
Elaboration Tolerance through Object-Orientation

Joakim Gustafsson a, Jonas Kvarnström ∗

aDepartment of Computer and Information Science, Linköping University,
SE-581 83 Linköping, Sweden

Abstract

Although many formalisms for reasoning about action and change have been proposed in
the literature, any concrete examples provided in such articles have primarily consisted of
tiny domains that highlight some particular aspect or problem. However, since some of
the classical problems are now completely or partially solved and since powerful tools are
becoming available, it is now necessary to start modeling more complex domains. This
article presents a methodology for handling such domains in a systematic manner using
an object-oriented framework and provides several examples of the elaboration tolerance
exhibited by the resulting models.

1 Introduction

Traditionally, the semantic adequacy of formalisms for reasoning about action and
change (RAC) has primarily been tested using very small specialized domains that
highlight some particular point an author wants to make. These domains can usually
be represented as a small number of simple formulas that are normally grouped by
type rather than structure.

However, with some of the classical RAC problems completely or partially solved,
and with powerful tools available for reasoning about action scenarios, it is now
possible to model larger and more realistic domains. As soon as we start doing this,
it becomes apparent that there is an unfortunate lack of methodology for handling
complex domains in a systematic manner. There are few (if any) principles of good

∗ Corresponding author. E-mail address: jonkv@ida.liu.se.
Email addresses: joakim.gustafsson@rmrocade.com (Joakim Gustafsson),

jonkv@ida.liu.se (Jonas Kvarnström).
URLs: http://www.ida.liu.se/∼joagu (Joakim Gustafsson),

http://www.ida.liu.se/∼jonkv (Jonas Kvarnström).

Preprint submitted to Elsevier Science 7 September 2007

Accepted for publication in Artificial Intelligence Journal, 2003

form, like the “No Structure in Function” principle from the qualitative reasoning
community [1].

The following are some questions that must be answered in order to develop such
a methodology:

Consistency: How can complex domains be modeled in a consistent and systematic
way, to allow several developers to work on the same domain description and to
enable others to understand the resulting domain more easily?

Elaboration tolerance [2]: How do we ensure that domains can initially be mod-
eled at a high level of abstraction, with the possibility to add further details at a later
stage without completely redesigning the domain description? How do we design
domain descriptions that can be modified in a convenient manner to take account
of new phenomena or changed circumstances?

Modularity and reusability: How can particular aspects of a domain be designed
as more or less self-contained modules? How do we provide support for reusing
modules?

In this article, we investigate the applicability of the object-oriented paradigm [3,4]
to answering these questions. We model the entities that appear in a domain as ob-
jects, encapsulated abstractions that offer a well-defined interface to the surround-
ing world and hide the implementation-specific details. The interface consists of
methods that can be called by other objects. Objects are instances of classes sharing
the same attributes and methods. Classes are ordered in an inheritance hierarchy
where a class can be created as a subclass of another class, inheriting the attributes
and methods of the superclass and possibly adding its own attributes and methods
or redefining some of the inherited methods.

Modeling entities as objects and interacting with them using methods provides a
high degree of consistency in the domain model. The fact that attributes are hid-
den and accessed using methods increases elaboration tolerance, as does the ability
to extend existing classes with new functionality in a structured and well-defined
manner and to override existing functionality by re-implementing inherited meth-
ods. The modularity and reusability of a model are improved by modeling self-
contained classes that are independent of the implementations of other classes.

The object-oriented concepts used in this article could potentially be applied to
many different logics for reasoning and change, as long as they provide a certain
minimum amount of expressivity. However, a proper demonstration of the viability
of the approach requires a varied set of concrete examples. For these examples we
have chosen to use a single logic: TAL-C [5].

In the first part of the article, we will introduce TAL-C (Section 2), show how
domains can be modeled in TAL-C in an object-oriented manner (Sections 3 and 4)

2

Accepted for publication in Artificial Intelligence Journal, 2003

and discuss some more complex issues related to object-orientation (Section 5) and
how this affects elaboration tolerance (Section 6). Then, the ideas covered in the
first part will be applied to the Missionaries and Cannibals domain (Section 7). The
19 elaborations of this domain defined by McCarthy in his paper on elaboration
tolerance [2] will also be covered (Section 8), and a way of actually solving the
problems within the logic is discussed (Section 9). An object-oriented model of the
Traffic World domain [6] is briefly mentioned (Section 10). Finally, we conclude
with related work (Section 11) and a discussion of the results (Section 12).

2 The TAL family and the TAL-C Logic

TAL, Temporal Action Logics [7], is a family of non-monotonic temporal logics
with discrete linear time originating from the Features and Fluents framework [8]
and developed for reasoning about action and change in dynamic and incompletely
specified domains.

The TAL family contains a number of logics incrementally developed to provide
robust solutions to a number of problems in the area of reasoning about action
and change. Current members of the TAL family allow the modeling of actions
with duration, context-dependent actions, incompletely specified timing of actions,
and non-deterministic actions. They also provide a robust solution to the frame
problem [9]. Actions can have side effects, and chains of side effects are han-
dled correctly, providing one approach to solving the ramification problem [10].
The TAL-Q logic provides one approach towards solving the qualification prob-
lem [11]. Recent work also includes support for delayed effects of actions [12] and,
in TAL-C, concurrent actions [5]. All of these features have a corresponding formal
semantics, and TAL-C is also used as the semantic basis for TALplanner [13,14].

The TAL logics are narrative-based, and use two languages for representing and
reasoning about narratives. The surface language L(ND) (Narrative Description
Language, described in more detail below) provides a convenient high-level macro
notation for describing narratives, and can be extended in various ways in different
logics in the TAL family. A narrative in any version of L(ND) can be mechanically
translated into a common logical base language L(FL), where the frame, ramifica-
tion and qualification problems are handled using a form of circumscription [15]
called filtered circumscription [16]. Due to constraints on the structure of anL(ND)
narrative, the second-order theory resulting from applying circumscription can al-
ways be translated into a logically equivalent first-order theory, which is then used
to reason about the narrative. The formal details are presented in [7] as well as in
Appendices A and B.

This article will use TAL-C as a basis for applying concepts from object-oriented
modeling. A subset of this logic is implemented in the research tool VITAL [17], a

3

Accepted for publication in Artificial Intelligence Journal, 2003

platform-independent Java tool that can be downloaded from the WWW. All narra-
tives belonging to the subset supported by VITAL have a finite number of models,
and VITAL uses constraint propagation techniques to generate all models (or any
given number of models) of such narratives. This provides us with an experimental
platform where object-oriented narratives can be tested.

In the remainder of this section, we will use a concrete narrative example to pro-
vide an intuitive understanding of TAL-C. This will provide a basis for the object-
oriented extensions presented in Section 3.

2.1 TAL-C Narrative Descriptions

A narrative description in the TAL surface language L(ND) consists of two parts:
The narrative background specification (NBS) and the narrative specification (NS).

The narrative background specification contains generic information about the do-
main that is being modeled. This includes a narrative type specification, containing
type descriptions for the features 1 , value domains, and actions that are present in
the domain. It also includes a set of labeled narrative statements containing action
definitions (action schemas, labeled acs), domain constraints representing static
constraints that are always satisfied in the domain (acc, also called acausal con-
straints), dependency constraints representing directional or causal dependencies
between fluents (dep), and persistence properties of fluents (per).

The narrative specification contains information specific to a particular reasoning
problem within a problem domain, and includes observations of actual fluent val-
ues in the initial state or any other state (observation statements, labeled obs) and
information about which actions were performed, with which arguments, and when
(action occurrence statements, labeled occ).

Since narrative examples used in the literature have traditionally been quite simple,
the narrative type specification has usually either been considered to be implicit in
the remainder of the narrative specification or been described in the main text of
the article. In this article, we will instead use the input syntax for VITAL for the
narrative type specification.

1 A feature is similar to a state variable. When viewed as a function of time, it is called a
fluent.

4

Accepted for publication in Artificial Intelligence Journal, 2003

2.2 A TAL-C Narrative Example: The Hiding Turkey

We will now provide a concrete TAL-C narrative example using a variation of the
well-known hiding turkey scenario. This requires the following narrative type spec-
ification:

domain boolean :elements { true, false }
feature alive, deaf, hiding, loaded :domain boolean
action Load, Fire

The following statements comprise the remainder of the narrative type specifica-
tion. Explanations will be provided below.

per1 ∀t.t > 0 → Per(t, alive) ∧ Per(t, deaf) ∧ Per(t, hiding) ∧ Per(t, loaded)
per2 ∀t.Dur(t, noise, false)
dep1 ∀t.[t] ¬hiding ∧ ¬deaf ∧ noise → Set([t + 1] hiding)
dep2 ∀t.[t, t + 9] hiding ∧ ¬noise → Set([t + 10] ¬hiding)
acs1 [t1, t2] Load Set([t2] loaded) ∧ Set((t1, t2] noise)
acs2 [t1, t2] Fire ([t1] loaded ∧ ¬hiding → Set(t2] ¬alive)) ∧

([t1] loaded → Set([t2] ¬loaded))

Finally, the following is the narrative specification, which specifies what happens
in this particular scenario within the hiding turkey domain:

obs1 [0] alive =̂ true ∧ hiding =̂ true ∧ loaded =̂ false
occ1 [1, 4] Load
occ2 [5, 6] Fire

In this variation of the hiding turkey scenario, there is a turkey which we observe
being alive and not hiding in the initial state at time 0 (specified in the observation
statement obs1). The turkey may or may not be deaf – since there is no mention of
this fluent, it is not constrained to be either true or false. The observation statement
uses the notation [τ] φ, which means that the fluent formula φ holds at time τ . The
fluent formula f =̂ v denotes the fact that the fluent f takes on the value v at the
given timepoint. For boolean fluents the shorthand notation f

def
= f =̂ true and

¬f
def
= f =̂ false is also allowed.

The scenario also involves a gun, which is not loaded in the initial state (also spec-
ified in obs1).

Most of the fluents are persistent (per1), meaning that their values persist to the next
timepoint unless explicitly assigned a new value using the Set macro (previously
called I in most papers, and formally defined in Appendix A). However, noise is
a durational fluent with a default value false (per2). It can only be true at those
timepoints where it is explicitly assigned the value true, and at all other timepoints
it automatically reverts to being false. This reflects the common-sense notion that

5

Accepted for publication in Artificial Intelligence Journal, 2003

there is no noise unless someone or something is currently making noise. If a fluent
is not declared to be persistent or durational, it is dynamic. Since no persistence or
default value assumption is applied, the fluent can vary freely over time to satisfy
observations and domain constraints.

An interesting property of the turkey is that it is afraid of sounds. If it is not deaf
and there is some noise, it will immediately hide. This fact cannot be modeled as a
domain constraint, since such constraints cannot provide a sufficient cause for the
noise fluent to change values. Instead, it is modeled using the dependency constraint
dep1, which explicitly assigns hiding the value true using the Set macro. When there
has been no noise for ten consecutive timepoints, it will finally stop hiding, which
is modeled using another dependency constraint (dep2) – note that intervals [τ, τ ′]
are allowed.

There are two actions at our disposal. We can Load the gun (acs1), which ensures
that the gun is loaded when the action has been executed but also makes some noise
throughout the duration of the action: The action definition forces noise to be true
in the entire interval (t1, t2], and thereafter noise will automatically revert to its
default value, false. We can also Fire the gun (acs2), which results in the gun no
longer being loaded – and if the gun was loaded when the Fire action was invoked,
and the turkey was not hiding, the turkey will die.

In fact, in this particular scenario, we do Load the gun between 1 and 4 (occ1),
and we Fire it between 5 and 6 (occ2). If the turkey is deaf, it will not hide and
ends up being shot. Otherwise, it hears the noise, hides, and emerges from hiding
ten timepoints later. Since it was not specified whether the turkey was deaf or not,
there will be two classes of model for this scenario: One where the turkey dies and
one where it remains alive.

Apart from being more complex than many traditional benchmark problems in the
RAC community (the even more well-known Stanford Murder Mystery requires
only four short statements), this narrative is fairly representative of the area. The
nine statements are ordered by type, with no special regard to the structure of the
problem. The fluents are also unstructured in the sense that there is no indication
that alive and hiding refer to properties of a turkey while loaded and noise do not.

Although the hiding turkey domain is still comprehensible in this unorganized
form, it is clear that some additional structure will be valuable when modeling more
complex domains. The following section presents a way of applying the object-
oriented paradigm to modeling such domains.

6

Accepted for publication in Artificial Intelligence Journal, 2003

2.3 A Note on Fluents, Sorts and Types

Although this is not apparent from the turkey domain example presented above,
TAL-C is order-sorted and allows the use of a hierarchy of arbitrary finite value
domains. Fluents take on values from a specific sort (possibly the standard sort
boolean = {true, false}), and both fluents and actions can take arguments of specific
types.

For example, it would be possible to define a value domain gun containing the three
guns gun1, gun2 and gun3. The narrative could then be extended to use the boolean
fluent loaded(gun) together with the two actions Load(gun) and Fire(gun) taking a
gun as an argument.

Variables are typed and range over the values belonging to a specific sort. Although
the sort is sometimes specified explicitly, it is more common to simply give the
variable the same name as the sort but (like all variables) written in italics, possibly
with a prime and/or an index. For example, the variables gun, gun ′ and gun3 would
be of the sort gun. Similarly, variables named t or τ are normally temporal variables,
and variables named n are normally integer-valued variables.

3 Basic Object-Oriented Modeling in TAL-C

As has been shown previously [5,12,18], the TAL logics are flexible and fine-
grained logics suitable for handling a wide class of domains. We will now show
how to use object-oriented modeling as a structuring mechanism for domain de-
scriptions, thereby supporting the modeling of more complex domains and increas-
ing the possibility of being able to reuse existing models when modeling related
domains.

To simplify the task of the domain designer, some extensions to the L(ND) syntax
will be introduced. These extensions are not essential, since the new macros and
statement classes can mechanically be translated into the older syntax. The transla-
tions are implemented in the research tool VITAL.

The remainder of this section will show how classes are declared and how to in-
stantiate objects of a specific class. We will then go on to discuss how to declare
and use attributes (fields), and how to use three different types of methods: Ac-
cessors, mutators, and constraint methods. This provides the basic functionality for
the object-oriented modeling of complex domains in TAL-C. Section 4 will cover
additional topics such as how to override a method.

7

Accepted for publication in Artificial Intelligence Journal, 2003

3.1 Defining Classes and Objects

In TAL, domains are traditionally modeled using an unstructured set of boolean or
non-boolean fluents, each of which can take a number of arguments belonging to
specific value domains.

In our object-oriented approach, we will instead concentrate on classes and objects.
Each class will be modeled as a finite value domain, and each object as a value
in that domain. Due to the order-sorted type structure used in TAL, inheritance
hierarchies for classes are easily supported by modeling subclasses as subdomains.
We will assume that the hierarchy has a single root called OBJECT.

Given the approach being used, it would be easy to introduce a class alias for the
ordinary domain declaration statement. However, this would mean that any class
declaration statement would have to explicitly enumerate all objects belonging to
the class. Instead, a new, more flexible syntax is introduced which allows class and
object declarations to be separated.

3.1.1 Defining Classes

The narrative type specification syntax in VITAL is extended to allow two forms of
class declaration statement. A statement on the form class NEWCLASS declares a
new top-level class named NEWCLASS, without a parent. Usually this is only used
for the OBJECT class. A statement on the form class SUB extends SUPER declares
a new subclass named SUB, with the parent class (superclass) SUPER. This makes
SUB a direct subclass of SUPER, and SUPER is a direct superclass of SUB.

A class SUB is a subclass of SUPER iff it is a direct subclass of SUPER there is an
intermediate class INTER such that SUB is a direct subclass of INTER and INTER is
a subclass of SUPER. The superclass concept is defined similarly.

A simple water tank domain will be used as a running example. This domain re-
quires the standard root class OBJECT together with a domain TANK for water tanks.
We are also interested in modeling a special type of tank, a FLOWTANK, which may
have a flow of water into or out of the tank, as well as PIPEs between the tanks.

8

Accepted for publication in Artificial Intelligence Journal, 2003

class OBJECT

class TANK extends OBJECT

class FLOWTANK extends TANK

class PIPE extends OBJECT

3.1.2 Defining Objects

Objects are declared in the narrative type specification using object statements (la-
beled obj). Declaring an object as a member of a class naturally also makes it a
member of its superclasses: Any FLOWTANK is automatically also a TANK and an
OBJECT.

obj tank1 : TANK

obj tank2, tank3 : FLOWTANK

obj pipe1 : PIPE

Note that since classes correspond to value domains, it is possible to quantify over
all objects belonging to a given class. Also note that objects are not created at any
particular timepoint. They are declared in the narrative specification and exist at all
timepoints.

3.1.3 Translation

Class declarations and object declarations cannot be translated in isolation. Instead,
the complete set of class and object declarations are translated into TAL-C in the
following manner.

An object o is explicitly declared to belong to the class CL iff there is an object
declaration statement on the form obj . . . , oi, . . . : CL. An object o is declared to
belong to the class CL iff it is explicitly declared to be belong to CL or to one of the
superclasses of CL.

Each class declaration statement class NEWCLASS for a top-level class NEWCLASS

is translated into the domain declaration statement domain NEWCLASS :elements {
o1, . . . , on }, where the objects o1, . . . , on are exactly those objects that are declared
to belong to NEWCLASS.

Each class declaration statement class SUB extends SUPER for a non-top-level class
SUB is translated into the domain declaration statement domain SUB :extends SUPER

:elements { o1, . . . , on , where the objects o1, . . . , on are exactly those objects that
are declared to belong to SUB.

This leads to the following VITAL domain definitions for the classes and objects
declared above:

9

Accepted for publication in Artificial Intelligence Journal, 2003

domain OBJECT :elements { pipe1, tank1, tank2, tank3 }
domain TANK :elements { tank1, tank2, tank3 }
domain FLOWTANK :elements { tank2, tank3 }
domain PIPE :elements { pipe1 }

3.2 Using Attributes

As usual in object-oriented languages, each object can be associated with a set
of attributes, also known as fields. All objects of a certain class share the same
attributes, but the specific values of the attributes may differ between the objects.
Below, we show how attributes are modeled in TAL-C, how they are initialized,
and how they can be changed at specific points in time.

3.2.1 Defining Attributes

All attributes are specified in attribute declarations (labeled attr). For example, any
TANK has a current volume, a maximum volume, and a base area, all of which
are Real values. 2 These attributes are persistent: They will not change unless
explicitly changed. This is specified as follows:

attr TANK.volume : Real
attr TANK.maxvol : Real
attr TANK.area : Real

It is also possible to define attributes with arguments, which provides functionality
similar to the use of arrays or mappings in programming languages. For example,
if any water tank must keep track of exactly which pipes it is connected to, this can
be modeled using a boolean attribute connected taking a pipe as an argument:

attr TANK.connected(PIPE) : boolean

An attribute is automatically translated into a feature taking one additional argu-
ment – an object of the class to which the attribute belongs. Thus, the declara-
tions above are translated into the four TAL fluents volume(TANK) : Real, maxvol
(TANK) : Real, area(TANK) : Real, and connected(TANK, PIPE) : boolean.
Since time-dependent fluents are used, any attribute can vary over time in a natural
manner.

2 Since TAL currently requires finite domains, it is necessary to specify upper and lower
bounds on the Real domain as well as the desired precision. This is also true for the
Integer domain which will be used in later examples. However, these limitations are not
relevant to the modeling issues covered in this article.

10

Accepted for publication in Artificial Intelligence Journal, 2003

More formally, an attribute declaration attr CLS.attr(s1, . . . , sn) : s where n ≥ 0 is
translated into a feature declaration feature attr(CLS, s1, . . . , sn) : s.

Using standard TAL-C syntax, the volume attribute of tank1 is denoted by volume
(tank1). To permit the use of the standard object-oriented syntax tank1.volume,
we define obj.attr(x1, . . . , xn)

def
= attr(obj, x1, . . . , xn), where n ≥ 0; if n = 0, the

parentheses may be omitted. This syntax will also be applied to method invocations.

3.2.2 Attributes in Subclasses

Due to the use of the order-sorted type structure in TAL-C, subclasses automatically
inherit the attributes of their parents, as in ordinary object-oriented languages. For
example, tank1, tank2 and tank3 all have a volume, despite that the latter two are
declared as FLOWTANK objects.

Naturally, subclasses can also add new attributes. For example, the FLOWTANK

class keeps track of the current flow of water in or out of the tank, which is modeled
as a flow attribute:

attr FLOWTANK.flow : Real

3.2.3 Initializing Attributes

Although it would have been possible to introduce special syntax for object ini-
tialization, similar to constructors in standard object-oriented languages, this only
appears to be natural in the case where complete information about all objects is
available.

The TAL logics allow the use of incomplete information – for example, due to
sensor accuracy, one might only know that the initial volume of water in a tank
is less than 0.02. Therefore, we still use plain TAL-C observation statements to
partially or completely initialize attributes at time 0.

obs ∀tank.[0] tank.volume ≤ 0.02
obs [0] tank2.flow =̂ 0 ∧ tank3.flow =̂ 0.12

3.3 Methods

In a classical object-oriented view, a method is a sequence of code that is procedu-
rally executed when the method is invoked. In our approach, however, a method is a
set of formulas that must be satisfied whenever the method is invoked. Methods can
be invoked over intervals of time, and several methods can be invoked concurrently.

11

Accepted for publication in Artificial Intelligence Journal, 2003

Three different kinds of methods are defined: Accessors (which query the state of
an object), mutators (which are called in order to change the state of an object),
and constraint methods (which are not explicitly invoked but are active at all time-
points).

3.3.1 Accessors

Accessors are used for querying the state of an object. This can be done simply
by retrieving the current value of an attribute, or by performing arbitrarily complex
calculations as long as these calculations can be expressed within the logic being
used.

An accessor is modeled using a return value fluent, a dynamic (non-persistent, non-
durational) fluent that takes on the desired return value at all timepoints. For exam-
ple, a simple query volume() method for a water tank can be modeled by introduc-
ing a dynamic fluent query volume(TANK) : Real and adding the following domain
constraint:

acc [t] tank.query volume() =̂ value(t, tank.volume)

Although this type of accessor may not appear very useful at first glance, the inten-
tion is that the attributes of a class (such as volume in TANK) should be considered
private within that class, and that external callers should only use the externally
available interface, such as the query volume accessor. Actually enforcing this in-
tention would require additional support from the tools being used to reason about
an object-oriented narrative.

A slightly more complex accessor might determine whether the tank is full, which
is the case if its volume equals its maximum volume (maxvol). This is done by
declaring a dynamic return value fluent query full(TANK) : boolean and using the
following domain constraint:

acc [t] tank.query full() ↔ value(t, tank.volume) = value(t, tank.maxvol)

3.3.2 Mutators

Mutators can be called to change the internal state of an object, and are modeled as
dependency constraints triggered by invocation fluents.

To define a mutator method with n ≥ 0 arguments of sorts 〈s1, . . . , sn〉 in class
CLASS, it is first necessary to define a boolean durational invocation fluent method
(CLASS, s1, . . . , sn) with default value false. The method implementation consists
of a dependency constraint that is triggered for an object obj only when obj.method
(x1, . . . , xn) is true. For example, a mutator set volume(Real) can be defined in
class TANK as follows:

12

Accepted for publication in Artificial Intelligence Journal, 2003

per ∀t, tank, v ∈ Real.Dur(t, tank.set volume(v), false)
dep ∀t, tank, v ∈ Real.[t] tank.set volume(v) → Set([t] tank.volume =̂ v)

Calling the method requires making the invocation fluent true for the appropriate
arguments at the timepoint when the method should be invoked. As usual, this is
done using the Set macro, and therefore a TAL dependency constraint is required.
For example, the volume of tank1 can be set to 4.5 at time 2 as follows:

dep Set([2] tank1.set volume(4.5) =̂ true)

This is simplified further by defining Call(τ, f)
def
= Set([τ]f =̂ true):

dep Call(2, tank1.set volume(4.5))

3.3.3 Constraint Methods

Constraint methods model behaviors that should always be active. Instead of being
triggered by invocation fluents, constraint methods are active at all timepoints. In a
sense, they could be viewed as mutators that are continuously invoked. This allows
many common RAC constructions such as state constraints to be expressed while
keeping an object-oriented viewpoint.

The fact that the volume of water in a FLOWTANK changes according to the flow of
water can be encoded as follows:

dep Set([t + 1]tank.volume =̂ value(t, tank.volume + tank.flow))

This concludes the discussion of the most basic concepts in object-orientation:
Classes, objects, attributes, and methods. The following section will show how to
reify the class structure in order to model method overriding in TAL-C, while Sec-
tion 5 demonstrates how some additional object-oriented concepts, such as abstract
classes and final methods, can be modeled.

4 Inheritance and Overriding

Although the concepts presented in the previous section are sufficient for modeling
many domains, it is still possible to improve the elaboration tolerance of the models
considerably by introducing the object-oriented concept of overriding: Allowing a
subclass to re-implement a method in order to refine or specialize it.

This requires a way of disabling a method implementation that is inherited from
a superclass, which is facilitated by providing the logic formulas with some addi-
tional information about the class structure used in a domain model.

13

Accepted for publication in Artificial Intelligence Journal, 2003

4.1 Reifying the Class Structure

Since the TAL logics have no built-in support for allowing logic formulas to inspect
the class (sort) structure of a particular domain, it is necessary to reify this structure.
This can of course be done mechanically, and support for this is built into current
versions of VITAL [17].

The class structure is reified by mechanically constructing a TAL value domain
classname containing all class names, and declaring and initializing a persis-
tent boolean fluent 3 subclass(classname,classname), where subclass(c1, c2)
is true iff c1 is a subclass of c2. For the water tank example, the definitions would
be equivalent to the following:

domain classname :elements { OBJECT, TANK, FLOWTANK }
feature subclass(classname, classname) :domain boolean

per ∀t, classname1, classname2.t > 0 →
Per(t, subclass(classname1, classname2))

obs ∀c1 ∈ classname, c2 ∈ classname
[0] subclass(c1, c2) ↔

((c1 = FLOWTANK ∧ c2 = OBJECT) ∨
(c1 = FLOWTANK ∧ c2 = TANK) ∨
(c1 = TANK ∧ c2 = OBJECT))

Note that since subclass is persistent, it is sufficient to provide a value at time 0.
This value will automatically propagate to all timepoints.

In addition to this, it is sometimes necessary to be able to identify the exact type of
a certain object. To this end, an attribute class of type classname is added to the
root class OBJECT:

attr OBJECT.class : classname

This attribute is also initialized automatically during the translation of the ob-
ject declaration statements. In the water tank example, the following observations
would be generated:

obs [0] tank1.class =̂ TANK

obs [0] tank2.class =̂ FLOWTANK

obs [0] tank3.class =̂ FLOWTANK

obs [0] pipe.class =̂ PIPE

It should be emphasized that these domains and fluents are created automatically
during the translation process and need not be explicitly defined by the user.

3 Although we do not intend to change subclass relations over time, TAL-C has no support
for time-independent functions and therefore a fluent must be used.

14

Accepted for publication in Artificial Intelligence Journal, 2003

4.2 Overriding Method Implementations

Suppose that a method method is defined and implemented in a class CLASS ∈
classname. This implementation of method will be active for any object of type
CLASS, including objects belonging to subclasses of CLASS.

When a new subclass SUB is created, we may want to override some of the methods
defined in the superclass CLASS. This means not only adding a new implementation
of the method for objects in SUB, but also disabling the old implementation for
those objects.

To allow this to be modeled in TAL-C it is necessary to reify the concept of over-
riding a method. We introduce the boolean fluent override(SUB, method, CLASS) ex-
pressing the fact that for objects belonging to SUB, any implementation of method
in the superclass CLASS is overridden and should be disabled. This fluent is dura-
tional with default value false, since overriding should only occur when explicitly
forced.

All method implementations should then be conditionalized on not being overrid-
den, and should explicitly override implementations in superclasses.

The former is achieved by adding a suitable override expression in the precondition
of each method. For example, when set volume mutator declared in class TANK is
called for an object tank, the exact type of that object is tank.class (which may be
TANK or FLOWTANK). Thus, the method should be disabled if for objects of this
type (tank.class), the implementation of set volume in the class TANK is overridden
– in other words, if override(tank.class, set volume, TANK). The method is therefore
conditionalized as follows:

dep ∀t, tank ∈ TANK, f ∈ Real
[t] tank.set volume(f) ∧ ¬override(tank.class, set volume, TANK) →
Set([t] tank.volume =̂ f)

The latter is done by adding a statement on the following form each time a method
method is defined in a class CURRENTCLASS:

dep ∀t, SUPER ∈ classnames, SUB ∈ classnames
([t] subclass(CURRENTCLASS, SUPER)) ∧
([t] subclass(SUB, CURRENTCLASS) ∨ SUB = CURRENTCLASS) →
Set([t] override(SUB, method, SUPER))

This states that when a method is re-implemented in CURRENTCLASS, its inherited
implementation from any superclass SUPER is disabled for any object whose type
SUB is either exactly CURRENTCLASS or a subclass of CURRENTCLASS.

15

Accepted for publication in Artificial Intelligence Journal, 2003

For convenience, the macro DisableInherited(CURRENTCLASS, method) will be
used as a shorthand for statements of this type. This yields the following final defi-
nition of the set volume mutator:

dep DisableInherited(TANK, set volume)
dep ∀t, tank ∈ TANK, v ∈ Real

[t] tank.set volume(v) ∧ ¬override(tank.class, set volume, TANK) →
Set([t] tank.volume =̂ v)

5 Additional Object-Oriented Concepts

This section will briefly present some additional ideas regarding the use of object-
oriented modeling in a logic for reasoning about action and change. These ideas
build on the basic concepts presented in the previous two sections, but will not
be developed in the same level of detail. Rather, they are intended to demonstrate
the flexibility of the paradigm and show how it could be extended and modified in
various directions depending on the needs of the user.

5.1 Multiple Method Implementations

In the examples presented previously, a method always has a single implementa-
tion. However, there is no reason why this always has to be the case. For example, a
mutator could consist of multiple dependency constraints, all of which are triggered
by the same invocation fluent. This allows a more modular implementation of com-
plex methods. It also permits a subclass to add to the implementation of a method,
rather than replace it, simply by not calling the DisableInherited(CLASS, method
) macro to disable the implementation provided by the superclass. This resembles
the ability to call a superclass implementation of a method using super.method(. . .)
in the Java programming language.

5.2 Preventing Overriding: Final Methods

In some object-oriented programming languages, a method implementation can be
marked as “final”, meaning that it cannot be overridden in a subclass.

Final methods can be defined in TAL-C by stating that they are never overridden.
For example, the set volume method from Section 4.2 could be made final by adding
the following statement:

acc ∀t, tank ∈ TANK.[t] ¬override(tank.class, set volume, TANK)

16

Accepted for publication in Artificial Intelligence Journal, 2003

Unlike most programming languages, this form of type checking is dynamic rather
than static. If a method is overridden despite being final, this will generate an in-
consistent narrative rather than an error during translation. VITAL will detect such
inconsistencies and report the error to the user.

5.3 Forcing Overriding: Abstract Methods

While final methods are implemented and cannot be overridden in subclasses, ab-
stract methods are not implemented and must be overridden in all subclasses. The
following statement can be used to declare that the get color method is abstract in
the class TANK:

acc ∀t, tank ∈ TANK.[t] override(tank.class, get color, TANK)

Note that this statement in itself is not sufficient for permitting the override fluent
to be true. The fluent is durational, and can only take on the value true if it is
explicitly assigned that value, which is not the case in this formula. Instead, the
formula states that someone else must have assigned it the value true using the Set
macro, which would be done indirectly by an overriding method declaration using
the DisableInherited macro.

5.4 Abstract Classes

An abstract class cannot be instantiated. Such a class can be modeled using a simple
constraint on the following form:

acc ∀t¬∃object.[t] object.class =̂ CLASS

5.5 Class Methods

All methods shown up to now have been instance methods. For example, set volume
is called for an instance of the TANK class, and only alters the volume of that spe-
cific instance. It is also possible to model class methods, which are associated with
the class itself rather than with an instance.

A class accessor method can be defined in TAL-C using a return value fluent that
does not take an object as its first argument. Similarly, a class mutator can be de-
fined using an invocation fluent that does not take an object as its first argument.
For example, all tank volumes can be reset to zero using the following class method
in the TANK class:

17

Accepted for publication in Artificial Intelligence Journal, 2003

dep ∀t.[t] set zero volume() ∧ ¬override(TANK, set zero volume, TANK) →
∀tank.Set([t] tank.volume =̂ 0.0)

Note that this method is called directly, as in Call(7, set zero volume()), without
specifying a tank object as in Call(7, tank1.set volume(0)).

5.6 Access Control

For mutators, a form of cooperative access control can be implemented by adding to
the invocation fluent another argument representing the caller. Using the set volume
mutator as an example, the following changes would be made:

dep DisableInherited(TANK, set volume)
dep ∀t, tank ∈ TANK, caller ∈ TANK, v ∈ Real

[t] tank.set volume(caller, v) ∧ ¬override(tank.class, set volume, TANK) →
Set([t] tank.volume =̂ v)

In this definition, the caller argument must be a TANK, and consequently only a
TANK can call the set volume method. This is similar to a protected method in Java,
and could possibly be used to help ensure that encapsulation is respected. However,
this only provides a purely cooperative form of access control, since anyone want-
ing to call set volume() could in principle simply send an arbitrary tank object as
the caller.

6 Elaboration Tolerance through Object-Orientation

According to McCarthy [2], elaboration tolerance is “the ability to accept changes
to a person’s or a computer program’s representation of facts about a subject with-
out having to start all over”. Several ideas used in the object-oriented paradigm
facilitate the creation of elaboration tolerant domain models. This is not surprising,
since the reasons behind the object-oriented paradigm include modularization and
the possibility to reuse code.

The structuring of objects, fluents, domain constraints and dependency constraints
into a well-defined set of named classes, attributes and methods is a powerful tool
for increasing the readability of a domain definition. This helps provide a better
understanding of the domain, which is in itself a very important prerequisite for
being able to adapt and extend the definition.

The use of inheritance makes it possible to specialize a class, adding new attributes,
methods and constraints while reusing those features from the superclass that are
still useful in the new subclass. Using overriding, the behaviors of a superclass can

18

Accepted for publication in Artificial Intelligence Journal, 2003

be changed without knowing implementation-specific details and without the need
for “surgery” (McCarthy’s term for modifying a domain description by actually
changing or removing formulas or terms rather than merely adding facts).

While the creation of a subclass does not alter the behavior of its superclass, it is
also possible to add new attributes and methods directly to an existing class without
the need to modify the existing parts of the class definition.

Adding a new class requires changes to the classname domain and the subclass
fluent. These changes are done automatically at translation time. Adding new meth-
ods may also yield a new definition of the automatically generated Occlude predi-
cate (the TAL approach to solving the frame problem, as described in Appendices A
and B). However, the new definition can be created by analyzing the new methods
in isolation and adding new disjuncts to the existing definition of Occlude. It is not
necessary to start over from the beginning because a new class is added or because
a method is overridden.

The elaboration tolerance of this approach will now be tested using a concrete ex-
ample domain.

7 Missionaries and Cannibals

McCarthy [2] illustrates his ideas regarding elaboration tolerance with 19 elabora-
tions of the Missionaries and Cannibals Problem (MCP). We will begin by mod-
eling the basic, unelaborated domain using the object-oriented constructions pre-
sented above. In the next section we will show that the ability to override methods
and to add new methods and attributes in subclasses provides a natural way to
model many of the elaborations. Section 9 shows how the problem instances can
be solved by generating plans within the logic.

7.1 Overview of the Design

The basic version of the MCP is as follows:

Three missionaries and three cannibals come to a river and find a boat that holds
two. If the cannibals ever outnumber the missionaries on either bank, the mis-
sionaries will be eaten. How shall they cross in order to avoid anyone being
eaten?

Although we know we will eventually need to model some elaborated versions of
the domain, we will attempt to ignore that knowledge and provide a model suitable

19

Accepted for publication in Artificial Intelligence Journal, 2003

for this particular version of the MCP. This will provide a better test for whether
the object-oriented model is truly elaboration tolerant.

We will define classes for objects, boats, places, and banks (Figure 1). Like Lifs-
chitz [19], we will initially model missionaries and cannibals as groups of a certain
size rather than as individuals, despite the fact that a few of the elaborations do
require individuals to be treated as such; this is also done to provide a better test for
elaboration tolerance. In the standard domain, there will be six (possibly empty)
groups: Missionaries and cannibals at the left bank, at the right bank, and on the
boat.

OBJECT

PLACE BOAT GROUP

CANGROUPBANK MISGROUP

Fig. 1. Classes in the Missionaries and Cannibals Domain

7.2 Object

The root class OBJECT has a pos attribute representing its position, which is a
PLACE (Section 7.3):

class OBJECT

attr OBJECT.pos : PLACE

The following methods are available for accessing and changing the position:

Accessor query pos(): Returns the position of the object.

dep DisableInherited(OBJECT, query pos)
dep [t] ¬override(object.class, query pos, OBJECT) →

Set([t] object.query pos() =̂ value(t, object.pos)) 2

Mutator set pos(PLACE): Sets the position of the object.

dep DisableInherited(OBJECT, set pos)
dep [t] ¬override(object.class, set pos, OBJECT) ∧ object.set pos(place) →

Set([t] object.pos =̂ place) 2

20

Accepted for publication in Artificial Intelligence Journal, 2003

In the remainder of this article, attributes will generally be assumed to have acces-
sors and mutators following this pattern.

7.3 Place

The standard problem contains three different places: The left and right river bank
and onboard the boat. This is modeled as a generic class PLACE with a subclass
BANK.

A PLACE may be connected to other places, which is represented using a boolean
attribute connection with a PLACE argument.

class PLACE extends OBJECT

attr PLACE.connection(PLACE) : boolean

Since the PLACE onboard the boat will be connected to the bank where it is cur-
rently located, and since the boat will move between the two banks, the connection
attribute will change dynamically over time. Therefore two mutator methods are
available, in addition to the standard query method.

Accessor query connection(PLACE): Returns true if this PLACE is connected to the
given PLACE.

dep DisableInherited(PLACE, query connection)
dep [t] ¬override(place.class, query connection, PLACE) →

Set([t] place.query connection(place′) =̂ value(t, place.connection(place′)))
2

Mutator add connection(PLACE): Connects this PLACE to another PLACE.

dep DisableInherited(PLACE, add connection)
dep [t] ¬override(place.class, add connection, OBJECT) ∧

place.add connection(place′) →
Set([t] place.connection(place′) =̂ true) ∧
Set([t] place′.connection(place) =̂ true) 2

Mutator remove connection(PLACE): Removes the connection from this PLACE to
another PLACE.

21

Accepted for publication in Artificial Intelligence Journal, 2003

dep DisableInherited(PLACE, remove connection)
dep [t] ¬override(place.class, remove connection, OBJECT) ∧

place.remove connection(place′) →
Set([t] place.connection(place′) =̂ false) ∧
Set([t] place′.connection(place) =̂ false) 2

7.4 Bank

A BANK is a PLACE where a boat can be located. The standard MCP has two banks:
The left bank and the right bank.

class BANK extends PLACE

This class adds no new methods or attributes. Instead, the constraints on a BOAT

will guarantee that it is always located at a BANK.

7.5 Group

A GROUP represents a group of people in a certain location; subclasses such as
CANGROUP and MISGROUP will be used for specific types of people. It adds two
new methods and a size attribute specifying the number of people in the group.

class GROUP extends OBJECT

attr GROUP.size : Integer

Accessor query can move to(GROUP): In the basic domain, people can move from
one group to another only if they are groups of the same type and the two groups are
connected. For example, people cannot move from a missionary group to a cannibal
group, or teleport from the left bank to the right bank. For simplicity, we make the
return value fluent durational with default value false, and explicitly set it to true
only when necessary.

dep DisableInherited(GROUP, query can move to)
dep [t] ¬override(group.class, query can move to, GROUP) ∧

group.query pos().query connection(group′.query pos()) ∧
group.class =̂ group′.class) →

Set([t]group.query can move to(group′) =̂ true) 2

22

Accepted for publication in Artificial Intelligence Journal, 2003

Mutator modify group(GROUP, n): Calling group.modify group(group2, n) moves n
people from group to group2, if n is positive – otherwise, it moves |n| people in the
other direction. It is the caller’s responsibility to use query can move to() to ensure
that the change is in fact “legal”, and to ensure that a sufficient number of people is
available in the source group. It is also the caller’s responsibility to ensure that sym-
metry is retained: If group.modify group(group2, n) is called, group2.modify group
(group,−n) must also be called.

The implementation of this method is somewhat complex due to the fact that people
could move concurrently between multiple groups. For example, one person could
move from group1 to group2 while another moves from group2 to group3 and
two from group3 to group1. The cumulative effects of these concurrent method
calls must be taken into account.

For this reason, modify group does not follow the standard pattern where each in-
vocation triggers a separate instance of a formula. Instead, a single dependency
constraint sums the arguments of all concurrent invocations: 4

dep DisableInherited(GROUP, modify group)
dep [t] ¬override(group.class, modify group, GROUP) →

Set([t + 1] group.size =̂ value(t, group.size) +
∑

{〈g,x〉 | g∈GROUP∧[t] group.modify group(g,x)}
x

2

The macro people at(τ, GROUP, place) will denote the number of people at place
of the given type GROUP at time τ :

people at(τ, GROUP, place) =∑
{g | g∈GROUP∧[τ] g.query pos()=̂place}

value(τ, g.query size())

For example, given that left denotes the left bank, the macro expression people at
(7, CANGROUP, left) denotes the number of cannibals on the left bank at time 7,
and people at(7, GROUP, left) denotes the total number of people on the left bank
at time 7.

7.6 Cannibals

A CANGROUP is a group of cannibals. The class extends GROUP and adds one new
method.

4 Throughout this article we will use summation over a set as a shorthand. Since TAL-C
uses finite domains, each expression can be rewritten as a finite expression using plain
addition.

23

Accepted for publication in Artificial Intelligence Journal, 2003

class CANGROUP extends GROUP

Constraint eat missionaries(): Specifies that there cannot be more cannibals than
missionaries at any place. This constraint rules out any state where the cannibals
would be able to eat a missionary.

Note that whenever a boat is at a river bank, anyone in the boat is considered to
be at the same place as anyone on the bank. For this reason we define the macro
people in boats near(τ, GROUP, place), denoting the number of people in boats at
the given place place, belonging to a group of the given type GROUP, at time τ :

people in boats near(τ, GROUP, place) =∑
{〈boat,g〉 | [τ] g.query pos()=̂boat.query onboard()∧boat.query pos()=̂place}

value(τ, g.query size())

Then, if totalmis is the total number of missionaries in a certain location (or in boats
at that location), then either this must be zero or it must be greater than the total
number of cannibals.

dep DisableInherited(CANGROUP, eat missionaries)
acc [t] ¬override(cangroup.class, eat missionaries, CANGROUP) ∧

cangroup.query position() =̂ place ∧
totalmis = people at(t, MISGROUP, place) +

people in boats near(t, MISGROUP, place) →
totalmis = 0 ∨
totalmis >= people at(t, CANGROUP, place) +

people in boats near(t, CANGROUP, place) 2

7.7 Missionaries

A MISGROUP is a group of missionaries. The class extends GROUP and adds no
new methods or attributes.

class MISGROUP extends GROUP

24

Accepted for publication in Artificial Intelligence Journal, 2003

7.8 Boat

A BOAT is used to cross the river. Its onboard attribute points to the PLACE onboard
the boat (which is the pos of any GROUP onboard the boat).

class BOAT extends OBJECT

attr BOAT.onboard : PLACE

There are two new methods:

Constraint boat limit(): There must never be more than two passengers onboard a
boat.

dep DisableInherited(BOAT, boat limit)
dep [t] ¬override(boat.class, boat limit, BOAT) →

people at(t, GROUP, value(t, boat.query onboard())) ≤ 2 2

Mutator move to(BANK): The move to method is a low-level mutator that moves the
boat to another BANK. This involves altering the pos attribute, but also removing the
connection from the boat to its current location as well as adding a new connection
from the boat to its new location.

dep DisableInherited(BOAT, move to)
dep [t] ¬override(boat.class, move to, BOAT) ∧

boat.move to(bank) ∧
boat.query pos() = oldbank →

Call(t + 1, boat.query onboard().remove connection(oldbank)) ∧
Call(t + 1, boat.set pos(bank)) ∧
Call(t + 1, boat.query onboard().add connection(bank)) 2

7.9 Setting Up the Problem Instance

In order to set up a problem instance, we first have to instantiate some objects. The
boat will be called vera, there will be two banks (left and right), and there are
groups of missionaries and cannibals in all three places.

obj left, right : BANK

obj onvera : PLACE

obj vera : BOAT

obj cleft, cvera, cright : CANGROUP

obj mleft, mvera, mright : MISGROUP

25

Accepted for publication in Artificial Intelligence Journal, 2003

The following observation statements specify the attributes of these objects:

obs [0] vera.pos =̂ left ∧ vera.onboard =̂ onvera
obs [0] cleft.pos =̂ left ∧ cleft.size =̂ 3
obs [0] cvera.pos =̂ onvera
obs [0] cright.pos =̂ right
obs [0] mleft.pos =̂ left ∧mleft.size =̂ 3
obs [0] mvera.pos =̂ onvera
obs [0] mright.pos =̂ right
acc [0] group.size =̂ 0 ↔ (group 6= mleft ∧ group 6= cleft)
acc [0] place1.connection(place2) ↔

((place1 = left ∧ place2 = onvera) ∨
(place1 = onvera ∧ place2 = left))

This completes the modeling of the basic Missionaries and Cannibals Domain. In
the next section we will describe 19 elaborations of this domain, and in Section 9,
we will show how to solve the problems within the logic.

8 Elaborations of the Missionaries and Cannibals Domain

McCarthy [2] considers 19 different elaborations of the basic Missionaries and Can-
nibals domain, and discusses the requirements these domains place on a formalism
used for modeling them and on a system for reasoning about and solving the prob-
lems. These elaborations will now be modeled in TAL-C using the object-oriented
model of the MCP domain as a basis. The relations between the elaborations are
shown in Figure 2.

The elaborations are often rather vaguely formulated, and we do not claim to have
captured every aspect of each problem or that the formalism always allows the elab-
orations to be expressed as succinctly as possible. We concentrate on the modeling
of the domains rather than on the computational properties of a reasoner finding
plans for problem instances or proving that no plan exists. However, we do feel
that most of the main points of the domain elaborations have been modeled in a
reasonable manner.

Earlier versions of the domain definitions are available as part of the VITAL tool,
which can be downloaded from the web [17]. The current versions will be added in
the next release of VITAL.

26

Accepted for publication in Artificial Intelligence Journal, 2003

(#7)

(#6)Carry three (#4)

Rowboat (#1)

Four of each (#3) Food (#18)

One oar (#5)

Hats (#2)

Row quickly (#17)Hungry

Individuals

Not everyone rows

Original

Big Cannibal (#8)

Two sets of people (#19)

Island (#16)

Damage (#15)

Leak (#14)

Bridge (#13)

Stolen boat (#12)

Conversion (#11)

Jesus (#10)

Big cannibal, small missionary (#9)

Fig. 2. Elaborations of the Missionaries and Cannibals domain

8.1 Domain and Problem Specifications

We will consider each problem to consist of two parts. The domain specification
defines the classes being used together with their attributes and the inheritance hi-
erarchy, while the problem specification defines the object instances being used in
a specific problem instance together with the initial values of their attributes.

Our focus has been on elaboration tolerance for the domain specification. Each
elaboration may add new classes, or add new methods or attributes to existing
classes. Note that no part of the original L(ND) domain specification is removed
or modified in any of the elaborations.

Although it would have been possible to use similar techniques to model the prob-
lem specification in Section 7.9 in a defeasible manner, we instead make the as-
sumption that one is generally interested in solving many different problems in the
same general domain and that the specific problem instances (such as the number
of missionaries and cannibals, the set of river banks, and which places are con-
nected) are generated from scratch each time. The problem instance definitions for
the elaborations below are generally trivial and will usually be omitted.

27

Accepted for publication in Artificial Intelligence Journal, 2003

8.2 The Boat Is a Rowboat (#1)

In the first elaboration by McCarthy, we find out that the boat is in fact a rowboat.
This requires a new class ROWBOAT, subclass of BOAT, and vera must be made an
instance of ROWBOAT.

However, no new information is given regarding rowboats. The elaborated scenario
is essentially similar to the original problem – with the important exception that if
further information about rowboats is presented in the future, we will be able to
draw additional or different conclusions about vera.

class ROWBOAT extends BOAT

obj vera : ROWBOAT

8.3 Missionaries and Cannibals Have Hats (#2)

In the second elaboration, the missionaries and cannibals have hats, all different.
The hats may be exchanged among the missionaries and cannibals.

8.3.1 Viewing Missionaries and Cannibals as Individuals

While missionaries and cannibals used to be interchangeable and could be modeled
as groups, they must now be seen as individuals. A class for persons is added,
together with a group attribute that keeps track of the group to which the person
belongs. This attribute should be initialized to suitable values in the initial state.

class PERSON extends OBJECT

attr PERSON.group : GROUP

What remains is ensuring that a person always belongs to the right group. The only
method moving people between groups is GROUP.modify group(), but this method
only specifies how many people should move to another group, not which people
should move. Adapting this method to a model containing individuals may seem to
be a quite complicated task, and it might even seem like this elaboration is beyond
the capabilities of our logic. Fortunately, this is not the case.

The solution lies in making the group attribute dynamic – allowing it to vary freely
over time without a persistence assumption – and then constraining it using a new
addition to modify group(). The additional constraint essentially states that if n peo-
ple should move from group1 to group2, then there should be exactly n individuals
who previously belonged to group1 and now instead belong to group2. Note that we
do not override modify group: We merely add to its previous definition.

28

Accepted for publication in Artificial Intelligence Journal, 2003

Constraint modify group(GROUP2, n): Suppose that at some timepoint, the method
group1.modify group(group2, n) is invoked for two different groups group1 and group2.

The definition of this method in the superclass (Section 7.5) states that if n is pos-
itive, then n people should move from group1 to group2. This means that exactly
n individuals that used to belong to group1 should now belong to group2. This is
achieved using the first method implementation below.

On the other hand, if n is negative, then −n people should move in the other
direction. But in this case there must also be a method call group2.modify group
(group1,−n), according to the original constraints on modify group in Section 7.5.
Since −n is positive, this case is also handled by the first method implementation
below.

acc [t] ¬override(group1.class, modify group, GROUP) ∧
[t + 1] group1.modify group(group2, n) ∧
n ≥ 0 ∧
group1 6= group2 →∑

{p | p∈PERSON∧[t] p.group=̂group1∧[t+1] p.group=̂group2} 1 = max(0, n)

On the other hand, if for some timepoint t and some some distinct pair of groups
group1 and group2, the method is not invoked at all (for any n), then no person at all
should move from group1 to group2. The rule above does not guarantee this, since
if the method is not invoked at all for a certain pair of groups, the antecedent of the
implication cannot hold. An additional method implementation is required, which
is used when the method is not called:

acc [t] ¬override(group1.class, modify group, GROUP) ∧
[t + 1] ¬∃n[group1.modify group(group2, n)] ∧
group1 6= group2 →∑

{p | p∈PERSON∧[t] p.group=̂group1∧[t+1] p.group=̂group2} 1 = 0

Note that the final line could also be written as follows:

¬∃person[[t] person.group =̂ group1 ∧ [t + 1] person.group =̂ group2]

These two method implementations are sufficient to extend the group model into
a model with individuals, together with a new problem instance definition where
six PERSON objects are declared and placed into the groups on the left bank. This
hybrid group/individual model is admittedly somewhat more complex than a pure
individual-based model, but it is nevertheless interesting to see that the model can
be adjusted in this way without having to remove or completely rewrite existing
classes and methods.

It should be noted that this implementation makes it impossible to move n ≥ 0
people from group to group2 and at the same time move n′ ≥ 0 people from group

29

Accepted for publication in Artificial Intelligence Journal, 2003

to group2, where n 6= n′. Although one could possibly interpret this to mean that
n+n′ people move from group to group2, this would only introduce complications
that are generally unnecessary.

8.3.2 Hats

Given the domain presented above, where the missionaries and cannibals are seen
as individuals, adding hats and the possibility to exchange them is trivial. A new
class for hats is added, together with a new hat attribute for determining which hat
belongs to which person:

class HAT extends OBJECT

attr PERSON.hat : HAT

Accessor and mutator methods for the hat attribute are added. Also, a method for
exchanging hats is added to PERSON:

Mutator exchange hats(PERSON): Exchange hats with the given person.

dep DisableInherited(PERSON, exchange hats)
dep [t] ¬override(person.class, exchange hats, PERSON) ∧

person.exchange hats(person′) →
Call(t + 1, person.set hat(value(t, person’.get hat()))) ∧
Call(t + 1, person′.set hat(value(t, person.get hat())))

Finally, six hats must be created and the hat attribute must be initialized.

8.4 Four of Each (#3)

There are four missionaries and four cannibals.

In our terminology, this is a change in the problem specification rather than in the
domain specification. The problem specification is therefore modified accordingly:

obs [0] cleft.pos =̂ left ∧ cleft.size =̂ 4
obs [0] mleft.pos =̂ left ∧mleft.size =̂ 4
obs . . .

30

Accepted for publication in Artificial Intelligence Journal, 2003

8.5 The Boat Can Carry Three (#4)

In the fourth elaboration, the boat can carry three people, while in the original
MCP, the number of people onboard a BOAT was restricted to two. Although it was
obvious that it would be useful to be able to model boats of varying capacities,
we nonetheless deliberately chose to hardcode the capacity in the original boat limit
method in order to test the elaboration tolerance of the model. Thus, we now need
to create a subclass that overrides the old constraint. But this time, it will be done
the right way:

class SIZEBOAT extends BOAT

attr SIZEBOAT.capacity : Integer

Constraint boat limit(): Ensure that the capacity is not exceeded.

dep DisableInherited(SIZEBOAT, boat limit)
acc [t] ¬override(sizeboat.class, boat limit, SIZEBOAT) →

people at(t, GROUP, value(t, sizeboat.query onboard())) ≤
value(t, sizeboat.query capacity()) 2

Using the capacity attribute it is now possible to model boats with arbitrary limits
on the number of passengers.

8.6 One Oar on Each Bank (#5)

Suppose that the boat is a rowboat, and that there is initially one oar on each bank.
Suppose also that one person can cross the river with a single oar, but that two
people will need both oars to cross together.

Modeling this as an extension of elaboration 1 requires a new class for oars, and
two oars must be created and placed in their initial positions. These oars can later
be moved between connected positions using set pos().

class OAR extends OBJECT

obj oar1, oar2 : OAR

obs [0] oar1.pos =̂ left
obs [0] oar2.pos =̂ right

It is also necessary to ensure that the boat only moves when a sufficient number
of oars are available. One person can row using one oar, and two persons can row
using two oars – in other words, the number of people in the boat must not exceed
the number of oars.

31

Accepted for publication in Artificial Intelligence Journal, 2003

dep DisableInherited(ROWBOAT, oar limit)
acc [t] ¬override(rowboat.class, oar limit, ROWBOAT) ∧

rowboat.query onboard() =̂ place →
people at(t, GROUP, place) ≤ ∑

o | o∈OAR∧[t] o.query pos()=̂place 1

8.7 Not Everybody Can Row (#6 and #7)

In elaboration 6, only one cannibal and one missionary can row (which leaves the
problem solvable), while in elaboration 7, no missionary can row (which makes
it unsolvable). These elaborations extend elaboration 1 (the rowboat). Two new
classes for rowing cannibals and rowing missionaries are introduced, and the prob-
lem initialization is changed accordingly (for example, six new groups are added):

class ROWCANGROUP extends CANGROUP

class ROWMISGROUP extends MISGROUP

obj rcleft, rcvera, rcright : ROWCANGROUP

obj rmleft, rmvera, rmright : ROWMISGROUP

obs . . .

The new constraint method BOAT.row limit() ensures that no boat moves unless there
is someone aboard who can row.

dep DisableInherited(BOAT, row limit)
acc [t] ¬override(boat.class, row limit, BOAT) ∧

boat.query pos() 6=̂ value(t + 1, boat.query pos()) →
people at(t, ROWCANGROUP, boat.query onboard()) + people at
(t, ROWMISGROUP, boat.query onboard()) > 0

8.8 Big Cannibal (#8)

In the eighth elaboration, one cannibal is too big to fit into the boat with another
person. A new group class for big cannibals is introduced, and the problem specifi-
cation is changed accordingly:

class BIGCANGROUP extends CANGROUP

obj bcleft, bcvera, bcright : BIGCANGROUP

obs . . .

A new constraint method is added to this class, to ensure that if any big cannibals
are on board a boat, then there is exactly one person on board that boat:

32

Accepted for publication in Artificial Intelligence Journal, 2003

dep DisableInherited(BIGCANGROUP, size limit)
acc [t] ¬override(bigcangroup.class, size limit, BOAT) ∧

people at(t, BIGCANGROUP, boat.query onboard()) > 0 →
people at(t, GROUP, boat.query onboard()) =̂ 1

8.9 Big Cannibal, Small Missionary (#9)

There is a big cannibal and a small missionary. The big cannibal can eat the small
missionary if they are alone in the same place.

To model this elaboration, we add the classes SMALLMISGROUP for small mis-
sionaries and BIGCANGROUP for large cannibals together with a constraint method
eat small that ensures that a small missionary and a big cannibal are never isolated
together.

class SMALLMISGROUP extends MISGROUP

class BIGCANGROUP extends CANGROUP

dep DisableInherited(BIGCANGROUP, eat small)
acc [t] ¬override(bigcangroup.class, eat small, BIGCANGROUP) ∧

people at(t, BIGCANGROUP, place) = 1 ∧
people at(t, SMALLMISGROUP, place) = 1 →
people at(t, GROUP, place) > 2

8.10 Jesus (#10)

One of the missionaries is Jesus Christ, who can walk on water. A new group class
is created, and objects are instantiated and initialized for each position:

class JESUSGROUP extends MISGROUP

obj jleft, jvera, jright : JESUSGROUP

obs . . .

The query can move to() method from Section 7.5 is then overridden with a varia-
tion that does not require the origin and the destination to be connected.

Accessor query can move to(JESUSGROUP′): Jesus objects can move between non-
connected places (that is, cross the river without a boat).

dep DisableInherited(JESUSGROUP, query can move to)
dep [t] ¬override(jesusgroup.class, move persons, JESUSGROUP) ∧

jesusgroup.class =̂ jesusgroup′.class) →
Set(jesusgroup.query can move to(jesusgroup′) =̂ true) 2

33

Accepted for publication in Artificial Intelligence Journal, 2003

8.11 Conversion (#11)

Three missionaries together can convert an isolated cannibal. Add a constraint
method convert in class MISGROUP:

dep DisableInherited(MISGROUP, convert)
dep [t] ¬override(misgroup.class, convert, MISGROUP) ∧

people at(t, MISGROUP, place) ≥ 3 ∧
people at(t, CANGROUP, place) = 1 →
Call(t + 1, misgroup.modify group(misgroup, 1)) ∧
Call(t + 1, misgroup.modify group(cangroup,−1))

This elaboration takes advantage of the true concurrency in TAL-C [5]. For exam-
ple, modify group automatically handles situations where a cannibal is boarding a
boat while another is being converted to a missionary.

8.12 The Boat Might Be Stolen (#12)

Whenever a cannibal is alone in a boat, there is a 1/10 probability that he will
steal it. Although TAL-C has no support for probability reasoning, it is possible
to determine the probability that any particular boat will be stolen using an at-
tribute prob not stolen initialized to 1.0. Whenever a cannibal is alone in a boat,
the constraint method update prob multiplies prob not stolen by 0.9; the value of
boat.prob not stolen at the final timepoint of a model is the probability of that par-
ticular plan succeeding.

attr BOAT.prob not stolen : Real
obs ∀boat.[0]boat.prob not stolen =̂ 1.0

dep DisableInherited(BOAT, update prob)
dep [t] ¬override(boat.class, update prob, BOAT) ∧ boat.query onboard

() =̂ place ∧
people at(t, GROUP, place) = 1 ∧
people at(t, CANGROUP, place) = 1 →
Set([t + 1] boat.prob not stolen =̂ 0.9 ∗ value(t, boat.prob not stolen))

8.13 The Bridge (#13)

There is a bridge. The capacity of the bridge is not specified, but as long as at least
two people can cross simultaneously, an arbitrary number of people can cross. Add
a BRIDGE class and ensure that its capacity limit is respected.

34

Accepted for publication in Artificial Intelligence Journal, 2003

class BRIDGE extends PLACE

attr BRIDGE.capacity : Integer
dep DisableInherited(BRIDGE, bridge limit)
acc [t] ¬override(bridge.class, bridge limit, BRIDGE) → people at

(t, GROUP, bridge) ≤ value(t, bridge.query capacity())

Then instantiate a bridge, provide it with a capacity and connect it to the left and
right banks.

8.14 The Boat Leaks (#14)

In elaboration 14, the boat leaks and must be bailed. Add a new durational boolean
attribute bailed with default value false. The intention is that bailing the boat at a
specific timepoint makes bailed true at that timepoint. A constraint method requires
that the boat always be bailed (but does not cause the boat to be bailed – the user,
or the controller, must call the bail method).

attr BOAT.bailed : boolean
dep DisableInherited(BOAT, bail)
dep [t] ¬override(boat.class, bail, BOAT) → I([t] boat.set bailed(true))
dep DisableInherited(BOAT, must bail)
acc [t] ¬override(boat.class, must bail, BOAT) → [t] boat.query bailed()

8.15 The Boat Can Be Damaged (#15)

The boat may suffer damage and have to be taken back to the left side for repairs.
In this elaboration, the boat cannot move between banks instantaneously. We add
a new bank onriver and a new class SLOWBOAT for boats that spend some time
on the river before arriving at the destination. We also add a temporal constant
crosstime representing the amount of time required to cross the river.

class SLOWBOAT extends BOAT

attr SLOWBOAT.emergency : BOOLEAN

obj onriver : BANK

The move to method, which is responsible for moving the boat to another BANK,
must also be overridden and split into two parts: (1) move the boat to onriver, and
(2) after crosstime timepoints, if there has been no emergency, move it to the desired
bank. The second part takes advantage of TAL-C’s ability to handle delays [20,12].

Mutator move to(BANK): Move the boat to another bank, with a delay.

35

Accepted for publication in Artificial Intelligence Journal, 2003

dep DisableInherited(SLOWBOAT, move to)
dep [t] ¬override(slowboat.class, move to, SLOWBOAT) ∧

slowboat.move to(bank) ∧
slowboat.query pos() = oldbank →

Call(t + 1, slowboat.query onboard().remove connection(oldbank)) ∧
Call(t + 1, slowboat.set pos(onriver))

dep [t] ¬override(slowboat.class, move to, SLOWBOAT) ∧
slowboat.move to(bank) ∧

[t + 1, t + crosstime] ¬slowboat.query emergency() →
Call(t + crosstime, slowboat.set pos(bank)) ∧
Call(t + crosstime, slowboat.query onboard().add connection(bank)) 2

If there is an emergency, the second dependency constraint above will not be trig-
gered, and the boat will not end up at its intended destination. Instead, the boat
should move to the left bank and be repaired.

Constraint emergency behavior: If there are people on board and repairs are neces-
sary, automatically move to the left bank for repairs.

dep DisableInherited(SLOWBOAT, emergency behavior)
dep [t] ¬override(slowboat.class, emergency behavior, SLOWBOAT) ∧

slowboat.query emergency() ∧
people at(t, BOAT, slowboat.query onboard()) > 0 →
Call(t + 1, slowboat.set pos(left)) ∧
Call(t + 1, place.add connection(left)) ∧
Call(t + 1, slowboat.set emergency(⊥))]

2

8.16 The Island (#16)

If an island is added, the problem can be solved with four missionaries and four
cannibals. It is sufficient to change the number of people initially present on the
left bank and add an island object:

obj island : BANK

8.17 Four Cannibals, Four Missionaries, Row Quickly (#17)

Elaboration 17 is defined as follows by McCarthy:

36

Accepted for publication in Artificial Intelligence Journal, 2003

There are four cannibals and four missionaries, but if the strongest of the mis-
sionaries rows fast enough, the cannibals won’t have gotten so hungry that they
will eat the missionaries. This could be made precise in various ways, but the
information is usable even in vague form.

First, two new group classes are introduced: One for strong missionaries, and one
for cannibals that may or may not be hungry. The necessary instances are created
and initialized.

class HCANGROUP extends CANGROUP

class STMISGROUP extends MISGROUP

obj hcleft, hcvera, hcright : HCANGROUP

obj smleft, smvera, smright : STMISGROUP

obs . . .

A new boolean attribute is introduced to keep track of whether the cannibals in a
certain group are hungry or not. In the initial state, nobody is hungry.

attr HCANGROUP.hungry : boolean
obs ∀hcangroup.[0] hcangroup.hungry =̂ false

The old eat missionaries constraint stated unconditionally that the missionaries must
never be outnumbered by the cannibals in any location. This constraint must be
weakened slightly: If none of the cannibals at a certain location are hungry, it does
not matter whether the missionaries are outnumbered or not.

dep DisableInherited(HCANGROUP, eat missionaries)
acc [t] ¬override(hcangroup.class, eat missionaries, HCANGROUP) ∧

hcangroup.query position() =̂ place ∧
hcangroup.query hungry() ∧

totalmis = people at(t, MISGROUP, place) +
people in boats near(t, MISGROUP, place) →

totalmis = 0 ∨
totalmis >= people at(t, HCANGROUP, place) +

people in boats near(t, HCANGROUP, place) 2

What remains is determining exactly when the cannibals should become hungry.
The information given by McCarthy could be interpreted in many different ways.
It would be possible to model the strength of each person, let the amount of time
required to cross the river depend on the strength of the rowers, and let every canni-
bal become hungry at, say, time 10. Although this could be modeled in TAL-C, we
choose a simpler interpretation where the cannibals immediately become hungry
when the strong missionary is no longer in the boat.

37

Accepted for publication in Artificial Intelligence Journal, 2003

dep DisableInherited(HCANGROUP, become hungry)
dep [t] ¬override(hcangroup.class, become hungry, HCANGROUP) ∧

t ≥ 1 ∧
people at(t, STMISGROUP, boat.query onboard()) < 1 →
Call(t + 1, hcangroup.set hungry(true))

8.18 Four Cannibals, Four Missionaries, Food (#18)

Like in the previous elaboration, there are four missionaries and four cannibals,
and the cannibals are initially not hungry. The difference is that in this elaboration,
the missionaries have some food that they can give to the cannibals whenever they
become hungrier. As McCarthy notes, this requires comparing a situation and a
successor situation, which is clearly not a problem in TAL-C.

This is a quite complex elaboration. Since the level of hunger cannot be associated
with a group, it requires treating people as individuals, and we will use elaboration
2 as the starting point. To this we will have to add a way of determining when to
feed the cannibals, and keep track of how hungry they are and how much food each
missionary has.

We begin by creating the subclasses FOODCANGROUP and FOODMISGROUP, in
which some new methods will be added and others will be overridden. We also
need the classes MISSIONARY and CANNIBAL, subclasses of PERSON (which was
inherited from elaboration 2).

class FOODCANGROUP extends CANGROUP

class FOODMISGROUP extends MISGROUP

class MISSIONARY extends PERSON

class CANNIBAL extends PERSON

obj cleft, cvera, cright : FOODCANGROUP

obj mleft, mvera, mright : FOODMISGROUP

obj misA, misB, misC, misD : MISSIONARY

obj canA, canB, canC, canD : CANNIBAL

Cannibals can have different levels of hunger, modeled as an integer attribute. Mis-
sionaries have a certain amount of food. This must be initialized at time zero, and
arbitrary numbers have been used below.

attr CANNIBAL.hunger : Integer
attr MISSIONARY.food : Integer
obs [0] canA.hunger =̂ 1 ∧ canB.hunger =̂ 0 ∧

canC.hunger =̂ 0 ∧ canD.hunger =̂ 0
obs [0] misA.food =̂ 3 ∧misB.food =̂ 1 ∧

misC.food =̂ 7 ∧misD.food =̂ 7

38

Accepted for publication in Artificial Intelligence Journal, 2003

The feed method feeds a cannibal a certain amount of food. As in the modify group
method, two dependency constraints sum the arguments of all concurrent method
invocations.

dep DisableInherited(MISSIONARY, feed)

dep [t] ¬override(missionary.class, feed, MISSIONARY) →
Set([t + 1]missionary.food =̂ value(t, missionary.food)−∑
{〈c,x〉 | c∈CANNIBAL∧[t] missionary.feed(c,x)}

x

dep [t] ¬override(missionary.class, feed, MISSIONARY) →
Set([t + 1]cannibal.hunger =̂ value(t, cannibal.hunger)+∑
{〈m,x〉 | m∈MISSIONARY∧[t] m.feed(cannibal,x)}

x

If a cannibal is becoming hungrier, the missionaries may or may not feed him.

dep DisableInherited(MISSIONARY, do feed)
dep [t] ¬override(missionary.class, do feed, MISSIONARY) ∧

missionary.query group() =̂ foodmisgroup ∧
cannibal.query group() =̂ foodcangroup ∧
foodmisgroup.query pos() =̂ foodcangroup.query pos() ∧

[t + 1] cannibal.query hunger() > value(t, cannibal.query hunger()) →
∃n.0 ≤ n ≤ 1 ∧ Call(t + 2, missionary.feed(cannibal, n))

The cannibals must become hungrier now and then. For example, they might be-
come hungrier at time 2 and 4:

dep t = 2 ∨ t = 4 → Set([t + 1] cannibal.hunger =̂ value(t, cannibal.hunger
) + 1

Finally, the original eat missionaries constraint stated unconditionally that the mis-
sionaries must never be outnumbered by the cannibals in any location. Again, this
constraint must be weakened slightly: If none of the cannibals at a certain location
has a hunger level greater than 2, it does not matter whether the missionaries are
outnumbered or not.

dep DisableInherited(FOODCANGROUP, eat missionaries)
acc [t] ¬override(foodcangroup.class, eat missionaries, FOODCANGROUP) ∧

foodcangroup.query position() =̂ place ∧
(∃cannibal.cannibal.get group() =̂ foodcangroup ∧

cannibal.get hunger() > 2) ∧
totalmis = people at(t, FOODMISGROUP, place) +

people in boats near(t, FOODMISGROUP, place) →
totalmis = 0 ∨
totalmis >= people at(t, FOODCANGROUP, place) +

people in boats near(t, FOODCANGROUP, place) 2

39

Accepted for publication in Artificial Intelligence Journal, 2003

8.19 Two Sets of People (#19)

In the final elaboration, there are two sets of missionaries and cannibals too far apart
along the river to interact. A new attribute same set keeps track of which banks
belong to the same “set”, and must be initialized using observation statements:

attr BANK.same set(BANK) : boolean
obs [0] left.same set(right) ∧ . . .

The following constraint method ensures that the origin and destination are in the
same set.

dep DisableInherited(BOAT, move same set)
dep [t] ¬override(boat.class, move same set, BOAT) →

boat.query pos().query same set(value(t + 1, boat.query pos()))

8.20 Classes in the Elaborated Missionaries and Cannibals Problems

In the elaborations presented above we created a number of new classes that extend
the class hierarchy shown in Figure 1. An overview of the new class hierarchy is
shown in Figure 3.

OBJECT

OAR
HAT

PERSON

PLACE

BOAT

MISSIONARY
CANNIBAL

BANK
BRIDGE
ROWBOAT
SIZEBOAT
SLOWBOAT
ROWCANGROUP
TOOBIGCANGROUP
BIGCANGROUP
HCANGROUP
FOODCANGROUP
ROWMISGROUP
SMALLMISGROUP
JESUSGROUP
STMISGROUP
FOODMISGROUP

GROUP

Fig. 3. Classes in the Elaborated Missionaries and Cannibals Problems

40

Accepted for publication in Artificial Intelligence Journal, 2003

9 Solving the Missionaries and Cannibals Problems

Though the main focus of this article is on modeling, we would also like to actually
solve the Missionaries and Cannibals problem instances presented by McCarthy. In
other words, given that the missionaries and cannibals are located on the left river
bank, a suitable set of actions (or method invocations) should be found that moves
everyone to the right bank without any missionaries being eaten.

Although one could use the model only for prediction and then apply standard
planning algorithms to solve each problem, we instead choose to build on the ideas
for automatic control presented in [21] and model a controller within the logic.
Since the different elaborations have slightly different demands on the controller, it
will be modeled as another class whose methods can be overridden in subclasses,
providing another test of the elaboration tolerance of the object-oriented approach.

The main idea behind the controller is that whenever there is a choice between dif-
ferent actions that could be invoked, this choice is modeled using an incompletely
specified constraint method. For example, whenever a boat can move, a constraint
method in the controller will call the boat’s set pos method to move it, but the exact
destination will not be specified.

Every logical model of the resulting narrative corresponds to a different set of
actions that could potentially be taken by the missionaries and cannibals, given
that the cannibals never outnumber the missionaries in any location as required by
eat missionaries() (Section 7.6). What remains is choosing a model that actually
achieves the goal, rather than just containing missionaries and cannibals moving
around randomly. To achieve this, we assume (like Lifschitz [19]) that we know the
length t∗ of the plan to be generated. By constraining the state at time t∗ to be a
solution state, where everyone is at the right river bank, we ensure that any remain-
ing logical model must correspond to a valid plan. 5 The value t∗ is made available
in the narrative as a temporal constant, and will be used in some of the controller
methods.

For the original problem, we know that the minimal plan length is 12. The plan
lengths for the 19 elaborations will be shown together with the timing results in
Section 9.3, and the goals must of course also be altered for those elaborations that
involve different group types or a larger number of missionaries and cannibals.

obs t∗ = 12
obs [t∗] mright.size =̂ 3 ∧ cright.size =̂ 3

5 Note that this procedure depends on the fact that all incomplete information corresponds
to possible choices of actions rather than incomplete knowledge about the world.

41

Accepted for publication in Artificial Intelligence Journal, 2003

9.1 A Controller for the Original Problem

The controller for the original problem will consist of a class CONTROLLER with
a set of constraint methods defined below. One instance must be created in every
elaboration.

class CONTROLLER extends OBJECT

obj ctrl : CONTROLLER

9.1.1 Allowing People to Move

The first step in defining the controller is allowing people to move randomly be-
tween groups in connected locations. This is done by adding the following method:

Constraint move persons(): Moves an unspecified number of people (possibly zero)
between compatible groups in connected locations, where the compatibility is tested
using the query can move to method. For example, if there is a group of cannibals
group1 on the left bank and a group of cannibals group2 on the boat, and the boat
is at the left bank (the places are connected), then cannibals may move between
group1 and group2. Note that GROUPs never move – people move by changing the
size of two groups. Also note that the number of people moving from group1 to
group2 can naturally be equal to zero.

The exact number of people moved by this method will be constrained indirectly
by the goal as described above.

dep DisableInherited(CONTROLLER, move persons)
dep [t] ¬override(controller.class, move persons, CONTROLLER) ∧

group1.query can move to(group2) →
∃n [−value(t, group2.query size()) ≤ n ∧ n ≤ value(t, group1.query size
()) ∧

Call(t + 1, group1.modify group(group2,−n)) ∧
Call(t + 1, group2.modify group(group1, n))] 2

9.1.2 Allowing Boats to Move

The second step consists of forcing the boat to move to another randomly selected
bank whenever anyone is onboard. The following method is added to BOAT:

Constraint move boat(): If anybody is onboard a boat, the boat automatically moves
to another (unspecified) BANK. The destination bank is unspecified, and will be
constrained indirectly by the goal.

42

Accepted for publication in Artificial Intelligence Journal, 2003

dep DisableInherited(CONTROLLER, move boat)
dep [t] ¬override(controller.class, move boat, CONTROLLER) ∧

people at(t, GROUP, value(t, boat.query onboard())) > 0 →
∃bank[[t] boat.query pos() 6=̂ bank ∧

Call(t, boat.move to(bank))] 2

9.1.3 Additional Control: Don’t be Stupid

In addition to the nondeterministic choice of actions provided by the methods
above, it is also possible to introduce some more “intelligence” in the controller
by adding further constraints on the acceptable state sequence.

There is no point in allowing a state to repeat.

Constraint no repetitions(): At each timepoint, at least one group should change
sizes.

dep DisableInherited(CONTROLLER, no repetitions)
acc [t] ¬override(controller.class, no repetitions, CONTROLLER) →

∃group.value(t, group.query size()) 6= value(t + 1, group.query size()) 2

There should be at least one person on the boat, except at the first and last time-
point in the plan. This avoids plans where everyone leaves the boat but nobody else
boards it, leaving it empty for a period of time.

Constraint boat not empty(): There should be someone on the boat.

dep DisableInherited(CONTROLLER, boat not empty)
acc [t] ¬override(controller.class, boat not empty, CONTROLLER) →

∀t.t > 0 ∧ t < t∗ − 1 →
∑

{g | g∈GROUP∧
[t] g.query pos()=̂onvera}

value(t, g.query size()) > 0

2

9.2 Additions for the Elaborations

Although the controller presented above is sufficient for the original version of the
Missionaries and Cannibals domain, some of the elaborations alter basic properties
of the domain and require further elaborations of the controller.

43

Accepted for publication in Artificial Intelligence Journal, 2003

9.2.1 One Oar on Each Bank (#5)

In the fifth elaboration, there is one oar on each bank. To solve this problem, a can-
nibal must row alone to the other bank, pick up the second oar, and then row back.
This means that there must be an interval of time where no groups change sizes,
so no repetitions must be modified in a new controller class OARCONTROLLER:
If there is an oar in a position near the rowboat, then no groups have to change.
An instance of OARCONTROLLER should then be created instead of an instance of
CONTROLLER.

class OARCONTROLLER extends CONTROLLER

obj ctrl : OARCONTROLLER

Constraint no repetitions(): At each timepoint, at least one group should change
sizes.

dep DisableInherited(OARCONTROLLER, no repetitions)
acc [t] ¬override(oarcontroller.class, no repetitions, OARCONTROLLER) →

∃oar.[t + 1]oar.query pos().query connection(rowboat.query onboard()) ∨
∃group.value(t, group.query size()) 6= value(t + 1, group.query size()) 2

In addition to this relaxation of no repetitions, it is also necessary to extend the
controller to take an oar whenever one is available.

Constraint take oars(): If a rowboat is at a river bank where an oar is available,
then the oar should be moved into the boat.

dep DisableInherited(OARCONTROLLER, take oars)
dep [t] ¬override(oarcontroller.class, take oars, OARCONTROLLER) ∧

oar.query pos() =̂ rowboat.query pos() →
Call(t + 1, oar.set pos(rowboat.query onboard())) 2

9.2.2 The Bridge (#13)

If there is a bridge, the boat does not necessarily have to be used at all timepoints.
The boat not empty constraint has to be disabled, which is done by overriding it in a
new controller subclass BRIDGECONTROLLER without providing a new implemen-
tation.

class BRIDGECONTROLLER extends CONTROLLER

obj ctrl : BRIDGECONTROLLER

dep DisableInherited(BRIDGECONTROLLER, boat not empty)

44

Accepted for publication in Artificial Intelligence Journal, 2003

9.2.3 The Boat Leaks (#14)

If the boat can leak, the controller must be extended to call the bail action at all
timepoints.

class BAILCONTROLLER extends CONTROLLER

obj ctrl : BAILCONTROLLER

dep DisableInherited(BAILCONTROLLER, do bail)
dep [t] ¬override(bailcontroller.class, do bail, BAILCONTROLLER) →

Call(t, bailboat.bail())

9.2.4 The Boat Can Be Damaged (#15)

In elaboration 15, the boat can be damaged, and the action of moving to another
river bank had to be split into two events: Moving to the river, and then after
crosstime timepoints, arriving at the destination. The original controller states that
groups must always change sizes from t to t + 1, which clearly cannot be the
case in this scenario. Instead, the groups must change sizes from time t to time
t + crosstime, unless there was an emergency.

class SLOWCONTROLLER extends CONTROLLER

obj ctrl : SLOWCONTROLLER

dep DisableInherited(SLOWCONTROLLER, no repetitions)
acc [t] ¬override(slowcontroller.class, no repetitions, SLOWCONTROLLER) ∧

[t + 1, t + crosstime − 1]¬slowboat.query emergency() →
∃group.value(t, group.query size()) 6= value(t + 1, group.query size())

An additional precondition is required for move boat: The controller should not call
move to for a boat when that boat is on the river.

dep DisableInherited(SLOWBOAT, move boat)
dep [t] ¬override(slowcontroller.class, move boat, SLOWCONTROLLER) ∧

boat.query pos() 6= onriver ∧
people at(t, GROUP, value(t, boat.query onboard())) > 0 →
∃bank[[t] boat.query pos() 6=̂ bank ∧

Call(t, boat.move to(bank))]

9.3 Results

The timings in Table 1 were generated by the research tool VITAL [17] using Java
1.3.1 and the HotSpot Server virtual machine on an 1800 MHz Pentium 4 machine.
The total number of time steps in each plan is shown (including one step for ini-
tialization) together with the total amount of time required for generating the plan.

45

Accepted for publication in Artificial Intelligence Journal, 2003

Times are specified in seconds. We also provide some comparisons with the 10
elaborations implemented by Lifschitz [19] in the Causal Calculator [22], which
was run on an unspecified machine.

The timings are not directly comparable and should not be taken as claims regard-
ing the efficiency of the two approaches. This is especially true because (at least in
VITAL) timings depend very much on the exact formulation of an elaboration, and
could change drastically simply by altering the order in which objects are declared.

Two of the problems were unsolvable. We have not proved this within the logic:
The logic-based controller used to solve the remaining 17 problems is not a full
planner, and like the Causal Calculator, it requires as input the length of the plan
to be generated. Proving that no plan (of arbitrary length) would solve these two
problem instances would require additional reasoning outside the logic.

10 Traffic World

The object-oriented framework presented in this article has also been used for mod-
eling the Traffic World scenario proposed in the Logic Modeling Workshop [6], pre-
viously modeled by Henschel and Thielscher [23] using the Fluent Calculus [24].
This domain consists of cars moving in a road network represented as a graph struc-
ture, together with a TAL-C controller class that “drives” a car. A complete TAL-C
action scenario will soon be available at the VITAL web page [17].

11 Related Work

Much work has been done in combining ideas found in object-oriented languages
with the area of knowledge representation. One such area is description logics [25,26],
languages tailored for expressing knowledge about concepts (similar to classes) and
concept hierarchies. They are usually given a Tarski style declarative semantics,
which allows them to be seen as sub-languages of predicate logic. Starting with
primitive concepts and roles, one can use the language constructs (such as inter-
section, union and role quantification) to define new concepts and roles. The main
reasoning tasks are classification and subsumption checking.

Description logic hierarchies are very dynamic, and it is possible to add new con-
cepts or objects at runtime that are automatically sorted into the correct place in the
concept hierarchy. Some work has been done in combining description logics and
reasoning about action and change [27].

46

Accepted for publication in Artificial Intelligence Journal, 2003

Elaboration Steps Time (VITAL) Time (CC)

Original 12 1.5 17.6

1 12 1.5 −

2 12 6.5 −

3 Unsolvable

4 12 2.8 18

5 14 2.5 44

6 14 5.2 273

7 Unsolvable

8 16 11.3 9746

9 12 7.8 22

10 6 1.7 −

11 12 2.3 55

12 12 1.8 −

13 5 1.6 2

14 12 1.7 9

15 36 5.2 −

16 16 165.5 1894

17 10 3.8 7361

18 14 24.0 −

19 12 16.6 −
Table 1
Test Results for the Missionaries and Cannibals Problems

The modeling methodology presented in this article uses a different kind of class
hierarchy that is fixed at translation time. Classes are explicitly positioned in the
hierarchy, and classes and objects cannot be constructed once the narrative has
been translated. Also, description logics do not use methods or explicit time, both
of which are essential in the work presented here.

The approach presented in this chapter bears more resemblance to object-oriented
programming languages such as Prolog++ [28], C++ or Java. In most such lan-
guages, however, a method is a sequence of code that is procedurally executed
when the method is invoked. In our approach, a method is a set of rules that must be
satisfied whenever the method is invoked. Since delays can be modeled in TAL-C,
methods can be invoked over intervals of time and complex processes can be mod-
eled using methods. It is also possible to invoke multiple methods concurrently.

47

Accepted for publication in Artificial Intelligence Journal, 2003

An interesting approach to combining logic and object-orientation is Amir’s object-
oriented first-order logic [29,30], which allows a theory to be constructed as a graph
of smaller theories. Each subtheory communicates with the other via interface vo-
cabularies. The algorithms for the object-oriented first-order logic suggest that the
added structure of object-orientation can be used to significantly increase the speed
of theorem proving.

The work by Morgenstern [31] illustrates how inheritance hierarchies can be used
to work with industrial sized applications. Well-formed formulas are attached to
nodes in an inheritance hierarchy and the system is applied to business rules in the
medical insurance domain. A special mechanism is used to construct the maximally
consistent subset of formulas for each node.

12 Conclusions

This article has presented a way to do object-oriented modeling in an existing logic
of action and change, allowing large domains to be modeled in a more systematic
way and providing increased reusability and elaboration tolerance.

The main difference between our work and other approaches to combining knowl-
edge representation and object-orientation is due to the explicit timeline in TAL.
Methods can be called over time periods or instantaneously, concurrently or with
overlapping time intervals. Methods can relate to one state only or describe pro-
cesses that take many timepoints to complete.

Although a few new macros have been introduced in this article, those macros are
merely syntactic sugar serving to simplify the construction of domain descriptions.
Thus, the most important contribution is not the syntax but the structure that is
enforced on standard TAL-C narratives to improve modularity and reusability. It is
also reasonable to believe that the added structure could be used to make theorem
proving in L(FL) more efficient, although the current version of VITAL does not
take advantage of this.

Acknowledgements

This research is supported in part by the Swedish Research Council for Engineer-
ing Sciences (TFR), the WITAS Project under the Wallenberg Foundation and the
ECSEL/ENSYM graduate studies program.

48

Accepted for publication in Artificial Intelligence Journal, 2003

References

[1] J. de Kleer, J. S. Brown, A qualitative physics based on confluences, Artificial
Intelligence 24 (1–3) (1984) 7–83.

[2] J. McCarthy, Elaboration tolerance, in: The 1998 Symposium on Logical
Formalizations of Commonsense Reasoning (Common Sense-98), London, 1998,
available at http://www.dcs.qmul.ac.uk/research/krr/events/CS98/CS14.ps.

[3] M. Abadi, L. Cardelli, A Theory of Objects, Springer Verlag, 1996, see http://www.luca.
demon.co.uk/TheoryOfObjects.html.

[4] G. Booch, Object-Oriented Design with Applications, The Benjamin/Cummings
Publishing Company, Inc, 1991.

[5] L. Karlsson, J. Gustafsson, Reasoning about concurrent interaction, Journal of Logic
and Computation 9 (5) (1999) 623–650.

[6] E. Sandewall, Logic modelling workshop: Communicating axiomatizations of actions
and change, available at http://www.ida.liu.se/ext/etai/lmw.

[7] P. Doherty, J. Gustafsson, L. Karlsson, J. Kvarnström, TAL: Temporal Action Logics
– language specification and tutorial, Electronic Transactions on Artificial Intelligence
2 (3–4) (1998) 273–306, available at http://www.ep.liu.se/ej/etai/1998/009/.

[8] E. Sandewall, Features and Fluents: A Systematic Approach to the Representation of
Knowledge about Dynamical Systems, Vol. 1, Oxford University Press, 1994.

[9] P. Doherty, Reasoning about action and change using occlusion, in: A. G. Cohn (Ed.),
Proceedings of the 11th European Conference on Artificial Intelligence (ECAI-94),
John Wiley and Sons, 1994, pp. 401–405, available at ftp://ftp.ida.liu.se/pub/labs/kplab/
people/patdo/ecai94.ps.gz.

[10] J. Gustafsson, P. Doherty, Embracing occlusion in specifying the indirect effects of
actions, in: L. C. Aiello, J. Doyle, S. C. Shapiro (Eds.), Proceedings of the 5th
International Conference on Principles of Knowledge Representation and Reasoning
(KR-96), Morgan Kaufmann Publishers, San Francisco, 1996, pp. 87–98, available at
ftp://ftp.ida.liu.se/pub/labs/kplab/people/patdo/final-kr96.ps.gz.

[11] J. Kvarnström, P. Doherty, Tackling the qualification problem using fluent dependency
constraints, Computational Intelligence 16 (2) (2000) 169–209.

[12] L. Karlsson, J. Gustafsson, P. Doherty, Delayed effects of actions, in: H. Prade (Ed.),
Proceedings of the 13th European Conference on Artificial Intelligence (ECAI-98),
John Wiley and Sons, 1998, pp. 542–546.

[13] J. Kvarnström, P. Doherty, TALplanner: A temporal logic based forward chaining
planner, Annals of Mathematics and Artificial Intelligence 30 (2000) 119–169.

[14] P. Doherty, J. Kvarnström, TALplanner: A temporal logic-based planner, AI Magazine
22 (3) (2001) 95–102.

49

Accepted for publication in Artificial Intelligence Journal, 2003

[15] J. McCarthy, Circumscription – a form of non-monotonic reasoning, Artificial
Intelligence 13 (1980) 27–39, reprinted in [32].

[16] P. Doherty, W. Łukaszewicz, Circumscribing features and fluents: A fluent logic
for reasoning about action and change, in: D. M. Gabbay, H. J. Ohlbach (Eds.),
Proceedings of the 1st International Conference on Temporal Logic (ICTL-94), Vol.
827 of Lecture Notes in Computer Science, Springer Verlag, 1994.

[17] J. Kvarnström, VITAL. An on-line system for reasoning about action and change using
TAL, available at http://www.ida.liu.se/∼jonkv/vital/ (1997–2003).

[18] J. Kvarnström, P. Doherty, Tackling the qualification problem using fluent dependency
constraints, Computational Intelligence 16 (2) (2000) 169–209.

[19] V. Lifschitz, Missionaries and cannibals in the causal calculator, in: Proceedings of
the 7th International Conference on Principles of Knowledge Representation and
Reasoning (KR-2000), Morgan Kaufmann Publishers, 2000, pp. 85–96.

[20] P. Doherty, J. Gustafsson, Delayed effects of actions = direct effects + causal rules,
Linköping Electronic Articles in Computer and Information Science 3, available at
http://www.ep.liu.se/ea/cis/1998/001.

[21] J. Gustafsson, Extending temporal action logic, Ph.D. thesis, Linköping Studies in
Science and Technology, Dissertation No. 689 (2001).

[22] N. McCain, the Texas Action Group, The causal calculator, available at http://www.cs.
utexas.edu/users/tag/cc/.

[23] A. Henschel, M. Thielscher, The LMW traffic world in the fluent calculus, available
at http://www.ida.liu.se/ext/etai/lmw/ (1999).

[24] M. Thielscher, Introduction to the fluent calculus, Electronic Transactions on Artificial
Intelligence 2 (3–4) (1998) 179–192, available at http://www.ep.liu.se/ej/etai/1998/006/.

[25] A. Borgida, R. Brachman, D. McGuinness, L. Resnick, CLASSIC: A structural
data model for objects, in: Proceedings of the 1989 ACM SIGMOD International
Conference on Management of Data, Portland Oregon, 1989, pp. 58–67.

[26] R. Brachman, R. Fikes, H. Levesque, KRYPTON: A functional approach to knowledge
representation, Computer 16 (1983) 67–73.

[27] A. Artale, E. Franconi, A temporal description logic for reasoning about actions and
plans, Journal of Artificial Intelligence Research Vol 9 (1998) 463–506.

[28] C. Moss, Prolog++, The power of object-oriented and logic programming, Addison-
Wesley, 1994.

[29] E. Amir, Object-oriented first-order logic, Electronic Transactions on Artificial
Intelligence 3 (1999) 63–84, available at http://www.ep.liu.se/ej/etai/1999/008/.

[30] E. Amir, (De)Composition of situation calculus theories, in: Proceedings of the
17th National Conference on Artificial Intelligence (AAAI-2000), AAAI Press / The
MIT Press, 2000, pp. 456–463, available at http://www.cs.berkeley.edu/∼eyal/papers/
oo-sitcalc-aaai00.ps.

50

Accepted for publication in Artificial Intelligence Journal, 2003

[31] L. Morgenstern, Inheritance comes of age: Applying nonmonotonic techniques to
problems in industry, Artificial Intelligence 103 (1998) 1–34.

[32] J. McCarthy, Formalization of common sense, papers by John McCarthy edited by V.
Lifschitz, Ablex, 1990.

A Macros in L(ND)

The following is a subset of the macros used in the TAL-C version of L(ND).

A fixed fluent formula [τ] f =̂ v expresses the fact that the fluent f has the value v
at the timepoint τ . For boolean fluents, the shorthand notation [τ] f

def
= [τ] f =̂ true

and [τ]¬f
def
= [τ] f =̂ false is allowed. Boolean connectives are allowed within a

temporal scope (for example, [τ] f =̂ v ∧ g =̂ v′), and closed, open, or semi-open
intervals are permitted (for example, [τ, τ ′] f =̂ v).

The function value(τ, f) returns the value of the fluent f at the timepoint τ , where
[τ] f =̂ v iff value(τ, f) = v. The expression [τ] f =̂ g, where f and g are fluents,
is a shorthand notation for [τ] f =̂ value(τ, g).

An occlusion expression X([τ, τ ′] φ) expresses the fact that all fluents in φ are oc-
cluded (exempt from persistence or default value assumptions) in [τ, τ ′]. A reas-
signment expression, R([τ, τ ′] φ)

def
= X([τ, τ ′] φ) ∧ [τ ′] φ, also requires φ to hold at

the end of the interval, while a durational reassignment expression I([τ, τ ′] φ)
def
=

X([τ, τ ′] φ) ∧ [τ, τ ′] φ requires φ to hold throughout the interval. This is general-
ized to open, semi-open and singleton intervals. In this article, the I macro is also
denoted by the more intuitive name Set.

An atomic expression is either any of the expressions defined above or a feature,
value or timepoint equality expression (f = f ′, v = v′, τ = τ ′), a temporal rela-
tional expression (τ ⊗ τ ′, where ⊗ is a relation symbol in the temporal base struc-
ture), or an action occurrence expression ([τ, τ ′] A(ω), stating that the action A,
with arguments ω, is invoked during the interval [τ, τ ′]).

Statements in L(ND) are formed from atomic expressions in a manner similar to
the definition of well-formed formulas in a first-order logical language using the
standard connectives, quantifiers and notational conventions.

51

Accepted for publication in Artificial Intelligence Journal, 2003

B The Base Language L(FL)

In order to reason about a particular narrative, it is first mechanically translated
into the base language L(FL), an order-sorted classical first-order language with
equality. The base language uses the following predicates:

• Holds(τ, f, v) – the fluent f has the value v at time τ ,
• Occlude(τ, f) – the fluent f may change value at τ (corresponding to the reas-

signment macros),
• Occurs(τ, τ ′, a) – the action a occurs between τ and τ ′,
• Per(τ, f) – the fluent f is persistent at time τ , and
• Dur(τ, f, v) – f has default value v at time τ .

The translation function Trans : L(ND) → L(FL) is defined in Doherty et al. [7].
Although a complete understanding of the translation is not strictly necessary, we
nevertheless provide a few example translations below. The complete translation of
the hiding turkey narrative from Section 2.2 will also be shown below.

• Trans([τ] f =̂ v)
def
= Holds(τ, f, v)

• Trans([τ] f =̂ v ∧ g =̂ w)
def
= Holds(τ, f, v) ∧ Holds(τ, g, w)

• Trans([τ, τ ′] f =̂ v)
def
= ∀t.τ ≤ t ≤ τ ′ → Holds(t, f, v)

• Trans(X([τ] f =̂ v))
def
= Occlude(τ, f)

• Trans(X((τ, τ ′] f =̂ v))
def
= ∀t.τ < t ≤ τ ′ → Occlude(t, f)

• Trans([τ, τ ′] A(ω)) = Occurs(τ, τ ′, A(ω))

The logical theory which is the result of the translation is still under-constrained in
the sense that a number of implicit assumptions about fluent change in the world
remain to be characterized. In general, we want to encode the blanket assumption
that fluent values do not change unless there is a good reason for this to happen.
There are a number of legitimate reasons for fluents to change value, such as action
occurrences where the effects of the action change fluent values, or causal depen-
dencies between fluents where changes in some fluents force changes in others.
In TAL-C, all such legitimate reasons for change are represented implicitly using
the reassignment macros R, I and X in dependency constraints and action type
definitions. When translated, these statements result in constraints on the Occlude
predicate.

In the logical theory, we want to formally encode the assumption that these are the
only reasons for fluents to be occluded. This is done by using filtered circumscrip-
tion [16], a special form of circumscription [15] where the Occlude predicate is
circumscribed relative to the action definitions and dependency constraints with all
other predicates fixed, and Occurs is circumscribed relative to the action occurrence
formulas with all other predicates fixed. The results are combined and filtered with
the L(FL) translations of the persistence statements (forcing persistent and dura-
tional fluents to adhere to the persistence or default value assumptions), domain

52

Accepted for publication in Artificial Intelligence Journal, 2003

constraints, observations, and timing constraints, as well as the L(FL) foundational
axioms and temporal structure axioms (TAL-C uses a linear, discrete time structure
with non-negative time). The resulting second-order theory can be translated into a
logically equivalent first-order theory, which is then used to reason about the narra-
tive. In the remainder of the article, Trans+(N) will denote the result of translating
the narrative N into L(FL) and applying this filtered circumscription policy, which
is formally defined in [7].

B.1 The Hiding Turkey Scenario in L(FL)

The translation of the Hiding Turkey Scenario into L(FL) is somewhat more com-
plex than its L(ND) formalization, demonstrating some of the advantages of pro-
viding the macros in L(ND). (Here, we have simplified ¬Holds(τ, f, true) into
Holds(τ, f, false).)

per1 ∀t [true→ Per(t + 1, alive) ∧ Per(t + 1, deaf) ∧ Per(t + 1, hiding) ∧
Per(t + 1, loaded)]

per2 ∀t [true→ Dur(t, noise, false)]
obs1 Holds(0, alive, true) ∧ Holds(0, loaded, false) ∧ Holds(0, hiding, false)
dep1 ∀t [Holds(t, hiding, false) ∧ Holds(t, deaf, false) ∧ Holds(t, noise, true)) →

Holds(t + 1, hiding, true) ∧ Occlude(t + 1, hiding)]
dep2 ∀t [∀t′[t ≤ t′ ≤ t + 9 → Holds(t′, hiding, true) ∧ Holds(t′, noise, false)] →

Holds(t + 10, hiding, false) ∧ Occlude(t + 10, hiding)
acs1 Occurs(t1, t2, Load) → (Holds(t2, loaded, true) ∧ Occlude(t2, loaded) ∧

∀t[t1 < t ≤ t2 → Holds(t, noise, true)] ∧
∀t[t1 < t ≤ t2 → Occlude(t, noise)])

acs2 Occurs(t1, t2, Fire) → ((Holds(t1, loaded, true) ∧ Holds(t1, hiding, false) →
Holds(t2, alive, false) ∧ Occlude(t2, alive)) ∧ (Holds(t1, loaded, true) →
Holds(t2, loaded, false) ∧ Occlude(t2, loaded)))

occ1 Occurs(1, 4, Load)
occ2 Occurs(5, 6, Fire)

B.2 Circumscription of Occlude in the Hiding Turkey Scenario

The circumscription of the Occlude predicate in the action schemas (acs) and de-
pendency constraints (dep) in the Hiding Turkey Scenario is equivalent to the fol-
lowing set of first-order formulas:

∀t[Occlude(t, alive) ↔ t = 6 ∧ Holds(5, loaded, true) ∧ Holds(5, hiding, false)]

∀t[Occlude(t, loaded) ↔ t = 4 ∨ t = 6 ∧ Holds(5, loaded, true)]

53

Accepted for publication in Artificial Intelligence Journal, 2003

∀t[¬Occlude(t, deaf)]

∀t[Occlude(t, hiding) ↔
∃t′[t = t′ + 1∧Holds(t′, hiding, false)∧Holds(t′, deaf, false)∧Holds(t′, noise, true)]∨
∃t′[t = t′ + 10 ∧ ∀τ [t′ ≤ τ ≤ t′ + 9 → Holds(τ, hiding, true) ∧ Holds(τ, noise, false)]]]

∀t[Occlude(t, noise) ↔ 2 ≤ t ≤ 4]

The circumscription of the Occurs predicate in the action occurrence statements
(occ) in the Hiding Turkey Scenario is equivalent to the following first-order for-
mula:

∀t, t′, a[Occurs(t, t′, a) ↔ (t = 1 ∧ t′ = 4 ∧ a = Load) ∨ (t = 5 ∧ t′ = 6 ∧ a = Fire)]

54

Accepted for publication in Artificial Intelligence Journal, 2003

