of conditions that hold when an action is invoked or constraints that should not
be violated by the effects of an action. Recall that this is the basis for the two classes of
solutions to the qualification problem discussed previously. The difference between
reasoning about qualified actions and reasoning about undesirable effects of actions
may better be determined in terms of ontological assumptions placed on the worlds we
are interested in. For example, should one make explicit distinctions between types of
qualifications to actions such as those that if satisfied would make it physically
impossible to execute the action satisfactorily, or those that simply involve contingent
restrictions associated with the domain in question?

This appears to be the reason why some qualification examples in the literature are
in fact examples of actions which would have their defined, intended, well-known
effects, but which are invoked in a context in which those effects are not desirable. For

Ž .example, in the lenient emperor scenario Lin and Reiter 1994 , there is a robot that
can paint blocks, but an emperor allows at most one block to be yellow at any given

Ž .time. This is ensured by considering the action paint block, yellow to be qualified
Žwhenever there is already a yellow block and, of course, by preventing the robot from

.executing any qualified action .
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This approach works well when attempting to define a plan while avoiding undesir-
able actions. On the other hand, suppose that there is already a yellow block and that
we want to predict what would happen if the robot tried to paint another block yellow.
Certainly, there is nothing inherently problematic about this course of events even in
the context of the emperor’s strange rule. Intuitively, the action should succeed, with
the conclusion that the robot invoked an action that violates correct social behavior. In
the example above, the action is considered to be qualified and the conclusion will be
that the action has in fact failed.

Therefore, undesirable actions should probably not be handled in exactly the same
way as qualified actions, but they can probably be handled in a technically very similar
manner, and any solution to the qualification problem may also be interesting in this
respect. Several examples in the literature which relate to this issue will be considered.

2.4. Summary

In summary, a solution to the qualification problem that works well for one
reasoning task, under one ontological assumption, might not work well given another
reasoning task or another ontological assumption, and when the set of problems one
considers is extended, one may have to use a different approach previously considered
less than optimal.

Due to these considerations, there is probably no single ‘‘best’’ solution to the
qualification problem. Instead, there is likely to exist a set of good solutions, each of
which is useful for a given expressivity and for a given task. Unfortunately, the
solutions found in the literature often do not state explicitly what task and expressivity
they are intended to handle. This makes it difficult to compare solutions, or build on
one another’s work. This section’s intent was to point these issues out and create a
context for the rest of the article. We will now consider the RAH scenario and its
formalization in TAL-Q.

3. THE RUSSIAN AIRPLANE HIJACK SCENARIO

In the remainder of this article, we will use the methodology of representative
examples as a means of considering and proposing a solution to the qualification
problem for a certain class of worlds. The scenario we will use is the Russian Airplane

Ž . 1 Ž .Hijack Scenario RAH , previously published in Doherty and Kvarnstrom 1998 .¨

A Russian businessman, Boris, tra¨els a lot and is concerned about both his hair and safety.
Consequently, when tra¨eling, he places both a comb and a gun in his pocket. A Bulgarian businessman,
Dimiter, is less concerned about his hair, but when tra¨eling by air, has a tendency to drink large amounts of
¨odka before boarding a flight to subdue his fear of flying. A Swedish businessman, Erik, tra¨els a lot, likes
combing his hair, but is generally law abiding.

Now, one ramification of mo¨ing between locations is that objects in your pocket will follow you from
location to location. Similarly, a person on board a plane will follow the plane as it flies between cities.

Generally, when boarding a plane, the only preconditions are that you are at the gate and you ha¨e a
ticket. Howe¨er, if you try to board a plane carrying a gun in your pocket, which will be the case for Boris,
this should qualify the action. Also, a condition that could sometimes qualify the boarding action is if you
arrï e at the gate in a sufficiently inebriated condition, as will be the case for Dimiter. When the boarding
action is qualified, attempting to board should ha¨e no effect.

1This scenario is an elaboration and concretization of a sketch for a scenario proposed by Vladimir Lifschitz
Ž .in online discussions in the Electronic Transactions on Artificial Intelligence ETAIrENAI .
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Ž .Boris, Erik, and Dimiter already ha¨e their tickets. They start concurrently from their respectï e
homes, stop by the office, go to the airport, and try to board flight SAS609 to Stockholm. Both Erik and
Boris put combs in their pockets at home, and Boris picks up a gun at the office, while Dimiter is already
drunk at home and may or may not already ha¨e a comb in his pocket. Who will successfully board the
plane? What are their final locations? What will be in their pockets after attempting to board the plane and
after the plane has arrï ed at its destination?

If the scenario is encoded properly and our intuitions about the frame, ramification,
and qualification problems are correct then we should be able to entail the following
from the RAH scenario, assuming that Boris, Erik, and Dimiter own the combs
comb1, comb2, and comb3, respectively:

1. Erik will board the plane successfully, eventually ending up at his destination.
2. An indirect effect of flying is that the person ends up at the same location as the

airplane. Additionally, because items in pockets follow the person, a transitive
effect results where the items in the pocket are at the same location as the plane.

Ž .Consequently, Erik’s comb comb2 will also end up at his destination.
3. Boris will get as far as the airport with a gun and comb1 in his pocket. He will be

unable to board the plane.
4. Dimiter will get as far as the airport, and may or may not be able to board the

plane. If he is able to board the plane, he will eventually end up at his destination.
Otherwise, he will remain at the airport. In any case, if he initially carried a comb,
it will end up in the same location.

For this scenario, we assume that we know all possible reasons why an action may be
qualified, and we are mainly interested in representing qualifications in a modular and
intuitive manner. We are also mainly interested in prediction.

This is a rather complex scenario, and modeling it requires a relatively expressive
logic. Unfortunately, many approaches to the qualification problem in the literature
have been defined with very strong constraints placed on action types and also use the
two-state assumption. Modeling this scenario in such logics, or scaling up the expressiv-
ity of such a logic to be able to model this scenario, would be difficult. In the next
section, we will take advantage of the expressivity already part of TAL-Q in defining a
solution.

4. TAL-Q: TEMPORAL ACTION LOGIC WITH QUALIFICATION

Our approach to handling the qualification problem is based on the use of TAL-Q
Ž . ŽTemporal Action Logic with Qualification , a member of the TAL Temporal Action

.Logics family of logics for reasoning about action and change.
As it turns out, the approach we will present does not require any new predicates

or other changes to the high-level concepts used in previous TAL logics. Instead, it
Žuses well-known concepts from older logics such as TAL-C Karlsson and Gustafsson

.1999 in a new and different way. Therefore, we will begin by describing the logic
TAL-Q without considering the qualification problem. In Section 5, we show how the
RAH scenario can be modeled in TAL-Q under the assumption that actions never fail,
and in Section 6, we define our approach to solving the qualification problem within
TAL-Q and demonstrate it by applying it to the RAH scenario.



TACKLING THE QUALIFICATION PROBLEM USING FLUENT DEPENDENCY CONSTRAINTS 179

4.1. The TAL Family of Logics

Temporal Action Logics have their origin in the Features and Fluents framework
Ž .proposed by Sandewall 1994 , where both a variety of logics of preferential entailment

for reasoning about action and change and a framework for assessing the correctness
of these and future logics were proposed. One of the definitions of preferential
entailment, PMON, was proposed by Sandewall and assessed correct for the KK-IA class
of action scenarios, a broad class of scenarios which deals with nondeterministic
actions, incomplete specification of state and the timing of actions, and observations at
arbitrary states in a scenario. PMON solved the frame problem for the KK-IA class.
Later, Doherty translated and generalized PMON into an order-sorted first-order logic
with a circumscription axiom capturing the PMON definition of preferential entailment
Ž .Doherty 1994; Doherty and Łukaszewicz 1994 .

Recently, a number of additional extensions and generalizations have been added
to the original PMON logic. Although the new logics generated belong to what we call
the TAL family, each is essentially an incremental addition to the base logic PMON.

Ž .TAL-RC, proposed by Gustafsson and Doherty 1996 , provides a solution to the
ramification problem for a broad, but as yet unassessed class of action scenarios. The
main idea is the addition of a specialization of fluent dependency constraints which we
called causal constraints. The solution was based on the insight that the Occlude
predicate used to solve the frame problem for PMON was all that was needed to define
causal rules which turn out to be very similar to action effect axioms. The solution is
also extremely fine-grained in the sense that one can easily encode dependencies
between individual objects in the domain, work with both Boolean and non-Boolean

Žfluents and represent both Markovian and non-Markovian dependencies Giunchiglia
.and Lifschitz 1995 .

Ž .TAL-C, proposed by Karlsson and Gustafsson 1999 , uses fluent dependency
constraints as a basis for representing concurrent actions. A number of phenomena
related to action concurrency such as interference between one action’s effects and
another’s execution, bounds on concurrency, and conflicting, synergistic, and cumula-
tive effects of concurrent actions are studied.

Ž .TAL-Q, initially proposed by Doherty and Kvarnstrom 1998 and described in¨
more detail in this article, is intended to provide one approach to solving the
qualification problem. We note that TAL-Q is an incremental extension of TAL-C, just
as TAL-C is an incremental extension of TAL-RC. In fact, the logical language and
minimization policy is roughly the same for TAL-RC, TAL-C, and TAL-Q. The
advantages of leaving the logic and minimization policy intact are that the new class of
action scenarios which can be represented in TAL-Q subsumes previous classes and
that any circumscribed scenario in TAL-Q is provably and automatically reducible to a
first-order theory.

The TAL methodology uses two languages for representing and reasoning about
Ž . Ž .narratives. The surface language LL ND Narrative Description Language provides a

convenient high-level notation for describing narratives, and can be seen as a set of
Ž .macros easily translated into the base language LL FL , which is an order-sorted

first-order language. We will now provide a brief description of these two languages,
Ž . Ž .the underlying logic and the translation from LL ND to LL FL , referring the reader to

Ž . Ž . Ž .Doherty et al. 1998 , Sandewall 1994 , Doherty 1994 , Doherty and Łukaszewicz
Ž . Ž . Ž .1994 , Gustafsson and Doherty 1996 , Karlsson and Gustafsson 1999 , and

Ž .Kvarnstrom and Doherty 1997 for more detailed descriptions of the logics in the TAL¨
family.
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Ž .The Surface Language LL ND

Ž .A narrative in LL ND consists of two parts, the narrative background specification
and the narrative specification. Each part consists of a collection of labeled statements,
the sum of which describes describing both the static and dynamic aspects of a
narrative.

Ž .The narratï e background specification NBS consists of a narratï e type specification
Ž .NTS providing fluent value domains and type descriptions for fluents and actions, an

Ž .action type specification ATS providing generic definitions of actions, a domain
Ž .constraint specification DCS providing statements representing static knowledge about

logical dependencies between fluents generally true in every state or across states, and
Ž .a dependency constraint specification DeCS providing statements representing knowl-

edge about directional dependencies between fluents true in states or across states.
Ž .The narratï e specification NS consists of obser̈ ation statements intended to

represent observations of fluent values at specific timepoints, action occurrence state-
ments specifying which actions occur and during which time intervals, and schedule
statements, a class of intermediary statements automatically generated from action type

Ž . Ž .specifications during the translation from LL ND to LL FL . Note that in action
occurrence statements, both the timing between actions and the durations of actions
can be incompletely specified.

Ž .An Example. In order to make it easier to understand the LL ND language, we
will explain it using a variation of the well-known hiding turkey scenario. In this
variation of the scenario, there is a turkey that may or may not be deaf, and there is
also a gun. First, we load the gun, which makes some noise}if the turkey is not deaf, it
will hide whenever there is noise. However, if the turkey has been hiding for a while
and there has not been any noise, the turkey will decide to come out in the open again.
After a while, we shoot, and if the turkey is not hiding at that time, it will die.

The Narratï e Type Specification; Persistent and Durational Fluents. For the narra-
Ž .tive type specification we will require one value domain the Boolean domain , five

Ž . ŽBoolean fluents alive, deaf, hiding, loaded, and noise , and two actions Load and
.Fire .
Intuitively, the first four fluents do not change unless something changes them, that

the fifth, noise, is different}there is no noise unless someone is currently making
noise. This distinction between persistent and durational fluents is important. A
persistent fluent can only change when an action or dependency constraint allows it to

Ž .change the persistence assumption or inertia assumption . Otherwise, it retains the
same value it had at the previous timepoint. On the other hand, a durational fluent is
associated with a default value, and can only take on another value when an action or

Ž .dependency constraint allows it to the default ¨alue assumption . At timepoints when
no action or dependency constraint explicitly allows it to take on another value, it will
immediately revert to its default value.

Whether a fluent is persistent or durational}or neither}is defined in a set of
Ž .persistence statements, using the LL ND macros Per and Dur. For a persistent

Ž .fluent f , Per t, f should be true, and for a durational fluent f with default value ¨ ,
Ž . ŽDur t, f , ¨ should be true. Although Per and Dur both take a temporal argument,

they are usually specified with universal quantification over t. Note also that some
earlier TAL logics used a fixed nochange axiom instead of persistence statements.
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Using persistence statements provides a more flexible and fine-grained approach to
.controlling the default behavior of fluents.

For the extended hiding turkey scenario, we need the following persistence
statements:

w Ž . Ž .per1 ; t trueªPer tq1, alive nPer tq1, deaf n
Ž . Ž .xPer tq1, hiding nPer tq1, loaded

w Ž .xper2 ; t trueªDur t, noise, false .

Some Basic Macros and Formulas. Now that we have defined a set of fluents, we
need to be able to talk about their values at any given timepoint. Here, we will show

Ž .some of the most important macros in LL ND in order to provide an intuitive
understanding of the surface language, again referring the reader to Doherty et al.
Ž .1998 for a formal definition.

First, an is¨alue expression is an expression of the form fs¨ , stating that theˆ
Žfluent f has the value ¨ for Boolean fluents, we will sometimes write f instead of

.fs true . An atemporal narratï e formula consists of isvalue expressions combined usingˆ
the standard Boolean connectives and quantification over values. Below, let t and t 9
be timepoints and let a and b be atemporal narrative formulas.

Ž . w xAn LL ND formula of the form t a means that a holds at t . Closed or
w xsemiclosed intervals can also be used. For example, the formula t , t 9 a means that a

holds between t and t 9, inclusive. We also need to talk about changes in the values of
fluents. In order to simplify such formulas, we can use the C macro, which stands forT

Žw x . Ž w x .changes to true. A formula of the form C t a is defined as ; t. tq1stª t ! aT
w x Žw x . w xn t a . Note that due to the use of nonnegative time, C 0 a is equivalent to 0 a .T

Domain Constraint Specification. Domain constraints represent static knowledge
about logical dependencies between fluents generally true in every state or across
states. Although no domain constraints are needed for this scenario, we will show one
possible constraint as an example: If there is noise at some timepoint, and the turkey is
not deaf, then at the next timepoint, the turkey must be hiding.

ww x w x xdom1 ; t t noisen!deafª tq1 hiding .

Action Type Specification and Dependency Constraint Specification. Actions are of
course intended to change the world in some way, and dependency constraints describe
how the world will change given certain conditions and can be used to specify side
effects for actions. But since fluents are normally persistent or have a default value, we
cannot change their values without first defining a way to specify exceptions to those
general rules. This is done using the R, I, and X macros. They can all be used with a

ŽŽ x . Žw x .temporal interval, for example R t , t 9 a , or a single timepoint, for example I t 9 a .
Each operator releases the fluents occurring in a from the persistence and default
value assumptions during the given interval or at the given timepoint. However, the
operators differ in how they constrain the values of the fluents occurring in a .

The R operator stands for fluent reassignment, and ensures that a will hold at t 9,
the final timepoint in the interval. During the rest of the interval, the fluents occurring
in a are allowed to vary.

The I operator stands for exceptional assignment and is often but not always used
in combination with durational fluents. It ensures that a will hold during the entire
interval.
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The X operator stands for occlude assignment. Its purpose is simply to allow a
fluent’s value to vary at a timepoint or interval, and therefore it does not constrain the
fluents in a .

Returning to the extended hiding turkey scenario, we first need to define the Load
and Fire actions: If we load the gun, then at some timepoint in the duration of the

Ž .action, loaded will become true the R macro , and during the entire action, noise will
Ž .be true the I macro . If we fire the gun, the effects depend on the state in which it is

invoked: If it was loaded initially, it will not be loaded after firing, and if additionally
the turkey was not hiding, it will no longer be alive.

We also need two dependency constraints: First, if the turkey is not deaf and
Ž .currently not hiding, and if a noise begins the C macro , then at the next timepoint,T

Ž .the turkey will be hiding this is a delayed dependency constraint . Second, if the turkey
has been hiding for ten timepoints, and there has been no noise during that time, it will
stop hiding.

w x ŽŽ x . ŽŽ x .acs1 t , t Load§R t , t loaded nI t , t noise1 2 1 2 1 2
w x Žw x ŽŽ x ..acs2 t , t Fire§ t loadedn!hidingªR t , t !alive n1 2 1 1 2
Žw x ŽŽ x ..t loadedªR t , t !loaded1 1 2

ww x Žw x . Žw x .xdep1 ; t t !hidingn!deafnC t noise ªR tq1 hidingT
ww x Žw x .xdep2 ; t t, tq9 hidingn!noiseªR tq10 !hiding .

Obser̈ ation Statements and Action Occurrence Statements. Finally, we also need to
provide the actual narrative specification}the observations and action occurrences. To
be more exact, we need to observe that the turkey is alive in the initial state, but not
hiding, and that the gun is not loaded, and we must also load and fire the gun. We do
not observe whether the turkey is deaf or not, and there is no need to state that there
is no noise, since noise is false by default.

w xobs1 0 aliven!loadedn!hiding
w xocc1 1, 4 Load
w xocc2 5, 6 Fire.

Ž .4.3. The Base Language LL FL

Ž . Ž .The LL ND narrative is translated into the base language LL FL , an order-sorted
Ž . Ž .first-order language with equality using the predicates Holds t, f , ¨ , Occlude t, f , and

Ž .Occurs t, t9, a , where t, f , ¨ , and a are variables for timepoints, fluents, values, and
actions, respectively.

The Holds predicate expresses what value a fluent has at each timepoint, and is
w xused in the translation of isvalue expressions; for example, 0 alives truen loadedsˆ ˆ

Ž . Ž .false can be translated into Holds 0, alive, true nHolds 0, loaded, false . The Occlude
predicate expresses that a persistent or durational fluent is exempt from its persistence
or default value assumption, respectively, at a given timepoint. It is used in the
translation of the R, I, and X operators, which are intended to change the values of
fluents. Finally, the Occurs predicate expresses that a certain action occurs during a
certain time interval, and is used in the translation of action occurrence statements and
schedule statements.

A linear discrete time structure is used in TAL-Q. The minimization policy is based
Ž .on the use of filtered preferential entailment Sandewall 1989 , where schedule

statements and dependency constraints are circumscribed with Occlude minimized and
all other predicates fixed, and action occurrence statements are circumscribed with
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Occurs minimized and all other predicates fixed. The result is then filtered with the
observations and domain constraints, some foundational axioms such as unique names
and domain closure axioms, the temporal structure axioms, and a set of persistence
axioms characterizing the behavior of persistent and durational fluents.

In the following, we use

v F to denote the collection of narrative statements contained in a narrative in
Ž .LL ND , and F , F , F , F , F , and F to denote the sets of persis-p er ob s occ scd domc de pc

tence, observation, action occurrence, schedule, domain constraint, and dependency
constraint statements in F, respectively.

v Ž .G to denote the collection of narrative formulas in LL FL corresponding to the
translation of the narrative statements in F, and G , G , G , G , and G toob s occ scd domc de pc
denote the corresponding sets of observation, action occurrence, schedule, domain
constraint, and dependency constraint formulas in G, respectively.2

v Ž .G to denote the set of foundational axioms in LL FL , which contains uniquef nd
names axioms, unique values axioms, etc.

v G to denote the set of axioms representing the temporal base structure. Sincet im e
the timepoints in TAL-Q use the natural numbers structure, we use the Peano
axioms without multiplication.

v G to denote the set of axioms characterizing the behavior of persistent andp er
Ž .durational fluents, defined as the translation of the formulas in F into LL FL .p er

Ž . Ž .Given a narrative F in LL ND , the corresponding theory D in LL FL is GnGf nd
nG nG , where GsG nG nG nG nG . Given this theory, we applyt im e p er ob s occ domc de pc scd
a filtered circumscription policy which results in the circumscribed theory D9sG9n

Ž . ŽG n G n G , where G9 s G n G n Circ G ; Occurs n Circ G nf n d t i m e p er o b s do m c o cc d e p c
. ŽG ; Occlude . It is easily shown that the second-order formulas Circ G nscd de pc
. Ž .G ; Occlude and Circ G ; Occurs are reducible to logically equivalent first-orderscd occ

Ž .formulas Doherty et al. 1998; Doherty 1996 .
Ž .The LL FL formula g is preferentially entailed by the narrative F iff D9*g .

5. REPRESENTING THE RUSSIAN AIRPLANE
HIJACK SCENARIO

In this section, we will show how the Russian Airplane Hijack Scenario can be
represented in TAL-Q if we do not consider qualifications to actions. This will result in
a scenario in which it is assumed that any attempt to board a plane always succeeds,
regardless of whether the person carries a gun or is drunk. In Section 6, we will show
how the scenario presented here can be modified in order to deal with the qualification
problem.

In order to simplify the presentation, being at the airport will be the only normal
precondition for boarding a plane.

Ž .All formulas in this section are written in the surface language LL ND . Appendix
A contains the same formulas, with the exception that the action type definitions have
been modified as in Section 6 and some new dependency constraints have been added.

2 Ž . Ž .The translation is very straightforward and is defined formally in Doherty 1996 , Doherty et al. 1998 , and
Ž . Ž .Karlsson and Gustafsson 1999 . For some examples, see the LL ND scenario in Appendix A and its translation

Ž .into LL FL in Appendix B.
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Appendix B contains the translation of the formulas in Appendix A into the base logic
Ž .LL FL .

5.1. Narrative Background Specification

First, it is necessary to determine which value domains, fluents and actions are
needed. For the RAH Scenario, we will need a Boolean value domain booleans
� 4 �true, false , a domain locations home1, home2, home3, office, airport, run609,

4 �run609b, air for locations, and a domain things gun, comb1, comb2, comb3, boris,
4dimiter, erik, sas609 containing everything that has a location. We will also define the

� 4subdomains runways runway1, runway2 for locations that are runways, planes
� 4 � 4sas609 for things that are airplanes, persons boris, dimiter, erik for things that are

� 4people, and pthings gun, comb1, comb2, comb3 for things that people can pick up.
Ž . Ž .We also need four fluents: loc thing : location, inpocket person, pthing : boolean,

Ž . Ž .onplane plane, person : boolean, and drunk person : boolean.
Ž .Four actions are necessary: pickup person, pthing for picking up things,

Ž .travel person, location, location for traveling between locations in the same city,
Ž . Ž .board person, plane for boarding an airplane, and fly plane, runway, runway for

flying between two runways.
Finally, we need to declare each of the four fluents persistent at all timepoints

using a set of persistence statements:

w Ž Ž ..xper1 ; t, thing trueªPer tq1, loc thing
w Ž Ž ..xper2 ; t, person, pthing trueªPer tq1, inpocket person, pthing

w Ž Ž ..xper3 ; t, person trueªPer tq1, drunk person
w Ž Ž ..xper4 ; t, plane, person trueªPer tq1, onplane plane, person .

5.2. Initial State

Ž .The initial state in a TAL narrative as well as any other state can be completely
or incompletely specified using observation statements. For this scenario, we must
define the initial locations of all things, as well as who is drunk in the initial state. On
the other hand, we do not observe which things are in whose pockets.

w x Ž . Ž . Ž .obs1 0 loc boris s home1 n loc gun s office n loc comb1 s home1 nˆ ˆ ˆ
Ž .!drunk boris

w x Ž . Ž . Ž .obs2 0 loc erik shome2n loc comb2 shome2n!drunk erikˆ ˆ
w x Ž . Ž . Ž .obs3 0 loc dimiter shome3n loc comb3 shome3ndrunk dimiterˆ ˆ
w x Ž .obs4 0 loc sas609 s run609.ˆ

5.3. Action Definitions

Four actions were declared in the narrative type specification. The following action
Žtype specification defines the meaning of those actions. For example, if fly plane,

.runway , runway is invoked between t and t , then assuming the airplane is initially1 2 1 2
Ž .at runway , it will be in the air in the interval t , t and finally end up at runway at1 1 2 2

time t .2

w x Ž . w x Ž .acs1 t , t fly plane, runway , runway § t loc plane s runway ªˆ1 2 1 2 1 1
ŽŽ . Ž . . Žw x Ž . .I t , t loc plane sair nR t loc plane s runwayˆ ˆ1 2 2 2



TACKLING THE QUALIFICATION PROBLEM USING FLUENT DEPENDENCY CONSTRAINTS 185

w x Ž . w x Ž . Ž Ž ..acs2 t , t pickup person, pthing § t loc person s¨alue t , loc pthing ªˆ1 2 1 1
ŽŽ x Ž ..R t , t inpocket person, pthing1 2

w x Ž .acs3 t , t travel person, loc , loc §1 2 1 2
w x Ž . Žw x Ž . .t loc person s loc ªR t loc person s locˆ ˆ1 1 2 2
w x Ž . w x Ž .acs4 t , t board person, plane § t loc person sairportªˆ1 2 1
Žw x Ž . Ž Ž .. Ž ..R t loc person s¨alue t , loc plane nonplane plane, person .ˆ2 2

The following action occurrences are also needed. The exact timepoints used below
were not specified in the RAH scenario, but have been chosen arbitrarily. Alterna-
tively, exact timepoints could have been avoided by using nonnumerical temporal
constants. Note, however, that many of the actions are concurrent, sometimes with
partially overlapping intervals.

w x Ž . w x Ž .occ1 1, 2 pickup boris, comb1 occ8 7, 9 travel erik, office, airport
w x Ž . w x Ž .occ2 1, 2 pickup erik, comb2 occ9 8, 10 travel boris, office, airport
w x Ž . w x Ž .occ3 2, 4 travel dimiter, home3, office occ10 9, 10 board dimiter, sas609
w x Ž . w x Ž .occ4 3, 5 travel boris, home1, office occ11 10, 11 board boris, sas609
w x Ž . w x Ž .occ5 4, 6 travel erik, home2, office occ12 11, 12 board erik, sas609
w x Ž . w x Žocc6 6, 7 pickup boris, gun occ13 13, 16 fly sas609, run609,
w x Ž . .occ7 5, 7 travel dimiter, office, airport run609b

5.4. Domain Constraints

We will define three domain constraints: No thing can be be carried by two
persons at the same time, no person can be on board two planes at the same time,
and any thing in a person’s pocket must be at the same location as that person.

dom1 ; t, pthing, person , person1 2
w w x Ž .person /person n t inpocket person , pthing ª1 2 1
w x Ž .xt !inpocket person , pthing2

dom2 ; t, person, plane , plane1 2
w w x Ž . w x Ž .xplane /plane n t onplane plane , person ª t !onplane plane , person1 2 1 2

dom3 ; t, person, pthing
ww x Ž . w x Ž . Ž Ž ..xt inpocket person, pthing ª t loc pthing s¨alue t, loc person .ˆ

5.5. Dependency Constraints

Now, apart from qualifications, only the side effects of actions remain to be
modeled: Anything on board an airplane should follow the airplane, and anything a
person carries should follow the person. The following two dependency constraints are
sufficient for achieving this. For example, if someone is on board a plane and the
location of the plane changes to loc, the location of the person also changes to loc.

wdep1 ; t, plane, person, loc
w x Ž . Žw x Ž . . Žw x Ž . .xt onplane plane, person nC t loc plane s loc ªR t loc person s locˆ ˆT

wdep2 ; t, person, pthing, loc
w x Ž . Žw x Ž . . Žw x Ž .t inpocket person, pthing nC t loc person s loc ªR t loc pthing sˆ ˆT

.xloc .
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6. REPRESENTING THE QUALIFICATION PROBLEM IN TAL-Q

We have now modeled most of the Russian Airplane Hijack Scenario in TAL-Q,
but we have not yet taken care of the qualifications defined by the scenario: Someone
who carries a gun cannot board a plane, and someone who is drunk may or may not be
able to board.

There are already a number of solutions to various aspects of the qualification
problem in the literature, some of which would be applicable to the TAL logics.
However, many of these solutions are dependent on the two state assumption with
highly constrained action types. We would like to provide a solution that retains the
following features of TAL:

v Any state, including the initial state, can be completely or incompletely specified
using observations and domain constraints.

v Actions can be context-dependent and nondeterministic. They can have duration
and internal state, and the duration may be different for different executions of the
action. There may be concurrent actions with partially overlapping execution
intervals.

v There can be dynamic processes continuously taking place independently of any
actions that may occur.

v Domain constraints can be used for specifying logical dependencies between fluents
generally true in every state or across states. They may vary over time.

v Actions can have side effects, which may be delayed and may affect the world at
multiple points in time. They may in turn trigger other delayed or nondelayed side
effects.

We would also like to retain the first-order reducibility of the circumscription axiom.
The following restrictions and assumptions will apply. As discussed in Section 2.2, we
will be satisfied with a solution where invoking a qualified action either has no effect or
has some well-defined effect. We will also restrict the solution to the offline planning
and prediction problems, and not claim a complete solution for the postdiction
problem, which would require being able to conclude that an action was qualified
because its successful execution would have contradicted an observation of some fluent
value after that action was invoked.

6.1. Enabling Fluents

To handle the qualification problem, we will propose a default-based solution
where each action type in a narrative is associated with an enabling fluent, a Boolean
durational fluent with default value true and with the same number and type of
arguments as the action type. This fluent will be used in the precondition of the action,
and will usually be named by prefixing ‘‘poss ’’ to the name of the action. For
example, the boarding action in the RAH scenario will be associated with an enabling

Ž .fluent poss board person, airplane . We add a persistence statement for this fluent
and modify acs4 as follows:

w Ž Ž . .xper5 ; t, person, plane trueªDur t, poss board person, plane , true
w x Ž .acs49 t , t board person, plane §1 2

w x Ž . Ž .t poss board person, plane n loc person sairportªˆ1
Žw x Ž . Ž Ž .. Ž ..R t loc person s¨alue t , loc plane nonplane plane, person .ˆ2 2

Ž .The other action types are modified in a similar way see Appendix A for more details .
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Ž .Now, suppose that board person, plane is executed between timepoints t and t .1 2
Ž .If poss board person, plane is false at t for some reason, the action is qualified, or1

disabled. On the other hand, if the fluent is true at t , the action is enabled. Of course,1
it can still be the case that the action has no effects, if other parts of its precondition
are false.

To generalize this, a context-independent action that should have no effect at all
when qualified can be defined using a simple action definition of the form

w x w x Žw x .acsm t , t action§ t poss actionnaªR t b1 2 1 2

Žwhere a is the precondition and b specifies the direct effects of the action context-
.dependent actions are defined analogously . However, we also wanted to be able to

define actions that do have some effects when they are qualified. This can be done by
defining a context-dependent action that defines what happens when the enabling
fluent is false:

w x Žw x Žw x ..acsn t , t action§ t poss actionna ªR t b n1 2 1 1 2 1
Žw x Žw x ..t !poss actionna ªR t b .1 2 2 2

For example, suppose that whenever anyone tries to board a plane but the action is
qualified, they should be thrown in jail. In order to model this, we would add a new

Ž .persistent fluent in jail person : boolean and modify the boarding action from Sec-
tion 5.3 as follows:

w x Ž .acs40 t , t board person, plane §1 2
Žw x Ž . Ž .t poss board person, plane n loc person sairportªˆ1
Žw x Ž . Ž Ž .. Ž ...R t loc person s¨alue t , loc plane nonplane plane, person nˆ2 2

Žw x Ž . Ž .t !poss board person, plane n loc person sairportªˆ1
Žw x Ž ...R t in jail person .2

In this alternative scenario, if anyone is at the airport and tries to board a plane, and
the action is qualified, they will be thrown in jail. If they are at the airport but the
action is not qualified, they will board the plane. If they are not at the airport, none of
the preconditions will be true, and invoking the action will have no effect.

Regardless of whether a qualified action has an effect or not, its enabling fluent is
a durational fluent with default value true. Therefore, the fluent will normally be true,
and the action will normally be enabled. In the remainder of this section, we will
examine some of the ways in which we can disable an action using strong and weak
qualification.

6.2. Strong Qualification

Let us start with strong qualification. When an action is strongly qualified, it should
definitely not succeed. This can be accomplished by forcing its enabling fluent to be
false at the timepoint at which the action is invoked.

For example, suppose that when a person has a gun in his pocket, it should be
Ž .impossible for that person to board a plane. Then, whenever inpocket person, gun

holds, we must make poss board false. This can be achieved using a dependency
constraint:

ww x Ž .dep3 ; t, person, plane t inpocket person, gun ª
Žw x Ž ..xI t !poss board person, plane .
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At any timepoint t when a person has a gun in his pocket, we use the I macro both to
Ž .occlude poss board person, plane for all airplanes, thereby releasing it from the

default value axiom, and to make it false. This implies that as long as a person has a
gun in his pocket, poss board will be false for that person on all airplanes. If the gun
is later removed from the pocket, this dependency constraint will no longer be
triggered. At that time, assuming no other qualifications affect the enabling fluent, it
will automatically revert to its default value, true.

6.3. Weak Qualification

Although strong qualification can often be useful, we may sometimes want to
express the fact that an action may succeed, or it may fail, depending on circumstances
we may or may not be aware of. We call this weak qualification.

For example, we may want to model the fact that when a person is drunk, he may
or may not be able to board an airplane, depending on whether airport security
discovers this or not. We may not be able to determine within our model of the RAH
scenario whether airport security does discover that any given person is drunk, and

Ž .even if we could, it may be of no interest. In this case, whenever drunk person holds,
we must release poss board from the default value assumption:

ww x Ž . Žw x w Ž .x.xdep4 ; t, person t drunk person ªX t ;plane !poss board person, plane .

Ž .At any timepoint t when a person is drunk, we occlude poss board person, plane for
all airplanes, but since we do not state anything about the ¨alue of the enabling fluent,
it is allowed to be either true or false.

Although being able to state that an action may fail is useful in its own right, it is
naturally also possible to restrict the set of models further by adding more statements

Žto the scenario, which could make it possible to infer whether poss board dimiter,
.sas609 is true or false at some or all timepoints. For example, we may know that

people boarding sas609 are always checked more carefully, so that it is impossible for
anyone who is drunk to be on board that airplane, which could be expressed using a
domain constraint. In the context of postdiction, observation statements could be used

w xin a similar manner. For example, adding the observation statement obs5 13
Ž .onplane sas609, boris to the narrative would allow us to infer that Boris did in fact

Ž .board the plane and that poss board boris, sas609 was in fact true. He would then
end up at his intended destination. If instead we added the observation statement obs6
w x Ž .13 !onplane sas609, boris , we could infer that he was unable to board the plane
and he did not end up at his destination.

The TAL-Q representation of the Russian Airplane Hijack Scenario from Sec-
Ž .tion 3 is now complete. The full LL ND narrative is listed in Appendix A, and the

Ž .translation into LL FL is shown in Appendix B.
Ž . ŽThe translation into LL FL was done using VITAL Kvarnstrom and Doherty¨

.1997 , a research tool that can be used to study problems involving action and change
within TAL and generate visualizations of action scenarios and preferred entailments.
VITAL was also used for generating Figure 1, which is a color-coded summary of facts
true in all preferred models of the RAH scenario. Light gray and dark gray stand for
true and false values for Boolean fluents. Medium gray stands for an unknown value,
and black stands for a value which is unknown but will be the same as that of the
previous timepoint due to inertia. For non-Boolean fluents, ‘‘) n)’’ means that there
are n possible values; the values are not shown in the diagram due to lack of space.
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FIGURE 1. Timelines for the Russian Airplane Hijack Scenario.
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In this scenario, Dimiter is drunk at all timepoints, and he attempts to board a
plane at time 9. There will be two classes of preferred models: In one class, Dimiter
will successfully board the plane, and in the other, he will not. As shown in Figure 1,

Ž .we can not infer poss board dimiter, sas609 or its negation at any timepoint. In
other words, we will not assume that the action succeeds merely because it is possible
that it will succeed.

It should be noted that this approach has similarities to a standard default solution
to the qualification problem, but with some subtle differences. For example, it permits
more control of the enabling precondition, even allowing it to change during the
execution of an action. More importantly, it involves no changes to the minimization
policy already used in TAL to deal with the frame and ramification problems, and the
circumscription policy inherits first-order reducibility.

7. ADDITIONAL ASPECTS CONCERNING THE
QUALIFICATION PROBLEM

7.1. Qualification and Concurrency

One of the requirements we stated previously was that our solution should be able
to handle concurrent actions. Here, there are two different cases, depending on
whether the effects of the actions are independent or can interact in various ways. As
we have seen when modeling the RAH scenario, the former case does not present a
problem: Any number of people could attempt to board the plane at the same time,
and the correct, intuitive conclusions would be obtained.

However, the latter case is far more interesting and presents a problem for
approaches where actions are qualified when their successful execution would contra-
dict a domain constraint, due to the difficulties associated with determining exactly
which of all concurrent actions was the cause of the contradiction. It is more easily
handled with an approach where qualifications are conditions evaluated in the state
where the action is invoked, such as our TAL-Q approach.

Assume, for example, that it is impossible for two people to board the same
Ž .airplane at the same time a resource limitation problem . Similar situations have

Ž .already been considered in the context of TAL-C in Karlsson and Gustafsson 1999 ,
where bounds on concurrency and limited resources are handled using fluent depen-
dency constraints. In this approach, actions are decoupled from their effects using
influences, Boolean durational fluents which indicate that the world is inclined to
change in some specific way, and a similar approach can be used for qualification.
Below, we will show how the specific problem mentioned above can be modeled in
TAL-Q using the same approach.

Ž .First, we add a new durational influence fluent want to board person, plane
with default value false. We change the definition of board so that instead of altering

Ž .the onplane fluent directly, the action simply makes want to board person, plane
true at a single timepoint. Then, we add a new dependency constraint dep5 that is

Ž .triggered whenever want to board person, plane is true. This dependency con-
straint contains what were previously the direct effects of the action.

w x Ž . Žw x Ž ..acs4- t , t board person, plane §I t want to board person, plane1 2 2
ww x Ž .dep5 ; t, person, plane t want to board person, plane n

Ž . Žw x Ž ..xposs board person, plane ªI t onplane plane, person .
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The scenario above is essentially a reformulation of the original RAH scenario, and
will entail exactly the same facts. However, it is modeled using the TAL-C influence
framework, which provides some additional flexibility in reasoning about actions and
their effects. Specifically, there is now a simple way to define what should happen when
two people try to board the same plane at the same time. Clearly, for that airplane,

Ž .want to board person, plane will be true for more than one person, and we must
Ž .make poss board person, plane false for all except one of them. We add a new

Ž .fluent can board plane : person whose value at any given time is the unique person
that can board the plane at that time. We then add two dependency constraints: One
stating that if there is at least one person trying to board a certain plane plane, then

Ž . Ž .can board plane will be one of those people, and one stating that can board plane
is the only person who can board plane.

w ww x Ž .xdep6 ; t, plane 'person t want to board person, plane ª'person2
ww x Ž . Žw x Ž . .xxt want to board person , plane nI t can board plane spersonˆ2 2

w Žw x Ž . .dep7 ; t, plane, person ! t can board plane sperson ªˆ
Žw x Ž ..xI t !poss board person, plane .

It is easy to imagine several variations on this problem. For example, if two or more
people try to board a plane simultaneously, it could be the case that none of them

Ž .should succeed, or that there should be priorities the ‘‘strongest’’ one should succeed .
This can easily be modeled by adapting other techniques presented in Karlsson and

Ž .Gustafsson 1999 .

7.2. Qualification: Not Only For Actions

As we have shown, this approach to qualification is based on general concepts
already present in earlier TAL logics, such as durational fluents and fluent dependency
constraints, instead of introducing new predicates, entailment relations, or circumscrip-
tion policies specifically designed for dealing with the qualification problem. This is
appealing not only because we avoid introducing new complexity into the logic, but also
because reusing these more general concepts adds to the flexibility of the approach. In
this section, we will show how we can use exactly the same approach to specify
qualifications not only for actions but for any generic rule or constraint.

Qualifying Qualification Constraints. When we initially considered the boarding
action, the ‘‘natural’’ preconditions were that one had to be at the airport; this is the

Ž .precondition encoded in the definition of board acs4 . Later, we found another
condition that should qualify the action: No one should be able to board a plane
carrying a gun. Now, however, we may discover that this qualification does not always
hold: Airport security should be able to board a plane carrying a gun.

Ž .Assuming that there is a fluent is security person : boolean, this exception to the
general qualification rule could of course be modeled by changing the dependency
constraint dep3 in the following way:

dep39 ; t, person, plane
ww x Ž . Ž .t inpocket person, gun n!is security person ª
Žw x Ž ..xI t !poss board person, plane .

However, we may later discover additional conditions under which a person should be
able to board a plane with a gun, and we do not want to modify dep3 each time.
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Instead, the qualification itself should be qualified. Although we have so far only
applied qualifications to actions, the same approach can easily be applied to the

Žqualifications themselves. We add a new enabling fluent guns forbidden person,
.plane : boolean for the qualification constraint, and we modify dep3 as follows:

ww x Ž . Ž .dep30 ; t, person, plane t inpocket person, gun nguns forbidden person, plane
Žw x Ž ..xªI t !poss board person, plane .

Now, we can qualify the qualification dep3 simply by making guns forbidden false for
some person and airplane. In order to do this, we add a new dependency constraint:

ww x Ž .dep8 ; t, person, plane t is security person ª
Žw x Ž ..xI t !guns forbidden person, plane .

Weakening Qualifications. It may also be the case that we want to qualify a strong
qualification in order to ‘‘replace’’ it with a weak qualification. For example, suppose
that a gun is made of a special kind of plastic that may or may not be detected by
airport security. Assuming that we have already added dependency constraints dep30
and dep8 as defined above, and that there is a fluent gun is plastic : boolean, we can
achieve this in two different ways. First, we can use strong qualification for the
guns forbidden fluent, so that having a gun is definitely not a qualification to board,
and then add a new weak qualification for the boarding action:

dep9 ; t, person, plane
ww x Ž .t inpocket person, gun ngun is plasticª
Žw x Ž ..xI t !guns forbidden person, plane

dep10 ; t, person, plane
ww x Ž .t inpocket person, gun ngun is plasticª
Žw x Ž ..xX t !poss board person, plane .

Second, we can use weak qualification for the guns forbidden fluent, so that having a
gun may or may not qualify the boarding action:

dep11 ; t, person, plane
ww x Ž .t inpocket person, gun ngun is plasticª
Žw x Ž ..xX t !guns forbidden person, plane .

Qualifying Dependency Constraints. As we have just shown, the same technique we
used for qualifying actions could also be used for qualifying qualifications. Obviously,
we could also apply the same technique to other parts of a narrative, such as ordinary
dependency constraints. This allows us to express qualified side effects in TAL-Q,
which we will demonstrate in Section 9.2.

7.3. Defining Enabling Fluents

In some approaches, qualification conditions are directly tied to specific actions,
which can have certain advantages. For example, in our approach, it would have been
possible to avoid the need to declare each enabling fluent and to explicitly include
them in the corresponding action preconditions. This could be done by introducing a

Ž .fixed qualified t, a predicate expressing the fact that a specific action a is qualified at a
timepoint t, and then modifying the translation of action type specifications from
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Ž . Ž .LL ND into LL FL in the appropriate manner. However, the fact that enabling fluents
are ordinary fluents turns out to give us some additional flexibility in the way they are
defined and used.

First, there is no strict requirement that a fluent must be enabling; we can also
reverse its meaning and define a disabling fluent, if that is better suited for a particular
scenario.

Second, there is of course also no formal requirement that the name of an enabling
fluent is named by prefixing ‘‘poss ’’ to the name of the action}this is only a useful
convention, which may be relaxed, especially when an enabling fluent is used for
qualifying something other than an action.

Third, although our examples always associate a single unique enabling fluent with
each action, it is possible to let multiple actions share the same enabling fluent, and
one can also use multiple enabling fluents for the same action in order to model the
fact that an action can be qualified for any of a set of possible reasons. This may be
very useful when modeling larger scenarios. For example, if there is a robot that can

Žmove in four directions actions move north, move south, move east and
.move west , and anything that makes the robot unable to move affects either all or

none of these actions, we may want to use a single enabling fluent poss move.

7.4. Interacting Qualifications

Since we are using two kinds of qualification}weak and strong}we must consider
what will happen when an action is weakly and strongly qualified at the same time. By

Žw x . Žw x .definition, this means that both X t !poss action and I t !poss action hold at
the same timepoint t. But the X operator only releases the enabling fluent from the
default value assumption, while the I operator both releases it and constrains its value;
in this case, it forces poss action to be false. In other words, the strong qualification
takes precedence, and the action is strongly qualified.

7.5. Ramifications as Qualifications

Another problem related to the qualification problem occurs in formalisms where
ramification constraints and qualification constraints are expressed as domain con-

Ž .straints Ginsberg and Smith 1988; Lin and Reiter 1994 . Assume, for example, that we
are reasoning about the blocks world, and that have the following domain constraint
Ž .expressed using TAL syntax , stating that no two blocks can be on top of the same
block:

ww x Ž . Ž . xdom ; t, x, y, z t on x, z non y, z ªxsy .

Ž . Ž .Now, suppose that the direct effect of the action put A, C is on A, C , and the action is
Ž .executed in a state where on B, C is true. Then, we cannot determine syntactically

Žwhether the domain constraint should be interpreted as a ramification constraint since
.no two blocks can be on top of C, B must be removed or as a qualification constraint

Ž .since no two blocks can be on top of C, the action should fail .
In TAL-Q, however, all indirect effects of an action must be expressed as directed

dependency constraints. Therefore, this problem simply does not arise. For example, if
we want a ramification constraint, we can use the following dependency constraint:

ww x Ž . Žw x Ž .. Žw x Ž ..xdep ; t, x, y, z t on x, z nC tq1 on y, z nx/yªR tq1 !on x, z .T
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If x is on z, and we then place y on z, then an indirect effect is that x is removed
from z.

On the other hand, if we want a qualification constraint, we can introduce an
Ž .enabling fluent poss put A, C and add the following qualification condition:

ww x Ž . Žw x Ž ..xdep ; t, x, y, z t on x, z nx/yªI t !poss put y, z .

Clearly, the problem of determining whether a constraint should be interpreted as a
qualification or a ramification does not arise in this approach.

8. ALTERNATIVE APPROACHES TO THE
QUALIFICATION PROBLEM

We have now presented one approach to solving the qualification problem within
the TAL framework, but this approach is certainly not the only one. Below, we will
examine in somewhat less detail some alternative approaches.

8.1. Using Domain Constraints

Although our main approach to the qualification problem is based on qualifying an
action whenever a condition holds in the state in which it is invoked, it is also
interesting to investigate approaches based on qualifying an action whenever its
execution would contradict a domain constraint.

One variation of this approach would involve simply adding the proper domain
constraints to the scenario, and concluding that an action is qualified whenever the
resulting narrative is inconsistent. For example, the constraint that no guns are allowed
on board airplanes can be stated as follows:

ww x Ž Ž . Ž Ž ...xdom4 ; t, plane t ! loc gun s¨alue t, loc plane .ˆ
Now, assume that we add this constraint to the initial version of the RAH scenario

Ž .from Section 5 , where qualification was not considered. Since Boris tries to board the
plane carrying a gun, we can infer that the gun will be on board the plane, but from
dom4 we can infer that no gun will ever be on board a plane, so the scenario is
inconsistent, which means that some action must be qualified.

Obviously, this approach does not provide the correct conclusions about the results
of invoking a qualified action, and due to the inconsistency it may not even seem like a
solution at all. However, as discussed in Section 2.2, there are some cases where such
approaches may still be useful, such as when we are doing planning. But even if this is
the case, a more serious problem still occurs when this approach is used together with
nondeterministic actions or incomplete information about the initial state. For exam-

Ž .ple, suppose that Dimiter may or may not have a gun in the initial state. If he tries to
board a plane, dom4 will allow us to infer that he did not have a gun, when the
intuitive conclusion would have been that the action may or may not be qualified.

8.2. Fault Fluents

By modifying the previous approach slightly, we can define another approach that
may also have its uses. Instead of stating that a certain domain constraint must hold,
we state that whenever it does not hold, a fault fluent should become true. For
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example, dom4 from the previous section can be modified as follows:

ww x Ž . Ž Ž .. Žw x .xdom49 ; t, plane t loc gun s¨alue t, loc plane ªI t fault gun on airplane .ˆ

Now, whenever someone is on board a plane and is carrying a gun, fault
gun on airplane will be true. From this, the agent can infer that an action must have
been qualified.

This approach has several advantages. First, if some action is qualified, it is easier
to find out which one and why it was qualified, since only the fault fluents need to be
considered. Second, invoking a qualified action does not make the entire narrative
inconsistent. And third, incomplete information and nondeterministic actions are not a

Ž .problem. As before, suppose that Dimiter may or may not have a gun in the initial
state. If he tries to board a plane, there will be two classes of models: One in which he
did not have a gun and boards the plane without triggering the fault gun on air-
plane fault fluent, and one where he did have a gun, boards the plane, and does make
fault gun on airplane true.

Unfortunately, the fault fluent approach still does not provide the correct conclu-
sions if there is some qualified action, since it assumes that all actions succeed.
However, there is another use for this approach, for which it appears to be perfectly
suited. As mentioned in Section 2.3, qualification has sometimes been used for
predicting whether the result of invoking a certain action would be undesirable. This
has usually resulted in predicting that invoking an undesirable action is impossible or
has no effect, when, in reality, invoking the action would be possible and the action
would have its undesirable effects.

Probably, what is needed for such scenarios is not the use of qualification but the
use of a similar mechanism for providing ‘‘undesirability’’ conditions in an intuitive and
modular way. That can be provided by the fault fluent approach, which always predicts
that an action succeeds but can ‘‘flag’’ undesirable results by making a fault fluent true.
For this task, the fault fluent approach would provide the correct results.

An interesting feature of this approach is that it can easily be combined with our
main approach: True qualifications may be expressed as conditions holding in the
invocation state, and undesirable results are expressed in terms of conditions that
should hold in the resulting state.

9. ADDITIONAL EXAMPLES

In this section, we will show how some qualification examples from the literature
can be represented in TAL-Q, and we will also show an extension to one of those
examples. Since the narrative type specifications are obvious from the examples, they
will be omitted.

9.1. Dead Birds Don’t Walk

We will begin with a relatively straightforward qualification example. There is a
turkey, Fred, who can take walks. One constraint on this world is that it is not possible
to walk when you are dead. Therefore, if Fred dies, one should conclude that he is no
longer walking. On the other hand, if the walk action for Fred is invoked, we would
intuitively want the action to be qualified}Fred should not suddenly become alive in

Ž .order to satisfy the domain constraint McCain and Turner 1995 .
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In the TAL-Q representation of this scenario, we use the two Boolean fluents alive
and walking mentioned above, but we also need one enabling fluent per action type
Ž . Ž .acs1, acs2 . If Fred is not alive, he cannot be walking dom1 . A domain constraint is
not adequate for inferring directed side effects for actions. In this case, we use a

Ž . Ždependency constraint dep1 stating that when Fred dies not at every timepoint
.where he is dead}note the use of C , ‘‘changes to true’’ , he stops walking. We alsoT

Ž . Ž .need a qualification dep2 stating that when Fred is dead C is not used , he cannotT
start walking. Together with the observation statement obs1 and the action occurrences

Žocc1 and occ2, this allows one to infer that Fred is initially walking, then dies and stops
.walking , and then cannot resume walking.

w x w x Žw x .acs1 t , t Die§ t poss dieªR t !alive1 2 1 2
w x w x Žw x .acs2 t , t Walk§ t poss walkªR t walking1 2 1 2

ww x xdom1 ; t t !aliveª!walking
w Žw x . Žw x .xdep1 ; t C t !alive ªR t !walkingT
ww x Žw x .xdep2 ; t t !aliveªI t !poss walk

w xobs1 0 alivenwalking
w xocc1 0, 1 Die
w xocc2 1, 2 Walk.

9.2. A Simple Electric Circuit

Ž .Thielscher 1997 discusses qualified ramifications and presents a scenario in which
there is an electric circuit with two batteries bat1 and bat2, two switches sw1 and sw2,

Ž .and one light bulb. There is only one action, toggle switch , whose only direct effect is
that the given switch is toggled.

If you close switch sw1, the first battery is connected to the light bulb. Normally,
this has the side effect that the light is turned on. But there are three qualifications to
this ramification: The light is not turned on if the bulb is broken, if bat1 is malfunction-
ing, or if the wiring is loose. Similarly, if you close switch sw2, the second battery is
connected to the light bulb. Unfortunately, the voltage is too high, so usually this will
have the side effect that the bulb breaks. But here, there are also some qualifications:
The bulb does not break if bat2 is malfunctioning, or if the wiring is loose. Finally,
there is normally no light when the bulb is broken.

Although our approach does not handle qualification for postdiction, we can easily
handle the prediction problem for this scenario. One possible formalization is the

Ž . Ž .following, using the persistent fluents closed switch , light, broken, malfunc battery
and loose wiring and the enabling fluents poss light, poss break and no light
when broken.

w x Ž . Ž .obs1 0 !closed sw1 n!closed sw2
w x w Ž .xobs2 0 !brokenn!loose wiringn;battery !malfunc battery
w x Ž . Žw x Ž . Žw x Ž ...acs1 t , t toggle switch § t closed switch ªR t !closed switch n1 2 1 2
Žw x Ž . Žw x Ž ...t !closed switch ªR t closed switch1 2

ww x Ž .xdom1 ; t t no light when brokenª brokenª!light
ww x Žw x Ž .. Žw x .xdep1 ; t t poss lightnC t closed sw1 ªR t lightT
ww x Žw x Ž .. Žw x .xdep2 ; t t poss breaknC t closed sw2 ªR t brokenT
ww x Ž . Žw x .xdep3 ; t t brokenkmalfunc bat1 k loose wiringªI t !poss light
ww x Ž . Žw x .xdep4 ; t t malfunc bat2 k loose wiringªI t !poss break .
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9.3. Yellow Blocks Are Forbidden

Returning once more to scenarios where only actions are qualified, we will now
Ž .consider a scenario presented in Lin and Reiter 1994 : A blocks world scenario where

blocks may have different colors. There is a single robot that can paint blocks
Ž Ž ..paint block, color , but since yellow is traditionally reserved for the emperor, the
robot is not allowed to paint any block yellow. In Lin and Reiter, this is handled using
qualification, by adding a domain constraint stating that no block may be yellow.

Ž .Consequently, in that approach, the preconditions of the action paint block, yellow
will always be false.

One possible translation to TAL-Q would use two domains, block and color, a
Ž . Ž .fluent col block : color, and an enabling fluent poss paint block,color : boolean

Ž . Žwith default value true, together with the following LL ND statements. Note that in
Lin and Reiter 1994, all fluents will be undefined in the state resulting from invoking

Ž . .paint x, yellow , while in our approach, the action will have no effect.

w x w Ž Ž . .xobs1 0 ;b ! col b syellowˆ
w x Ž . w x Ž . Žw x Ž . .acs1 t , t paint b, c § t poss paint b, c ªR t col b scˆ1 2 1 2

w Žw x Ž ..xdep1 ; t, b I t !poss paint b, yellow .

Ž .However, the fault fluent approach Section 8.2 may be more appropriate, since it is
more likely that the action would actually succeed, even though its effects were
‘‘illegal’’:

w x Ž . Žw x Ž . .acs2 t , t paint b, c §R t col b scˆ1 2 2
ww x Ž . Žw x Ž ..xdep2 ; t, b t col b syellowªI t fault block is yellow b .ˆ

Using this approach, we will predict that painting a block yellow will succeed, but also
that the fault fluent fault block is yellow will become true for that block: We have
performed an action that has undesirable results.

9.4. The Lenient Emperor

There is also a variation of the previous scenario in which the emperor is more
lenient and allows at most one yellow block to exist. If we had thought ahead and
provided an enabling fluent for dep1 above, we could have handled this by qualifying
the old qualification. Since we did not, we have to modify the existing qualification
dep1. For example, it can be replaced with the following constraint:

w ww x Ž . x w Žw x Ž ..xxdep19 ; t 'b t col b syellow ª;b I t !poss paint b, yellow .ˆ

If we want to be able to paint a yellow block yellow again, we can use the following
alternative:

w ww x Ž . xdep10 ; t 'b t col b syellow ªˆ
ww x Ž Ž . . Žw x Ž ..xx;b t ! col b syellow ªI t !poss paint b, yellow .ˆ

Again, the fault fluent approach may be more appropriate: If more than one block is
yellow, we signal an error for each yellow block.

w ww x Ž . Ž . xdep29 ; t 'b , b t col b syellowncol b syellownb /b ªˆ ˆ1 2 1 2 1 2
ww x Ž . Žw x Ž ..xx;b t col b syellowªI t fault block is yellow b .ˆ
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9.5. The Lenient Emperor}with Concurrency

An interesting variation of the lenient emperor scenario, which has not previously
been considered in the literature, arises when there may be more than one agent in the
world. For example, it may be the case that when no block is yellow, but a number of
agents concurrently attempt to paint two or more blocks yellow, exactly one of them
will succeed.

A similar scenario was discussed in Section 7.1, where at most one person could
board a plane at any given timepoint. That, however, would be analogous to allowing at
most one new yellow block at each timepoint. However, it turns out that the
concurrent lenient emperor scenario can be modeled in a similar manner. First, we will
reformulate the scenario using the TAL-C approach, using a durational influence

Ž .fluent want to paint block,color :

w x w Ž Ž . .xobs1 0 ;b ! col b syellowˆ
w x Ž . Žw x Ž ..acs1 t , t paint b, c §I t want to paint b, c1 2 2

ww x Ž . Ž . Žw x Ž . .xdep1 ; t, b, c t want to paint b, c nposs paint b, c ªR t col b sc .ˆ
Although the influence fluent is not strictly necessary for this example, it can still be an
advantage to model the scenario in this way due to the added flexibility in case the
scenario ever needs to be changed. In this case, however, the important difference in
the new scenario is that in dep1, poss paint must be true at the same timepoint when
the block should change color. This means that we only need to make sure that
whenever any block is yellow, no block except possibly that one can be painted yellow.
Note that this allows us to repaint a yellow block with the same color, and it also allows
us to concurrently paint one block yellow and paint another, previously yellow block in
another color.

ww x Ž . Žw x Ž ..xdep2 ; t, b , b t col b syellownb /b ªI t !poss paint b , yellow .ˆ1 2 1 1 2 2

For this scenario, the fault fluent approach would be identical to that for the
non-concurrent lenient emperor scenario.

10. COMPARISONS

Having considered some qualification examples and how they can be represented
in TAL-Q, we will now compare our approach to some other approaches in the

Ž .literature, beginning with McCarthy’s introduction of circumscription 1980, 1986 and
Ž . Ž . Ž .continuing with Lifschitz 1987 , Shanahan 1997 , Ginsberg and Smith 1988 , Lin and

Ž . Ž . Ž .Reiter 1994 , McCain and Turner 1995 , and finally Thielscher 1996a, 1996b .
Although these approaches have many differences, there are also many important

similarities. Perhaps the most important of these similarities is that all of these
approaches are based on the assumption that there is a single agent executing a simple
sequence of actions without duration, and that all change in the world is caused by that
agent. For example, there can be no concurrent actions, no delayed side effects, and no
dynamic processes taking place in the background. Sometimes, not even nondetermin-
istic actions are allowed. In other words, these approaches are not expressive enough
to model the Russian Airplane Hijack Scenario.

For some of the approaches, it may be possible to extend them for more complex
worlds without requiring major changes}in other words, a graceful scaling up. As we
will see, however, several approaches are strongly dependent on the fact that actions
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and side effects can be represented as a function from the current state and the action
to be performed to the successor state, or possibly the set of successor states. This is
especially true for the approaches where qualification is based on constraints that must
not be violated by an action, rather than on conditions that must or must not hold

Ž .when the action is invoked Ginsberg and Smith 1988; Lin and Reiter 1994 .

10.1. McCarthy

Ž .McCarthy 1977, 1980 introduces circumscription and discusses how it can be used
for conjecturing that any action will succeed unless there is anything preventing its

Ž .success. This is achieved using a pre¨ents reason, action, state predicate which holds
whenever some specific reason prevents an action from having its usual effects in the
given state. Each such reason is then defined explicitly. For example, in a blocks world,

Ž Ž .we may say that heavy blocks cannot be moved: ; x, y, s. toohea¨y x ª
Ž Ž . Ž . ..pre¨ents weight x , mo¨e x, y , s . The pre¨ents predicate is circumscribed relative to

the conjunction of all such reasons, which allows us to predict that the action will
succeed unless one of its qualifications holds when the action is invoked.

Clearly, this is very similar to the way we defined our main approach in Section 6.
Like our approach, it can not be used for inferring qualifications based on observing
that an action failed, since pre¨ents is only circumscribed relative to the explicit
qualification conditions. One important difference, however, is that our approach does
not minimize qualifications}we minimize the occlusion predicate, which means that
we minimize potential qualification. This is what allows us to express weak qualifi-
cation.

Ž .In McCarthy 1986 , a slightly different approach is used within the situation
Ž .calculus. Instead of using a pre¨ents predicate for qualification, a single ab ‘‘abnormal’’

predicate is used for both qualification and many other tasks. The argument of ab
is an aspect, an abstract object. For example, in the blocks world, we can move a
block to a location unless the mo¨e action is abnormal in the first aspect:

Ž Ž Ž . ... Ž Ž Ž . ..; x, l, s.! ab aspectl x, mo¨e x, l , s ª loc x, result mo¨e x, l , s s l. Then, we may
Ž Ž . Ž Ž Ž . ...not be able to lift heavy blocks: ; x, l, s. toohea¨y x ªab aspectl x, mo¨e x, l , s . An

interesting aspect of this approach is that if a qualified action is invoked, each fluent
which would normally have been affected is released from the inertia assumption, but
is not given a new value and is therefore allowed to vary freely. Fluents which would
not have been affected retain their previous values.

10.2. Lifschitz: Formal Theories of Action

Ž .Unfortunately, as Lifschitz 1987 notes, global minimization of abnormality is not
sufficient, since it sometimes leads to unintended models. He presents an alternative

Ž .solution for the prediction task or temporal projection , where it is assumed that all
changes in the values of fluents are caused by actions.

Ž .Two new predicates are added to the situation calculus: causes a, p, f expresses
that the action a causes the primitive fluent p to have the same value that the fluent f

Ž .had when the action was invoked, and precond f , a expresses that the fluent f is a
precondition to the action a. Given these new predicates, it is possible to define any
number of preconditions to an action in an incremental manner. The situation-inde-
pendent predicates causes and precond are then circumscribed, and an action is
assumed to succeed iff all its preconditions hold when the action is invoked. If any of
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its preconditions do not hold, the action will be assumed to have no effect on the
world.

This approach produced the correct results for the scenarios where McCarthy’s
earlier approach failed. However, apart from allowing more complex worlds to be
modeled, the approach presented in Section 6 is also more flexible in the way
qualification conditions can be specified. For example, our qualification conditions may
vary over time, and may also depend on states other than the state in which the action
is invoked. Due to the fact that enabling fluents are not directly tied to actions, we
can also represent qualified qualifications and qualified side effects, while Lifschitz’
approach does not allow side effects at all.

10.3. Shanahan: Solving the Frame Problem

Ž . Ž .Shanahan 1997 uses an approach similar to that of Lifschitz 1987 , the main
Ž .difference being that the precond predicate takes three arguments: precond f , ¨ , a

expresses the fact that the action a is only executable when the fluent f has the
value ¨ . Consequently, the two approaches share many of the same advantages and
disadvantages. As in Lifschitz’ approach, if any precondition does not hold, an action
will be assumed to have no effect on the world.

10.4. Ginsberg and Smith: Reasoning about Action II}
The Qualification Problem

Ž .Ginsberg and Smith 1988 argue that specifying qualifications as preconditions to
actions often leads to complicated formulas, due to the need to take all possible
ramifications into account. Accordingly, they define a possible worlds approach in
which each action is associated with a set of qualification constraints on the form of
domain constraints. Given an action, the set of possible successors of the current world
is first calculated without considering the qualification constraints. Then, any such
world which does not satisfy all qualification constraints is discarded. If no possible
successor remains, the action was qualified, and is assumed not to change the world
at all.

This approach works very well for the examples examined by Ginsberg and Smith.
However, if concurrent actions or delayed side effects were allowed, it would no longer
be possible to reason about whether a single action would violate a domain constraint:
For concurrent actions, it would be necessary to take into account all actions being
performed at the same time, and it would be more difficult to determine exactly which
action should be qualified. Similarly, if delayed side effects were allowed, one would
have to know exactly which actions are invoked up to the time when the delayed side
effect takes place. Qualified side effects would of course be even more problematic,
since one would have to determine somehow whether it is the action itself or one of its
side effects that should be qualified. In other words, this approach would be quite
difficult to extend to handle complex scenarios such as the Russian Airplane Hijack
Scenario.

10.5. Lin and Reiter: State Constraints Revisited

Ž .Lin and Reiter 1994 present a solution to the qualification problem within the
situation calculus. The solution is based on generating an exact definition of the

Ž .Poss a, s predicate, which states that it is possible to execute the action a in the state
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s. The definition of Poss is generated using both a set DD of formulas of the formnec
Ž .Poss a, s >f and a set DD of domain constraints that must hold in the statequal

resulting from executing any action. The domain constraints in DD are regressed,qual
and the results are combined with the formulas in DD to form an exact definition ofnec
Poss.

Since all qualification conditions are compiled into the definition of the Poss
predicate, it is possible to infer that an action is qualified by evaluating Poss in the

Ž .current situation. The situation do a, s resulting from executing a qualified action a is
completely undefined, since the successor state axioms only define fluent values in
situations resulting from executing actions whose preconditions hold.

Like the approach used by Ginsberg and Smith, this solution also depends on the
restricted expressivity of the logic being used}in fact, it does so to an even greater
degree, due to the compilation of qualification conditions into a definition of Poss.

For example, if nondeterministic actions were allowed, we may only know that an
action may contradict a domain constraint, so finding an exact definition of Poss would
not be possible. Similarly, if actions with duration and internal state were introduced,
the compilation procedure would be far more complicated due to the need to ensure
that no intermediate state contradicts the domain constraints in DD . If concurrentqual
actions, delayed side effects or domain constraints referring to multiple states or
domain constraints depending on time were allowed, this approach could not be used
at all, since it would not be sufficient to consider the single action and situation used as
arguments to the Poss predicate.

On the other hand, if the world one is reasoning about is simple enough, this
solution does provide a way of specifying qualification constraints that is often more
intuitive than using enabling fluents.

10.6. McCain and Turner: A Causal Theory of Ramifications and Qualifications

Ž .McCain and Turner 1995 provide a combined solution to the ramification and
qualification problems in which every change must be caused. An action is qualified if
it would imply a change that it did not cause. Causal laws are expressed on the form

Ž .f«c if f holds, c is caused to hold . Pure ramifications can be expressed on the
form True«f, and pure qualifications on the form !f«False, but other forms of
constraints can also be used.

A pure qualification !f«False essentially defines a condition that must hold in
any state resulting from executing an action. It does not cause fluents to change as a
side effect of executing the action, but if the condition f does not hold, False must
hold in any resulting state, so there can be no resulting state, which means that the
action was qualified. It is also possible to express ‘‘combined’’ ramification and
qualification constraints. For example, the constraint ! Alï e«!Walking may act as
a ramification when Alï e is caused to become false, but as a qualification when
Walking is caused to become true.

Since the result of invoking a qualified action in this approach is an empty set of
possible resulting states, it is not possible to reason about which value a fluent would
take on after a qualified action was invoked; it is only possible to determine that the
action would be qualified. Therefore, this approach is mainly useful for planning, or for
prediction in the case where we are not interested in the result of invoking a qualified
action.

If we consider an empty set of possible resulting states in this approach to be
equivalent to an inconsistent scenario in the TAL formalism, any qualification con-
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straint that can be expressed in this approach}pure or not pure}can also be
expressed using our alternative approach from Section 8.1. Each qualification con-
straint becomes an ordinary domain constraint, while each ramification constraint is
expressed as a fluent dependency constraint.

On an abstract level, this solution is very similar to the approaches used by
Ž . Ž .Ginsberg and Smith 1988 and Lin and Reiter 1994 , in the sense that pure

qualifications are domain constraints that must not be violated by an action. The
solution also has similar limitations in expressibility. However, the technical solution
and the reasoning behind it are different, and so are the sets of possible states
resulting from invoking a qualified action: In Ginsberg and Smith there was a single
possible resulting state where nothing had changed, in Lin and Reiter the result was

Ž .undefined, and in McCain and Turner 1995 , there is no resulting state.

10.7. Thielscher: Causality and the Qualification Problem

Ž .Thielscher’s 1996a, 1996b approach to the qualification problem is quite different
from the previous three approaches. In fact, it turns out to be more similar to the
approach we have presented in Section 6 in that it uses fluents to represent qualifica-
tions. On the other hand, there are also quite a few differences.

Thielscher uses persistent disqualification fluents, which are assumed to be false in
the initial state unless something forces them to be true, while our enabling fluents are
durational, and are normally true in every state. While using durational fluents has the
advantage of not needing to explicitly make a disqualification fluent false when a
qualification no longer holds, Thielscher’s approach has the advantage of being able to
handle some cases of postdiction. For example, if the start action can only be qualified
when potato is true, and if we observe that the action is qualified, then the conclusion
would be that potato must have been true in the initial state.

This, of course, does not handle the case where we initially observed that there was
no potato, then waited a while and tried to start the car, and starting failed. Thielscher
handles this using miraculous disqualification, which allows an action to be qualified
even though every explanation for its qualification is proven to be false, and which is

Žglobally minimized at a higher priority than ordinary qualification. Unfortunately, this
.also allows us to prove that there was in fact no potato. There is also a method for

Ž .qualifying ramification constraints within the same framework Thielscher 1997 .
² :The result of executing a sequence a , . . . , a of actions is a state defined by the1 n

Ž² :.function Res a , . . . , a , which is undefined when some action in the sequence is1 n
² :qualified. However, an observation on the form F after a , . . . , a is still defined in1 n

this case, although it is always false for any formula F. This is yet another different
definition of the state resulting from invoking a qualified action: Not even the
tautology T is considered to hold.

But although this approach has certain advantages, it once again assumes a world
where there are no concurrent actions, no actions with duration and internal state, no
dynamic processes in the background, no delayed side effects, and no qualified side
effects, and therefore, it would not be possible to model the Russian Airplane Hijack
Scenario with this approach.

10.8. Summary

We have compared our approach to six other approaches in the literature. There
turn out to be some similarities between all of these approaches, perhaps most
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importantly that they are designed for simple worlds in which a single agent performs
actions in a sequential manner, and where any side effects, if allowed at all, take place
in the ending state of the action. Therefore, none of these approaches are powerful
enough to model the Russian Airplane Hijack Scenario, although for simpler scenarios
they sometimes provide more intuitive methods for specifying which actions are
qualified.

There also appear to be two main approaches to the way in which qualification
conditions are specified: Either as conditions holding in the initial state or as domain
constraints that must not be violated by actions. Here, Thielscher’s approach is an
exception: It is possible to directly observe the qualification of an action, after which
one can postdict the reasons for the qualification.

However, there is also one aspect in which the approaches are quite different: If
we execute a qualified action, what can be said about the resulting state? Most
approaches turn out to have their own answer to this question:

v Ž .In McCarthy 1986 , the fluents that would ordinarily be affected by the action are
released from the inertia assumption in the resulting state, but all other fluents
remain inert. This could be emulated in TAL-Q using the X operator.

v Ž . Ž . Ž .In Lifschitz 1987 , Shanahan 1997 , and Ginsberg and Smith 1988 , the action has
no effect on the world. This is normally also the case in TAL-Q, unless an
alternative effect has been specified.

v Ž .In Lin and Reiter 1994 , the resulting state is completely undefined.
v Ž .In McCain and Turner 1995 , there is no resulting state. This could be considered

equivalent to an inconsistent scenario in TAL-Q.
v Ž .In Thielscher 1996a, 1996b , the result is a ‘‘state’’ in which nothing holds}not

even a tautology.

11. CONCLUSION

We have presented an approach to the qualification problem based on the use of
dependency constraints and durational fluents in the context of a highly expressive
temporal logic of action and change called TAL-Q. TAL-Q permits the use of action
types that are nondeterministic, context dependent, durational, and concurrent. This
degree of expressivity introduces additional issues in solving the qualification problem
not present in any of the previously proposed formalisms and solutions in the
literature. We have also tried to show that whether any given approach to solving the
qualification problem is useful or not often depends on both the reasoning task and the
characteristics of the class of worlds we are interested in reasoning about. Although
many solutions have been proposed in the literature, they often do not make such
assumptions explicit, and often turn out to be useful only for a small class of worlds.
The intent of this article was to present a solution to the qualification problem for
TAL-Q in this context. Several of the ideas in the article are tentative and will be
pursued in future research. One of the more important topics of research is to clarify
the distinctions between online and offline reasoning modes and how these modes
affect solutions to the qualification problem. In addition, pursuing the formal assess-
ment of correctness for the proposed solutions to the qualification problem using
TAL-Q is an important future research issue as are more formal comparative analyses
of the alternative formalisms considered in the article.
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( )APPENDIX A: RAH NARRATIVE IN LLLL ND

For a narrative background specification for this scenario, see Section 5.1.

Persistence Statements
w Ž Ž ..xper1 ; t, thing trueªPer tq1, loc thing

w Ž Ž ..xper2 ; t, person, pthing trueªPer tq1, inpocket person, pthing
w Ž Ž ..xper3 ; t, person trueªPer tq1, drunk person

w Ž Ž ..xper4 ; t, plane, person trueªPer tq1, onplane plane, person
w Ž Ž . .xper5 ; t, person, plane trueªDur t, poss board person, plane , true
w Ž Ž . .xper6 ; t, person, pthing trueªDur t, poss pickup person, pthing , true

w Ž Ž . .xper7 ; t, person, loc , loc trueªDur t, poss travel person, loc , loc , true1 2 1 2
wper8 ; t, plane, runway , runway trueª1 2

Ž Ž . .xDur t, poss fly plane, runway , runway , true1 2

Observations, Action Occurrences, and Timing
w x ( ) ( ) ( )obs1 0 loc boris s home1 n loc gun s office n loc comb1 s home1 nˆ ˆ ˆ

( )!drunk boris
w x ( ) ( ) ( )obs2 0 loc erik shome2n loc comb2 shome2n!drunk erikˆ ˆ
w x ( ) ( ) ( )obs3 0 loc dimiter shome3n loc comb3 shome3ndrunk dimiterˆ ˆ
w x ( )obs4 0 loc sas609 s run609ˆ
w x Ž . w x Ž .occ1 1, 2 pickup boris, comb2 occ8 7, 9 travel erik, office, airport
w x Ž . w x Žocc2 1, 2 pickup erik, comb2 occ9 8, 10 travel boris, office,

.airport
w x Ž . w x Ž .occ3 2, 4 travel dimiter, home3, office occ10 9, 10 board dimiter, sas609
w x Ž . w x Ž .occ4 3, 5 travel boris, home1, office occ11 10, 11 board boris, sas609
w x Ž . w x Ž .occ5 4, 6 travel erik, home2, office occ12 11, 12 board erik, sas609
w x Ž . w x Žocc6 6, 7 pickup boris, gun occ13 13, 16 fly sas609, run609,

.run609b
w x Ž .occ7 5, 7 travel dimiter, office, airport
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Action Types

w x Ž .acs1 t , t fly plane, runway , runway §1 2 1 2
w x Ž . Ž .t poss fly plane, runway , runway n loc plane s runway ªˆ1 1 2 1
ŽŽ . Ž . . Žw x Ž . .I t , t loc plane sair nR t loc plane s runwayˆ ˆ1 2 2 2

w x Ž .acs2 t , t pickup person, pthing §1 2
w x Ž . Ž . Ž Ž ..t poss pickup person, pthing n loc person s¨alue t , loc pthing ªˆ1 1
ŽŽ x Ž ..R t , t inpocket person, pthing1 2

w x Ž . w x Ž .acs3 t , t travel person, loc , loc § t poss travel person, loc , loc n1 2 1 2 1 1 2
Ž . Žw x Ž . .loc person s loc ªR t loc person s locˆ ˆ1 2 2

w x Ž . w x Ž .acs4 t , t board person, plane § t poss board person, plane n1 2 1
Ž . Žw x Ž . Ž Ž ..loc person sairportªR t loc person s¨alue t , loc plane nˆ ˆ2 2

Ž ..onplane plane, person

Domain Constraints

dom1 ; t, pthing, person , person1 2
w w x Ž .person /person n t inpocket person , pthing ª1 2 1
w x Ž .xt !inpocket person , pthing2

dom2 ; t, person, plane , plane1 2
w w x Ž . w x Ž .xplane /plane n t onplane plane , person ª t !onplane plane , person1 2 1 1

ww x Ž .dom3 ; t, person, pthing t inpocket person, pthing ª
w x Ž . Ž Ž ..xt loc pthing s¨alue t, loc personˆ

Dependency Constraints

ww x Ž . Žw x Ž . .dep1 ; t, plane, person, loc t onplane plane, person nC t loc plane s loc ªˆT
Žw x Ž . .xR t loc person s locˆ

ww x Ž . Žw x Ž . .dep2 ; t, person, pthing, loc t inpocket person, pthing nC t loc person s locˆT
Žw x Ž . .xªR t loc pthing s locˆ

ww x Ž .dep3 ; t, person, plane t inpocket person, gun ª
Žw x Ž ..xI t !poss board person, plane

ww x Ž . Žw x Ž ..xdep4 ; t, person, plane t drunk person ªX t !poss board person, plane

Intermediate Schedule Statements

The following statements are generated from the action type specifications.

w x Ž .scd1 ; t , t , plane, runway , runway . t , t fly plane, runway , runway ª1 2 1 2 1 2 1 2
Žw x Ž . Ž .t poss fly plane, runway , runway n loc plane s runway ªˆ1 1 2 1
ŽŽ . Ž . . Žw x Ž . ..I t , t loc plane sair nR t loc plane s runwayˆ ˆ1 2 2 2

w x Ž .scd2 ; t , t , person, pthing. t , t pickup person, pthing ª1 2 1 2
Žw x Ž . Ž . Ž Ž ..t poss pickup person, pthing n loc person s¨alue t , loc pthing ªˆ1 1
ŽŽ x Ž ...R t , t inpocket person, pthing1 2

w x Ž .scd3 ; t , t , person, loc , loc . t , t travel person, loc , loc ª1 2 1 2 1 2 1 2
Žw x Ž . Ž .t poss travel person, loc , loc n loc person s loc ªˆ1 1 2 1
Žw x Ž . ..R t loc person s locˆ2 2

w x Ž .scd4 ; t , t , person, plane. t , t board person, plane ª1 2 1 2
Žw x Ž . Ž .t poss board person, plane n loc person sairportªˆ1
Žw x Ž . Ž Ž .. Ž ...R t loc person s¨alue t , loc plane nonplane plane, personˆ2 2
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( )APPENDIX B: RAH NARRATIVE IN LLLL FL

Persistence Statements

w Ž Ž .. Ž Ž Ž . .per1 ; t, thing, ¨ !Occlude tq1, loc thing ª Holds t, loc thing , ¨ l
Ž Ž . ..xHolds tq1, loc thing , ¨

w Ž Ž ..per2 ; t, person, thing, ¨ !Occlude tq1, inpocket person, thing ª
Ž Ž Ž . . Ž Ž . ..xHolds t, inpocket person, thing , ¨ lHolds tq1, inpocket person, thing , ¨

w Ž Ž ..per3 ; t, person, ¨ !Occlude tq1, drunk person ª
Ž Ž Ž . . Ž Ž . ..xHolds t, drunk person , ¨ lHolds tq1, drunk person , ¨

w Ž Ž ..per4 ; t, plane, person, ¨ !Occlude tq1, onplane plane, person ª
Ž Ž Ž . . Ž Ž . ..xHolds t, onplane plane, person , ¨ lHolds tq1, onplane plane, person , ¨

w Ž Ž ..per5 ; t, person, plane !Occlude t, poss board person, plane ª
Ž Ž . .xHolds t, poss board person, plane , true

w Ž Ž ..per6 ; t, person, pthing !Occlude t, poss pickup person, pthing ª
Ž Ž . .xHolds t, poss pickup person, pthing , true

w Ž Ž ..per7 ; t, person, loc , loc !Occlude t, poss travel person, loc , loc ª1 2 1 2
Ž Ž . .xHolds t, poss travel person, loc , loc , true1 2

w Ž Ž ..per8 ; t, plane, runway , runway !Occlude t, poss fly plane, runway , runway ª1 2 1 2
Ž Ž ..xHolds t, poss fly plane, runway , runway1 2

Observations, Action Occurrences, and Timing

Ž Ž . . Ž ( ) .obs1 Holds 0, loc boris , home1 nHolds 0, loc gun , office n
Ž ( ) . Ž ( ) .Holds 0, loc comb1 , home1 n! Holds 0, drunk boris , true
Ž ( ) . Ž ( ) .obs2 Holds 0, loc erik , home2 nHolds 0, loc comb2 , home2 n

Ž ( ) .! Holds 0, drunk erik , true
Ž ( ) . Ž ( ) .obs3 Holds 0, loc dimiter , home3 nHolds 0, loc comb3 , home3 n
Ž ( ) .Holds 0, drunk dimiter , true
Ž ( ) .obs4 Holds 0, loc sas609 , run609
Ž Ž ..occ1 Occurs 1, 2, pickup boris, comb1
Ž Ž ..occ2 Occurs 1, 2, pickup erik, comb2
Ž Ž ..occ3 Occurs 2, 4, travel dimiter, home3, office
Ž Ž ..occ4 Occurs 3, 5, travel boris, home1, office
Ž Ž ..occ5 Occurs 4, 6, travel erik, home2, office
Ž Ž ..occ6 Occurs 6, 7, pickup boris, gun
Ž Ž ..occ7 Occurs 5, 7, travel dimiter, office, airport
Ž Ž ..occ8 Occurs 7, 9, travel erik, office, airport
Ž Ž ..occ9 Occurs 8, 10, travel boris, office, airport
Ž Ž ..occ10 Occurs 9, 10, board boris, sas609
Ž Ž ..occ11 Occurs 10, 11, board boris, sas609
Ž Ž ..occ12 Occurs 11, 12, board erik, sas609
Ž Ž ..occ13 Occurs 13, 16, fly sas609, run609, run609b

Schedule Statements

w Ž Ž ..scd1 ; t , t , plane, runway , runway Occurs t , t , fly plane, runway , runway ª1 2 1 2 1 2 1 2
Ž Ž Ž .. Ž Ž . .Holds t , poss fly plane, runway , runway n Holds t , loc plane , runway1 1 2 1 1

w Ž Ž . . Ž Ž ..xª; t t - tn t- t ªHolds t, loc plane , air nOcclude t, loc plane n1 2
Ž Ž . . Ž Ž ...xHolds t , loc plane , runway nOcclude t , loc plane2 2 2
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w Ž Ž ..scd2 ; t , t , person, pthing Occurs t , t , pickup person, pthing ª1 2 1 2
Ž Ž Ž ..Holds t , poss pickup person, pthing n1

Ž Ž . Ž Ž ...Holds t , loc person , ¨al t , loc pthing ª1 1
Ž Ž . .Holds t , inpocket person, pthing , true n2
Ž Ž ...xOcclude t , inpocket person, pthing2

w Ž Ž ..scd3 ; t , t , person, loc , loc Occurs t , t , travel person, loc , loc ª1 2 1 2 1 2 1 2
Ž Ž Ž .. Ž Ž . .Holds t , poss travel person, loc , loc nHolds t , loc person , loc ª1 1 2 1 1

Ž Ž . . Ž Ž ...xHolds t , loc person , loc nOcclude t , loc person2 2 2
w Ž Ž ..scd4 ; t , t , person, plane Occurs t , t , board person, plane ª1 2 1 2

Ž Ž Ž . . Ž Ž . .Holds t , poss board person, plane , true nHolds t , loc person , airport ª1 1
Ž Ž . Ž Ž ...Holds t , loc person , ¨al t , loc plane n2 2
Ž Ž . .Holds t , onplane plane, person , true n2
Ž Ž .. Ž Ž ...xOcclude t , loc person nOcclude t , onplane plane, person2 2

Domain Constraints

wdom1 ; t, pthing, person , person person /person n1 2 1 2
Ž Ž . .Holds t, inpocket person , pthing , true ª1

Ž Ž . .x! Holds t, inpocket person , pthing , true2
wdom2 ; t, person, plane , plane plane /plane n1 2 1 2

Ž Ž . .Holds t, onplane plane , person , true ª1
Ž Ž ..x! Holds t, onplane plane , person2

w Ž Ž . .dom3 ; t, person, pthing Holds t, inpocket person, pthing , true ª
Ž Ž . Ž Ž ...xHolds t, loc pthing , ¨al t, loc person

Dependency Constraints

w Ž Ž . .dep1 ; t, plane, person, loc Holds t, onplane plane, person , true n
Ž Ž . .Holds t, loc plane , loc n

w Ž Ž . .x Ž Ž . .;u tsuq1ª! Holds u, loc plane , loc ªHolds t, loc person , loc n
Ž Ž ..xOcclude t, loc person

w Ž Ž . .dep2 ; t, person, pthing, loc Holds t, inpocket person, pthing , true n
Ž Ž . .Holds t, loc person , loc n

w Ž Ž . .x Ž Ž . .;u tsuq1ª! Holds u, loc person , loc ªHolds t, loc pthing , loc n
Ž Ž ..xOcclude t, loc pthing

w Ž Ž . .dep3 ; t, person, plane Holds t, inpocket person, gun , true ª
Ž Ž . .! Holds t, poss board person, plane , true n
Ž Ž ..xOcclude t, poss board person, plane

w Ž Ž . .dep4 ; t, person, plane Holds t, drunk person , true ª
Ž Ž ..xOcclude t, poss board person, plane

Temporal Structure and Foundational Axioms

Apart from the narrative formulas above, we need axioms G for the temporalt im e
structure. The Peano axioms without multiplication. We also need the foundational
axioms, G , which contain unique names axioms for the value sorts, fluent sorts, andf nd

actions. The foundational axioms also contain a set of axioms that relate the Holds
predicate to the ¨al function and ensure that each fluent has exactly one value at each
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timepoint:

w Ž Ž . . Ž Ž .. x; t, thing, loc Holds t, loc thing , loc l¨al t, loc thing s loc
w Ž Ž . .; t, person, pthing, ¨ Holds t, inpocket person, pthing , ¨ l

Ž Ž .. x¨al t, inpocket person, pthing s¨
w Ž Ž . . Ž Ž .. x; t, person, ¨ Holds t, drunk person , ¨ l¨al t, drunk person s¨

w Ž Ž . .; t, plane, person, ¨ Holds t, onplane plane, person , ¨ l
Ž Ž .. x¨al t, onplane plane, person s¨

w Ž Ž . .; t, person, plane, ¨ Holds t, poss board person, plane , ¨ l
Ž Ž .. x¨al t, poss board person, plane s¨

w Ž Ž . .; t, person, pthing, ¨ Holds t, poss pickup person, pthing , ¨ l
Ž Ž .. x¨al t, poss pickup person, pthing s¨

w Ž Ž . .; t, person, loc , loc , ¨ Holds t, poss travel person, loc , loc , ¨ l1 2 1 2
Ž Ž .. x¨al t, poss travel person, loc , loc s¨1 2

w Ž Ž . .; t, plane, runway , runway , ¨ Holds t, poss fly plane, runway , runway , ¨ l1 2 1 2
Ž Ž .. x¨al t, poss fly plane, runway , runway s¨1 2


