
Admissible Heuristics for Optimal Planning

Patrik Haslum
Department of Computer
and Information Science
Link�oping University

S������ Link�oping� Sweden

H�ector Ge�ner
Departamento de Computaci	on
Universidad Sim	on Bol	
var
Aptdo ������ Caracas �����A

Venezuela

Abstract

hsp and hspr are two recent planners that search the
state�space using an heuristic function extracted from
Strips encodings� hsp does a forward search from the
initial state recomputing the heuristic in every state�
while hspr does a regression search from the goal com�
puting a suitable representation of the heuristic only
once� Both planners have shown good performance�
often producing solutions that are competitive in time
and number of actions with the solutions found by
Graphplan and sat planners� hsp and hspr� however�
are not optimal planners� This is because the heuris�
tic function is not admissible and the search algorithms
are not optimal� In this paper we address this problem�
We formulate a new admissible heuristic for planning�
use it to guide an ida

� search� and empirically eval�
uate the resulting optimal planner over a number of
domains�

The main contribution is the idea underlying the
heuristic that yields not one but a whole family of
polynomial and admissible heuristics that trade ac�
curacy for e�ciency� The formulation is general and
sheds some light on the heuristics used in hsp and
Graphplan� and their relation� It exploits the factored
�Strips� representation of planning problems� mapping
shortest�path problems in state�space into suitably de�
�ned shortest�path problems in atom�space� The for�
mulation applies with little variation to sequential and
parallel planning� and problems with di	erent action
costs�

Introduction

hsp and hspr are two recent planners that search the
state�space using an heuristic function extracted from
Strips encodings Bonet � Ge�ner ������ hsp does
a forward search from the initial state computing the
heuristic in every state� while hspr does a regression
search from the goal� computing a suitable representa�
tion of the heuristic only once� Both planners have
shown good performance� often producing solutions
that are competitive in time and number of actions with
the solutions found by Graphplan and SAT planners
McDermott ������

Copyright c�
���� American Association for Arti�cial In�
telligence �www�aaai�org�� All rights reserved�

hsp and hspr� however� are not optimal planners� This
is because the heuristic is not admissible and the search
algorithms are not optimal�� Graphplan Blum � Furst
����� and Blackbox Kautz � Selman ����� are opti�
mal parallel planners that guarantee a minimal number
of time steps in the plans found� While optimality is
not always a main concern in planning� the distinction
between optimal and non�optimal algorithms is relevant
in practice and is crucial in theory where optimal and
approximate versions of the same problem may belong
to di�erent complexity classes Garey � Johnson ������
The goal of this paper is to address this issue� For

this� we formulate a new domain�independent admis�
sible heuristic for planning and use it for computing
optimal plans� The new heuristic is simple and general�
and can be understood as mapping the shortest�path
planning� problem in state�space into a suitably de�
�ned shortest�path problem in atom�space� This idea is
implicit in a number of recent planners� e�g�� Blum
� Furst ����� McDermott ����� Bonet� Loerincs� �
Ge�ner ������ here we make it explicit and general�
The formulation applies with little variation to prob�
lems with di�erent action costs and parallel actions�
and suggests extensions for other classes of problems
such as problems with actions with di�erent durations
e�g�� Smith � Weld �������
The new heuristic is based on computing admissible

estimates of the costs of achieving sets of atoms from
the initial state s�� When the size of these sets is �� the
heuristic is equivalent to the hmax heuristic considered
in Bonet � Ge�ner ������ When the size is �� for paral�
lel planning� the heuristic is equivalent to the heuristic
implicit in Graphplan� The computation of the heuris�
tic� however� does not build a layered graph nor does it
rely on �mutex relations�� On the other hand� its time
and space complexity is polynomial in Nm� where N is
the number of atoms in the problem and m is the size
of the sets considered�
For the experiments in this paper� we use the heuris�

tic that results from sets of size m � � atom pairs�� To

�A heuristic is not admissible when it may overestimate
optimal costs� while a search algorithm is not optimal when
it does not guarantee the optimality of the solutions found
�Nilsson ���� Pearl �����

avoid the recomputation of the heuristic in every state�
we take the idea from hspr and compute the heuris�
tic once from the initial state and use it to guide a
regression search from the goal�� The search is per�
formed using the optimal algorithm ida� Korf ������
We call the resulting optimal planner hspr�� With the
current implementation� hspr� produces good results in
sequential domains like Blocks World and the ��puzzle�
but weaker results on parallel domains like rockets or
logistics� This is in contrast with the non�optimal hspr
planner that solves these problems very fast� We dis�
cuss these results� try to identify its causes� and draw
some conclusions�

The paper is organized as follows� We cover �rst
the relevant background including the heuristics used
in hsp and Graphplan Sect� ��� Then we introduce the
new heuristic Sect� ��� review the basic and enhanced
version of the ida� algorithm that we use Sect� ���
and report results over a number of sequential domains
Sect� ��� Last we consider the extensions and results
for parallel planning Sect� �� and close with a summary
and discussion Sect� ���

Background

HSP

hsp maps Strips planning problems into problems of
heuristic search Bonet � Ge�ner ������ A Strips prob�
lem is a tuple P � hA�O� I�Gi whereA is a set of atoms�
O is a set of ground operators� and I � A and G � A
encode the initial and goal situations� The state space
determined by P is a tuple S � hS� s�� SG� A��� f� ci
where

�� the states s � S are collections of atoms from A

�� the initial state s� is I

�� the goal states s � SG are such that G � s

�� the actions a � As� are the operators op � O such
that Precop� � s

�� the transition function f maps states s into states
s� � s�Dela� �Adda� for a � As�

�� the action costs ca� are assumed to be �

hsp searches this state�space� starting from s�� with an
heuristic function h derived from the Strips represen�
tation of the problem� A similar approach was used
before in McDermott ����� and Bonet� Loerincs� �
Ge�ner ������
The heuristic h is derived as an approximation of the

optimal cost function of a �relaxed� problem P � in which
delete lists are ignored� More precisely� hs� is obtained
by adding up the estimated costs gsp� for achieving
each of the goal atoms p from s� These estimates are
computed for all atoms p by performing incremental
updates of the form

gsp� �� min
a�O�p�

�gsp�� � � gsPreca��� ��

�The heuristic can also be used in the context of hsp�
However� the overhead of computing the heuristic in every
state does not appear to be cost�e	ective in general�

starting with gsp� � � if p � s and gsp� � � oth�
erwise� until the costs gsp� do not change� In ���
Op� stands for the set of operators that �add� p and
gsPreca�� stands for the estimated cost of the set of
atoms in Precop��
In hsp� the cost gsC� of sets of atoms C is de�ned

as the sum of the costs gsr� of the individual atoms r
in the set� We denote such cost as gadds C��

gadds C�
def

�
X

r�C

gsr� additive costs� ��

The heuristic hs� used in hsp� that we call hadds�� is
then de�ned as�

hadds�
def

� gadds G� ��

The de�nition of the cost of sets of atoms in �� as�
sumes that �subgoals� are independent� This is not true
in general and as a result the heuristic may overestimate
costs and is not admissible�
An admissible heuristic can be obtained by de�ning

the costs gsC� of sets of atoms as

gmax
s C� � max

r�C
gsr� max costs� ��

The resulting �max heuristic� hmaxs� � gmax
s G� is ad�

missible but is not as informative as hadds� and is not
used in hsp� In fact� while the �additive� heuristic com�
bines the costs of all subgoals� the �max� heuristic con�
siders the most di�cult subgoals only�
In hsp� the heuristic hs� and the atom costs gsp�

are computed from scratch in every state s visited� This
is the main bottleneck in hsp and can take up to �� of
the computation time� For this reason� hsp relies on a
form of hill�climbing search for getting to the goal with
as few state evaluations as possible� Surprisingly this
works quite well in many domains� In the AIPS�� Plan�
ning Contest� for example� hsp solved �� more prob�
lems than the Graphplan and SAT planners McDer�
mott ������ In many cases� however� the hill�climbing
search �nds poor solutions or no solutions at all�

HSPr

hspr Bonet � Ge�ner ����� is a variation on hsp that
removes the need to recompute the atom costs gsp�
in every state s� This is achieved by computing these
costs once from the initial state and then performing
a regression search from the goal�� In this search� the
heuristic hs� associated with any state s is de�ned in
terms of the costs gp� � gs�p� computed from s� as

hs� �
X

p�s

gp�

�Refanidis and Vlahavas propose a di	erent way for
avoiding these recomputations� Rather than calculating the
heuristics by forward propagation and using it in a back�
ward search� they compute the heuristic by backward prop�
agation and use it to guide a forward search� See �Refanidis
� Vlahavas ���

Since node evaluation in hspr is faster than in hsp�
hspr uses a more systematic search algorithm that of�
ten produces better plans than hsp in less time�� For
example� hspr solves each of the �� logistic problems in
the blackbox distribution in less than � seconds each
Bonet � Ge�ner ������ hspr� however� is not better
than hsp across all domains as the information resulting
from the recomputation of the heuristic in certain cases
appears to pay o�� In addition� the regression search
often generates states that cannot lead to any solution
as they violate basic invariants of the domain� To alle�
viate this problem� hspr identi�es atoms pairs that are
unreachable from the initial state atemporal mutexes�
and prunes the states that contain them� This is an
idea adapted from Graphplan�

Graphplan

Planning in hspr consists of two phases� In the �rst� a
forward propagation is used to compute the measures
gp� that estimate the cost of achieving each atom from
s�� in the second� a regression search is performed us�
ing an heuristic derived from those measures� These
two phases are in correspondence with the two phases
in Graphplan Blum � Furst ������ where a plan graph
is built forward in the �rst phase� and is searched back�
ward in the second� As argued in Bonet � Ge�ner
������ the parallel between the two planners goes fur�
ther� Graphplan can also be understood as an heuristic
search planner based on precise heuristic function hG
and a standard search algorithm� The heuristic hGs�
is given by the index j of the �rst level in the graph that
contains the atoms in s without a mutex� and the search
algorithm is a version of Iterative Deepening a� ida��
Korf ����� where the sum of the accumulated cost and
the estimated cost hGn� is used to prune nodes nwhose
cost exceed the current threshold actually Graphplan
never generates such nodes���

While Graphplan and hspr can both be understood
as heuristic search planners they di�er in the heuristic
and algorithms they use� In addition� hspr is concerned
with non�optimal� sequential planning while Graph�
plan is concerned with optimal� parallel planning�

A new admissible heuristic

hsp and hspr can be used to �nd good plans fast but not
provable optimal plans� This is because they are based
on non�admissible heuristics and non�optimal search
algorithms� For �nding optimal plans� an admissible

�The search algorithm in hspr is complete but is not op�
timal� Optimal algorithms such as a� are not used because
they take more time and space� and since the heuristic is
not admissible they still don�t guarantee optimality�

�Without memoization� the search algorithm in Graph�
plan is standard ida

�� With memoization� the search algo�
rithm is a memory�extended version of ida� �Sen � Bagchi
��� Reinfeld � Marsland ��� where the heuristic of a
node is updated and stored in a hash�table after the search
beneath its children completes without a solution �given the
current threshold��

heuristic that can safely prune large parts of the search
space is needed�
The non�admissible heuristic hadd used in hsp is de�

rived as an approximation of the optimal cost function
of a relaxed problem where deletes lists are ignored�
This formulation raises two problems� First� the ap�
proximation is not very good as it ignores the positive
interactions among subgoals that can make one goal
simpler after a second one has been achieved this re�
sults in the heuristic being non�admissible�� Second�
the relaxation is not good as it ignores the negative
interactions among subgoals that are lost when delete
lists are discarded� These two problems have been ad�
dressed recently in the heuristic proposed by Refanidis
and Vlahavas ���� The proposed heuristic is more ac�
curate but it is still non�admissible and largely ad�hoc�
Here we aim to formulate an heuristic that addresses
these limitations but which can be given a clear justi�
�cation� The idea is simply to approximate the cost of
achieving any set of atoms A from s� in terms of the es�
timated costs of achieving sets of atoms B of a suitable
small size m� When m � �� we approximate the cost of
any set of atoms in terms of the estimated cost of the
atoms in the set� When m � �� we approximate the
cost of any set of atoms in terms of the estimated cost
of the atom pairs in the set� and so on� In the �rst case
we will obtain the heuristic hmax� in the second� the
Graphplan heuristic� etc� We make these ideas precise
below�

The new heuristic is de�ned in terms of a relaxed
problem� but the �original� and �relaxed� problems are
formulated in a slightly di�erent way than before� The
original problem is seen now as a single�source shortest�
path problem Bertsekas ����� Ahuja� Magnanti� � Or�
lin ������ In a single�source shortest path problem one
is interested in �nding the shortest paths from a given
source node to every other node in a graph� In our
graph� the nodes are the states s� the directed� links
are the actions a that map one state into another� and
the link costs are given by the action costs ca� � ��
The source node is the initial state s�� and the di�
rected� paths that connect s� with a state s correspond
to the plans that achieve s from s��
A way to solve this shortest�path problem is by �nd�

ing the optimal cost function V � over the nodes s� where
V �s� expresses the cost of the optimal path that con�
nects s� to s� This function V

� can be characterized as
the solution of the Bellman equation�	

V �s� � min
hs��ai�R�s�

�ca� � V �s��� ��

where V �s�� � � and Rs� stands for the state�action
pairs hs�� ai such that a maps s� into s i�e�� a � As��
and s � fa� s����

�For V
� to be well�de�ned when some states are not

reachable from s�� it su�ces to assume �dummy� actions
with in�nite costs that connect s� with each state s�

The shortest�path problem de�ned by �� can be
solved by a number of algorithms resulting in a heuris�
tic function V � that perfectly estimates the distance of
any state s from s�� Of course� there are two problems
with this idea� �rst� the solution of �� is polynomial
in jSj but exponential in the number of atoms� and sec�
ond� the function V � cannot be used directly� to guide
a regression search from the goal� This is because the
goal G does not denote a single state but a set of states
sG such that G � sG� Thus for guiding a regression
search from the goal� a cost function must be de�ned
over sets of atoms A understood as representing the set
of states that make A true�
So we turn to a slightly di�erent shortest�path for�

mulation de�ned over sets of atoms and let G� stand
for the optimal cost function in that space� For a set of
atoms A� G�A� stands for the optimal cost of achieving
the set of atoms A from s� or alternatively� the optimal
cost of achieving a state s where A holds� The equation
characterizing the function G� is

G�A� � min
hB�ai�R�A�

�ca� �G�B�� ��

where G�A� � � if A � s� and RA� refers to the set
of pairs hB� ai such that B is the result of regressing
A through a� Formally� this set is given by the pairs
hB� ai such that A � Adda� �� 	� A �Dela� � 	� and
B � A�Adda� � Preca�� We call such set RA� the
regression set of A�
In the new shortest�path problem the nodes are the

possible sets of atoms A and each pair hB� ai in RA�
stands for a directed link B
 A in the graph with cost
ca�� Such links can be understood as expressing that A
can be achieved by the action a from any state s where
B holds� This shortest�path problem is not simpler than
the problem �� but has two bene�ts� �rst the function
G� can be used e�ectively to guide a regression search�
and second� admissible approximations of G� can be
easily de�ned�
Let G stand for a function with the same domain

as G� and let�s write G � G� if for any set of atoms
A� GA� � G�A�� It�s simple to check that if G is
the optimal cost function of a modi�ed shortest path
problem obtained by the addition of �links�� G � G�

must hold� Likewise� G � G� must hold if links B
 A
are replaced by links B�
 A of the same cost where
B� is such that G�B�� � G�B�� We can regard both
modi�cations as �relaxations� that yield cost functions
G that are lower bounds on G��
With these considerations in mind� let�s consider the

relaxation of the shortest�path problem �� where the
links B
 A for �large� sets of atoms B� i�e�� sets with
size jBj � m for some positive integer m� are replaced
by links B�
 A where B� is a subset of B with size
jB�j � m� Since B� � B implies G�B�� � G�B�� it
follows from the arguments above that the optimal cost
function Gm of the resulting problem must be a lower
bound on G��
This lower bound functionGm is characterized by the

following equations�

GmA� � � if A � s� ��

GmA� � min
hB�ai�R�A�

�ca� �GmB�� ��

if jAj � m � A �� s�� and

GmA� � max
B�A�jBj
m

GmB� if jAj � m ��

For any positive integer m� the complexity of com�
puting Gm is a low polynomial in the number of nodes
the number of atom sets A with size jAj equal to or
smaller than m� Bertsekas ����� Ahuja� Magnanti� �
Orlin ������ Gm is thus a polynomial and admissible
approximation of the optimal cost function G�� The
approximation is based on de�ning the cost of �large�
sets of atoms A in Equation �� in terms of the costs
of its �smaller� parts� Equations � and �� on the other
hand� are common to both Gm and G��
For any positive integer m� we de�ne the heuristics

hm as
hmA�

def

� GmA� ���

The heuristics hm� for m � �� �� � � � are all admissible�
and they represent di�erent tradeo�s between accuracy
and e�ciency� Higher�order heuristics are more accu�
rate but are harder to compute� For any �xed value of
m� the computation of the heuristic hm is a low polyno�
mial in Nm� whereN is the number of atoms� Below we
consider the concrete form of these heuristics for m � �
and m � �� In both cases� we use the Strips representa�
tion of actions to characterize the regression set RA�
in equation �� which is the key equation de�ning the
functions Gm�

The Max�atom heuristic

For m � �� the heuristic hm reduces to the heuristic
hmax considered above� Indeed� for sets A � fpg of
size �� the regression set Rfpg� is given by the pairs
hPreca�� ai for a � Op�� where Op� stands for the
set of actions that �add� p� As a result� equation �� for
Gm becomes

G�fpg� � min
a�O�p�

�ca� �G�Preca���

The resulting shortest�path problem can be solved
by a number of label�correcting algorithms Bertsekas
����� Ahuja� Magnanti� � Orlin ������ in which esti�
mates g�fpg� are updated incrementally as

g�fpg� �� min
a�O�p�

�g�fpg� � ca� � g�Preca���

until they do not change� starting with g�fpg� � �
if p � s� and g�fpg� � � otherwise� Following ��
and ��� g	� is set to � and g�A� for jAj � � is
set to maxp�A g

�fpg�� When the updates terminate�
the estimates g� can be shown to represent the func�
tion G� that solves equations ���� Bertsekas �����
Ahuja� Magnanti� � Orlin ������ The complexity of
these algorithms varies according to the order in which

the updates are performed� yet it�s always a low poly�
nomial in the number of nodes atoms sets A with size
jAj � m��
The computation of the heuristic hmax described

above corresponds to this procedure� and thus hmax �
h�� In other words� hmax is the heuristic obtained by
approximating the cost of sets of atoms by the cost of
the most costly atom in the set� The heuristic is ad�
missible but is not su�ciently informative� The choice
in hsp and hspr was to approximate the cost of sets of
atoms in a di�erent way as the sum of the costs of the
atoms in the set� This approximation yields an heuris�
tic that is more informative but is not admissible� The
option now is to consider the heuristics hm for higher
values of m�

The Max�pair heuristic

If we let Op�q� refer to the set of actions that add
both p and q� and Opjq� to the set of actions that add
p but do not add or delete q� the equation �� for m � �
and A � fp� qg becomes

G�fp� qg� � min f min
a�O�p�q�

�ca� �G�Preca����

min
a�O�pjq�

�ca� �G�Preca� fqg���

min
a�O�qjp�

�ca� �G�Preca� fpg��g

while the equation for A � fpg becomes

G�fpg� � min
a�O�p�

�ca� �G�Preca���

As before these equations can be converted into updates
for computing the value of the function G� over all sets
of atoms with size less than or equal to �� This compu�
tation remains polynomial in the number of atoms and
actions� and can be computed reasonably fast in most
of the domains we have considered� We call the heuris�
tic h� � G�� the max�pairs heuristic to distinguish it
from the max�atom heuristic h��
The consideration of atom pairs for the computation

of the heuristic h� is closely related to the consideration
of mutex pairs in the computation of the heuristic hG
in Graphplan� A distinction between h� and hG is that
the former is de�ned for arbitrary action costs and se�
quential planning� while the latter is de�ned for unitary
costs and parallel planning� Later on� we will introduce
a de�nition analogous to h� for parallel planning that
is equivalent to Graphplan hG�

Higher Order Heuristics

Equations �!�� de�ne a family of heuristics hm � Gm

for m � �� For each value of m� the resulting heuris�
tic is admissible and polynomial� but the complexity of
the sequence of heuristics hm grows exponentially with
m� The experiments we have performed are limited to
hm with m � �� Certainly� it should be possible to
construct domains where higher�order heuristics would

be cost�e�ective but we haven�t explored that� A simi�
lar situation exists in Graphplan with the computation
of higher�order mutexes Blum � Furst ������ Higher�
order heuristics may prove e�ective in complex domains
like the ���puzzle� Rubik� and Hanoi where subgoals in�
teract in complex ways� The challenge is to compute
such heuristics e�ciently and use them with little over�
head at run time�

Algorithms

Below we use the heuristic h� in the context of an ida�

search Korf ������ The ida� algorithm consists of a se�
quence of depth��rst searches extended with an heuris�
tic function h and an upper bound parameter UB� Dur�
ing the search� nodes n for which the sum of the accu�
mulated cost gn� and predicted cost hn� exceed the
upper bound UB are pruned� Initially� UB is set to the
heuristic value of the root node� and after a failed trial
UB is set to the cost gn� � hn� of the least�cost node
that was pruned in that trial�
ida� is guaranteed to �nd optimal solutions when the

heuristic h is admissible� but unlike a� it is a linear�
memory algorithm� Memory�enhanced versions of ida�

have been de�ned for saving time such as those relying
on transposition tables Reinfeld � Marsland ������ In
the experiments below we report the results of ida�

with and without transposition tables�
The performance of ida� is often sensible to the order

in which the children of a node are selected for expan�
sion this a�ects the last iteration of ida��� In some
of the experiments we use an arbitrary node ordering
while in others we choose the ordering determined by
the additive heuristic hadd from hsp�

Commutativity Pruning

In planning problems� it is common for di�erent action
sequences to lead to the same states� Linear�memory
algorithms like ida� do not detect this and may end
up exploring the same fragments of the search space a
number of times� This problem can often be alleviated
by exploiting certain symmetries�
Let�s say that two operators a and a� are commuta�

tive if neither one deletes atoms in the precondition or
add list of the other� and that a set of actions is com�
mutative when all the actions in the set are pairwise
commutative� Commutative actions thus correspond to
the actions that can be done in parallel in Graphplan or
Blackbox� and can be recognized e�ciently at compile
time�
Clearly the order in which a set of commutative ac�

tions is applied is irrelevant to the resulting outcome�
A simple way to eliminate the consideration of all or�
derings except one� is by imposing a �xed ordering ���
on all actions e�g�� see Korf ������� A branch con�
taining a contiguous sequence of commutative actions
a�� a�� � � � � an is then accepted when it complies with
this ordering i�e�� when a� � a� � � � � � an� and is
rejected otherwise� This means that a branch in the

search tree can be pruned as soon as it contains a se�
quence of two consecutive commutative actions ai� ai��
such that ai � ai��� We refer to this form of pruning
as commutativity pruning�

Results
We call the planner obtained by combining the h�

heuristic with the ida� algorithm� hspr�� hspr� is an
optimal sequential planner� The current implementa�
tion is in C� The results below were obtained on a Sun
Ultra �� running at ��� Mhz with ��� RAM� In the
�rst experiments� we consider a number of mostly� se�
quential domains and compare hspr� with two state�
of�the�art planners� stan ��� Long � Fox ����� and
blackbox ��� Kautz � Selman ������ Both of these
planners are optimal parallel planners� so they mini�
mize the number of time steps but not necessarily the
number of actions�
Table � shows results over instances from the blocks

world� ��puzzle� grid� and gripper domains� The for�
mulation of the blocks�world is the one with the three
�move� actions� The notation blocks�i denotes an in�
stance with i blocks� The ��puzzle is a familiar domain
Nilsson ����� Pearl ������ The maximum distance be�
tween any two reachable� con�gurations is ��� The
grid and gripper instances correspond to those used in
the AIPS Planning Contest McDermott ������
In the table� "S and "A stand for the number of

time steps and the number of actions in the plan� For
sequential planners we report the number of actions
while for parallel planners we report both�
The numbers in Table � show that over these domains

the performance of hspr� is comparable with stan and
slightly better than blackbox� These numbers� how�
ever� are just an illustration as the planners can be run
with a number of di�erent options stan was run with
the default options� blackbox was run with the com�
pact simpli�er and the satz solver�� An important dif�
ference between the three planners is the use of memory�
stan and blackbox use of a lot of memory� and when
they fail� most often is due to memory� In hspr�� mem�
ory does not appear to be such a problem� In grid���
for example� hspr� ran for almost eight hours until it
�nally found an optimal solution� This is not good time
performance� but illustrates the advantages of using lin�
ear memory� stan proved superior to both hspr� and
blackbox in the gripper domain where it apparently
exploits some of the symmetries in the domain Fox �
Long ������
The results for hspr� in these experiments were ob�

tained using the three enhancements of ida� discussed
in the previous section� commutativity pruning � a
transposition table with ��� entries� and node�ordering
given by the heuristic hadd� These are general enhance�
ments and most often they speed up the search� For
testing this� we ran some experiments on the blocks
world problems with all possible combinations of these
enhancements� The results are shown in Table �� where
the number of nodes expanded "N� and total time T�

are reported� While in the small problem� the enhance�
ments make no di�erence� in the larger problem they
do� However� the payo�s do not always add up� for ex�
ample� commutative pruning Com� cuts the run time
signi�cantly when used in isolation but makes little dif�
ference when node�ordering Ord� and a transposition
table TT� are used�
Table � displays the quality of the heuristic h� in com�

parison with the optimal cost of the problem� and the
time taken by the search with respect to the total time
that also includes the computation of the heuristic��
It can be seen that the heuristic provides reasonable
bounds in the block�world problems but poorer bounds
in the other domains� In the ��puzzle� the heuristic
seems to be weaker than the domain�dependent Man�
hattan distance heuristic but we haven�t made a de�
tailed comparison� In most domains� the time for com�
puting the heuristic is small when compared with the
search time� The exception is the grid domain where
the computation of the heuristic takes most of the time�
We have tried to run hspr� over standard parallel

domains like logistics and rockets but after many hours
we didn�t obtain any results� The most important cause
for this is that for those domains the heuristic h�� which
estimates serial cost� is a poor estimator� In parallel
domains� there are many independent subgoals� and in
that case the additive heuristic hadd produces better
estimates� Indeed� the non�optimal hspr planner that
uses the hadd heuristic solves these problems very fast
Bonet � Ge�ner ������ The admissible heuristics hm

de�ned in Sect� �� however� can be modi�ed so that they
estimate parallel rather than serial cost� In that case�
the estimates are tighter and can be used to compute
optimal parallel plans�

Optimal Parallel Planning

Heuristics for Parallel Planning

The de�nition of the heuristics hm can be modi�ed
to estimate parallel rather than serial costs by simply
changing the interpretation of the regression set RA�
appearing in the equation ��� This equation charac�
terizes the cost function GmA� for the sets A �� s� and
jAj � m and is reproduced here

GmA� � min
hB�ai�R�A�

�ca� �GmB�� ���

Recall thatRA� contains the pairs hB� ai such thatB is
the result of regressing A through action a� For making
hm � Gm an estimator of parallel cost� all we need to
do is to let a range over the set of parallel actions� where
a parallel action stands for a set of pairwise compatible
commutative� actions�
We illustrate the result of this change for m � ��

We denote by Gm
p the cost function associated with the

�The reason for this� however� is not only the heuristic
but also the search algorithm� The non�optimal search algo�
rithm in hspr can reach the goal by evaluating much fewer
nodes than ida

��

stan blackbox hspr�

Instance Time "S "A Time "S "A Time "A
blocks�� ��� � �� ��� � �� ���� �
blocks��� ��� � �� ��� � �� ���� �
blocks��� ����� � �� # # # ������ ��
eight�� ���� �� �� # # # ����� ��
eight�� ���� �� �� # # # ����� ��
eight�� ��� �� �� ���� �� �� ���� ��
grid�� ��� �� �� ���� �� �� ���� ��
grid�� # # # # # # ����h ��
gripper�� ��� � � ��� � � ���� �
gripper�� ��� � � ��� � � ���� �
gripper�� ��� �� �� ���� �� �� ����� ��
gripper�� ��� �� �� $ $ $ $ $

Table �� Performance comparison over sequential domains� A long dash #� indicates that the planner exhausted
the available memory and a star $� indicates that no solution was found after �� hours� All times are in seconds�

Options blocks��� blocks���
Ord TT Com "N Time "N Time
o� o� o� ���� ���� ������ �������
o� o� on ��� ���� ����� ������
o� on o� ��� ���� ����� ������
o� on on ��� ���� ����� ������
on o� o� ��� ���� ����� �������
on o� on �� ���� ����� ������
on on o� �� ���� ���� ������
on on on �� ���� ���� ������

Table �� E�ects of ida� enhancements in the number
of nodes expanded and time taken by hspr�� Time in
seconds�

parallel problem� and let Op� q� stand for the set of
compatible pairs of actions a and a� such that p and q
belong to Adda� Adda��� We assume now that all
primitive and parallel actions have uniform cost ca� �
��� The de�nition of G�

p then takes the form�

G�
pfp� qg� � min f min

a�O�p�q�
�� �G�

pPreca����

min
ha�a�i�O�p�q�

�� �G�
pPreca� Preca�����

min
a�O�pjq�

�� �G�
pPreca� fqg��g

min
a�O�qjp�

�� �G�
pPreca� fpg��g

where the only change from the de�nition of serial G�

is in the second line� the parallel action a�a� is al�
lowed to establish the pair of atoms p�q at the cost of a
primitive action� The equations for G�

pA� for sets with
size jAj �� � remain the same as before� The resulting
heuristic h�p � G�

p� unlike the heuristic h
�� is admissible

	It�s not clear what the cost of a parallel action should
be when primitive actions have di	erent costs�

Instance Opt� hroot� Nodes Time Search
blocks�� � � � ���� ����
blocks��� � � �� ���� ����
blocks��� �� �� ���� ������ ������
eight�� �� �� ������ ����� �����
eight�� �� �� ������ ����� �����
eight�� �� �� ��� ���� ����
grid�� �� �� �� ���� ����
gripper�� � � � ���� ����
gripper�� � � ��� ���� ����
gripper�� �� � ������ ����� �����

Table �� Results for sequential problems displaying op�
timal and estimated costs� expanded nodes� and total
vs� search time� Time in seconds�

for parallel planning� Actually h�p can be shown to be
equivalent to the heuristic hG used in Graphplan where
hGs� stands for the �rst layer in the plan graph that
includes the atoms in s without a mutex� For prov�
ing this� it is su�cient to show that hG complies with
the equations for G�

p� and this can be done inductively
starting with layer ��

State Space for Parallel Planning

The simplest way to use the heuristic h�p to �nd opti�
mal parallel plans is by performing a regression search
from the goal with an algorithm like ida� but replacing
the primitive actions with the possible parallel actions�
The problem with this idea� however� is that it does not
scale up� indeed� if the branching factor of the original
problem is b� the branching factor of the �parallel� prob�
lem may be �b� While the solution length in the parallel
space will be smaller� the growth in the branching factor
makes the scheme impractical�
A second approach is to retain the branching struc�

ture from the serial setting but change the cost struc�

ture� The cost of an action a in the serial setting is nor�
mally uniform� In the parallel setting� it can be de�ned
in terms of the preceding actions� The result is that
total cost will measure time steps rather than action
occurrences� This can be achieved by setting the cost
of an action to � when the action is compatible with the
�last� actions in the search tree� and to � otherwise the
�last� actions de�ned in a suitable way�� The problem
with this space is that it makes the heuristic h�p not ad�
missible� Admissibility can be restored by subtracting
� from the value of the heuristic yet this transformation
makes the heuristic much less powerful�
We have thus settled on a third alternative for �nd�

ing optimal parallel plans that follows the scheme used
in Graphplan� The resulting search space can be char�
acterized as follows�

States� the states are triples hOld�New�Actsi�
where Old and New are sets of atoms� and Acts is a
set of pairwise compatible primitive actions�

Branching� the children of a state hOld�New�Actsi
are obtained by applying all the primitive ac�
tions a that add the �rst atom p in Old and
are compatible with all the actions in Acts�
For each such action� the resulting state is
hOld�Aa�� New � P a�� Acts� fagi� where P a�
and Aa� stand for the precondition and add list of
a respectively�

No�Ops� actions No Opp� with precondition and
add list equal to p are assumed for each atom p

Costs� a dummy action that is the sole action ap�
plicable in the states h	� A�Actsi is assumed� Such
action has cost � and leads to the state hA� 	� 	i� All
other actions have cost ��

Heuristic� the heuristic of a state hOld�New�Actsi
is given by h�pNew�� which is non�overestimating�

Init and Goal� the initial state of the regression
is h	� G� 	i� where G is the goal� and the goal states
are h	� A�Actsi for A � s�� where s� is the initial
situation�

In relation to Graphplan� the set of atoms Old in
the state hOld�New�Actsi can be thought as the list of
atoms in layer i that haven�t been regressed yet� New
stands for the atoms in layer i � � that have been ob�
tained from the regression so far� and Acts encodes the
actions that have been used to obtain those atoms�
We will refer to the planner that results from the

use of the ida� search over this space� parallel hspr� or
hsprp��� Below we report results of this planner over
some standard parallel domains and compare it with
two state�of�the�art parallel planners and the original
version of Graphplan�
hsprp�� has three main aspects in common with

Graphplan� the heuristic� the search space� and the
search algorithm� On the other hand� hsprp�� does
not use a plan graph� The plan graph plays two roles
in Graphplan� First� and most important� it encodes

the heuristic� This aspect is captured by the use of the
h�p heuristic in hsprp�

�� However� the plan graph also
stores information that makes the ida� search more ef�
�cient� it makes regressions faster� it never generates
nodes that will be pruned� etc� Indeed� the ida� search
in Graphplan takes the form of a �solution extraction�
algorithm in the plan graph� This second rol of the plan
graph is not captured in hsprp��� On the positive side�
hsprp�� requires less memory and can easily be modi�
�ed to use other search algorithms such as a� or wida�
Korf ������ Such changes can be accommodated in
Graphplan but provided the plan graph is used mainly
for representing and computing the heuristic and not
for solution extraction�

Results for Parallel Planning

Table � shows results over some standard parallel do�
mains� On the �rocket� problems� hsprp�� appears to
be slightly better than Graphplan� while in the �logis�
tics� problems� Graphplan is de�nitely superior� These
di�erences are likely due to the use of the plan graph�
As the columns for stan and blackbox show� neither
Graphplan or hsprp�� are state�of�the�art over these
domains� Nonetheless� stan is a Graphplan�based plan�
ner that solves the logistics problems quite fast��

To further compare the speed of hsprp�� and Graph�
plan we generated approximately �� medium�sized� ran�
dom logistics instances solvable by both hsprp�� and
Graphplan� For the reasons above� we didn�t expect
hsprp�� to approach the speed of Graphplan but we
did expect hsprp�� to remain within an order of mag�
nitude� In �� of the problems� that was the case� How�
ever� in �� problems we found hsprp�� to be from �� to
�� times slower than Graphplan� and in � problems we
found hsprp�� to be between �� and ��� times slower�
These di�erences in speed are probably not only due to
the use of the planning graph in the search but also to
the node ordering used in both planners� Graphplan�
for example� tries No�Op actions �rst� while hsprp��

tries them last� Similarly� in hsprp�� we have found
it convenient to order the atoms in Old in the state
hOld�New�Actsi by increasing value of the additive
heuristic hadd� While these choices help in a number
of examples� they also hurt in others� and thus poten�
tially amplify the di�erences in performance over some
of the instances�

Discussion

In this paper we have formulated a framework for deriv�
ing polynomial admissible heuristics for sequential and
parallel planning� and have evaluated the performance
of the optimal planner that results from using one of
these heuristics with the ida� algorithm� The work
sheds light on the heuristics used in hsp and Graph�
plan� and provides a more solid basis for pursuing the

For some reason� stan didn�t solve the rocket problems�
Apparently� this is a bug that will be �xed�

Problem hsprp�� graphpln stan bbox

rocket�a ���� ����� # ���
rocket�b ���� ����� # ���
log�a ������� ������� ��� ���
log�b $ ������ ��� ����
log�c $ # ������� ����

Table �� Time comparison over parallel domains� A
long dash #� indicates that the planner exhausted the
available memory and a star $� indicates that no solu�
tion was found after �� hours� In the notation h � m � s�
h� m and s stand for hours� minutes� and seconds re�
spectively� Otherwise� times are in seconds�

�planning as heuristic search� approach� Below we dis�
cuss brie%y related work and some open problems�

Graphplan� In Bonet � Ge�ner ������ Graphplan
was described as an heuristic search planner based
on an ida� search and a heuristic hGs� given by
the �rst layer in the plan graph that contains the
atoms in s without a mutex� In this paper� we have
taken this view further� providing an explanation and
a generalization of that heuristic� and evaluating a
pure ida� planner with respect to Graphplan� In
Graphplan� the plan graph plays two roles� it�s used
for computing and representing the heuristic� and for
making the ida� search more e�cient� These uses
explain the e�ciency of Graphplan in comparison to
previous planners� On the othe hand� it�s not clear
whether the plan graph will be suitable for computing
and representing higher order heuristics hm� form �
�� and searching with other algorithms�

Heuristics� higher�order heuristics may prove e�ec�
tive in domains like the ���puzzle� Hanoi� Rubik� etc�
where subgoals interact in complex ways� The chal�
lenge is to compute such heuristics fast enough and
to use them with little overhead at run�time� Higher�
order max� heuristics as de�ned in this paper are
related to the heuristics based on pattern databases
de�ned in Culberson � Schae�er ������ Korf and
Taylor ��� discuss ways for generating hybrid heuris�
tics involving both �max� and �additive� operations
that may also prove useful in planning�

Algorithms� the heuristics de�ned in this paper
have been used in the context of the ida� algorithm�
In a number of domains� however� a best��rst search
may prove more convenient� When optimality is not
an issue� variations of a� and ida� where the heuristic
is multiplied by a constant W � � may speed up the
search considerably Korf ������ making the resulting
planner competitive with the hsp and hspr planners
over domains like Hanoi and Tire�world� where the
additive heuristic is not adequate�

Branching� in highly parallel domains like rockets
and logistics� sat approaches appear to do best� This

may be due to the branching scheme used see Rinta�
nen ������� In sat formulations� the space is explored
by setting the value of any variable at any time point�
and then considering each of the resulting state par�
titions separately� In heuristic search approaches� the
splitting is commonly done by applying all possible
actions� Alternative branching schemes� however� are
common in heuristic branch�and�bound search proce�
dures Lawler � Rinnooy�Kan ������ and they may
prove relevant in planning�

We hope to explore some of these ideas in the future�

Acknowledgments
We thank Blai Bonet for useful discussions on the topic
of this paper� Part of this work was done while H�
Ge�ner was visiting Link�oping University� He thanks
E� Sandewall and P� Doherty for making this visit pos�
sible and enjoyable� This work has been partially sup�
ported by grant S���������� from Conicit� Venezuela
and by the Wallenberg Foundation� Sweden� P� Haslum
is also funded by the ECSEL&ENSYM Graduate Study
Program�

References
Ahuja� R�� Magnanti� T�� and Orlin� J� ����� Network
Flows� Prentice�Hall�

Bertsekas� D� ����� Dynamic Programming and Opti�
mal Control� Vols � and �� Athena Scienti�c�

Blum� A�� and Furst� M� ����� Fast planning through
planning graph analysis� In Proceedings of IJCAI����

Bonet� B�� and Ge�ner� H� ����� Planning as heuris�
tic search� New results� In Proceedings of ECP����
Springer�

Bonet� B�� Loerincs� G�� and Ge�ner� H� ����� A ro�
bust and fast action selection mechanism for planning�
In Proceedings of AAAI��	� ���!���� MIT Press�

Culberson� J�� and Schae�er� J� ����� Pattern
databases� Computational Intelligence ��������!����

Fox� M�� and Long� D� ����� The detection and ex�
ploitation of symmetry in planning domains� In Proc�
IJCAI����

Garey� M�� and Johnson� D� ����� Computers and
Intractability� Freeman�

Kautz� H�� and Selman� B� ����� Unifying SAT�based
and Graph�based planning� In Proceedings IJCAI����

Korf� R� ����� Depth��rst iterative�deepening� an
optimal admissible tree search� Arti
cial Intelligence
�������!����

Korf� R� ����� Linear�space best��rst search� Arti
cial
Intelligence �����!���

Korf� R� ����� Finding optimal solutions to Rubik�s
cube using pattern databases� In Proceedings of AAAI�
��� ����!�����

Lawler� E�� and Rinnooy�Kan� A�� eds� ����� The
Traveling Salesman Problem � A Guided Tour of Com�
binatorial Optimization� Wiley�

Long� D�� and Fox� M� ����� The e�cient implemen�
tation of the plan�graph� JAIR �����!����

McDermott� D� ����� A heuristic estimator for means�
ends analysis in planning� In Proc� Third Int� Conf�
on AI Planning Systems AIPS�����

McDermott� D� ����� AIPS��� Planning Competition
Results� http���ftp�cs�yale�edu�pub�mcdermott�
�aipscomp�results�html�

Nilsson� N� ����� Principles of Arti
cial Intelligence�
Tioga�

Pearl� J� ����� Heuristics� Morgan Kaufmann�

Refanidis� I�� and Vlahavas� I� ����� GRT� A do�
main independent heuristic for Strips worlds based on
greedy regression tables� In Proceedings of ECP����
Springer�

Reinfeld� A�� and Marsland� T� ����� Enhanced
iterative�deepening search� IEEE Trans� on Pattern
Analysis and Machine Intelligence ��������!����

Rintanen� J� ����� A planning algorithm not based
on directional search� In Proceedings KR���� ���!����
Morgan Kaufmann�

Sen� A�� and Bagchi� A� ����� Fast recursive formu�
lations for BFS that allow controlled used of memory�
In Proc� IJCAI���� ���!����

Smith� D�� and Weld� D� ����� Temporal planning
with mutual exclusion reasoning� In Proc� IJCAI����

