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Abstract

A number of current planners make use of automatic domain
analysis techniques to extract information such as state in-
variants or necessary goal orderings from a planning domain.
There are also planners that allow the user to explicitly spec-
ify additional information intended to improve performance.
One such planner is TALplanner, which allows the use of
domain-dependent temporal control formulas for pruning a
forward-chaining search tree.
This leads to the question of how these two approaches can
be combined. In this paper we show how to make use of
automatically generated state invariants to improve the per-
formance of testing control formulas. We also develop a new
technique for analyzing control rules relative to control for-
mulas and show how this often allows the planner to automat-
ically strengthen the preconditions of the operators, thereby
reducing time complexity and improving the performance of
TALplanner by a factor of up to 400 for the largest problems
from the AIPS-2000 competition.

Introduction
Although all the information necessary to solve a plan-
ning problem is implicitly available in the problem defini-
tion, there can be considerable advantages in making certain
kinds of knowledge available to the planner in a more ex-
plicit form. Consequently, a wide range of automatic prepro-
cessing and domain analysis techniques exist in the literature
and have been implemented in various planning systems.
These techniques include the automatic generation of state
constraints (Fox & Long 1998; Gerevini & Schubert 1998;
2000; Scholz 2000; Rintanen 2000), the detection of sym-
metric objects (Fox & Long 1999), and the removal of facts
and operator instances that turn out to be irrelevant to the so-
lution of a particular problem instance (Nebel, Dimopoulos,
& Koehler 1997; Haslum & Jonsson 2000).

There has also been a recent surge of interest in domain-
dependent or hand-tailored planning systems, where various
kinds of explicit knowledge can be given to a planner by the
domain designer rather than being extracted automatically
by the planner. Though this approach requires some more
work by the user, it has the advantage of allowing the use
of information that is immediately, intuitively apparent to a
human but not easily extracted by a machine. Thus, the two
approaches complement each other in a natural manner.

One relatively recent planner belonging to the hand-
tailored category is TALplanner (Kvarnström & Doherty
2000; Doherty & Kvarnström 2001; Kvarnström & Doherty
2000b). Like TLPLAN (Bacchus & Kabanza 2000), TAL-
planner can accept domain-dependent control information
in the form of control rules, logical formulas that serve to
constrain the search process and allow the planners to prune
significant parts of the search tree. In its initial implemen-
tation, however, TALplanner made no use of automatic do-
main analysis techniques.

This leads to two interesting questions: Which of the ex-
isting techniques would still be applicable to planners using
domain-dependent control rules, given the additional com-
plexities introduced by the rules? And perhaps more impor-
tantly, what new types of domain analysis are made possible
through the addition of a new concept – control formulas, in
addition to initial state, goal and operator definitions?

The main focus of this paper is on providing one answer
to the second question. A technique is presented for extract-
ing information from the set of operators in a planning do-
main. In addition to using preconditions, effects, and state
constraints to generate a set of atomic facts that must hold at
various points during the execution of the operator, a form
of state transition analysis identifies which state variables
may change and when this may occur. The information ex-
tracted from the operators is used in the context of a general
formula optimizer intended to improve the performance of
testing control formula violations.

The formula analysis often yields a set of conditions under
which an operator will always violate a control rule. Such
conditions can be used to automatically strengthen the pre-
conditions of an operator, which leads to fewer actions being
applied and fewer states being expanded. This, of course,
yields further performance advantages.

Together, these two techniques have proven very effec-
tive in many domains, helping TALplanner win the “dis-
tinguished planner” award in the hand-tailored track of
the AIPS-2000 planning competition (Bacchus 2001). As
demonstrated by the benchmark tests at the end of the paper,
performance is improved by a factor of 40 for the largest lo-
gistics problems from the AIPS-2000 competition and by a
factor of 400 for the largest blocks world problems.



Contents
This paper begins with an overview of TALplanner and the
use of logic formulas as control rules, using the logistics
domain as a source of concrete examples. Then, we discuss
how TALplanner’s preprocessor analyzes the control rules to
extract so called pruning constraints. This allows the planner
to test control formulas incrementally as new operators are
added to a partial plan, in order to avoid duplicating the work
done in previous stages of the planning process. The paper
continues with a description of TALplanner’s formula opti-
mizer. The optimizer is used as a basis for adapting existing
domain analysis techniques for generating state invariants,
as well as for introducing a new domain analysis method
where information about the context in which a pruning con-
straint will be tested is automatically extracted from the op-
erator definitions in a planning domain. This considerably
strengthens the optimizer and often results in the elimination
of quantifiers. In many cases, TALplanner can also automat-
ically move parts of the optimized incremental pruning con-
straints into the operator preconditions, automatically gen-
erating so called precondition control1. The effectiveness
of these techniques is demonstrated by a set of benchmarks
using well-known planning domains.

TAL, TALplanner and the Logistics Domain
As for any planner, TALplanner requires a formal semantics
for all the concepts involved in a planning domain definition.
Even though the first version of the planner was limited to
creating sequential plans with single-step deterministic ac-
tions, the semantics should allow for the modeling of more
complex domains, so that it will not have to be replaced or
patched whenever the planner is extended.

For this reason, the semantics of TALplanner is based on
the use of TAL-C (Karlsson & Gustafsson 1999; Doherty et
al. 1998), a non-monotonic linear discrete metric time logic
for reasoning about action and change. The TAL (Temporal
Action Logics) family of logics has been developed for mod-
eling domains that may include the use of incomplete infor-
mation, delayed effects of actions, finite or infinite chains of
indirect effects, interacting concurrent actions, and indepen-
dent processes not directly triggered by action invocations.
Consequently, TAL-C was seen as an ideal choice not only
for the initial version of TALplanner but also for most ex-
tensions that could conceivably be implemented in the fore-
seeable future.

TAL is a narrative-based formalism, where a narrative
is specified as a set of labeled statements in a high-level
macro language L(ND) designed to be easily extended for
different tasks. The basic language has statement classes
for observations (labeled obs), action descriptions (acs), ac-
tion occurrences (occ), domain constraints (dom), and de-
pendency constraints (dep). For the planning task, some
of these standard classes are used together with several
new types of statements described below. The formal se-
mantics of a goal narrative in the extended language, de-

1The use of manually generated precondition control has been
discussed independently by Bacchus and Ady (Bacchus & Ady
1999) in the context of TLPLAN.

noted by L(ND)∗, is defined by a translation into an order-
sorted base language L(FL) together with a circumscrip-
tion policy providing a solution to the frame and ramifica-
tion problems (Doherty 1994; Gustafsson & Doherty 1996;
Doherty et al. 1998)

In this section, we will attempt to provide an intuitive
understanding of TAL and how it is used in domain spec-
ifications using concrete examples from the logistics plan-
ning domain. For a more complete description of TAL
and its use in TALplanner, see (Doherty et al. 1998;
Kvarnström & Doherty 2000).

Types, Fluents, and the Initial State
In the standard logistics domain, a set of packages can be
transported by truck between locations in the same city and
by airplane between airports in different cities.

Since TAL is order-sorted, it is possible to use typed flu-
ents (state variables) rather than representing types as unary
predicates. In addition to the standard sort boolean =
{true, false}, a hierarchy of seven sorts is defined for the
entities present in the domain: The type loc (location) has
the subtypes airport and city, while thing has the subtypes
obj and vehicle, the latter of which has the subtypes truck
and plane. There will be two boolean fluents, at(thing,loc)
and in(obj,vehicle), as well as a city-valued fluent city of(loc)
denoting the city containing the location loc.

Given these fluents, the initial state of a logistics problem
instance can be defined using TAL observation statements:
obs [0] city of(pos1) =̂ cit1 ∧ city of(pos2) =̂ cit2 ∧ . . .
obs [0] at(obj11, pos1) ∧ at(tru1, pos1) ∧ . . .

These observations use fixed fluent formulas, formulas of the
form [τ ] φ denoting the fact that the fluent formula φ holds
at time τ . A fluent formula is a boolean combination of ele-
mentary fluent formulas of the form f =̂ v, denoting the fact
that the fluent f takes on the value v. For boolean fluents, as
in the second observation, the shorthand notation f or ¬f is
allowed. The notation is also extended for open, closed, and
semi-open temporal intervals. In addition to these formulas,
the function value(τ, f) denotes the value of f at time τ .

Goals
A new statement class for goals (labeled goal) is added to
L(ND)∗. A goal statement consists of a fluent formula that
must hold in the goal state:
goal at(obj11, apt1) ∧ at(obj23, pos1) ∧ . . .
The ability to test whether a formula is entailed by the goal
is very useful in the domain-dependent control rules. There-
fore, a new macro is added: The goal expression goal(φ)
holds iff the goal of this problem instance (equivalently, the
conjunction of all goal statements) entails the fluent for-
mula φ. The translation into L(FL) is somewhat complex;
see (Kvarnström & Doherty 2000) for further information.

Operator Definitions and Plans
Since TAL-C is a logic for reasoning about action and
change, it has a notion of actions that can be used for mod-
eling planning operators. For example, the following state-
ment defines a load-truck operator for the logistics domain:



acs [s, t] load-truck(obj, truck, loc)�
[s] at(obj, loc) ∧ at(truck, loc) →
I([t, t] at(obj, loc) =̂ false) ∧
I([t, t] in(obj, truck) =̂ true) ∧ t = s+ 1

This action definition uses the I reassignment macro, de-
fined by I([τ, τ ′]f =̂ v) def= [τ, τ ′]f =̂ v∧X([τ, τ ′]f =̂ v),
where the first conjunct denotes the fact that f must take on
the given value throughout the given interval and the sec-
ond conjunct (the X macro) states that this change in fluent
values should be allowed by the TAL circumscription pol-
icy. The last conjunct (t = s + 1) constrains this to be a
single-step action.

To facilitate the addition of resource constraints and other
new concepts not present in standard TAL-C, a new operator
macro has been introduced. The semantics of this macro is
defined by a translation into standard TAL action schemas.
Using this macro, the six operators in the logistics domain
can be defined as follows:
operator load-truck(obj, truck, loc) :at s
:precond [s] at(obj, loc) ∧ at(truck, loc)
:effects [s+1] at(obj, loc) := false, [s+1] in(obj, truck) := true

operator load-plane(obj, plane, loc) :at s
:precond [s] at(obj, loc) ∧ at(plane, loc)
:effects [s+1] at(obj, loc) := false, [s+1] in(obj, plane) := true

operator unload-truck(obj, truck, loc) :at s
:precond [s] in(obj, truck) ∧ at(truck, loc)
:effects [s+1] in(obj, truck) := false, [s+1] at(obj, loc) := true

operator unload-plane(obj, plane, loc) :at s
:precond [s] in(obj, plane) ∧ at(plane, loc)
:effects [s+1] in(obj, plane) := false, [s+1] at(obj, loc) := true

operator drive(truck, loc1, loc2) :at s
:precond [s] at(truck, loc1) ∧ city of(loc1) =̂ city of(loc2) ∧ loc1 �= loc2
:effects [s+1] at(truck,loc1) := false, [s+1] at(truck,loc2) := true

operator fly(plane, airport1, airport2) :at s
:precond [s] at(plane, airport1) ∧ airport1 �= airport2
:effects [s+1] at(plane,airport1) := false, [s+1] at(plane,airport2) := true

We denote the formal invocation timepoint of an operator o,
as specified by :at, by inv(o). The fact that an operator o is
invoked with arguments ω in the interval [τ, τ ′] is denoted
by the action occurrence expression [τ, τ ′] o(ω). A concrete
example would be [0, 1] load-truck(obj11, tru1, loc1).

An operator sequence is a tuple of timed action occur-
rences. In a valid operator sequence, all preconditions are
satisfied and no operator has inconsistent effects. A plan is
a valid operator sequence whose final state satisfies the goal.

The Semantics of a Goal Narrative
As shown in Figure 1, the semantics of a goal narrative in
L(ND)∗ is defined by a translation Trans() into the standard
TAL base language L(FL), which is an order-sorted first-
order language with the predicates Holds(τ, f, v) express-
ing that the fluent (time-dependent state variable) f takes on
the value v at time τ and Occlude(τ, f) expressing that f is
allowed to change values at τ .

Given a goal narrative GN and its translation Trans(GN )
into L(FL), a circumscription policy minimizes Occlude rel-
ative to action descriptions and dependency constraints; see
(Kvarnström & Doherty 2000; Doherty et al. 1998) for a
definition of this policy and the foundational axioms used by
TAL. Due to structural constraints on L(ND) statements, the
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resulting second-order theory can be translated into a logi-
cally equivalent first-order theory (denoted by Trans+(GN ))
which is used to reason about the narrative.

A goal narrative can also be used as the input to TAL-
planner, which then generates a plan narrative N where a
set of timed action occurrences (corresponding to a plan)
has been added. If φ is the goal and τ the final timepoint in
the plan, then it is guaranteed that Trans+(N ) |= [τ ] φ: The
goal must hold in the final state.

Notational Conventions: All free variables will be as-
sumed to be implicitly universally quantified. We will
say that an operator sequence p entails a formula φ iff
Trans+(N ∪ p) |= Trans(φ), where the narrative N is often
to be understood from the context.

This concludes the description of planning domain def-
initions in TAL. The following sections will show TAL-
planner’s forward-chaining search tree and how the search
process is constrained using control rules.

Search in Sequential TALplanner
Like any forward-chaining planner, TALplanner searches
for a plan in a tree where the root corresponds to the ini-
tial state and where each outgoing edge corresponds to one
of the operators applicable in its source node (Figure 2).

Usually, each node in this tree is considered to be a single
state. However, since the evaluation of a domain-dependent
control rule in a node may require access to the entire history
beginning in the initial state, it is more convenient to view
each node as consisting of a state sequence, or (equivalently)
a logical model, as shown in the figure.

A simple forward-chaining planner can be implemented
by searching this tree using a standard search algorithm,
such as iterative deepening or depth first. But although using
a complete search algorithm is clearly enough to make the
planner complete, it is equally clear that a certain degree of



goal-directedness is required to make the search process ef-
ficient. The following section shows how domain-dependent
control rules can be used for pruning less interesting parts of
the search tree and guiding the planner towards the goal.

Using Domain-Dependent Control Rules
Most planners allow the specification of a set of goal states,
often in the shape of propositional (or first-order) formulas
that must hold in a goal state.

There are many ways to permit more detailed control over
the search process as well as more complex constraints on
the plans to be generated; see for example SHOP (Nau et al.
1999; 2001), System R (Lin 2001), and PbR (Ambite 1998;
Ambite, Knoblock, & Minton 2000), all of which partici-
pated in the AIPS-2000 planning competition.

TALplanner uses domain-dependent control rules in the
form of first-order TAL formulas that must be entailed by
the final plan generated by the planner. Thus, the defini-
tion of a plan must be amended: A plan is a valid operator
sequence which satisfies the control rules and whose final
state satisfies the goal.

This serves two separate purposes. First, it allows the
specification of complex temporally extended goals such as
safety conditions that must be upheld throughout the execu-
tion of a plan, and second, the additional constraints on the
final plan often allow the planner to prune entire branches
of the search tree, since it can be proven that any leaf on the
branch will violate at least one control rule.

Control Rules for the Logistics Domain
The following three simple control rules (inspired by
TLPLAN) will later be used as concrete examples.

A package should only be loaded onto a plane if a plane is
required to move it: If the goal requires it to be at a location
in another city. If we have unloaded a package from a plane,
it must be the case that the package should be in the current
city. If a package is at its destination, it should not be moved.
control :name ”only-load-when-necessary”
[t] ¬in(obj, plane) ∧ at(obj, loc) ∧ [t+1] in(obj, plane) →
∃loc′ [ goal(at(obj, loc′)) ∧ [t] city of(loc) �=̂ city of(loc′) ]

control :name ”only-unload-when-necessary”
[t] in(obj, plane) ∧ at(plane, loc) ∧ [t+1] ¬in(obj, plane) →
∃loc′ [ goal(at(obj, loc′)) ∧ [t] city of(loc) =̂ city of(loc′) ]

control :name ”objects-remain-at-destinations”
[t] at(obj, loc) ∧ goal(at(obj, loc)) → [t+1] at(obj, loc)

Using Control Rules for Pruning
Consider the objects-remain-at-destinations rule above. We
can see that if an operator sequence moves an object which
is already at its final destination, then that operator sequence
cannot be a plan and cannot possibly be extended into a plan.
No matter what actions are added, there will always remain
a timepoint where an object is moved unnecessarily, and in
the end the control rule will not be satisfied.

We would now like the planner to automatically detect
such control rule violations. This requires conditionaliz-
ing the control rules and generating pruning constraints that
only constrain the fixed “past” in an operator sequence.

More formally, let t∗ be the end timepoint of the last oper-
ator in a search node. Then, the constraints must only con-
strain the fixed “past” states in [0, t∗]. The infinite sequence
of “future” states in (t∗,∞) must not be constrained, since
even if a violation were to be detected there, this violation
might disappear when additional actions are added.

For example, objects-remain-at-destinations results in
the pruning constraint t + 1 ≤ t∗ ∧ [t] at(obj, loc) ∧
goal(at(obj, loc)) → [t + 1] at(obj, loc), where t + 1 ≤ t∗
ensures that states after t∗ are not constrained.

Incremental Evaluation of Pruning Constraints
Although it would be possible to evaluate the complete prun-
ing constraints at each node in the search tree, we immedi-
ately take the analysis one step further and note two impor-
tant ways of improving performance.

First, if the planner needs to evaluate the pruning con-
straints in a node, the constraints must have been satisfied in
its immediate ancestor – otherwise, the ancestor would have
been pruned and this node would not have been expanded.
This can be taken advantage of by generating incremental
pruning constraints that only check the new states generated
by the last operator to be added to the plan.2 For example,
after adding the operator [4, 6] A11 in Figure 2, only the two
new states at time 5 and 6 should have to be checked.

Second, separate incremental pruning constraints are gen-
erated for each operator type. In the logistics domain, this
means there will be six incremental constraints for each con-
trol rule: One for load-plane, one for drive-truck, and so on.
These operator-specific constraints will only be evaluated
immediately after an operator of the corresponding type has
been added to the plan, which is necessary in order to take
into account the fact that different operator types may have
different durations.

For these reasons, TALplanner generates from the original
set of control rules control (1) one set of initial pruning con-
straints init, (2) for each operator type o i with formal invo-
cation timepoint s and formal arguments x i

1, . . . , x
i
mi

a set
incri(s, xi

1, . . . , x
i
mi

) of incremental pruning constraints for
that operator (where the variables indicated in parentheses
may be free in the constraints), and (3) one set of final prun-
ing constraints final, such that control is entailed by a plan
〈[τ1, τ ′1]oi1

1 (c11, . . . , c
mi
1 ), . . . , [τn, τ ′n]oin

n (c1n, . . . , c
mi
n )〉 iff:

1. The initial constraints hold in the root node: 〈〉 |= init,

2. Whenever a new operator oik

k is added, its incremen-
tal pruning constraints incrik

hold: for all 1 ≤ k ≤ n,
〈[τ1, τ ′1] oi1

1 (c11, . . . , c
mi
1 ), . . . , [τk, τ ′k] oik

k (c1k, . . . , c
mi

k )〉 |=
incrik

[τk, c1k, . . . , c
mi

k ]
3. The final pruning constraints hold in the complete plan:

〈[τ1, τ ′1] oi1
1 (c11, . . . , c

mi
1 ), . . . , [τn, τ ′n] oin

n (c1n, . . . , cmi
n )〉 |=

final.
2TLPLAN uses a progression algorithm, which automatically

ensures that only fixed states are constrained. This avoids the need
to generate pruning constraints and automatically provides an in-
cremental evaluation, while the use of formula evaluation in TAL-
planner facilitates certain kinds of optimizations and results in a
considerably lower memory consumption.



Generating Pruning Constraints
Clearly, TALplanner can handle any control formula φ ∈
control simply by placing it in final. This serves as a fallback
allowing the planner to handle arbitrary control formulas,
while the most common classes of formulas can be analyzed
in more detail to improve performance. We first consider
two common classes under the assumption that all operators
take constant time.

A state constraint is a formula ∀t.φ(t) where φ does not
refer to states at any other time than t. For such formu-
las, let ψ be φ with all variables except t replaced with
fresh variables of the same sort. Then, ψ[t �→ 0] is added
to init; for each operator type o i with duration τ , we add∧τ

k=1 ψ[t �→ inv(oi) + k] to incri; and nothing is added to
final.

A state transition constraint is a formula ∀t.φ(t) where φ
only refers to states in [t, t + 1]. For such formulas, let ψ
be φ with all variables except t replaced with fresh variables
of the same sort. Nothing is added to init; for each operator
type oi with duration τ , we add the formula

∧τ−1
k=0 ψ[t �→

inv(oi) + k] to incri; and ψ[t �→ t∗] is added to final.
These two classes are very common and are in fact suf-

ficient for many planning domains. TALplanner handles
several additional classes of varying complexity. Although
an understanding of these classes is not essential for the
domain-dependent analysis techniques presented in this pa-
per, we will show how to handle one more class of formulas
for operators with arbitrary, possibly variable duration.

Let ∀t.φ(t) be a control formula, where φ only refers to
states in [t, t+ d] and d is independent of t. Let ψ be φ with
all variables except t replaced with fresh variables of the
same sort. Then, the formula d = 0 → φ[t �→ 0] is added to
init. For each operator type oi with duration τ , the formula
∀k.1 ≤ k ≤ τ → φ[t �→ inv(oi) + k − d] should be added
to incri, but since inv(oi)+k−d could be negative and TAL
currently uses non-negative time, the formula has to be re-
written as ∀k.1 ≤ k ≤ τ → (∀t.t+d = inv(oi)+k → φ(t)).
Finally, ∀k.1 ≤ k ≤ d → (∀t.t + d = t∗ + k → φ(t)) is
added to final.

In the logistics domain, all operators have duration 1
and formal invocation timepoint inv(o i) = s. For objects-
remain-at-destinations, the formula [s] at(obj 1, loc1) ∧
goal(at(obj1, loc1)) → [s + 1] at(obj1, loc1) is added to
each incri, while [t∗] at(obj1, loc1)∧ goal(at(obj1, loc1)) →
[t∗ + 1] at(obj1, loc1) is added to final (note that variables
have been renamed).

Optimizing Formulas
Once control rules have been split into initial, incremental
and final pruning formulas, the preprocessor performs three
distinct kinds of optimizations intended to generate formulas
that can be evaluated more efficiently.

First, it makes use of well-known logical equivalences and
type analysis techniques to generate simpler but equivalent
formulas. Second, it makes use of the context in which a for-
mula will be evaluated in order to generate simpler formulas
that are equivalent given the context. Third, it generates for
each formula a set of necessary variable bindings intended
to permit the optimization or elimination of quantifiers.

This section will describe some of these optimizations,
while extensions related to domain analysis techniques will
be discussed in the next two sections.

Equivalence Optimization
It is often the case that a formula α can be rewritten on a
simpler form β such that α ≡ β. Although this is not the
focus of this paper, it should still be mentioned that TAL-
planner implements a number of such standard optimiza-
tions, making use of well-known logical equivalences such
as φ ∧ (φ ∨ ψ) ≡ φ as well as a form of type analysis.

We denote this optimization procedure by optimize(α),
where the argument α is the formula to be optimized and
the return value β is logically equivalent to α.

Context-Dependent Optimization
Given some information regarding the context in which
a certain formula will be evaluated, some considerably
stronger optimizations can be applied. Formally, suppose
that α will only be evaluated when γ is known to hold.
Under these conditions, α ≡ (α ∧ γ), since we can triv-
ially conjoin anything that is known to be true. TALplanner
therefore attempts to find the simplest possible β such that
(α ∧ γ) ≡ (β ∧ γ).

The optimizer is extended to accept both a formula α to
optimize and an optimization context Φ, a set of formulas
known to hold during the evaluation of α.

Using Context Information The context information is
used in the optimization of atomic formulas, where an en-
tailment checker attempts to determine whether a formula α
is entailed by the context (in which case it can be optimized
to true) or whether its negation is entailed (false). It
should be noted that although this entailment checker must
be sound it need not be complete. Incompleteness weakens
the optimizer but does not affect correctness.

Generating Context Information In the initial call to the
formula optimizer, no context information is available and
the empty set ∅ is provided as an optimization context.

The context given to optimize() is generally passed on un-
modified when the optimizer makes a recursive call to opti-
mize a subformula. However, for a conjunction

∧n
i=0 φi, the

value of any single conjunct φk is irrelevant if any other con-
junct is false. Thus, the optimizer recursively optimizes φk

in the context that all other conjuncts hold:
∧

0≤i≤n,i�=k φi.
A dual optimization is applied to disjunctions.

Quantifier Optimization
The third type of optimization performed by TALplanner re-
lates to quantifiers. Since TAL uses finite value domains,
the evaluation of a universally quantified formula ∀x.φ(x)
can be implemented simply by iterating over each possible
value of x. However, if it can be determined that φ(x) is
definitely true for all x �∈ X , then it is sufficient to check
∀x ∈ X.φ(x). If X = {v} (a single value term), then φ(x)
can be optimized to φ[x �→ v], given that v has a suitable
sort so that type correctness is preserved. A dual optimiza-
tion can be applied to existential quantifiers.



To permit this type of optimization, the optimizer is ex-
tended to return a tuple 〈ψ, necNeg, necPos〉, where ψ is
equivalent to φ in the given context, necNeg (corresponding
to X in the example) is a set of bindings necessary for ¬ψ
to hold in the given context, and necPos is a set of bindings
necessary for ψ to hold in the given context.

Generating Necessary Variable Bindings Variable bind-
ings can be generated by equality expressions: var = ω gen-
erates the binding {var �→ ω} to be added to necPos, and
var �= ω generates the binding {var �→ ω} to be added to
necNeg. Similarly, a fixed fluent formula [τ ] f =̂ var gen-
erates a positive binding {var �→ value(τ, f)}, and the opti-
mization of [τ ] f =̂ ω with a known formula [τ ] f =̂ var
generates a positive binding {var �→ ω}.

When optimizing a conjunction
∧n

i=0 φi, each conjunct
is recursively optimized. Denote the return values by
〈ψi, necNegi, necPosi〉 for 0 ≤ i ≤ n. For the conjunc-
tion to hold, the conjunction of all necPos i must hold; for
the conjunction to be false, the disjunction of all necNeg i
must hold. A dual optimization is applied to disjunctions.
For ¬φ, necPos and necNeg are swapped; for a quantified
formula ∀x.φ or ∃x.φ, the bindings generated for the inner
formula are returned after removing the bindings for x.

It may be the case that no binding at all is possible (for
example, because two conjuncts require bindings that cannot
belong to the same value domain). In this case, a formula
may be immediately optimized to true or false.

This concludes the description of the formula optimizer,
which will be used as a basis for the domain analysis tech-
niques that will be discussed below.

Using Existing Domain Analysis Techniques
As mentioned in the introduction, there are two interesting
questions to be answered regarding the use of domain anal-
ysis techniques for planners that utilize domain-dependent
control: Which existing techniques for domain-independent
planners can be reused, and what new opportunities are
opened by the addition of control formulas? This section
will focus on the first question, while the next section will
concentrate on the second one.

There are several potential difficulties associated with
reusing existing domain analysis techniques in TALplanner.

The control rules used by TALplanner are essentially tem-
porally extended goals. These rules constrain the possible
ways a goal state can be reached, but several analysis tech-
niques depend on the fact that only the final state is con-
strained and that the way this state is reached is unimportant.

Also, one of TALplanner’s design goals is the ability to
plan for domains with large numbers of objects and operator
instances. Even if an operator could have billions of oper-
ator instances or more, this should not be a major problem
as long as sufficiently strong control rules can be written to
guide the planner towards choosing “good” instances to be
applied. For this reason, techniques that rely on generating
all ground instances of operators or predicates are less likely
to be useful in conjunction with TALplanner. This includes
techniques such as RIFO (Nebel, Dimopoulos, & Koehler
1997) and (Haslum & Jonsson 2000).

Finally, another important design goal is permitting the
use of more complex types of operators, including operators
with extended duration and (eventually) non-deterministic
effects, as well as the use of resources and concurrency
(Kvarnström, Doherty, & Haslum 2000). Any techniques
depending on the use of single-step operators would require
extensions in order to be used in TALplanner.

Using State Invariants
Given these restrictions, the most promising type of do-
main analysis technique to be integrated into TALplanner
has been the automatic extraction of state constraints or state
invariants. This involves analyzing the operator definitions
in a domain, possibly together with the initial state of a spe-
cific planning instance, and finding a set of invariants that are
guaranteed to hold in any state generated by a valid opera-
tor sequence (Fox & Long 1998; Gerevini & Schubert 1998;
2000; Scholz 2000; Rintanen 2000).

For the logistics domain, one such invariant would be
[t] in(obj, vehicle) → ¬at(obj, loc): An object in a vehi-
cle is not at any location. (While this may appear counter-
intuitive, it does follow from the way the logistics domain is
usually modeled.)

There are two steps involved in integrating such a tech-
nique into the planner: The technique must be adapted to
work with TALplanner’s operator definitions (and possibly
extended to handle operators with extended duration), and
the planner must be altered to actually use the state invari-
ants once they have been generated. We have chosen to be-
gin with the second step, extending TALplanner to make use
of manually specified state invariants. This will provide the
opportunity to test carefully whether the use of the invari-
ants has a sufficient impact on the planner’s performance to
warrant following through with the implementation of the
automatic domain analysis.

State invariants are provided to the formula optimizer us-
ing an extended form of the optimization context introduced
in the previous section. The extended context consists of
a tuple 〈Φ,Ψ〉, where Φ (like before) is a set of formulas
known to hold and Ψ is a set of state invariants.

Whenever new facts are added to Φ, as is done (for exam-
ple) in conjunctions where each conjunct is optimized given
the assumption that all other conjuncts hold, the facts are
combined with the state invariants with limited use of a res-
olution algorithm. This may yield further facts to be added
to Φ, significantly strengthening the information available to
the optimizer.

Below, the inference procedure will be denoted by
infer(Φ,Ψ), where Φ is a set of known formulas, Ψ is a set of
state invariants, and the return value is a set of formulas con-
taining Φ and possibly additional formulas that are entailed
by Trans+(Φ ∧ Ψ).

As can be seen in the benchmark tests later in this paper,
the use of state invariants can indeed have a significant im-
pact on the performance of the planner, decreasing the time
required for some blocks world problems by a factor of 3.
Consequently, a future version of TALplanner will be inte-
grated with one of the existing automatic analysis methods.



New Domain Analysis Techniques
for Domain-Dependent Control

For most planning domains, TALplanner spends a signifi-
cant amount of time testing incremental pruning constraints
– in fact, this often accounts for more than 99% of the time
used by the planner. Clearly, any technique that allows the
incremental constraints to be tested more quickly will have
a considerable impact on performance.

The incremental pruning constraints mainly depend on
the state or states generated by the latest operator invoca-
tion, and although the preprocessor cannot know in advance
which operator instance was invoked, it can know which op-
erator type was invoked (such as drive or fly) – there is a sep-
arate set of constraints incri for each operator type oi. This
leads to the idea of attempting to extract some information
from the operator definitions regarding the states in which
the constraints will be evaluated, and then using this context
information in the formula optimizer.

Current versions of TALplanner make use of two different
kinds of context information automatically extracted from
operator definitions.

First, the preconditions must hold (otherwise the opera-
tor would not have been invoked) and the effects must hold
(since if they were inconsistent the planner would already
have backtracked). This can be used to augment the set Φ of
known formulas provided to the optimizer in the optimiza-
tion context.

Second, many control rules are only triggered by certain
specific state transitions, and the only state transitions that
are possible during the execution of an operator are those
that are explicitly specified in the effects. Analyzing these
transitions makes further optimizations possible.

Before the operator analysis is described in detail, Fig-
ure 3 provides an overview of the complete formula opti-
mization process. The planner analyzes each operator defi-
nition to extract a set of facts that must hold at various points
during the execution of any instance of the operator. These
facts are combined with the state invariants (provided by the
user or an automatic domain analyzer) to generate a set of
context facts Φ which is given to the formula optimizer as
part of the optimization context. The optimizer also makes
use of state transition information automatically extracted
from the operator definitions.

Operator Analysis: Extracting Facts
Let oi be an operator type (for example, drive). When
an instance of this operator type is invoked (for example,
[0, 1] drive(tru1, pos1, pos2)), the formal invocation time-
point is bound to the actual invocation timepoint, and the
formal arguments are bound to their actual values (s is bound
to 0, truck to tru1, and so on).

If the precondition is not satisfied, the operator is never
applied. If it is satisfied, the effects are applied, and if they
are inconsistent, the planner backtracks. In other words, the
incremental pruning constraints in incr i are only tested if
both the precondition and the effects hold. Consequently,
a set of known facts can be extracted from the operator quite
easily. Let φ be the precondition of oi, φ′ be a conjunction
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of fixed fluent formulas extracted from the unconditional ef-
fects of the action (for example, the effect [s+ 3] at(o, l) :=
false generates the formula [s + 3] at(o, l) =̂ false), and Ψ
be the set of state invariants specified in the domain def-
inition. Then, the initial set of known formulas is Φ =
infer(φ ∧ φ′,Ψ).

For example, the drive operator yields the formulas
φ = [s] at(truck, loc1) ∧ city of(loc1) =̂ city of(loc2) ∧
loc1 �= loc2 and φ′ = [s + 1] at(truck, loc1) =̂ false ∧
[s+ 1] at(truck, loc2) =̂ true. Additional facts may be in-
ferred from this using state invariants and resolution, and
these facts can then be used in the optimizer in order to de-
termine that a certain formula must or cannot hold.

Note that both the formal invocation timepoint of the op-
erator oi and its formal arguments can occur as free variables
in φ or φ′. When the constraints in incri are tested, the for-
mal arguments will be bound to the values used during the
latest operator invocation, as stated in the definition of incr i.
In this way, an incremental pruning constraint can refer di-
rectly to the arguments of the corresponding operator invo-
cation. (Since all variables in pruning constraints and state
invariants have been renamed and replaced with fresh vari-
ables, there is no risk of mistaking one instance of a variable
for another.)

Generating Bindings using State Transition Analysis
Many control rules can only be violated if certain state tran-
sitions take place. This is a natural consequence of the fact
that many control rules follow a certain pattern, where a
property true in one state should either be preserved to the
next state or violated in a very specific way.

For example, the incremental pruning constraints gener-
ated from only-load-when-necessary state that a package
should only be loaded into a plane if a plane is needed to
move it. This can also be stated in another way: If a pack-
age is not in a plane in a certain state, then it should remain
not in that plane in the next state, unless a plane is needed in
order to move it. As long as the property¬in(obj1, plane1) is
preserved from s to s+ 1, the constraint cannot be violated.

As another example, the incremental pruning constraints
generated by objects-remain-at-destinations state that if a
package is at a certain location at s, it must be at that lo-



cation at s+ 1, unless there is no goal that it should remain
there. If the property at(obj1, loc1) is preserved, the con-
straint cannot be violated.

Clearly, it would be a major advantage if the preproces-
sor could determine in advance that these state transitions
cannot take place – then, the entire incremental constraints
would necessarily be true, and would not need to be tested.
Failing this, it would be of almost equal benefit to the plan-
ner if it could be determined that the state transitions can
only take place for certain specific instances of a fluent,
thereby reducing the number of instances to be tested.

In fact, this can be detected in advance, as will be demon-
strated using a few examples. Returning to objects-remain-
at-destinations, the incremental pruning constraints gener-
ated by this rule can only be violated if at(obj1, loc1) is made
false between s and s + 1. But s is the invocation time-
point of the latest operator, and s+ 1 is the effect state. The
unload-truck operator never makes an instance of at false at
s+ 1, and therefore this incremental constraint is never vio-
lated for unload-truck. Although drive makes at(truck, loc1)
false, this instance refers to a truck rather than an object
and cannot be unified with at(obj1, loc1). Therefore, the
incremental constraint can never be violated by drive. Fi-
nally, the load-truck action makes at(obj, loc) false, and uni-
fying this with at(obj1, loc1) yields the variable bindings
{obj1 �→ obj, loc1 �→ loc}. These bindings must necessar-
ily hold if the disjunction should be false, and can therefore
be added to necNeg when the disjunction is analyzed.

These insights can be used to improve the formula opti-
mizer.

Extending the Optimizer The optimization context is ex-
tended to a tuple 〈Φ,Ψ, o〉 where Φ is a set of formulas
known to hold, Ψ is a set of state invariants, and o is an op-
erator type. The intention is that the optimized formula will
only be evaluated in a context where Φ and Ψ are known to
hold, and where an instance of o has just been added to the
operator sequence. In addition, it is guaranteed that when
the formula is evaluated, the formal invocation timepoint
and formal argument variables of o will still be bound to
the actual arguments used in the latest operator invocation.

The following algorithm is called from the optimizer
when analyzing a disjunction, given the disjunction and an
optimization context as arguments. The return value is a
set of variable bindings necNeg that are necessary for the
disjunction to be false: If any binding does not hold, the
disjunction will be satisfied. Explanations will be provided
below.

1 procedure findpp(
Wn

i=1 φi, 〈Φ, Ψ, o〉)
2 let conjuncts = infer(Φ ∧Vn

i=1 ¬φi, Ψ)
3 let necNeg = ∅
4 for all [τ ] f =̂ v in conjuncts do
5 for all [τ ′] f =̂ v′ in conjuncts do
6 if can prove τ < τ ′ then
7 if can prove that v �= v′ then
8 if can prove that τ ≥ t∗ then
9 return an impossible binding

10 if sequential operator type o given then
11 let b = analyzeST([τ ] f =̂ v, [τ ′] f =̂ v′, 〈Φ, Ψ, o〉)
12 let necNeg = conjoin(necNeg, b)

13 return necNeg

The pruning constraint for objects-remain-at-destinations
relative to load-plane is ∀obj1, loc1.[s] at(obj1, loc1) ∧
goal(at(obj1, loc1)) → [s+ 1] at(obj1, loc1), where the im-
plication inside the universal quantifier prefix can also be
written as a disjunction

∨n
i=1 αi. This disjunction can be

analyzed using the algorithm above.
For the disjunction to be false, it must clearly be the

case that
∧n

i=1 ¬αi. There is also a set of formulas Φ
that are known to hold regardless of whether the disjunc-
tion holds or not, so for the disjunction to be false, we
must have Φ ∧ ∧n

i=1 ¬αi. The resolution inference algo-
rithm can be used together with the state invariants to in-
fer additional facts: For the disjunction to be false, all for-
mulas in infer(Φ ∧ ∧n

i=1 ¬αi,Ψ) must hold (for example,
since we must have [s + 1] at(obj1, loc1), we can infer
∀vehicle.[s + 1] ¬in(obj1, vehicle)). The conjunction of the
formulas returned by infer will be denoted by

∧m
i=1 βi.

Now, suppose that βi is [τ ] f =̂ v and that βj is the for-
mula [τ ′] f =̂ v′. Suppose further that it can be proven3 that
τ < τ ′, so the second formula refers to a later timepoint, and
that v �= v′. Due to βi, the fluent could not have taken on the
value v′ at τ , but due to βj , it must take on that value at τ ′.
The value of f must have changed in the interval (τ, τ ′].4

What remains is trying to find a set of variable bindings
that are necessary for f to be able to change in (τ, τ ′], or in
the best case, to determine that f in fact must remain con-
stant. If any such bindings are found, they can be conjoined
to necNeg, since the bindings are necessary for the disjunc-
tion to be false. TALplanner uses two different types of state
transition analysis for finding bindings.

First, if τ ≥ t∗, then the entire interval (τ, τ ′] is strictly
after t∗. But no effects can take place after t∗, so no fluents
can change there. Therefore, it is impossible that the dis-
junction does not hold, and an impossible variable binding
is returned. This is useful for analyzing final constraints.

Second, if an operator type is specified, the disjunction
will be evaluated immediately after an operator of that type
is invoked, and the transitions possible during the execution
interval can be analyzed. This analysis is useful for con-
straints in incri, and is described in detail below.

State Transition Analysis for Operators The state tran-
sition analysis algorithm for sequential operators is as fol-
lows.

1 procedure analyzeST([τ ] f =̂ v, [τ ′] f =̂ v′, 〈Φ, Ψ, o〉)
2 if we can prove τ ′ > inv(o) then
3 let eff = all conditional and unconditional effects of o
4 for all [τ ] g := w in eff do
5 if can prove f �= g then remove this from eff

3Whenever we say “if we can prove φ” rather than “if φ is the
case”, failing to prove this fact may lead to a decrease in perfor-
mance but is always safe. For example, the attempt to prove that
τ < τ ′ could be a test whether τ ′ is of the syntactic form τ +n for
some positive n, or could be a stronger test involve more complex
temporal reasoning.

4TALplanner also handles negated formulas ¬[τ ] f =̂ v and
¬[τ ] f ′ =̂ v′. The extension is trivial and is omitted to improve the
clarity of the presentation.



6 elsif can prove τ �∈ (τ, τ ′] then remove this from eff
7 elsif can prove w �= v′ then remove this from eff
8 if {free variables in eff} ⊆ {arguments of o} then
9 let necNeg = an impossible binding

10 for all [τ ] g := w in eff do
11 let necNeg = disjoin(necNeg, unify(g, f ))
12 return necNeg
13 return ∅

This algorithm returns a set of bindings that are required
for f to change values from v to v ′ between τ and τ ′, given
that an instance of o is the last operator to be invoked in the
current search node. Note that f might be a fluent expression
with arguments, such as at(obj1, loc1).

Since o is (currently) the last operator, the only changes
that can take place in (inv(o),∞) are those explicitly caused
by o. No information is provided about what might have
happened in [0, inv(o)], though, so if it cannot be proven that
τ ′ > inv(o), the analysis is aborted.

Otherwise, consider every effect of the operator, condi-
tional as well as unconditional. For load-truck, this would be
[s+1]at(obj, loc) := false and [s+1] in(obj, truck) := true.

If an effect cannot affect f , it is irrelevant and can be dis-
carded. If it might affect f but not at an interesting timepoint
(in (τ, τ ′], when the change must take place) it can be dis-
carded. Finally, if the effect assigns a value w that is differ-
ent from v′, then it definitely cannot cause a transition from
v to v′, and can be discarded.

The remaining effects might cause f to change values
from v to v′ between τ and τ ′. If they contain free vari-
ables that are not arguments of o, then those variables must
have been bound in quantified effects, and the analysis is
aborted. Otherwise, it is safe to claim that f must be equal
to one of the effect fluents. This means it must be unified
with one of them for the desired state transition to occur, so
the disjunction of all unify(gi, f) can be returned.

Generating Precondition Control
After optimizing a formula in incri for an operator oi, the
result often turns out to have conjuncts that only refer to the
invocation timepoint of oi. Clearly, those conjuncts can be
moved from incri into the precondition, removing the need to
actually invoke the operator before the conditions are tested.
This has proven to drastically reduce the number of states
generated by TALplanner, significantly increasing the per-
formance of the planner.

In the logistics world, for example, the precondition
∃loc′[goal(at(obj, loc′)) ∧ [s] city of(loc) �=̂ city of(loc′)] is
generated for the load-plane operator by the only-load-when-
necessary control rule: There must be a goal that the object
obj to be loaded into the plane should be in another city.

But if a control rule can be expressed as a precondition,
why not simply write it that way? There are several rea-
sons why the use of control rules is often better, perhaps the
most important of which is that it allows a more modular
specification of the control knowledge: Each constraint is
specified as a single control rule, rather than as a number of
(possibly different) preconditions in each operator. Allow-
ing an automatic analyzer to generate preconditions wher-
ever possible should also be less error-prone, especially for

more complex rules where interdependencies between mul-
tiple actions must be taken into account. This is done by
TALplanner.

Benchmark Tests and Analysis
The techniques described in this paper have proven very ef-
fective for many standard benchmark domains. However,
the four additions to the planner – using state invariants,
generating context facts from operators, analyzing state tran-
sitions in operators, and generating precondition control –
cannot easily be studied in isolation, since there are several
types of optimizations that could be generated by more than
one technique. A complete analysis would require testing all
the 16 variations made possible by turning individual exten-
sions on or off, for a large number of domains and problems.

Nevertheless, a certain pattern appears in most domains.
The operator-specific control rule analysis is absolutely es-
sential to the performance of the planner, to the extent that
removing it generally makes the generation of precondi-
tion control impossible (since it requires the reduction and
removal of control rule disjuncts referring to the “future”,
which can only be done with an operator-specific analysis)
and makes the use of state invariants ineffective.

When the operator-specific analysis is added, the genera-
tion of precondition control has a significant effect. Finally,
when precondition control has been introduced, far fewer
states are expanded and the speed of testing preconditions
becomes paramount to the performance of the planner. This
makes the use of state invariants more significant.

This is demonstrated in a set of benchmark tests using
problems from the AIPS-2000 competition. These tests
were run on an 800 MHz Pentium III machine with 512 MB
of RAM, running Red Hat Linux 7.1 and Java 1.3.

For logistics (Figure 4), the topmost line indicates the
time used without the new techniques. Adding operator-
specific analysis improves performance by a factor of up to 4
for the largest problems. Adding precondition control yields
another factor of 8, and finally, adding state invariants re-
duces the amount of time used by a factor of 1.3.

In the blocks world (Figure 5), operator-specific analysis
results in an 8-fold speedup for the largest problems with
500 blocks, after which adding precondition control results
reduces the time by a factor of 16 and the use of state in-
variants yields another factor of 3. In total, the new analysis
techniques make TALplanner up to 400 times faster for the
largest problem instances.5

It should be noted that these improvements are partly due
to the elimination of quantifiers and therefore do not result in
a constant factor speedup but a reduction in time complexity.
Thus, larger problems are affected to a greater degree.

Conclusions and Future Work
We have presented a new domain analysis technique used
for extracting context information from operator definitions.

5Early versions of these techniques were implemented in the
version competing in AIPS-2000.
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This technique has been combined with the use of state in-
variants and the generation of precondition control in or-
der to increase the performance of testing whether domain-
dependent control rules are satisfied. Benchmark results
show an improvement up to a factor of 400 for the blocks
world and up to a factor of 40 for the logistics domain. Sim-
ilar trends are present in all domains tested so far, and addi-
tional empirical testing is in progress.
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