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Abstract

This note describes how the notion of nonmonotonic reasoning

emerged in Artificial Intelligence from the mid-1960’s to 1980.

It gives particular attention to the interplay between three kinds

of activities: design of high-level programming systems for AI,

design of truth-maintenance systems, and the development of

nonmonotonic logics. This was not merely a development from

logic to implementation; in several cases there was a develop-

ment from a system design to a corresponding logic. The article

concludes with some reflections on the roles and relationships be-

tween logicist theory and system design in AI, and in particular

in Knowledge Representation.

Some of the contents of this article were previously presented in an invited
talk at the International Conference on Knowledge Representation and Rea-
soning (KR) in 2006.

The author’s present affiliation is:

School of Scientific Information and Learning
KTH -- Royal Institute of Technology
Stockholm, Sweden

For the author’s up-to-date webpage and E-mail coordinates, please refer to
the article’s URL which is specified on the front page.
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John McCarthy and Nonmonotonic Reasoning

Nonmonotonic reasoning has emerged as one of the most central concepts
in artificial intelligence. It is nowadays an accepted notion in formal logic,
and several other disciplines address knowledge representation problems
where nonmonotonic reasoning would seem to have a natural role. John
McCarthy is of course the founding father that both initiated this develop-
ment and gave it a large part of its structure and direction.

The purpose of the present article is to describe the beginnings of non-
monotonic reasoning (nonmon) in Artificial Intelligence, that is, the initial
development that preceded and led up to the special issue of the Artificial
Intelligence journal in 1980 whereby nonmonotonic reasoning was estab-
lished as a topic of its own, and where circumscription (which is arguably
the major approach to nonmonotonic reasoning today) was first presented
in a journal article. I participated in the development of the field during
those early years, and the present article is based partly on my recollections
of my own activities as well as those of fellow researchers, and partly on
communication with these during the preparation of this article.

Defeasible reasoning has also been studied in philosophical logic dur-
ing about the same time as in artificial intelligence. Although there has
been some interaction between the fields more recently in this respect, that
was not the case during the early years. The present article will therefore
be strictly restricted to the early development within A.I. research.

Some of the early publications on nonmon are quite well-known, in par-
ticular the article “Some philosophical problems from the standpoint of Ar-
tificial Intelligence” by John McCarthy and Patrick Hayes in the 1968 Ma-
chine Intelligence workshop [23]. Other work during those formative years
included the introduction of the thnot operator in Carl Hewitt’s Planner
system [13, 14], and the first proposal for a default rule for the frame prob-
lem, in my article at the 1971 Machine Intelligence workshop [35].

These early articles are manifestations of the search process where sev-
eral researchers tried different mechanisms for obtaining nonmonotonic
reasoning and different ways of understanding the knowledge representa-
tion problems where it seems to be required. One important aspect of that
search process is that logic-based approaches and computationally based
approaches were tried concurrently and with frequent interactions, and truth
maintenance becamean important issue from the systems-oriented point of
view. This early connection between logic and systems is less visible today,
and in fact the logic-based work dominates among contemporary research
contributions. It may however be worthwhile not to let the systems aspect
fall into oblivion since truth maintenance may well reemerge as an impor-
tant issue, in particular in cognitive robotic systems.

In spite of the diversity of approaches that were tried, there is actually
a single starting-point for this early work, namely, John McCarthy’s paper
on Programs with Common Sense. This short article was presented at the
Teddington Conference on the Mechanization of Thought Processes in De-
cember 1958 and it was circulated and reprinted repeatedly, in particular as
part of a book [22]. It is important as a starting-point for two reasons. This
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paper is recognized as the initial proposal for the use of formal logic as the
formal and theoretical framework for artificial intelligence systems. How-
ever, it also makes the proposal for a deliberating software system, that is,
a system that works continuously at interpreting its inputs and analyzing its
possible futures and its future actions. McCarthy’s proposal was to organize
such a system in such a way that it continuously draws conclusions from
carefully selected subsets of its available knowledge, including conclusions
that specify actions to be performed by the system. In this way a deliber-
ating system differs from a reactive system that merely responds to queries
or requests, and which idles when there is no such input. McCarthy used
the term the advice taker for the proposed first version of such a software
system, with restricted capabilities.

The logicist aspect of the Advice-taker paper has had a strong influ-
ence on what we know today as research in knowledge representation. The
deliberating-system aspect is also important since continuous “forward”
reasoning from known or believed facts leads to the need for truth mainte-
nance in any system where default conclusions are permitted. It is therefore
fundamental for cognitive robotics, and more generally for every cogitating
system that is set to operate autonomously in some environment.

Ambiguity logic

The Advice-taker proposal, as well as the ongoing discussion at the Stan-
ford AI Lab in the mid-to-late 1960s, inspired my own work on a repre-
sentational language called ”ambiguity logic,” and on its implementation
as a programming system called Lisp A. This language belonged to the
same category of so-called “programming languages for AI research” [1]
as Planner and QA4. It was more or less concurrent with Planner but
independent of it, and it preceded QA3 and QA4 in time. Several aspects of
nonmonotonicity started in the context of Lisp A, so therefore it will be
described in some detail here.

The ‘logic’ part of this work started from a suggestion in another one
of McCarthy’s early articles [18], to the effect that it would be useful for
representation purposes to have “ambiguous” functions, that is, functions
with more than one value. An obvious example is the function “the wife
of” in a multicultural context. In ambiguity logic, one would represent such
a function in more conventional terms, as follows. Consider an application
domain containing some kind of identifiable objects where it is natural to
have functions from object to object, but for some arguments the function
has no value, and for some other arguments it may have several values.
Terms in ambiguity logic are interpreted as sets of such objects. There
are no expressions for individual objects, only for sets of them, but instead
there is a special predicate * of one argument that is true iff the argument
is a singleton set, having exactly one member. The subset and subset-equal
relations are used as usual.

Furthermore, for each ambigously valued “function” f on the object
level that the application offers, one introduces a corresponding function F
on the set level, where (F A) is the set of all objects that are a value of
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the function f applied to some member of A. Set-level functions of more
than one argument are defined similarly. Obviously every such function F
is monotonic with respect to the subset relation in each of its arguments.
The basic concept in ambiguity logic was therefore the subset relation on
sets of objects, rather than the use of predicates as they occur in predicate
logic. There is an evident similarity with modern description-language rep-
resentations.

Predicates on the object level are considered as functions whose value
is one of the two objects T or F; consequently their counterparts on the set
level have four possible values.

In addition to the monotonic functions, including predicates, that are
constructed from object-level counterparts, it is convenient to also have
some special functions that are not monotonic. The subset relation itself
should only be considered to have the value {T} or {F} and is not mono-
tonic, and the same holds for the * predicate in its single argument. Quan-
tification can be expressed using the subset relation: an object-level predi-
cate p is true for all members of a set A iff (P A) ⊆ {T}, and it is true for
some member of the set iff {T} ⊆ (P A). The generalization to predi-
cates of several arguments is trivial. Implication can be handled in a similar
fashion.

Expressions of the form {f(x) | x ∈ A} had a counterpart in ambiguity
logic where one could write a function as

(rho (x)(F x))

If R is this function, then (R A) denotes the union of all (F Ai) for all
singleton subsets Ai of A. The reason for expressing this with a lambda-
expression-like construct was that one can then write recursive definitions
very conveniently.

One use of the rho operator was for writing quantified expressions.
For example, if P was a predicate and the statements

((rho (x)(P x)) A) ⊆ {T}
C ⊆ A
(* C)

had been asserted, so that in particular C was known to be a singleton sub-
set of A, then the instantiation of the “quantified” statement was obtained
as follows and using the monotonicity of the rho-expression

(P C) = ((rho (x)(P x)) C) ⊆
((rho (x)(P x)) A) ⊆ {T}

showing that (P C) is either the empty set or {T}, so that it is not false.
This notation was called ambiguity logic, although in retrospect it would

have been more appropriate to call it a calculus. Anyway, it was a way of
characterizing sets of objects that have certain relationships, so it was pri-
marily for knowledge representation and not for programming.
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Nonmonotonicity in Ambiguity logic

Nonmonotonic inference was introduced in this design in order to deal with
another issue which was described as follows in the ambiguity logic report
[31]:

”... incertitude ... may arise in several ways:

(A) We know that the full and precise statement should be
let t be a u in p(t) ∧ q(t) ∧ ¬v(t) ⊃ r(t)

where v(t) is a relation which indicates some exceptional circum-
stance (like ”the ceiling is falling down”) that we can usually ignore.

(B) There are not one but many exceptional circumstances, and they
can not all be enumerated. —

We introduce a Boolean function unless, which is to be used instead of
not in cases where the argument is usually false. Thus the statement
shall go

let t be a u in p(t) ∧ q(t) ∧ unless(v(t)) ⊃ r(t)

In the (B) case the predicate v was used to represent the disjunction of
all possible exceptional conditions, and each exception was represented by
a separate axiom where v was used in the consequent.

Notice that the emphasis was not on the restricted frame problem of as-
suring persistence of fluents that are not affected by an action; it was on the
harder qualification problem. This was the issue that McCarthy emphasized
in his early work on this topic.

The let expression that was used in this quotation is a modification of
Landin’s let operator for use with rho-expressions. An expression ((rho
(x)(P x)) A) could be written more legibly as let x be a A in
(P x).

Lisp A and Truth Maintenance

Ambiguity logic was implemented in Lisp as a program called Lisp A
that maintained the subset relationships between terms in this calculus and
answered queries concerning those relationships. The basic approach in
Lisp A was inspired by another early paper in the McCarthy tradition. His
early proposal for a deliberating system, as described in the Advice-taker
memo, had been carried forward through the proposal by Lombardi and
Raphael for an incremental computing system [17]. They defined three re-
quirements for an “incremental computer”, the first one being that

The extent to which an expression is evaluated is controlled by the
currently-available information context. The result of the evaluation
is a new expression, open to accomodate new increments of pertinent
information by simply evaluating again with a new information.

This can be taken as a recipe for partial evaluation, but in Lisp A it
was realized in a way that was closer to the vision of the advice taker. The
input to the Lisp A system was a stream of assertions and queries. The ba-
sic cycle of the system was to accumulate assertions to its knowledge base
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in the form of terms that were related by the ⊆ relation, to administrate the
transitivity of ⊆, and to simplify rho expressions when appropriate. Each
assertion of a subsumption relation could trigger new forward inferences
using a first-come, first-served strategy with several “lanes” with different
priority. There were handles for procedural attachment, so that the assertion
of (P C) in the above example could produce computational side-effects.
The rho operator therefore provided a means of assertion-driven invoca-
tion of new assertions and queries, and of invoking attached procedures
written directly in Lisp.

The use of the unless operator in this approach created the need for
truth-maintenance, although that particular term had not been introduced
yet. There was in fact also another reason for needing it, namely, the pos-
sibility that expressions in the input stream could require previously stated
relationships to be retracted. The implementation therefore kept track of
the justifications of each proposition that had been asserted in it, so that
a previously asserted relationship could be retracted by a request from the
user, or because all its justifications had been retracted.

The implementation of the unless operator in Lisp Awas described
as follows in the quotation above. (The function ambeval was the main
evaluator in Lisp A):

Ambeval needs the following operators to handle the function unless:

1. An operator which checks t in each expression unless(t)
and, if t does not have any BECAUSE property, gives unless(t)
the property NIL under the attribute BECAUSE (which means
that unless(t) is considered true with no reason); —

The BECAUSE property contained the justifications for a proposition
as a list of other propositions whose conjunction implied the proposition
at hand. The property-value NIL was distinct from an absence of value,
and represented that the proposition had been accepted by default. (A more
complete justification structure on disjunctive normal form was provided
using another property).

In summary, Lisp A was an early example of a truth maintenance
system, where nonmonotonic behavior was introduced, using an operator
called unless, in order to handle what later came to be called the qualifi-
cation problem. The articles about this work do not at any point mention
the “frame problem” for reasoning about actions, and the representation is
motivated with an instance of the qualification problem.

Ambiguity logic and its Lisp A implementation were developed dur-
ing the first eight months of 1967. Detailed reports can be found in a depart-
mental report from the University of Uppsala, Sweden [31] and in an article
about Lisp A at the 1968 Spring Joint Computer Conference [33]. This
approach was used in a proposal for representing vector diagrams in the
modelling of bubble-chamber pictures [34]. The conciseness of the formal-
ism was illustrated by showing hos GPS-style search could be implemented
in a few lines of Lisp A definitions [32].
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The Planner System

Carl Hewitt’s Planner system was a concurrent approach to “program-
ming languages for AI” which also developed nonmonotonic concepts at
an early stage. The direct sources for that work are in Hewitt’s papers at
IJCAI 1971 [13] and a sequence of successive revisions of the Planner
system memo during the preceding years, converging in Hewitt’s Ph.D. the-
sis at MIT in 1972 [14]. (The earlier article on Planner at IJCAI 1969 [12]
describes Planner as a high-level programming language based on a pattern
matcher, and does not address the topic of the present article). The follow-
ing is a description of the Planner approach from the abstract of those
memos and the thesis:

Planner is a formalism for proving theorems and manipulating
models in a robot. The language is built out of a number of problem-
solving primitives together with a hierarchical multiprocess back-
track control structure. Statements can be asserted and perhaps later
withdrawn as the state of the world changes. — The deductive system
of Planner is subordinate to the hierarchical control structure in
order to make the language efficient. —

Therefore, Planner also had an assertion/retraction capability sup-
porting forward and backward inference rules. It differed from Lisp A
since its backtracking mechanism was integrated with the programming
language and since it provided depth-first search through strands of rea-
soning, whereas Lisp A had a first-come, first-serve queueing system for
tasks that was “above” the level of the language implementing it, and jus-
tification tags on propositions to support retraction. Also, Planner used
a representation along the lines of first-order predicate calculus, to mention
only the most important differences.

Procedures were invoked implicitly in Planner, using patterns that
specified the ’goals’, that is, specifying what the procedures were supposed
to accomplish.

The thnot operator is not mentioned in the 1968 version of the Planner
memo, but appears in the 1970 revision as follows:

(THNOT x) is an abbreviation for (thcond (x (fail))(t t)).
Thus (thnot ()) is t, (thnot t) is (), and (thnot (fail))
is t. The function thnot is due to T. Winograd.

It is not mentioned in the IJCAI 1971 article [13] about Planner, and
in fact Hewitt was always reserved about the nonmonotonic logic project.
His view was at that time (1):

We knew about the frame problem from contemporary ongoing work
at SRI on Strips with its ADD and DELETE lists. But we thought that
Planner was superior because of the ability to write pattern-directed
(conditional recursive) plans for goals and assertions that could more

1Carl Hewitt, e-mail communication, 2008
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flexibly do additions and deletions to the global data base to try to
keep things consistent.

I thought that THCOND was more fundamental than THNOT. THNOT
was obvious in the context of the other Planner “TH” variants of Lisp
primitives and could be trivially defined in terms of THCOND. On the
other hand, THCOND did not fit into the clause-based logic that was
in favor at the time. Thus Prolog duplicated THNOT but ignored
THCOND.

Hewitt later revised his design in favor of his Scientific Community
Metaphor that avoided the use of deletion and of backtracking.

However, in spite of Hewitt’s lack of interest in the thnot operator, a
number of other authors were inspired by it and noticed its relevance for
nonmonotonic reasoning. Drew McDermott and Jon Doyle write, in [25]:

In PLANNER ..., a programming language based on a negationless
calculus, the thnot primitive formed the basis of non-monotonic
reasoning. thnot, as a goal, succeeded only if its argument failed,
and failed otherwise. Thus if the argument to thnot was a formula
to be proved, the thnot would succeed only if the attempt to prove
the embedded formula failed. In addition to the non-monotonic primi-
tive thnot, PLANNER employed antecedent and erasing procedures
to update the data base of statements of beliefs when new deductions
were made or actions were taken. Unfortunately, it was up to the user
of these procedures to make sure that there were no circular depen-
dencies or mutual proofs between beliefs. ...

In summary, although there were a number of important differences
between Lisp A and Planner, they also had important notions in com-
mon, including:

• Invocation of rules according to assertions and requests

• Assertions, retraction of assertions and their consequences

• Negation by failure

The STRIPS System

The STRIPS system [10] was developed by Nils Nilsson and Richard Fikes
at SRI around the same time as Planner. It was a system for the planning
of action sequences in robots which was combined with other subsystems,
in particular for the execution of the constructed plans, in the construction
of the Shakey autonomous robot system.

STRIPS was based on rules specifying the additions and deletions in
the model of the robot’s environment that are associated with each of a
number of robot actions, so the nonmonotonicity in its behavior was not
formulated in terms of logic. In spite of this it has played an important role
in the development of nonmonotonic logics for the purpose of contrast: the
use of logic for reasoning about actions requires a way of doing within logic
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what STRIPS does outside of formal logic, so STRIPS has been repeatedly
used as a challenge.

In this context it is also interesting to note that Fikes implemented a
truth-maintenance-like feature that kept track of the support for derived el-
ements of the state model after each state change [9].

The Procedural-Declarative Controversy, Nonmonotonicity,
and the Frame Problem

During these early years, the need for nonmonotonic reasoning was mostly
mentioned in the context of the qualification problem, the frame problem,
and for reasoning about knowledge and belief. The first published article
where this was laid out was the classical “Some philosophical problems
from the standpoint of Artificial Intelligence” by McCarthy and Hayes [23],
which was published in 1969, but most of the ideas in this paper had been
circulated by its authors during the preceding years.

The period around 1970-1975 was the time of the big “procedural-
declarative controversy” in AI, where the proceduralists, such as Marvin
Minsky and Carl Hewitt, argued against the use of logic which had been
proposed by John McCarthy in his original “advice taker” paper as well as
in the McCarthy-Hayes article. The objections were of several kinds, in-
cluding insufficient expressiveness, inefficient implementation, and lack of
agreement with how intelligence works in humans. With respect to expres-
siveness, one major point was that standard logic is monotonic, in the sense
that the set of theorems from a set of axioms increases monotonically as the
axiom set is extended. Common-sense reasoning and other common types
of human thinking are not like that, it was argued, in particular because of
how we can make inference on the basis of defaults.

The McCarthy-Hayes paper does not give any direct answers to those
objections, but it does introduce some novel ideas that extend the traditional
notions of logic. With respect to nonmonotonicity, there is a proposal for
“formal literatures” where lines in a proof are allowed to refer in various
ways to the entire sequence of earlier lines, and not only use them as the ba-
sis for applying inference rules. There is a new quasi-predicate, consistent
p, which specifies that a particular formula p is consistent with the previ-
ous lines of the proof, and another one, normally p, for specifying what is
normally the case. Finally there is a rule that allows one to draw a tentative
conclusion, written probably p, if both the first two predicates apply to p.

The paper discusses an example where this mechanism is applied to
representing what is now called qualification. The example concerns what
is required in order to place a telephone call in the normal ways, and what
are some exceptional circumstances where placing the call may fail. The
paper also describes the limited frame problem (persistence of fluents that
are not implicated in an action) and suggests in one sentence that the “for-
mal literature” technique might be useful for solving this problem as well,
but without going into any details:

Many of the problems that give rise to the introduction of frames
might be handled in a similar way.
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The Frame Problem Paper at Machine Intelligence 7

The McCarthy-Hayes article had put the frame problem on the agenda, and
it was also addressed in an article by Bertram Raphael that was presented at
a workshop in 1970 [27]. From a logicist point of view, the natural next step
was to find a representation for this nonmonotonic reasoning problem that
was more in line with standard logic than either the procedural approach
of Planner, the functional approach of Lisp A, or the formal-literature
proposal of McCarthy and Hayes.

The unless operator from Lisp A could easily be adapted to fill this
need, and at the Machine Intelligence 7 workshop in 1971 I proposed to
extend first-order logic with the the use of rules of the form

A, Unless B => C

meaning that if A had been proved and B could not be proved (from the
set of axioms and rules at hand), then C followed. The article [35] is non-
committal as to whether an expression Unless B should be considered
as a well-formed formula that can be embedded inside larger formulas, or
whether a rule such as the one above ought to be considered as a special-
purpose inference rule. The pros and cons of those alternatives was consid-
ered as a topic of further investigation.

There are two major points in the MI7 article, besides the proposal for
rules with an Unless operator in itself. First, the article observes that the
use of rules of this kind results in the possibility of multiple extensions, as
exemplified by the three axioms or rules

A, Unless B => C
A, Unless C => B
A

This is of course a major issue for nonmonotonic logic. The paper includes
a brief discussion of how to handle this problem, and in particular a sug-
gestion to handle it by imposing a priority order on the default rules.

The other major point in this article was a discussion of the frame prob-
lem and a proposal for how to express it using a nonmonotonic ‘frame rule’.
The proposal was as follows. Given that one wishes to use a predicate IS
where IS(o,p,s) means “the object o has the property p in situation s”,
introduce a second predicate ENDS and a ‘frame rule’ of the form

IS(o,p,s), Unless ENDS(o,p,Succ(s,a)) =>
IS(o,p,Succ(s,a))

where Succ(s,a) is the successor situation that results from the situation
s by performing the action a. When the article proposes using this rule for
the frame problem, that term is taken to include more than plain persistence
of fluents. It points out the usefulness of rules of the form

ENDS(o,p,s) -> ENDS(o’,p’,s)

in order to represent what is today known as ramification. The article says:
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This approach to the frame problem gains its strength (as compared
to, for example, STRIPS) from the fact that one can make deductions
to any depth using the predicate ENDS.

Examples included “If x ends being alive, then x ends being a friend of
y”; “If x supports y and x moves to l, then y moves to l”, and “If x moves,
then x ends being where it was”.

It is regrettable that this article did not contain any discussion of how
the proposed approach relates to the proposal by McCarthy and Hayes in-
volving the three operators consistent, normally, and probably, nor even a
reference to their MI4 paper. The proposal in the article represents a sim-
plification that reduces the expressivity of the formalism. In particular, the
normally operator allows one to distinguish between hard conclusions and
conclusions that have been obtained by default. The new proposal using
unless removed that possibility.

An interesting indication of the utility of the original operators pro-
posed by McCarthy and Hayes occurred in the late 1980’s in the context of
the Prometheus project(2). The road-traffic experts that participated in this
project reported that many traffic accidents arise in situations where a driver
“guesses” that the current situation shall be interpreted in a particular way,
and the guess is plausible but happens to be wrong. This is a situation that
could maybe be characterized as normally(φ) ∧ ¬φ in McCarthy-Hayes
terms. It would be useful to be able to reason about such accident-prone
situations. The NML3 logic defined by Doherty and Łukaszewicz [4] was
a proposal for how to fill that need.

Prolog and Negation by Failure

The Prolog programming language was developed by Alain Colmerauer
of the University of Aix-Marseille in cooperation with Robert Kowalski
of the Imperial College in London. Colmerauer’s immediate interest was
in developing Prolog as a software tool for honoring database queries ex-
pressed in natural language 3. Kowalski was interested in the same topic for
two reasons: in order to show that Planner’s procedural representation of
knowledge could be obtained by means of resolution logic, and to demon-
strate that logic is useful as a high-level programming language. Much of
the basic language design was made during Kowalski’s visit to Marseille
in the summer of 1971. However, the introduction of negation by failure
was made by Colmerauer during Kowalski’s visit the following summer, as
a way of handling problems that came up in the course of developing the
natural-language system.

The initial development of nonmonotonicity in Prolog differed in an
important respect from the approaches that have been described above: it
was only seen as a way of cutting off a branch of search (hence its alter-
native name, the ‘cut’). The initially intended applications had a reactive

2Prometheus was a European cooperation project on information technology in automo-
biles.

3http://alain.colmerauer.free.fr/curriculum.html
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character and did not suggest the use of a deliberating system.
The following years saw the successful use of Prolog for a number of

applications, such as Warren’s WARPLAN system for planning [40] and
Kanoui’s system for symbolic integration [15], besides the natural-language
system of Colmerauer and his colleagues.

An important step forward was taken when Keith Clark presented a
declarative semantics for negation as failure [2]. This provided Prolog with
a formal strength that complemented its proven practical usability and con-
tributed to the rapid growth of its enthusiastic user community and the re-
sulting literature.

The Debate about Nonmonotonicity

The idea of nonmonotonic logic and nonmonotonic reasoning was put for-
ward by my MI7 paper and by the widespread interest in Planner’s thnot
operator, and it led to a considerable discussion during the following years,
sometimes with fairly heated arguments. The 1980 special issue of Artifi-
cial Intelligence contains some of the discussion and references to earlier
discussion.

At the 1975 IJCAI (held in Tbilisi, Georgia, which at that time was
a republic within the USSR), there was an article by Ivan Kramosil [16]
who argued that it was impossible to assign a meaningful semantics to non-
monotonic formalisms, effectively because they lack the extension prop-
erty. Later developments have of course shown that he was wrong.

The development of truth maintenance systems

Hewitt’s Planner system was an attempt to address the problem of con-
trol of reasoning in a profound way by tightly integrating the reasoning
machinery (propositions, methods for drawing and retracting conclusions,
and methods for controlling those methods) with a programming language.
This project was in line with Marvin Minsky’s critique of the use of logic in
AI, and in particular his remark that many of the valued properties of logic
(such as its monotonicity) makes it unsuitable for controlling reasoning.
The question of how to control reasoning processes, even in deliberating
systems, was therefore an important topic of interest in the MIT AI Labo-
ratory during the post-Planner period in the 1970’s.

In hindsight it is easy to see how this would lead to the work on truth
maintenance systems, and from there to proposals for a nonmonotonic logic.
However, some preceding work on constraint propagation in other contexts
is also part of the history.

Constraint propagation at MIT had started with David Waltz’s work on
interpreting visual scenes, and the same techniques had been used soon
thereafter by Gerry Sussman and Richard Stallman in the EL electronic cir-
cuit analysis system [39]. Sussman, Terry Winograd, and Eugene Charniak
had previously implemented a subset of Planner as a system called Micro-
Planner [38] which had been used by Winograd as a software tool for the
SHRDLU system [41]. One of the goals of EL was that it should provide
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explanations of its results, and it can therefore be seen as one of the earliest
expert systems. In order to be able to provide those explanations it em-
ployed a scheme for making assumptions and for changing them, although
each change of assumptions required an exhaustive check of the validity of
conclusions throughout the system.

Sussman and Stallman then generalized their approach and developed
the Antecedent Reasoning System, ARS, a system for forward propaga-
tion of constraints [37]. One of the new features in ARS was dependency-
directed backtracking, whereby the system could undo the effects in a par-
ticular thread of reasoning when that thread had led to an inconsistency.
Jon Doyle, then a graduate student at MIT, joined the ARS project and
contributed to the design of the backtracking system.

Similar problems also arose in other projects at MIT at that time. Drew
McDermott had developed a planning system, called NASL [24] which is
believed to be the first planning system that controlled itself by declarative
means. Both the individual actions in the plans and the supporting declara-
tive information were expressed in first-order logic, with minor extensions.
Default reasoning was used in an on-demand basis: when the system failed
to obtain an answer for a query, it invoked rules containing an “unless”
condition in order to obtain additional assumptions whereby an answer to
the query could be found. NASL was used as the basis for McDermott’s
electronic circuit design system.

The work on declarative control of reasoning continued in a joint project
with Gerry Sussman, Drew McDermott, Jon Doyle, Johan de Kleer and
Guy Steele which resulted in a system called AMORD, for “A Miracle of
Rare Device” [3], a phrase of literary origin.

As one of the project members, Jon Doyle decided to work on com-
bining these two lines of work, EL/ARS and NASL/AMORD, which led
to his development of the Truth Maintenance System, a term which was at
first the name of his particular system, but which has since then become
generic. This work started in 1976 and was reported in [7, 8]. The main
problem was, of course, how to organize the justification information for
formulas in the database. The solution was to express the justification as
an expression using the AND and OR operators to combine elements of the
form (IN Ni) or (OUT Ni), intended to mean that Ni is “in” the database in
the sense of the presently believed and supported propositions, or “outside”
the database in the opposite case.

In addition, each proposition in the store was labelled with its IN or
OUT status. Doyle identified the requirements that one must impose on
this structure, namely, the IN or OUT labelling of each proposition must be
consistent with its justification expression, and there must not be any circu-
lar justifications. The update algorithm that maintains these requirements
was an important part of the work, and there was work on making them as
efficient as possible.

One of the consequences of this architecture is that there may be sev-
eral correct assignments of IN/OUT status and justifications for a given
initial set of propositions, which is analogous to the existence of multiple
extensions in nonmonotonic logics. This was observed and taken both as
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a natural consequence of the design, and as a reasonable state of affairs in
an AI system. The identification of the grounded stability condition is an
important result of Doyle’s work.

The overriding problem was however how to control search and reason-
ing in a systematic way; Doyle showed how to do this using nonmonotonic
justifications.

From truth maintenance systems to nonmonotonic logic

The stage had now been set for proceeding from truth maintenance systems
to the formulation of a corresponding logic, and McDermott and Doyle
addressed this problem jointly. This resulted in the definition of Nonmono-
tonic Logic I [25], which is related to Doyle’s previous work on TMS in
the sense that extensions were defined in a way that makes them equivalent
to fixedpoints of the assumption closure operator in the TMS. The article
about Nonmonotonic Logic I is actually the only one in the 1980 special
issue of the Artificial Intelligence Journal that discusses the relationship of
the logic in question to truth-maintenance systems (or to any kind of soft-
ware system, in fact) to any depth.

Both McDermott and Doyle continued to work on this topic during the
following years, for example in the direction of supporting the inference of
new default rules.

Default Logic

The development of default logic by Ray Reiter can be traced back to his
1978 article on this topic [28], where he proposes that a number of sig-
nificant concepts in computer science and in AI can be unified through the
concept of a default. In particular he mentions the thnot operator in Planner,
my MI7 paper, the use of negation by failure in Prolog, and the use of de-
faults in programming languages and software systems. This appears to be
the first systematic discussion of the range of potential uses for reasoning
by default, i.e., for nonmonotonic reasoning.

An additional important point in this article is that it discusses inheri-
tance of properties in taxonomical structures, where higher-level nodes can
specify defaults that can be overridden by assignments to lower-level nodes.
This marks the beginning of representing defeasible inheritance in terms of
nonmonotonic logic, which is now one of the major applications for the
latter.

As a uniform framework for representing these various kinds of de-
faults, Reiter proposes a logic that represents nonmonotonic rules as spe-
cialized inference rules, along the lines of one of the two alternatives for
my MI7 paper. However, with respect to the possibility of multiple exten-
sions, his position is clear and negative: “Default theories exhibiting such
behaviour are clearly unacceptable.”

This position has been relaxed in his major article two years later where
default logic is introduced in a systematic way [29]. Here Reiter introduces
default logic in a more general form, but he also identifies restrictions on the
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logic whereby the existence and uniqueness of extensions are guaranteed.
Furthermore he writes, concerning normal defaults:

In fact I know of no naturally occurring default which cannot be rep-
resented in this form.

Reiter’s perspective on truth maintenance is similarly restrictive. His
original paper on default logic in 1978 devotes one column in the proceed-
ings article to the problem of automatic update, but the article in 1980 con-
tains results that guarantee that ‘belief revision’ will not be required.

Expressing the Frame Rules in Default Logic

Reiter’s preference for normal defaults may be the reason for a curious
development with respect to the formulation of the frame rule in default
logic. It was expressed as follows in my MI7 paper:

IS(o,p,s), Unless ENDS(o,p,Succ(s,a)) =>
IS(o,p,Succ(s,a))

In his 1980 paper Reiter quoted this proposal but rewrote it as, in com-
parable notation,

IS(o,p,s), Unless not IS(o,p,Succ(s,a)) =>
IS(o,p,Succ(s,a))

which says that if it is consistent for the object o to retain the property p
after the action a has been performed, then it will do so. In this way he
obtained a normal default rule, for which he had proved a number of useful
properties, and a rule that corresponded directly to STRIPS; he writes:

Intuitively this default schema formalizes the so-called ‘STRIPS as-
sumption’: Every action (state change) is assumed to leave every as-
sumption unaffected unless it is possible to deduce otherwise.

This formulation was generally accepted, and it was used e.g. by Hanks
and McDermott in their Yale Shooting Problem article at the AAAI 1986
conference [11]. The following year, Paul Morris in [26] proposed an al-
ternative formulation in default logic where the YSP anomaly did not arise.
He argued that the use of normal defaults was the reason for the problem,
and proposed using essentially the following nonnormal default rule

IS(o,p,s), Unless AB(o,p,e,s) =>
IS(o,p,Succ(s,e))

which is equivalent to the original proposal in the MI7 paper. This provides
a case for the utility of nonnormal default rules.
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Circumscription and Minimization of Models

The standard early reference to the circumscription method is McCarthy’s
article in the 1980 special issue of the Artificial Intelligence Journal [20],
which may lead the casual reader to think that this powerful concept came
about in the abstract way that it is often presented. There is however a
background story even in this case.

McCarthy liked to use simple examples of commonsense reasoning
which he characterized as his ‘drosophila’: simple examples that are use-
ful to research although they lack practical significance. One of these
drosophila was the old problem of three missionaries and three cannibals
that are supposed to cross a river using one boat. Already during the 1960’s
he had made a point of the closed-world assumptions that are needed in
order for a puzzle like this one to make sense. One must be able to assume
that there is no bridge across the river, there is not a hole in the bottom of
the boat, and so on, based only on the fact that the problem statement does
not mention any of these.

This example is used in the first published account of circumscrip-
tion, which appeared at the IJCAI Conference in 1977 [19]. After briefly
discussing the closure problem in the example just described, McCarthy
writes:

The intuitive idea of circumscription is as follows: We know some ob-
jects in a given class and we have some ways of generating more. We
jump to the conclusion that this gives all the objects in the class. Thus
we circumscribe the class to the objects we know how to generate.

McCarthy then describes how this operation can be expressed in the
framework of first-order logic using a predicate of one argument, and how
it can be expressed in set theory. He furthermore observes that there is
a semantic way of looking at circumscription, simply as a minimization
operation on models.

The subsequent journal article [20] describes circumscription in more
detail, but the object-oriented way of looking at it is still present. McCarthy
writes:

Circumscription is one candidate for accomplishing [the closure]. It
will allow us to conjecture that no relevant objects exist in certain
categories except those whose existence follows from the statement of
the problem and the common sense knowledge.

Later on in the article McCarthy proposes that the ontology should allow
the reification of all those things that can invalidate the proposed solution
of the problem, not only the ‘bridge’ but also the ‘leakiness’ and even the
‘lack of oars’.

There is a significant step from only minimizing a domain or a predicate
of one argument, to the minimization of other predicates. This step is taken
in the last sections of the same article where circumscription is used for
specifying the closure of a transitive relation and, interestingly, for an early
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variant of the abnormality predicate which was later introduced in [21]. The
1980 variant of abnormality was called prevents and was used for the axiom

∀x∀y∀s.(∀z. ¬ prevents(z,move(x,y),s) ⊃ on(x,y,result(move(x,y),s)))

together with several axioms where prevents occurs in the consequent.
Although most of the subsequent work on circumscription has used

the syntactical formulation using an axiom schema or a second-order ax-
iom, there has also been some following to the semantic way of viewing
it that McCarthy mentioned in his first article. This was natural: defeasi-
ble reasoning was often understood in terms of preferences of one kind or
another. For example, it served as the basis for Shoham’s proposal for a
“semantical approach” to nonmonotonic logics [36] where he attempts to
formulate a general framework that may subsume the nonmonotonic logics
that were being considered at the time. However it may be more accurate
to see Shoham’s proposal as a generalization of the semantic view of cir-
cumscription that also subsumes modal nonmonotonic logics such as the
nonmonotonic logic of McDermott and Doyle [25], whereas default logic
does not quite fit the mold.

In summary, when reading the accounts of circumscription that were
published in 1977 and 1980, one is struck by how well they represent issues
and methods that are still valid today.

Circumscription and Negation-by-Failure

Since the 1980 special issue of the Artificial Intelligence Journal is com-
monly viewed as the main starting-point for nonmonotonic reasoning re-
search in A.I., it is particularly regrettable that the state of the art of Prolog-
related research was not represented there. Keith Clark’s work on the se-
mantics of negation by failure, which has already been mentioned, had been
published two years earlier. This omission was however compensated to
some degree in 1982 with the publication of Reiter’s article about the rela-
tion between circumscription and predicate completion [30].

The immediate impact of the original circumscription articles was mod-
erate, maybe because the circumscription approach appeared to be so differ-
ent from all the previous ones. It was only with the publication of additional
articles, by McCarthy himself and by Vladimir Lifschitz in the mid-1980’s
that circumscription began to be understood and used. It is also at this time
that the emphasis on predicates in general becomes more pronounced and
the focus on minimizing domains begins to recede.

Winners and Non-winners in the Development after 1980

Circumscription, default logic and logic programming are the dominating
approaches to nonmonotonic reasoning today, although there is also some
work that uses e.g. the semantic approach proposed by Shoham. Each of
these has its family of applications and of implemented systems. In a con-
temporary perspective it may be natural see them as examples of a standard
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pattern that begins with the development of theory, and that continues with
applications and with software implementation.

It is striking, however, that the particular systems aspect that was im-
portant when nonmonotonic logic emerged has now more or less left the re-
search scene, namely, truth-maintenance systems, and that those proposals
for nonmonotonic logic whose development had been intimately connected
to truth-maintenance are also not very much present. In hindsight this is
actually a bit strange. Two of the winners were represented in the 1980
special issue by a highly theoretical paper (default logic) or by a paper that
was based on a few very simple examples of commonsense reasoning (cir-
cumscription). The third winner (prolog) was not even represented there,
but its strength at the time laid in having a combination of important factors:
a clean semantics, efficient implementations, a number of demonstrated ap-
plications, and an enthusiastic user community.

The contributions on Nonmonotonic Logic I by McDermott and Doyle
would a priori seem to have occupied the centerground: they were founded
in a suite of successful systems that were arguably more advanced than the
Prolog-based systems at the time in the sense that they addressed the needs
of deliberating systems and not merely reactive systems, and the integration
between logic and system was more profound. The research community in
the MIT AI Laboratory was strong and vibrant, and McDermott having
moved to Yale had added one more immediate constituency.

So why did not this approach win widespread acceptance? One rea-
son may be that their logic continued to evolve and to change, and that
the McDermott-Doyle cooperation ebbed out. Default logic and prolog re-
mained stable, by comparison, and circumscription evolved with more con-
tinuity. This meant that those who were interested in the continued work of
McDermott and of Doyle tended to focus on the logic as such, and the lack
of visible applications may have led others to lose interest.

Another reason may have been that the combination of nonmonotonic
reasoning and truth maintenance resulted in complex and resource-consuming
systems that could not run effectively in the computer systems at that time.
Logic programming, in particular, had the advantage of efficient implemen-
tation.

Yet another reason can maybe be extracted from McDermott’s analysis
of “the PROLOG phenomenon” after a visit to Europe [25]:

Americans and Europeans have reacted differently to the problems of
PLANNER-like languages. Americans tended to see the PLANNER
interpreter as a problem solver, with PLANNER programs as data.
[Systems in this tradition] have served as vehicles for studying con-
trol regimes that are fundamentally different from PLANNER’s back-
tracking.

The attitude [of the Europeans] towards backtracking has been sim-
ply that it is a programmer’s duty to remember that his programs will
be executed backward as well as forward, that his programs must
correct bad guesses as well as exploit good ones. (...) The logical
next step was to freeze the interpreter design and make it as efficient
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as possible. The result is a programming language, not a problem
solver or a theorem prover; it doesn’t compete with NOAH, but with
LISP. (...)

The proposed intercontinental divide aside, one may argue that these
two perspectives on actual systems can also be applied to the nonmonotonic
logics themselves. In a view that corresponds to the “American” perspec-
tive according to McDermott, the nonmonotonic logic is supposed to be a
correct logic of commonsense reasoning; if provided with commonsense
propositions it shall be able to produce commonsense conclusions without
further aid. In a programming-language-like view, on the other hand, a
nonmonotonic logic is seen as a machinery that has to be “programmed”
by designing the set of axioms appropriately, and if a given set of axioms
results in unintended conclusions then one should just modify the set of
axioms until the intended results are obtained.

The Hanks-McDermott article with the Yale Shooting Problem [11] ex-
presses disillusionment with both perspectives. It observes that unintended
conclusion sets are obtained when standard approaches to nonmonotonic
logic at the time are combined with a few spontaneously written axioms for
a very simple example. At the same time, the authors argue that crafting
the premises or the logic itself until it works as intended, is not a real-
istic enterprise. McDermott’s doubts about the viability and relevance of
nonmonotonic logic must have contributed to weakening the interest in the
approach that he had pioneered.

A related, important question is why truth maintenance is not an active
research topic at present, especially since its basic underlying principle is
far from dead. Automatic update of derived facts following changes in their
premises is in widespread use, in particular in spreadsheet software. It is
also clear that deliberating autonomous agents are going to need this kind
of update, not merely for elementary data but also as an integral part of their
knowledge representation systems.

A possible explanation for this state of affairs may be that the time has
not yet come. Cognitive robotics systems that are capable of sophisticated
reasoning while operating in the real world are arguably the most difficult
task that artificial intelligence addresses, and there are many other prob-
lems that must be solved before one can make use of both nonmonotonic
reasoning and truth maintenance.

If these are the explanations then one should expect that the logicist
aspect and the software-system aspect of nonmonotonic reasoning will be
reintegrated, maybe in ways that resemble what was done in the period
when nonmonotonic reasoning techniques were first developed.

Conclusions

The scenario that I have now described for how nonmonotonic reasoning
evolved in artificial intelligence, is in fact an instance of a more general
issue concerning the relations between systems and theory in AI. Given that
the overriding goal of Artificial Intelligence is to design intelligent systems
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and the goal of Knowledge Representation is to provide the “knowledge”
aspect of those systems, is it then best to focus the theory part of KR on
those issues that evolve from working with systems, or is it best to go from
intuitions and drosophila, to knowledge representations and logic, and from
there to actual systems? The early history of nonmonotonic reasoning may
provide arguments for both of those positions.
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